日本臨牀 63/増刊号4 臨床免疫学 上

出版社: 日本臨牀社
発行日: 2005-04-28
分野: 臨床医学:一般  >  雑誌
雑誌名:
特集: 臨床免疫学 上
電子書籍版: 2005-04-28 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

16,060 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

16,060 円(税込)

目次

  • 日本臨牀 63/増刊号4 臨床免疫学 上

    ―目次―

    特集 臨床免疫学 上

    基礎編      
    1. 概論    
    2. 自然免疫応答とその制御    
    3. 免疫担当細胞    
    4. サイトカインとその受容体    
    5. 抗体/免疫グロブリン    
    6. 補体系    
    7. 抗原プロセッシングと抗原提示機構    
    8. 免疫応答と免疫記憶    
    9. 免疫寛容と免疫制御    
    10. 免疫担当細胞の生体内移動    
    11. 粘膜免疫  
     
    臨床編      
    1. 感染免疫    
    2. 腫瘍免疫    
    3. 移植免疫

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

基礎編

P.12 掲載の参考文献
1) Kaiser V, Diamond G : Expression of mammalian defensin genes. J Leukoc Biol 68 : 779-784, 2000.
6) Watanabe T, et al : NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5 : 800-808, 2004.
8) Beutler B : Innate immunity : an overview. Mol Immunol 40 : 845-859, 2004.
10) Geijtenbeek TB, et al : Self-and nonself-recognition by C-type lectins on dendritic cells. Annu Rev Immunol 22 : 33-54, 2004.
11) Peiser L, et al : Scavenger receptors in innate immunity. Curr Opin Immunol 14 : 123-128, 2002.
12) Engering A, et al : Immune escape through C-type lectins on dendritic cells. Trends Immunol 23 : 480-485, 2002.
13) Mitchell DA, et al : A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276 : 28939-28945, 2001.
14) Lee RT, Lee YC : Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj J 17 : 543-551, 2000.
15) Cambi A, Figdor CG : Dual function of C-type lectin-like receptors in the immune system. Curr Opin Cell Biol 15 : 539-546, 2003.
P.18 掲載の参考文献
1) Mestecky J, et al : The mucosal immune system. In : Fundamental Immunology, 5th ed (ed by Paul WE), p 965-1020, Lippincott Williams & Wilkins, Philadelphia, 2003.
2) 清野宏ほか : 粘膜免疫-腸は免疫の指令塔-, 中山書店, 2001.
3) Johansen FE, et al : Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J Exp Med 190 : 915-921, 1999.
5) Nagai Y, et al : Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3 : 665-672, 2002.
6) Abreu MT, et al : Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167 : 1609-1616, 2001.
8) Ueta M, et al : Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent at the ocular mucosal epithelium. J Immunol 173 : 3337-3347, 2004.
10) Bonneville M, et al : Intraepithelial lymphocytes are a distinct set of γδT cells. Nature 336 : 479-481, 1988.
11) Fujihashi K, et al : γδT cell-deficient mice have impaired mucosal immunoglobulin A responses. J Exp Med 183 : 1929-1935, 1996.
12) Jenkins MK, et al : Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol 144 : 16-22, 1990.
13) Chen Y, et al : Regulatory T cell clones induced by oral tolerance : suppression of autoimmune encephalomyelitis. Science 265 : 1237-1240, 1994.
14) Rizzo LV, et al : IL-4 and IL-10 are both required for the induction of oral tolerance. J Immunol 162 : 2613-2622, 1999.
15) Fujihashi K, et al : γδT cell regulate mucosally induced tolerance in a dose-dependent fashion. Int Immunol 11 : 1907-1916, 1999.
16) Groh V, et al : Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 13 : 1737-1740, 1998.
17) Bauer S, et al : Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285 : 727-729, 1999.
20) Cepek KL, et al : Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the αEβ7 integrin. Nature 372 : 190-193, 1994.
21) Karecla P, et al : Recognition of E-cadherin on epithelial cells by the mucosal T cell integrin αM290 β7 (αEβ7). Eur J Immunol 25 : 852-856, 1995.
22) Schon MP, et al : Mucosal T lymphocyte numbers are selectively reduced in integrin αE (CD103)-deficient mice. J Immunol 162 : 6641-6649, 1999.
24) Yamamoto M, Kiyono H : Role of γδT cells in mucosal intranet. Allergology International 48 : 1-5, 1999.
25) Inagaki-Ohara K, et al : Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing γδT cell receptor. Eur J Immunol 27 : 2885-2891, 1997.
26) Puddington L, et al : Interactions between stem cell factor and c-Kit are required for intestinal immune system homeostasis. Immunity 1 : 733-739, 1994.
27) Komano H, et al : Homeostatic regulation of intestinal epithelia by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA 92 : 6147-6151, 1995.
P.26 掲載の参考文献
1) Pan ZZ, et al : Inducible lung-specific expression of RANTES : preferential recruitment of neutrophils. Am J Physiol Lung Cell Mol Physiol 274 : L658-666, 2000.
3) Staller P, et al : Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425 : 307-311, 2003.
4) Hancock WW, et al : Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J Exp Med 192 : 1515-1520, 2000.
5) Nelson PJ, Krensky AM : Chemokines, chemokine receptors, and allograft rejection. Immunity 14 : 377-386, 2001.
6) Fischereder M, et al : CC chemokine receptor 5 and renal-transplant survival. Lancet 357 : 1758-1761, 2001.
7) Haino M, et al : submitting the manuscript, 2005.
P.33 掲載の参考文献
1) Reis e Sousa C : Dendritic cells as sensors of infection. Immunity 14 : 495-498, 2001.
4) Ohteki T, et al : Interleukin 12-dependent interferonγproduction by CD8α+ lymphoid dendritic cells. J Exp Med 189 : 1981-1986, 1999.
5) Suzue K, et al : In vivo role of IFN-γ produced by antigen-presenting cells in early host defense against intracellular pathogens. Eur J Immunol 33 : 2666-2675, 2003.
6) Sozzani S, et al : Chemokines and dendritic cell traffic. J Clin Immunol 20 : 151-160, 2000.
7) Reiner SL, Locksley RM : The regulation of immunity to Leishmania maior. Annu Rev Immunol 13 : 151-177, 1995.
8) Launois P, et al : IL-4 rapidly produced by Vβ4 Vα8 CD4+ T cells instructs Th2 development and susceptibility to Leishmania major in BALB/c mice. Immunity 6 : 541-549, 1997.
9) Hochrein H, et al : Interleukin (IL)-4 is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 192 : 823-833, 2000.
13) Moll H : Dendritic cells as a tool to combat infectious diseases. Immunol Lett 85 : 153-157, 2003.
14) Moll H : Dendritic cells and host resistance to infection. Cell Microbiol 5 : 493-500, 2003.
P.39 掲載の参考文献
3) Carreno M, Collins M : The B7 family of ligands and its receptors : new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20 : 29-53, 2002.
6) Kuchroo K, et al : The TIM gene family : emerging roles in immunity and disease. Nat Rev Immunol 3 : 454-462, 2003.
7) Amsen D, et al : Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117 : 515-526, 2004.
8) Reth M, Wienands J : Initiation and processing of signals from the B cell antigen receptor. Annu Rev Immunol 15 : 453-479, 1997.
9) Foy M, et al : Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 14 : 591-617, 1996.
10) Mackay F, et al : BAFF AND APRIL : a tutorial on B cell survival. Annu Rev Immunol 21 : 231-264, 2003.
11) Tsubata T : Co-receptors on B lymphocytes. Curr Opin Immunol 11 : 249-255, 1999.
12) 竹田和由 : NK細胞による生体防御および疾患の制御. Molecular Medicine 40 : 554-560, 2003.
13) Ljunggren G, Karre K : In search of the 'missing self' : MHC molecules and NK cell recognition. Immunol Today 11 : 237-244, 1990.
14) 反町典子 : NKレセプター. 免疫学イラストマップ (烏山一編), p 52-61, 羊土社, 2004.
P.44 掲載の参考文献
3) Solymar DC, et al : A 3' enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 7 : 41, 2002.
4) Lee HJ, et al : GATA-3 induces T helper cell type 2 (Th2) cytoldne expression and chromatin remodeling in committed Th1 cells. J Exp Med 192 : 105, 2000.
6) Fields PE, et al : Cutting edge : changes in histone acetylation at the IL-4 and IFN-γ loci accompany Th1/Th2 differentiation. J Immunol 169 : 647, 2002.
7) Omori M, et al : CD8 T cell-spechic downregulation of histone hyperacetylation and gene activation of the IL-4 gene locus by ROG, repressor of GATA. Immunity 19 : 281, 2003.
8) Ouyang W, et al : Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12 : 27, 2000.
9) Das J, et al : A critical role for NF-κB in Gata3 expression and Th2 dfierentiation in allergic airway inflammation. Nat Immunol 2 : 45, 2001.
10) Li-Weber M, et al : Involvement of Jun and Rel proteins in up-regulation of interleukin-4 gene activity by the T cell accessory molecule CD28. J Biol Chem 273 : 32460, 1998.
12) Kubo M, et al : CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4 mediated Th2 differentiation. J Immunol 163 : 2432, 1999.
13) Kimura M, et al : Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity 15 : 275, 2001.
14) Gorelik L, et al : TGF-β inhibits Th type 2 development through inhibition of GATA-3 expression. J Immunol 165 : 4773, 2000.
15) Heath VL, et al : TGF-β 1 down-regulates Th2 development and results in decreased IL-4-induced STAT6 activation and GATA-3 expression. Eur J Immunol 30 : 2639, 2000.
16) Li-Weber M, Krammer PH : Regulation of IL-4 gene expression by T cells and therapeutic perspectives. Nat Rev Immunol 3 : 534, 2003.
P.54 掲載の参考文献
3) Mocikat R, et al : Natural killer cells activated by MHC class ILow targets prime dendritic cells to induce protective CD8 T cell responses. Immunity 19 : 561-569, 2003.
4) Urosevic M, et al : Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology, human leukocyte antigen class I loss and interleukin-10 production. Am J Pathol 159 : 817-824, 2001.
5) Strand S, et al : Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells-a mechanism of immune evasion? Nat Med 2 : 1361-1366, 1996.
6) Iwai Y, et al : Involvement of PD-LI on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA 99 : 12293-12297, 2002.
7) Katherine MC, et al : Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 60 : 509-520, 1990.
8) Vonderheide RH, et al : The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10 (6) : 673-679, 1999.
9) Schmitz M, et al : Generation of survivin-specific CD8+ Teffector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60 (17) : 4845-4849, 2000.
10) Nakatsura T, et al : Gene cloning of immunogenic antigens over expressed in pancreatic cancer. Biochem Biophys Res Commun 281 : 936-944, 2001.
11) Kai M, et al : Heat shock protein 105 is overexpressed in a variety of human tumors. Oncol Rep 10 : 1777-1782, 2003.
14) Nakatsura T, et al : Glypican-3, 0verexpressed spechically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 306 : 16-25, 2003.
18) Kamma H, et al : Expression of MHC class II antigens in human lung cancer cells. Cell Pathol 60 (6) : 407-412, 1991.
23) Robert F, et al : Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 19 : 3234-3243, 2001.
25) Zwaveling S, et al : Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 169 : 350-358, 2002.
28) Matsuyoshi H, et al : Enhanced priming of antigen-specific CTLs in vivo by embryonic stem cell-derived dendritic cells expressing chemokine along with antigenic protein : application to antitumor vaccination. J Immunol 172 : 776-786, 2004.
31) Maine GN, Mule JJ : Making room fbr T cells. J Clin Invest 110 : 157-159, 2002.
32) Smith II JW, et al : Adjuvant immunization of HLA-A2-positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J Clin Oncol 21 : 1562-1573, 2003.
P.60 掲載の参考文献
1) Mason D : A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19 : 395-404, 1998.
2) Mason D : Some quantitative aspects of T-cell repertoire selection : the requirement for regulatory T cells. Immunol Rev 182 : 80-88, 2001.
3) Arstila TP, et al : A direct estimate of the human alphabeta T cell receptor diversity. Science 286 : 958-961, 1999.
4) Sakaguchi S, et al : Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155 : 1151-1164, 1995.
6) Elliot MJ, et al : Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis. Lancet 344 : 1105-1110, 1994.
8) Mohan C, et al : Nucleosome : a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med 177 : 1367-1381, 1993.
10) Banchereau J, et al : Autoimmunity through cytokine-induced dendritic cell activation. Immunity 20 : 539-550, 2004.
P.67 掲載の参考文献
2) Cerenius L, Soderhall K : The prophenoloxidase-activating system in vertebrates. Immunol Rev 198 : 116-126, 2004.
4) Cobert V, et al : Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 302 : 2126-2130, 2003.
9) Takehana A, et al : Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosoph ila immunity. EMBO J 23 : 4690-4700, 2004.
12) Ligoxygakis P, et al : A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J 21 : 6330-6337, 2002.
P.78 掲載の参考文献
1) Weis WI, et al : The C-type lectin superfamily in the immune system. Immunol Rev 163 : 19-34, 1998.
2) Dodd RB, Drickamer K : Lectin-like proteins in model organisms : implications for evolution of carbohydrate-binding activity. Glycobiology 11 : 71R-79R, 2001.
3) Ley K : The role of selectins in inflammation and (disease. Trend Mol Med 9 : 263-268, 2003.
4) Marshall ASJ, Gordon S : C-type lectins on the macrophage cell surface-recent findings. Eur J Immunol 34 : 18-24, 2004.
5) Geijtenbeek TBH, et al : DC-SIGN, a C-type lectin on dendritic cells that unveils many aspects of dendritic cell biology. J Leukoc Biol 71 : 921-931, 2002.
6) Martinez-Pomares L, Gordon S : The mannose receptor and its role in antigen presentation. The Immunologist 7 : 119-124, 1999.
7) Hofer E, et al : The centromeric part of the human natural killer (NK) receptor complex : lectin-like receptor genes expressed in NK, dendritic and endothelial cells. Immunol Rev 181 : 5-19, 2001.
8) Rabinovich GA, et al : Unlocking the secret of galectins : a challenge at the frontier of glyco-immunology. J Leukoc Biol 71 : 741-752, 2002.
9) Crocker PR, Varki A : Siglecs in the immune system. Immunology 103 : 137-145, 2001.
10) Angata T, Brinkman-van der Linden ECM : I-type lectins. Biochim Biophys Acta 1572 : 294-316, 2002.
11) Crocker PR : Siglecs : sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signaling. Curr Opin Struct Biol 12 : 609-615, 2002.
P.87 掲載の参考文献
1) Carrell RW, et al : Structure and variation of human α1-antitrypsin. Nature 298 : 329-334, 1982.
2) Loebermann H, et al : Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for fUnction. J Mol Biol 177 : 531-556, 1984.
4) Beatty K, et al : Kinetics of association of serine proteinases with native and oxidized α1-proteinase inhibitor and α1-antichymotrypsin. J Biol Chem 255 : 3931-3934, 1980.
6) Kozik A, et al : A novel mechanism for bradykinin production and inflammatory sites : Diverse effects of a mixture of neutrophil elastase and mast cell tryptase versus tissue and plasma kallikreins on native and oxidized kininogens. J Biol Chem 273 : 33224-33229, 1998.
7) Pelmutter DH, et al : Identification of a serpin-enzyme complex receptor on human hepatoma cells and human monocytes. Proc Natl Acad Sci USA 87 : 3753-3757, 1990.
8) Miyamoto Y, et al : Novel functions of human α1-protease inhibitor after S-nitrosylation : Inhibition of cysteine protease and antibacterial activity. Biochem Biophys Res Commun 267 : 918-923, 2000.
9) Miyamoto Y, et al : S-Nitrosylated humanαrprotease inhibitor. Biochim Biophys Acta 1477 : 90-97. 2000.
10) Luisetti M, Seersholm N : α1-Antitrypsin deficiency. 1 : Epidemiology of α1-antitrypsin deficiency. Thorax 59 : 164-169, 2004.
12) Knappstein S, et al : α1-Antitrypsin binds to and interferes with fUnctionality of EspB from atypical and typical enteropathogenic Escherichia coli strains. Infect Immun 72 : 4344-4350, 2004.
13) Breit SN, et al : The effect of ai antitrypsin on the proliferative response of human peripheral blood lymphocytes. J Immunol 130 : 681-686, 1983.
14) Breit SN, et al : The role of α1-antitrypsin deficiency in the pathogenesis of immune disorders. Clin Immunol Immunopathol 35 : 363-380, 1985.
15) Janciauskiene S, et al : Inhibition of lipopolysaccharide-mediated human monocyte activation, in vitro, by α1-antitrypsin. Biochem Biophys Res Commun 321 : 592-600, 2004.
16) Libert C, et al : α1-Antitrypsin inhibits the lethal response to TNF in mice. J Immunol 157 : 5126-5129, 1996.
17) Breit SN, et al : Immunoregulation by alpha 1 antitrypsin. J Clin Lab Immunol 7 : 127-131, 1982.
18) Jeannin P, et al : Alpha-1 antitrypsin up-regulates human B cell differentiation selectively into IgE and IgG4-secreting cells. Eur J Immunol 28 : 1815-1822, 1998.
19) Moraga F, Janciauskiene S : Activation of primary human monocytes by the oxidative form of α1-antitrypsin. J Biol Chem 275 : 7693-7700, 2000.
20) Janciauskiene S, Lindgren S : Human monocyte activation by cleaved form of alpha-1-antitrypsin. Involvement of the phagocytic pathway. Eur J Biochem 265 : 875-882, 1999.
21) Stockley RA : Alpha-1-antitrypsin deficiency : what next? Thorax 55 : 614-618, 2000.
22) Lomas DA, Mahadeva R : α1-Antitrypsin polymerization and the serpinopathies : pathology and prospects for therapy. J Clin Invest 110 : 1585-1590, 2002.
23) Coakley RI, et al : α1-antitrypsin deficiency : Biological answers to clinical questions. Am J Med Sci 321 : 33-41, 2001.
24) Sun Z, Yang P : Role of imbalance between neutrophil elastase and α1-antitrypsin in cancer development and progression. Lancet Oncol 5 : 182-190, 2004.
P.92 掲載の参考文献
1) Schmid K, et al : The carbohydrate units of humanαracid glycoprotein. Biochim Biophys Acta 492 : 291-302, 1977.
2) Yoshima H, et al : Comparative study of the carbohydrate moieties of rat and human plasma α racid glycoprotein. J Biol Chem 256 : 8476-8484, 1981.
3) Schmid K, et al : Structure of α1-acid glycoprotein. The complete amino acid sequence, multiple amino acid substitutions and homology with the immunoglobulins. Biochemistry 12 : 2711-2724, 1973.
4) Ashwell G, Harford JB : Carbohydrate-specific receptors of the liver. Annu Rev Biochem 51 : 531-544, 1982.
5) Dente L, et al : Structure and expression of the genes coding for humanαracid glycoprotein. EMBO J 6 : 2289-2296, 1987.
6) Wigmore SJ, et al : Interleukin-8 can mediate acute-phase protein production by isolated hepatocytes. Am J Physiol 273 : B720-726, 1997.
7) Koj A, et al : Hepatocyte growth factor an retinoic acid exert opposite effects on synthesis of type 1 and type 2 acute phase proteins in rat hepatoma cells. Int J Biochem Cell Biol 27 : 39-46, 1995.
8) Fournier T, et al : Alpha-1-acid glycoprotein. Biochim Biophys Acta 1482 : 157-171, 2000.
9) Vasson MP, et al : Effects ofα1-acid glycoprotein on human polymorphonuclear neutrophils : influence of glycan microheterogeneity. Clin Chim Acta 224 : 65-71, 1994.
10) Tilg H, et al : Antiinflammatory properties of hepatic acute phase proteins : Preferential induction of interleukin-1 (IL-1) receptor antagonist over IL-1, 3 synthesis by human peripheral blood mononuclear cells. J Exp Med 178 : 1629-1636, 1993.
11) Boutten A, et al : α1-cid glycoprotein potentiates lipopolysaccharide-induced secretion of interleukin-1β, interleukin-5 and tumor necrosis factor-α by human monocytes and alveolar and peritoneal macrophages. Eur J Immunol 22 : 2687-2695, 1993.
13) Libert C, et al : Protection by α1-acid glycoprotein against tumor necrosis factor-induced lethality. J Exp Med 180 : 1571-1575, 1994.
14) Chiu KM, et al : Interactions of α1-acid glycoprotein with the immune system. I. Purification and effects upon lymphocyte responsiveness. Immunology 32 : 997-1005, 1977.
15) De Graaf T, et al : Inflammation-induced expression of sialyl Lewis X-containing glycan structures on α1-acid glycoprotein (orosomucoid) in human sera. J Exp Med 177 : 657-666, 1993.
16) Williams Jp, et al : α1-acid glycoprotein reduces local and remote injuries after intestinal ischemia in the rat. Am J Physiol 273 : G1031-1035, 1997.
17) Snyder S, Coodley EL : Human monocyte activation by cleaved form of alpha-1-antitrypsin. Involvement of the phagocytic pathway. Arch Intern Med 136 : 778-781, 1976.
18) Costello M, et al : Inhibition of platelet aggregation by native and desialized alpha-1 acid glycoprotein. Nature 281 : 677-678, 1979.
19) Maeda H, et al : The growth-stimulating effect of α1-acid glycoprotein in cells in culture. Proc Soc Exp Biol Med 163 : 223-227, 1980.
20) Maeda H, et al : Facilitating effects of alpha-1 acid glycoprotein on the passage of erythrocytes through the membrane-filter. Life Sci 27 : 157-161, 1980.
21) Maeda H, et al : Further characterization of the effects of alpha-1-acid glycoprotein on the passage of human erythrocytes through micropores. Cell Struct Funct 9 : 279-290, 1984.
22) Kremer JM, et al : Drug binding to humanαracid glycoprotein in health and disease. Pharmacol Rev 40 : 1-47, 1988.
P.96 掲載の参考文献
1) Hofftnann JA, et al : Phylogenetic perspectives in innate immunity. Science 284 : 1313-1318, 1999.
3) Fujita T, et al : The lectin-complement pathway-its role in innate immunity and evolution. Immunol Rev 198 : 188-202, 2004.
5) Jack DL, et al : Mannose-binding lectin : targeting the microbial world for complement attack and opsonophagocytosis. Immunol Rev 180 : 86-99, 2001.
P.101 掲載の参考文献
P.107 掲載の参考文献
1) Lemaitre B, et al : The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86 : 973-983, 1996.
6) Miyake K, et al : Murine B cell proliferation and protection from apoptosis with an antibody against a 105 kDa molecule : unresponsiveness of X-linked immunodeficient B cells. J Exp Med 180 : 1217-1224, 1994.
7) Miyake K, et al : Mouse MD-1, a molecule that is physically associated with RP105 and positively regulates its expression. J Immunol 161 : 1348-1353, 1998.
11) Saitoh S, et al : Lipid A antagonist, lipid IVa, is distinct from lipid A in interaction with Toll-like receptor 4 (TLR4)-MD-2 and ligand-induced TLR4 oligomerizaion. Int Immunol 16 : 961-969, 2003.
12) Nagai Y, et al : Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3 : 1699-1705, 2002.
14) Akashi S, et al : Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 13 : 1595-1599, 2001.
15) Kawasaki K, et al : Mouse Toll-like receptor 4-MD-2 complex mediates lipopolysaccharidemimetic signal transduction by Taxol. J Biol Chem 275 : 2251-2254, 2000.
16) Latz E, et al : Lipopolysaccharide rapidly traffics to and from the Golgi apparatus with the toll-like receptor 4-MD-2-CD14 complex in a process that is distinct from the initiation of signal transduction. J Biol Chem 277 : 47834-47843, 2002.
18) Franchimont D, et al : Deficient host-bacteria interactions in inflammatory bowel disease? The toll-like receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn's disease and ulcerative colitis. Gut 53 : 987-992, 2004.
P.114 掲載の参考文献
5) Sanjo H, et al : TAB2 is essential for prevention of apoptosis in fetal liver but not for interleukin-1 signaling. Mol Cell Biol 23 : 1231-1238, 2003.
12) Xia Y, et al : MEK kinase 1 is critically required for c-Jun N-terminal kinase activation by proinfiammatory stimuli and growth factor-induced cell migration. Proc Natl Acad Sci USA 97 : 5243-5248, 2000.
13) Kopp E, et al : ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway. Genes Dev 13 : 2059-2071, 1999.
14) Huang Q, et al : Differential regulation of interleukin l receptor and Toll-like receptor signaling by MEKK3. Nat Immunol 5 : 98-103, 2004.
15) Dumitru CD, et al : TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERKdependent pathway. Cell 103 : 1071-1083, 2000.
18) Girardin SE, et al : Lessons from Nod2 studies : towards a link between Crohn's disease and bacterial sensing. Trends Immunol 24 : 652-658, 2003.
20) Watanabe T, et al : NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5 : 800-808, 2004.
P.121 掲載の参考文献
1) van Furth R : Origin and turnover of monocytes and macrophages. Curr Top Pathol 79 : 125-147, 1989.
2) 高橋潔ほか (編) : 生命を支えるマクロファージ, 文光堂, 2001.
3) Charriere P, et al : Preadipocyte conversion to macrophages. Evidence of plasticity. J Biol Chem 278 : 9850-9855, 2003.
4) Graversen JH, et al : CD163 : a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma. Int J Biochem Cell Biol 34 : 309-314, 2002.
5) Harshyne LA, et al : A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol 170 : 2302-2309, 2003.
6) Linton M, Fazio S : Macrophages, infiammation, and atherosclerosis. Int J Obes Relat Metab Disord 27 : S35-S40, 2003.
10) Rajala MW, SchererPE : Minireview : The adipocyte-at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 114 : 3765-3773, 2003.
11) Xu H, et al : Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112 : 1821-1830, 2003.
13) Curat CA, et al : From blood monocytes to adipose tissue-resident macrophages : induction of diapedesis by human mature adipocytes. Diabetes 53 : 1285-1292, 2004.
15) Takahashi K, et al : Adiposity elevates plasma MCP-1 levels leading to the increased CD11c-positive monocyte in mice. J Biol Chem 278 : 46654-46660, 2003.
P.129 掲載の参考文献
2) Shigematsu H, et al : Plasmacytoid dendritic cells activate lymphoid-spechic genetic programs irre spective of their cellular origin? Immunity 21 : 43-53, 2004.
3) D'Amico A, Wu L : The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J Exp Med 198 : 293-303, 2003.
4) Asselin-Paturel C, et al : Mouse strain dififerences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody. J Immunol 171 : 6466-6477, 2003.
5) Dakic A, et al : Development of the dendritic cell system during mouse ontogeny. J Immunol 172 : 1018-1027, 2004.
8) O'Keeffe M, et al : Mouse plasmacytoid cells : Long-lived cells, heterogeneous in surface phenotype and function, that differentiate into CD8+ dendritic cells only after microbial stimulus. J Exp Med 196 : 1307-1319, 2002.
9) Kerksiek KM, et al : Selective Racl inhibition in dendritic cells diminishes apoptotic cell uptake and cross-presentation in vivo. Blood 105 : 742-749, 2005.
10) Robbiani DF, et al : The leukotriene C (4) transporter MRP1 regulates CCL 19 (MIP-3β, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell 103 : 757-780, 2000.
13) Ito T, et al : Plasmacytoid dendritic cells regulate Th cell responses through OX4 oligand and type I IFNs. J Immunol 172 : 4253-4259, 2004.
14) Fallarino F, et al : Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 173 : 3748-3754, 2004.
P.135 掲載の参考文献
1) Hayakawa K, Hardy RR : Development and function of B1 cells. Curr Opin Immunol 12 : 346-353, 2000.
2) Benedict CL, Keamey JF : Increased junctional diversity in fetal B cells results in a loss of protective anti-phosphorylcholine antibodies in adult mice. Immunity 10 : 607-617, 1999.
3) Martin F, Kearney JF : Marginal-zone B cells. Nat Rev Immunol 2 : 323-335, 2002.
4) Lopes-Carvalho T, Kearney JF : Development and selection of marginal zone B cells. Immunol Rev 197 : 192-205, 2004.
5) Martin F, Kearney JF : B1 cells : similarities and differences with other B cell subsets. Curr Opin Immunol 13 : 195-201, 2001.
6) Martin F, et al : Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity 14 : 617-629, 2001.
P.140 掲載の参考文献
3) Taniuchi I, et al : Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111 : 621-633, 2002.
4) Hernandez-Hoyos G, et al : GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19 : 83-94, 2003.
5) Pai SY, et al : Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19 : 863-875, 2003.
6) McAdam AJ, et al : ICOS is critical for CD40-mediate antibody class switching. Nature 409 : 102-105, 2001.
8) Amsen D, et al : Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117 : 515-526, 2004.
9) Schaerli P, et al : CXC-chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J Exp Med 192 : 1553-1562, 2000.
10) Paulnock DM : Macrophage activation by T cells. Curr Opin Immunol 4 : 344-349, 1992.
11) Bennett SR, et al : Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186 : 65-70, 1997.
12) Smith CM, et al : Cognate CD4+ T cell licencing of dendritic cells in CD8+ T cell immunity. Nat Immunol 5 : 1143-1148, 2004.
15) Bourgeois C, et al : Role for CD40 expression on CD8十Tcells in the generation of CD8+ T cell memory. Science 297 : 2060-2063, 2002.
P.148 掲載の参考文献
1) Rene A, et al : Human CD8+ T-cell dfferentiation in response to viruses. Nature Reviews 3 : 1-8, 2003.
2) Daniel J, et al : Transition of late stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105 : 241-250, 2005.
3) Thomas WD, Hersey P : TNF-related apoptosis inducing ligand (TRAIL) induces apoptosis in Fasligand resistance melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 161 : 2195-2200, 1998.
4) Kayagaki N, et al : Type I interferons regulate TNF-related apoptosis-inducing ligand (TRAIL) expression on human T cells : a novel mechanism for anti-tumor effect of type I interferons. J Exp Med 189 : 145-160, 1999.
5) Bauer S, et al : Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285 : 727-729, 1999.
6) Kato Y, et al : Targeting of tumor cells for human γδT cells by nonpeptide antigens. J Immunol 167 : 5092-5098, 2001.
7) Groh V, et al : Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2 : 255-260, 2001.
8) Michael R, et al : Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood 103 : 3065-3072, 2004.
9) Maus MV, et al : Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nat Biotechnol 20 : 143-148, 2002.
10) Shuford WW, et al : 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186 : 47-55, 1997.
P.153 掲載の参考文献
1) Hayday AC : γδT cells ; A right time and a right place for a conserved third way of protection. Annu Rev Immunol 18 : 975-1026, 2000.
2) Ye SK, et al : The IL-7 receptor controls the accessibility of the TCRgamma locus by Stat5 and histone acetylation. Immunity 15 : 813-823, 2001.
3) Tanigaki K, et al : Regulation of αβ/γδT cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20 : 611-622, 2004.
5) MacDonald HR, et al : T cell fate specification and alphabeta/gammadelta lineage commitment. Curr Opin Immunol 13 : 219-224, 2001.
7) Hayday AC, et al : Intraepithelial lymphocytes : exploring the third way in immunology. Nat Immunol 2 : 997-1003, 2001.
8) Shiohara T, et al : Gamma-delta T cells with emphasis on their functional role in the epidermis. Chem Immunol 79 : 66-86, 2001.
9) Carding SR, Egan PJ : γδT cells : Functional plasticity and heterogeneity. Nat Rev Immunol 2 : 336-345, 2002.
10) Tagawa T, et al : Vdelta1+ gammadelta T cells producing CC chemokines may bridge a gap between neutrophils and macrophages in innate immunity during Escherichia coli infection in mice. J Immunol 173 : 5156-5164, 2004.
11) Hayday AC, Tigelaar R : Immunoregulation in the tissues by γδT cells. Nat Rev Immunol 3 : 233-242, 2003.
13) 吉開泰信 : γδT細胞と生体防御. 医学のあゆみ 199 : 65-70, 2001.
14) Lahn M : The role of γδT cells in the airways. J Mol Med 78 : 409-425, 2000.
P.158 掲載の参考文献
1) Sakaguchi S, et al : Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance ; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med 161 : 72-87, 1985.
2) Sakaguchi S, et al : Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune disease. J Immunol 155 : 1151-1164, 1995.
3) Takahashi T, et al : Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells : induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 10 : 1969-1980, 1998.
4) Huber S, et al : Cutting edge : TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+ CD25+ T cells. J Immunol 173 : 6526-6531, 2004.
6) Setoguchi R, et al : IL-2 and autoimmunity : homeostatic maintenance of CD25+ CD4+ regulatory T cells via IL-2 secreted by other T cells and induction of autoimmune disease by IL-2 neutralization. (論文投稿中)
P.164 掲載の参考文献
1) MacDonald HR : Development and selection of NKT cells. Curr Opin Immunol 14 : 250-254, 2002.
2) Karre K, et al : Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. Nature 319 : 675-678, 1986.
3) Ravetch JV, et al : Immune inhibitory receptors. Science 290 : 84-89, 2000.
6) Diefenbach A, et al : Innate immune recognition by stimulatory immunoreceptors. Curr Opin Immunol 15 : 37-44, 2003.
7) Ruggeri L, et al : Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295 : 2097-2100, 2002.
9) Kawano T, et al : CDld-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 268 : 1626-1629, 1997.
10) Zhou D, et al : Lysosomal glycosphingolipid recognition by NKT cells. Science 1103440 (Science Express Reports), 2004.
11) Smyth M, et al : NKT cells-conductors of tumor immunity? Curr Opin Immunol 14 : 165-171, 2002.
12) Wilson SB, et al : Extreme Th1 bias of invariant Vα24JαQ T cells in type I diabetes. Nature 391 : 177-181, 1998.
14) Cui J, et al : Inhibition of T helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Vα14 natural killer T Cells. J Exp Med 190 : 783-792, 1999.
P.170 掲載の参考文献
1) Saito H : Culture of human mast cells from hemopoietic progenitors. In : Methods in Molecular Biology-Mast Cell Protocols (ed by Krishnaswamy G, Chi DS), Humana, Totowa, 2004. (in press)
2) Hawrylowicz CM, et al : Effector cells of allergy. In : Allergy, 3rd ed (ed by Church MK, et al), Mosby-Elsevier, London, 2004. (in press)
3) Hirai H, et al : Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 193 : 255-261, 2001.
4) Shichijo M, et al : The effects of anti-asthma drugs on mediator release from cultured human mast cells. Clin Exp Allergy 28 : 1228-1236, 1998.
7) Kuramasu A, et al : Mast cell/basophil-spechic transcriptional regulation of human L-histidine decarboxylase gene by CpG methylation in the promoter region. J Biol Chem 273 : 31607-31614, 1998.
8) Kashiwakura JI, et al : Tcell proliferation by direct cross-talk between OX401igand on human mast cells and OX40 on human T cells. J Immunol 173 : 5247-5257, 2004.
9) Tachimoto H, et al : Reciprocal regulation of cultured human mast cell cytokine production by IL-4 and IFN-γ. J Allergy Clin Immunol 106 : 141-149, 2000.
10) Okayama Y, et al : A comparison of mediators released or generated by IFN-γ-treated human mast cells following aggregation of FcγRI or FcεRI. J Immunol 166 : 4705-4712, 2001.
11) Nakajima T, et al : Marked increase in CC chemokine gene expression in both human and mouse mast cell transcriptomes following Fcε receptor I cross-linking : An interspecies comparison. Blood 100 : 3861-3868, 2002.
13) Nakajima T, et al : Gene expression screening of human mast cells and eosilophils using high-density oligonucleotide probe arrays : Abundant expression of major basic protein in mast cells. Blood 98 : 1127-1134, 2001.
14) Okumura S, et al : FcεRI-mediated amphiregulin production by human mast cells increases mucin gene expression in epithelial cells. J Allergy Clin Immunol 115 : 272-279, 2005.
15) Okumura S, et al : Identification of spechic gene expression profile in human mast cells via Toll-like receptor 4 and FcεRI. Blood 102 : 2547-2554, 2003.
P.177 掲載の参考文献
1) Cytokines Online Pathfinder Encyclopedia Version 10.3, July 2003. http://www.copewithcytokines.de/cope.cgi
2) Trinchieri G, et al : The IL-12 family of heterodimeric cytokines : new players in the regulation of T cell responses. Immunity 19 (5) : 641-644, 2003.
3) Langer JA, et al : The Class II cytokine receptor (CRF2) family : overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev 15 (1) : 33-48, 2004.
4) Sims JE, et al : A new nomenclature for IL-1 family genes. Trends Immunol 22 : 536-537, 2001.
6) de Caestecker M : The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 15 : 1-11, 2004.
7) Murakami M, et al : New IL-6 (gp130) family cytokine members, CLC/NNT1/BSF3 and IL-27. Growth Factors 22 (2) : 75-77, 2004.
P.186 掲載の参考文献
2) Leonard WJ : Role of Jak Idnases and STATs in cytokine signal transduction. Int J Hematol 73 : 271-277, 2001.
3) Leonard WJ, O'Shea JJ : Jaks and STATs : biological implications. Annu Rev Immunol 16 : 293-322, 1998.
4) Ihle JN : The Stat family in cytokine signaling. Curr Opin Cell Biol 13 : 211-217, 2001.
6) Kile BT, et al : Negative regulators of cytokine signaling. Int J Hematol 73 : 292-298, 2001.
P.192 掲載の参考文献
P.200 掲載の参考文献
2) Langer JA, et al : The Class II cytokine receptor (CRF2) family : overview and patterns of receptor-ligand interactions. Cytokine Growth Factor Rev 15 : 33-48, 2004.
3) Taniguchi T, et al : IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 19 : 623-655, 2001.
5) Fitzgerald KA, et al : IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4 : 491-496, 2003.
10) Takayanagi H, et al : Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res 4 (Suppl 3) : S227-S232, 2002.
11) Takaoka A, et al : Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424 : 516-523, 2003.
14) Pestka S : A dance between interferon-α/β and p53 demonstrates collaborations in tumor suppression and antiviral activities. Cancer Cell 4 : 85-87, 2003.
16) Taniguchi T, Takaoka A : A weak signal for strong responses : interferon-a/β revisited. Nat Rev Mol Cell Biol 2 : 378-386, 2001.
18) Mocellin S, et al : The multifaceted relationship between IL-10 and adaptive immunity : putting together the pieces of a puzzle. Cytokine Growth Factor Rev 15 : 61-76, 2004.
19) Blumberg H, et al : Interleukin 20 : discovery, receptor identification, and role in epidermal function. Cell 104 : 9-19, 2001.
20) Su ZZ, et al : The cancer growth suppressor gene mda-7 selectively induces apoptosis in human breast cancer cells and inhibits tumor growth in nude mice. Proc Natl Acad Sci USA 95 : 14400-14405, 1998.
22) Kotenko SV : The family of IL-10-related cytokines and their receptors : related, but to what extent? Cytokine Growth Factor Rev 13 : 223-240, 2002.
P.206 掲載の参考文献
1) Pennica D, et al : Human tumour necrosis factor : precursor structure, expression and homology to lymphotoxin. Nature 312 : 724-729, 1984.
2) Wang AM, et al : Molecular cloning of the complementary DNA for human tumor necrosis factor. Science 228 : 149-154, 1985.
3) Inoue J, et al : Tumor necrosis factor receptor-associated factor (TRAF) family : a dapter proteins that mediate cytokine signaling. Exp Cell Res 254 : 14-24, 2000.
4) Granger GA, et al : Lymphocyte in vitro cytotoxicity : specific release of lymphotoxin-like materials from tuberculin-sensitive lymphoid cells. Nature 221 : 1155-1157, 1969.
5) Tracey KJ, Cerami A : Tumor necrosis factor : apleiotropic cytokine and therapeutic target. Annu Rev Med 45 : 491-503, 1994.
6) De Togni P, et al : Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264 : 703-707, 1994.
8) Yonehara S, et al : A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-down-regulated with the receptor of tumor necrosis factor. J Exp Med 169 : 1747-1756, 1989.
9) Itoh N, et al : The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66 : 233-243, 1991.
11) Takahashi T, et al : Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76 : 969-976, 1994.
12) Chinnaiyan AM, et al : FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81 : 505-512, 1995.
13) Noelle RI, et al : A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA 89 : 6550-6554, 1992.
14) Stamenkovic I, et al : AB-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J 8 : 1403-1410, 1989.
P.214 掲載の参考文献
1) Kitamura Y, et al : Gastrointestinal stromal tumors (GIST) : a model for molecule-based diagnosis and treatment of solid tumors. Cancer Sci 94 : 315-320, 2003.
3) Lyman SD, Jacobsen SE : c-kit ligand and Flt3 ligand : stem/progenitor cell factors with overlapping yet distinct activities. Blood 91 : 1101-1134, 1998.
4) Takahashi T, et al : A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20 : 2768-2778, 2001.
7) Yamada KM, Araki M : Tumor suppressor PTEN : modulator of cell signaling, growth, migration and apoptosis. J Cell Sci 114 : 2375-2382, 2001.
9) Rao N, et al : The Cbl family of ubiquitin ligases : critical negative regulators of tyrosine kinase signaling in the immune system. J Leukoc Biol 71 : 753-763, 2002.
10) Yamanashi Y, et al : Role of the rasGAP-associated docking protein p62 (dok) in negative regulation of B cell receptor-mediated signaling. Genes Dev 14 : 11-16, 2000.
11) Takald S, et al : Enhanced hematopoiesis by hematopoietic progenitor cells lacking intracellular adaptor protein, Lnk. J Exp Med 195 : 151-160, 2002.
16) Nonami A, et al : Spred-1 negatively regulates interleukin-3-mediated ERK/MAP kinase activation in hematopoietic cells. J Biol Chem 279 : 52543-52551, 2004.
P.219 掲載の参考文献
P.224 掲載の参考文献
2) Matsushima K, et al : Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line. J Exp Med 169 : 1485-1490, 1989.
3) Randolph DA, et al : The role of CCR7 in TH1 and TH2 cell localization and delivery of B cell help in vivo. Science 286 : 2159-2162, 1999.
5) Zhang Y, et al : Mobilization of dendritic cell precursors into the circulation by administration of MIP-1alpha in mice. J Natl Cancer Inst 96 : 201-209, 2004.
6) Gunn MD, et al : Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189 : 451-460, 1999.
8) Alkhatib G, et al : CC CKR5 : a RANTES, MIP-1 alpha, MIP-1 beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 272 : 1955-1958, 1996.
9) Feng Y, et al : HIV-1 entry cofactor : functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272 : 872-877, 1996.
10) Kitagawa K, et al : Blockade of CCR2 ameliorates progressive fibrosis in kidney. Am J Patho1 165 : 237-246, 2004.
11) Philips RJ, et al : Circuladng fibrocytes trafiic to the lungs in response to CXCL12 and mediate fibrosis. J Clin Invest 114 : 438-446, 2004.
P.233 掲載の参考文献
1) Dinarello CA : The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20 : S1-13, 2002.
2) Nakanishi K, et al : Interleukin-18 regulates both Th1 and Th2 responses. Annu Rev Immunol 19 : 423-474, 2001.
5) Horai R, et al : Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1 beta is crucial in turpentine-induced fever development and glucocordcoid secretion. J Exp Med 187 : 1463-1475, 1998.
6) Arend WP : The balance between IL-1 and IL-1ra in disease. Cytokine Growth Factor Rev 13 : 323-340, 2002.
8) Ogura T, et al : Interleukin-18 stimulates hematopoietic cytokine and growth factor formation and augments circulating granulocytes in mice. Blood 98 : 2101-2107, 2001.
9) Sugama S, et al : Neurons of the superior nucleus of medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res 958 : 1-9, 2002.
10) Mclnnes IB, et al : Interleukin-18 : a therapeutic target in rheumatoid arthritis? Arthritis Res Ther 7 (1) : 38-41, 2005.
11) Wilson KC, et al : The effect of interleukin-16 and its precursor on T lymphocyte activation and growth. Growth Factors 22 : 97-104, 2004.
12) Lynch EA, et al : IL-16/CD4 preferentially induces Th1 cell migration : requirement of CCR5. J Immunol 171 : 4965-4968, 2003.
P.241 掲載の参考文献
1) Boes M : Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37 : 1141-1149, 2000.
2) Ehrenstein MR, et al : Deficiency in serum immunoglobulin (Ig) Mpredisposes to development of IgG autoantibodies. J Exp Med 191 : 1253-1258, 2000.
3) Boes M, et al : Accelerated development of IgG autoantibodies and autoimmune disease in the absence of secreted IgM. Proc Natl Acad Sci USA 97 : 1184-1189, 2000.
4) Preud' homme JL, et al : Structural and fUnctional properties of membrane and secreted IgD. Mol Immunol 37 : 871-887, 2000.
5) Lutz C, et al : IgD can largely substitute for loss of IgM function in B cells. Nature 393 : 797-801, 1998.
6) White H, Gray D : Analysis of immunoglobulin (Ig) isotype diversity and IgM/D memory in the response to phenyl-oxazolone. J Exp Med 191 : 2209-2220, 2000.
13) Phalipon A, et al : Secretory component : anew role in secretory IgA-mediated immune exclusion in vivo. Immunity 17 : 107-115, 2002.
P.247 掲載の参考文献
1) Hardy RR, et al : Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J Exp Med 173 : 1213-1225, 1991.
2) Kudo A, Melchers F : A second gene, VpreB in the lambda 510cus of the mouse, which appears to be selectively expressed in pre-B lymphocytes. EMBO J 6 : 2267-2272, 1987.
3) Kudo A, et al : Organization of the murine Ig-related lambda 5 gene transcribed selectively in pre-B lymphocytes. EMBO J 6 : 103-107 (erratum in : EMBO J 6 : 4242), 1987.
4) Karasuyama H, et al : The expression of Vpre-B/lambda 5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77 : 133-143, 1994.
5) Barberis A, et al : A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev 4 : 849-859, 1990.
6) Adams B, et al : Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 6 : 1589-1607, 1992.
7) Dorfler P, Busslinger M : C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J 15 : 1971-1982, 1996.
8) Urbanek P, et al : Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79 : 901-912, 1994.
9) Nutt SL, et al : Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401 : 556-562, 1999.
10) Nutt SL, et al : Essential functions of Pax5 (BSAP) in pro-B cell development : difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev 11 : 476-491, 1997.
13) Sato H, et al : Dissociation of Pax-5 from KI and KII sites during kappa-chain gene rearrangement correlates with its association with the underphosphorylated form of retinoblastoma. J Immunol 166 : 6704-6710, 2001.
14) Shaffer AL, et al : In vivo occupancy of the kappa light chain enhancers in primary pro-and pre-B cells : a model for kappa locus activation. Immunity 6 : 131-143, 1997.
15) Sato H, et al : Pax-5 is essential for kappa sterile transcription during Ig kappa chain gene rearrange ment. J Immunol 172 : 4858-4865, 2004.
P.252 掲載の参考文献
1) Conley ME, et al : Defects in early B-cell development : comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev 178 : 75-90, 2000.
2) Nemazee D, Hogquist KA : Antigen receptor selection by editing or downregulation of V (D) J recombination. Curr Opin Immunol 15 : 182-189, 2003.
4) Jung D, Alt FW : Unraveling V (D) J recombination ; insights into gene regulation. Cell 116 : 299-311, 2004.
5) Minegishi Y, Conley ME : Negative selection at the pre-BCR checkpoint elicited by human mu heavy chains with unusual CDR3 regions. Immunity 14 : 631-641, 2001.
6) Karasuyama H, et al : Surrogate light chain in B cell development. Adv Immunol 63 : 1-41, 1996.
7) Muljo SA, Schlissel MS : Pre-B and pre-T-cell receptors : conservation of strategies in regulating early lymphocyte development. Immunol Rev 175 : 80-93, 2000.
9) Ohnishi K, Melchers F : The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-Bcell receptor signaling. Nat Immunol 4 : 849-856, 2003.
10) Pappu R, et al : Requirement for B cell linker protein (BLNK) in B cell development. Science 286 : 1949-1954, 1999.
11) Minegishi Y, et al : An essential role for BLNK in human B cell development. Science 286 : 1954-1957, 1999.
13) Hayashi K, et al : Distinct signaling requirements for Dmu selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 18 : 825-836, 2003.
15) Iwakoshi NN, et al : The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response. Immunol Rev 194 : 29-38, 2003.
P.259 掲載の参考文献
1) Tonegawa S : Somatic generation of antibody diversity. Nature 302 : 575-581, 1983.
2) Melchers F, et al : The roles of preB and B cell receptors in the stepwise allelic exclusion of mouse IgH and L chain gene loci. Semin Immunol 11 : 307-317, 1999.
3) Goodnow CC, et al : The need for central and peripheral tolerance in the B cell repertoire. Science 248 : 1373-1379, 1990.
5) Igarashi H, et al : Localization of recombination activating gene 1/green fluorescent protein (RAG1/GFP) expression in secondary lymphoid organs after immunization with T-dependent antigens in rag 1/gfp knockin mice. Blood 97 : 2680-2687, 2001.
7) Kuwahara K, et al : Anovel nuclear phosphoprotein, GANP, is up-regulated in centrocytes of the germinal center and associated with MCM3, a protein essential for DNA replication. Blood 95 : 2321-2328, 2000.
8) Kuwahara K, et al : GANP contributes to affinity maturation of the B cell antigen receptor during T cell-dependent responses. Proc Natl Acad Sci USA 101 : 1010-1015, 2004.
9) Khuda SE, et al : The Sac3-homologue shdl is involved in mitotic progression in mammalian cells. J Biol Chem 279 : 46182-46190, 2004.
P.267 掲載の参考文献
1) Fujita T, et al : The lectin-complement pathway-its role in innate immunity and evolution. Immunol Rev 198 : 185-202, 2004.
2) Miwa T, Song WC : Membrane complement regulatory proteins : insight from animal studies and relevance to human diseases. Int Immunopharmacol 1 : 445-459, 2001.
3) Wen L, et al : Clinical and Iaboratory evaluation of complement deficiency. J Allergy Clin Immunol 113 : 585-593, 2004.
4) Takeda J, et al : Deficiency of the GPI anchor caused by a somatic mutation of the PIG-A gene in paroxysmal nocturnal hemoglobinuria. Cell 73 : 703-711, 1993.
5) Botto M, et al : Homozygous Clq deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19 : 56-59, 1998.
6) Chen Z, et al : Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med 192 : 1339-1352, 2000.
7) Barrington R, et al : The role of complement in inflammation and adaptive immunity. Immunol Rev 180 : 5-15, 2001.
8) Dempsey PW, et al : C3d of complement as a molecular adjuvant : bridging innate and acquired immunity. Science 271 : 348-350, 1996.
9) Fang Y, et al : Expression of complement receptors 1 and 2 on follicular dendritic cells is necessary for the generation of a strong antigen-specific IgG response. J Immunol 160 : 5273-5279, 1998.
10) Prodeus AP, et al : A critical role for complement in maintenance of self-tolerance. Immunity 9 : 721-731, 1998.
11) Cutler N, et al : Intact B cell tolerance in the absence of the first component of the classical complement pathway. Eur J Immunol 31 : 2087-2093, 2001.
P.273 掲載の参考文献
P.278 掲載の参考文献
1) Odermatt E, et al : Size and shape of human C1-inhibitor. FEBS Lett 131 : 283-285, 1981.
2) Scharfstein J, et al : Human C4-binding Protein. 1. Isolation and characterization. J Exp Med 148 : 207-222, 1978.
3) Fujita T, et al : The lectin-complement pathway-its role in innate immunity and evolution. Immunol Rev 198 : 185-202, 2004.
4) Weiler JM, et al : Control of the amplification convertase of complement by the plasma protein beta1H. Proc Natl Acad Sci USA 73 : 3268-3272, 1976.
5) Pangburn MK, at al : Human complement C3b inactivator : isolation, characterization, and demonstration of an absolute requirement for the serum protein beta1H for cleavage of C3b and C4b in solution. J Exp Med 146 : 257-270, 1977.
6) Fearon DT : Regulation of the amplhication C3 convertase of human complement by an inhibitory protein isolated from human erythrocyte membrane. Proc Natl Acad Sci USA 76 : 5867-5871, 1979.
7) Seya T, et al : Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J Exp Med 163 : 837-855, 1986.
8) Kemper C, et al : Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421 : 388-392, 2003.
9) Okabe M, et al : Homology of an acrosome-reacted sperm-specific antigen to CD46. J Pharmacobiodyn 15 (8) : 455-459, 1992.
10) Nicholson-Weller A, et al : Isolation of a human erythrocyte membrane glycoprotein with decayaccelerating activity for C3 convertases of the complement system. J Immunol 129 : 184-189, 1982.
11) Hamann J, et al : The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med 184 : 1185-1189, 1996.
12) Miyagawa S, et al : Delta-short consensus repeat 4-decay accelerating factor (DAF : CD55) inhibits complement-mediated cytolysis but not NK cell-mediated cytolysis. J Immunol 173 : 3945-3952, 2004.
14) Sugita Y, et al : Isolation from human erythrocytes of a new membrane protein which inhibits the formation of complement transmembrane channels. J Biochem (Tokyo) 104 : 633-637, 1988.
15) Okada H, et al : 20 KDa homologous restriction factor of complement resembles T cell activating protein. Biochem Biophys Res Commun 162 : 1553-1559, 1989.
P.282 掲載の参考文献
1) Harris CL, Morgan BP : The many faces of the membrane regulators of complement. In : The Complement System-Novel Roles in Health and Disease (ed by Szebeni J), p 129-166, Kluwer Academic Publishers, Boston, 2004.
2) Hourcade D, et al : The regulators of complement activation (RCA) gene cluster. Adv Immunol 45 : 381-416, 1989.
3) Miwa T, Song WC : Membrane complement regulatory proteins : insight from animal studies and relevance to human diseases. Int Immunopharmacol 1 : 445-459, 2001.
4) 岡田則子 : 補体の異物識別機構. 日本臨牀 46 : 1955-1961, 1988.
5) 岡田則子 : 種特異的合い言葉分子反応における補体制御膜因子. 日本医学会総会誌 24 : 25, 1995.
6) 岡田則子 : 補体系の遺伝的異常とその病態. 生体防御 8 : 209-218, 1991.
8) Cooper NR : Evasion of complement-mediated damage by microorganisms. In : The Complement System (ed by Rother K, Hansh GM), p 309-322, Springer, Heiderberg, 1998.
9) Rother RP, et al : Inhibition of complement-mediated cytolysis by the terminal complement inhibitor of herpesvirus saimiri. J Virol 68 : 730-737, 1994.
10) Hoshino H, et al : Human T cell leukemia virus is not lysed by human serum. Nature 310 : 324-325, 1984.
11) Susal C, et al : Complement activation by recombinant HIV-1 glycoprotein gp 120. J Immunol 152 : 6028-6034, 1994.
12) Thieblemont N, et al : CR1 (CD35) and CR3 (CD11b/CD18) mediate infection of human monocytes and monocytic cell lines with complement-opsonized HIV independently of CD4. Clin Exp Immunol 92 : 106-118, 1993.
13) Wu X, et al : IgM natural antibody against an asialo-oIigosaccharide, gangliotetraose (Gg4), sensitizes HIV-1 infected cells for cytolysis by homologous complement. Int Immunol 8 : 153-158, 1996.
14) Okada H, et al : Complement-mediated cytolysis and azidothymidine are synergistic in HIV-1 suppression. Int Immunol 10 : 91-95, 1998.
15) Wu X, et al : Complement-mediated anti HIV-1 effect induced by human IgM monoclonal antibody against ganglioside GM2. J Immunol 162 : 723-727, 1999.
16) Okada N, Okada H : Human IgM antibody therapy for HIC-1 infection. Microbiol Immunol 43 : 729-736, 1999.
P.291 掲載の参考文献
3) Tanaka K, Kasahara M : The MHC class I ligand-generating system : roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163 : 161-176, 1998.
4) Rock KL, et al : Post-proteasomal antigen processing for major histocompatibility complex class I presentation. Nat Immunol 5 : 670-677, 2004.
12) Nimmeljahn F, et al : Major histocompatibility complex class II-restricted presentation of a cytosolic antigen by autophagy. Eur J Immunol 33 : 1250-1259, 2003.
P.298 掲載の参考文献
3) Shiina T, et al : Molecular dynamics of MHC genesis unraveled by sequence analysis of the 1,796,938 bp HLA class I region. Proc Natl Acad Sci USA 96 : 13282-13297, 1999.
4) Tamiya G, et al : Twenty-six new polymorphic microsatellite markers around the HLA-B,-C and -Eloci in the human MHC class I region. Tissue Antigens 51 : 337-346, 1998.
5) Tamiya G, et al : New polymorphic microsatellite markers in the human MHC class I region. Tissue Antigens 54 : 221-228, 1999.
7) Oka A, et al : Association analysis using refined microsatellite markers localizes a susceptible locus for psoriasis vulgaris within a 111 kb segment telomeric of the HLA-C gene. Hum Mol Genet 12 : 2165-2170, 1999.
9) Oka A, et al : Localization of a non-melanoma skin cancer susceptibility region within the major histocompatibility complex by association analysis using microsatellite markers. Tissue Antigens 61 : 203-210, 2003.
10) 菊地浩吉ほか : . 主要組織適合遺伝子複合体. 医科免疫学, 改訂第4版 (菊地浩吉編), p127-146, 南江堂, 1999.
11) Allcock RJ, et al : The MHC haplotype project : a resource for HLA-linked association studies. Tissue Antigens 59 : 520-521, 2002.
13) Kulski JK, et al : Comparative genomic analysis of the MHC : the evolution of class I duplication blocks, diversity and complexity from shark to man. Immunol Rev 190 : 95-122, 2002.
14) Nei M, et al : Evolution by the birth and death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci USA 94 : 7799-7805, 1997.
P.303 掲載の参考文献
1) Janeway CA Jr, et al : 免疫生物学 ; 免疫系の正常と病理, 原著第3版, p 125-173, '南江堂, 1998.
2) Arunachalam B, et al : Enzymatic reduction of disulfide bonds in lysosomes : characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci USA 97 : 745-750, 2000.
3) Villadangos JA, et al : Proteolysis in MHC class II antigen presentation : who's in charge? Immunity 12 : 233-239, 2000.
5) Rammensee HG, et al : MHC ligands and peptide motifs : first listing. Immunogenetics 41 : 178-228, 1995.
6) Cresswell P : Invariant chain structure and MHC class II function. Cell 84 : 505-507, 1996.
7) Roche PA : HIA-DM : an in vivo facilitator of MHC class II peptide loading. Immunity 3 : 259-262, 1995.
8) Arndt SO, et al : Functional HLA-DM on the surface of B cells and immature dendritic cells. EMBO J 19 : 1241-1251, 2000.
9) Denzin LK, et al : Negative regulation by HLA-DO of MHC class II-restricted antigen processing. Science 278 : 106-109, 1997.
10) Kropshofer H, et al : A role for HLA-DO as a co-chaperone of HLA-DM in peptide loading of MHC class II molecules. EMBO J 17 : 2971-2981, 1998.
11) Chen X, et al : Regulated expression of human histocompatibility leukocyte antigen (HLA)-DO during antigen-dependent and antigen-independent phases of B cell development. J Exp Med 195 : 1053-1062, 2002.
12) Lich JD, et al : Cytoplasmic processing is a prerequisite for presentation of an endogenous antigen by major histocompatibility complex class II proteins. J Exp Med 191 : 1513-1524, 2000.
P.308 掲載の参考文献
1) Hennecke J, Wiley DC : T cell receptor-MHC interactions up close. Cell 104 : 1-4, 2001.
2) Tokunaga K, et al : Sequence-based association analysis of HLA class I and II alleles in Japanese supports conservation of common haplotypes. Immunogenetics 46 : 199-205, 1997.
3) Rammensee HG, et al : MHC ligands and peptide motifs : first listing. Immunogenetics 41 : 178-228, 1995.
4) Ueno T, et al : Single T cell receptor-mediated recognition of an identical HIV-derived peptide presented by multiple HLA class I molecules. J Immunol 169 : 4961-4969, 2002.
5) Kloetzel PM : Generation of major histocompatibility complex class 1 antigens : functional interplay between proteasomes and TPP II. Nat Immunol 5 : 661-669, 2004.
7) Serwold T, et al : ERAAP customizes peptides for MHC class 1 molecules in the endoplasmic reticulum. Nature 419 : 480-483, 2002.
8) Saric T, et al : An INF-γ induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat Immunol 3 : 1169-1176, 2002.
9) Ackerman AL, Creswell P : Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 5 : 678-684, 2004.
10) Scubert U, et al : Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404 : 770-774, 2000.
11) Yewdell JW, et al : Making sense of mass destruction : quantitating MHC class 1 antigen presentation. Nat Rev Immunol 3 : 952-961, 2003.
14) Princiotta MF, et al : Quantitadng protein synthesis, degradation, and endogenous antigen processing. Immunity 18 : 343-354, 2003.
P.313 掲載の参考文献
1) Bevan MJ : Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med 143 : 1283-1288, 1976.
3) Albert ML, et al : Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392 : 86-89, 1998.
4) Harshyne LA, et al : A role for class A scavenger receptor in dendritic cell nibbling from live cells. J Immunol 170 : 2302-2309, 2003.
5) Regnault A, et al : Fcgamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189 : 371-380, 1999.
6) Basu S, et al : CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14 : 303-313, 2001.
7) Guermonprez P, et al : Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20 : 621-667, 2001.
8) Castellino F, et al : Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing Pathways. J Exp Med 11 : 1957-1964, 2000.
10) Lizee G, et al : Control of dendritic cell cross-presentation by the major histocompatibility complex class I cytoplasmic domain. Nat Immunol 4 : 1065-1073, 2003.
12) Gagnon E, et al : Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages. Cell 110 : 119-131, 2002.
14) Ackerman AL, et al : Early phagosomes in dendritic cells form a cellular compartment sufficient for cross presentation of exogenous antigens. Proc Natl Acad Sci USA 100 : 12889-12894, 2003.
15) Delamarre L, et al : Presentation of exogenous antigens on major histocompatibility complex (MHC) class I and MHC class II molecules is diiiferentially regulated during dendritic cell maturation. J Exp Med 198 : 111-122, 2003.
P.320 掲載の参考文献
1) Davis MM, Bjorkmam PJ : T-cell antigen receptor genes and T-cell recognition. Nature 334 : 395-402, 1988.
2) Cabaniols JP, et al : Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase. J Exp Med 194 : 1385-1390, 2001.
3) Mason D : A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19 : 395-404, 1998.
6) Garboczi DN, et al : Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384 : 134-141, 1996.
7) Garcia KC, et al : An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 274 : 209-219, 1996.
8) Reinherz EL, et al : The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286 : 1913-1921, 1999.
9) Wu LC, et al : Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418 : 552-556, 2002.
10) Sun ZJ, et al : Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3 epsilon gamma heterodimer. Cell 105 : 913-923, 2001.
11) Call ME, et al : The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111 : 967-979, 2002.
12) Call ME, et al : Stoichiometry of the T-cell receptor-CD3 complex and key intermediates assembled in the endoplasmic reticulum. EMBO J 23 : 2348-2357, 2004.
13) Irvine DJ, et al : Direct observation of ligand recognition by T cells. Nature 419 : 845-849, 2002.
14) Purbhoo MA, et al : T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5 : 524-530, 2004.
P.327 掲載の参考文献
1) Saijo K, et al : Essential role of Src-family protein tyrosine kinases in NF-kappaB activation during B cell development. Nat Immunol 4 : 274-279, 2003.
2) Schweighoffer E, et al : Unexpected requirement for ZAP-70 in pre-B cell development and allelic exclusion. Immunity 18 : 523-533, 2003.
3) Wen R, et al : An important role of phospholipase Cγ1 in pre-B-cell development and allelic exclusion. EMBO J 23 : 4007-4017, 2004.
4) Johmura S, et al : Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK. Immunity 18 : 777-787, 2003.
5) Hayashi K, et al : Distinct signaling requirements for Dpt selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression in B cell progenitors. Immunity 18 : 825-836, 2003.
6) Conley ME, et al : Defects in early B-cell development : comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev 178 : 75-90, 2000.
8) Kersseboom R, et al : Bruton's tyrosine kinase cooperates with the B cell linker protein SLP-65 as atumor suppressor in Pre-B cells. J Exp Med 198 : 91-98, 2003.
11) Zhu M, et al : Positive and negative regulation of FcεRI-mediated signaling by the adaptor protein LAB/NTAL. J Exp Med 200 : 991-1000, 2004.
12) Oh-hora M, et al : Requirement for Ras guanine nucleotide releasing protein 3 in coupling phospholipase C-γ2 to Ras in B cell receptor signaling. J Exp Med 198 : 1841-1851, 2003.
13) Walmsley MJ, et al : Critical roles for Racl and Rac2 GTPases in B cell development and signaling. Science 302 : 459-462, 2003.
14) Fujikawa K, et al : Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. J Exp Med 198 : 1595-1608, 2003.
P.333 掲載の参考文献
1) Rickert RC, et al : Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376 : 352-355, 1995.
2) Inaoki M, et al : CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. J Exp Med 186 : 1923-1931, 1997.
3) Fischer MB, et al : Dependence of germinal center B cells on expression of CD21/CD35 for survival. Science 280 : 582-585, 1998.
5) Kumanogoh A, Kikutani H : The CD100-CD72 interaction : a novel mechanism of immune regulation. Trends Immunol 22 : 670-676, 2001.
6) Nakamura A, et al : Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen : a novel murine model for autoimmune glomerular basement membrane disease. J Exp Med 191 : 899-906, 2000.
7) Kawabe T, et al : The immune responses in CD40-deficient mice : impaired immunoglobulin class switching and germinal center formation. Immunity 1 : 167-178, 1994.
8) Callard RE, et al : CD40 ligand and its role in X-linked hyper-IgM syndrome. Immunol Today 14 : 559-564, 1993.
9) Qian Y, et al : Act1, a negative regulator in CD40-and BAFF-mediated B cell surviva1. Immunity 21 : 575-587, 2004.
11) Mackay F, et al : Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190 : 1697-1710, 1999.
14) Liu N, et al : CpG directly induces T-bet expression and inhibits IgG1 and IgE switching in B cells. Nat Immunol 4 : 687-693, 2003.
P.339 掲載の参考文献
1) Zhang W, et al : LAT : the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92 : 83-92, 1998.
2) Thome M, Tschopp J : TCR-induced NF-kappaB activation : a crucial role for Carmal, Bcl10 and MALT1. Trends Immunol 24 : 419-424, 2003.
3) Pomerantz JL, et al : CARD11 mediates factor-spechic activation of NF-kappaB by the T cell receptor complex. EMBO J 21 : 5184-5194, 2002.
4) Jun JE, et al : Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18 : 751-762, 2003.
5) Wang D, et al : A requirement for CARMA1 in TCR-induced NF-kappa B activation. Nat Immunol 3 : 830-835, 2002.
6) Hara H, et al : The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 18 : 763-775, 2003.
7) Sun L, et al : The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell 14 : 289-301, 2004.
8) Zhang W, et al : Association of Grb2, Gads, and phospholipase C-gamma 1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell antigen receptor-mediated signaling. J Biol Chem 275 : 23355-23361, 2000.
10) Aguado E, et al : Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296 : 2036-2040, 2002.
12) Okazaki T, et al : New regulatory co-receptors : inducible co-stimulator and PD-1. Curr Opin Immunol 14 : 779-782, 2002.
13) Naramura M, et al : Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc Natl Acad Sci USA 95 : 15547-15552, 1998.
P.345 掲載の参考文献
1) Salomon B, Bluestone JA : Complexities of CD28/B7 : CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19 : 225-252, 2001.
3) 安部良 : T細胞の機能とICOS. 免疫 2001-2002, p 74-84, 中山書店, 2001.
4) Ueda H, et al : Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423 : 506-511, 2003.
5) 安部良 : CD152 (CTLA-4). 臨床免疫 34 : 90-96, 2000.
9) 原田陽介 : T細胞の活性化に働く補助シグナル分子. Molecular Medicine 39 : 1114-1117, 2002.
10) Harada Y, et al : A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 197 : 257-262, 2003.
P.353 掲載の参考文献
1) O'Garra A : Cytokines induce the development of functionally heterogeneous T helper ceU subsets. Immunity 8 : 275-283, 1998.
4) Lee WT, et al : Continued antigen stimulation is not required during CD4+ T cell clonal expansion. J Immunol 168 : 1682-1689, 2002.
5) Iezzi G, et al : The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8 : 89-95, 1998.
6) Murphy KM, et al : Signaling and transcription in T helper development. Annu Rev Immunol 18 : 451-494, 2000.
7) Agarwal S, Rao A : Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9 : 765-775, 1998.
8) Foulds KE, et al : CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 168 : 1528-1532, 2002.
9) Whitmire JK, Ahmed R : Costimulation in antiviral immunity : differential requirements for CD4+ and CD8+ T cell responses. Curr Opin Immunol 12 : 448-455, 2000.
11) Chambers CA, et al : Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7 : 885-895, 1997.
12) Harty JT, Badovinac VP : Influence of effector molecules on the CD8+ T cell response to infection. Curr Opin Immunol 14 : 360-365, 2002.
13) Hildeman DA, et al : Molecular mechanisms of activated T cell death in vivo. Curr Opin Immunol 14 : 354-359, 2002.
14) Blattrnan JN, et al : Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat Med 9 : 540-547, 2003.
15) Sallusto F, et al : Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401 : 708-712, 1999.
17) Masopust D, et al : Preferential localization of effector memory cells in nonlymphoid tissue. Science 291 : 2413-2417, 2001.
18) Ravkov EV, et al : Immediate early effector fUnctions of virus-specific CD8+ CCR7+ memory cells in humans defined by HLA and CC chemokine ligand 19 tetramers. J Immunol 170 : 2461-2468, 2003.
19) Unsoeld H, et al : CCR7+ and CCR7-memory T cells do not differ in immediate effector cell function. J Immunol 169 : 638-641, 2002.
20) Murali-Krishna K, et al : Counting antigen-specific CD8 T cells : a reevaluation of bystander activation during viral infection. Immunity 8 : 177-187, 1998.
23) Varga SM, et al : Independent regulation of lymphocytic choriomeningitis Virus-specific T cell memory pools : relative stability of CD4 memory in conditions of CD8 memory T cell loss. J Immunol 166 : 1554-1561, 2001.
P.361 掲載の参考文献
1) Okamura H, et al : Regulation of interferon-gamma production by IL-12 and IL-18. Curr Opin Immunol 10 : 259-264, 1998.
2) Szabo SJ, et al : Regulation of the interleukin (IL)-12Rbeta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185 : 817-824, 1997.
3) Lu B, et al : GADD45 gamma mediates the activation of the p38 and JNK MAP kinase pathways and cytokine production in effector TH1 cells. Immunity 14 : 583-590, 2001.
5) Taki S, et al : Multistage regulation of Th1-type immune responses by the transcription factor IRF-1. Immunity 6 : 673-679, 1997.
6) Yoshida H, et al : WSX-1 is required for the initiation of Th1 responses and resistance to L major infection. Immunity 15 : 569-578, 2001.
7) Takeda A, et al : Cutting edge : Role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170 : 4886-4890, 2003.
8) Szabo SJ, et al : A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100 : 655-669, 2000.
9) Afkarian M, et al : T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3 : 549-557, 2002.
10) Mullen AC, et al : Hlx is induced by and genetically interacts with T-bet to promote heritable T (H) 1 gene induction. Nat Immunol 3 : 652-658, 2002.
11) Ranger AM, et al : Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9 : 627-635, 1998.
12) Peng SL, et al : NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14 : 13-20, 2001.
13) Rengarajan J, et al : Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J Exp Med 195 : 1003-1012, 2002.
14) Tominaga N, et al : Development of Th1 and not Th2 immune responses in mice lacking IFN-regulatory factor-4. Int Immunol 15 : 1-10, 2003.
15) Kubo M, et al : CD28 costimulation accelerates IL-4 receptor sensitivity and IL-4-mediated Th2 differentiation. J Immunol 163 : 2432-2442, 1999.
17) Seki N, et al : IL-4-induced GATA-3 expression is a time-restricted instruction switch for Th2 cell differentiation. J Immunol 172 : 6158-6166, 2004.
18) Cote-Sierra J, et al : Interleukin 2 plays a central role in Th2 differentiation. Proc Natl Acad Sci USA 101 : 3880-3885, 2004.
19) Zhu J, et al : Stat5 activation plays a critical role in Th2 differentiation. Immunity 19 : 739-748, 2003.
20) Lee H-J, et al : GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192 : 105-115, 2000.
21) Zhu J, et al : Conditional deletion of Gata3 shows its essential function in T (H) 1-T (H) 2responses. Nat Immunol 5 : 1157-1165, 2004.
22) Das J, et al : A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol 2 : 45-50, 2001.
24) Miaw SC, et al : ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 12 : 323-333, 2000.
25) Kurata H, et al : Friend of GATA is expressed in naive Th cells and functions as a repressor of GATA-3-mediated Th2 cell development. J Immunol 168 : 4538-4545, 2002.
26) Kimura M, et al : Regulation of Th2 cell differentiation by mel-18, a mammalian polycomb group gene. Immunity 15 : 275-287, 2001.
27) Komine O, et al : The Runxl transcription factor inhibits the differentiation of naive CD4+ T cells into the Th2 lineage by repressing GATA3 expression. J Exp Med 198 : 51-61, 2003.
28) Marsland BJ, et al : Protein kinase C theta is critical for the development of in vivo T helper (Th) 2 cell but not Th1 cell responses. J Exp Med 200 : 181-189, 2004.
29) Miller AT, et al : Signaling through Itk promotes T helper 2 differentiation Via negative regulation of T-bet. Immunity 21 : 67-80, 2004.
30) Balamuth F, et al : Distinct patterns of membrane microdomain partitioning in Th1 and th2 cells. Immunity 15 : 729-738, 2001.
31) Tanaka Y, et al : SWAP-70-like adapter of T cells, an adapter protein that regulates early TCR-initiated signaling in Th2 lineage cells. Immunity 18 : 403-414, 2003.
32) Lametschwandtner G, et al : Sustained T-bet expression confers polarized human TH2 cells with TH1-like cytokine production and migratory capacities. J Allergy Clin Immunol 113 : 987-994, 2004.
33) Amsen D, et al : Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117 : 515-526, 2004.
34) Tanigaki K, et al : Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 20 : 611-622, 2004.
35) Ansel MK, et al : An epigenetic view of helper T cell differentiation. Nat Immunity 4 : 616-623, 2003.
37) Solymar DC, et al : A 3' enhancer in the IL-4 gene regulates cytokine production by Th2 cells and mast cells. Immunity 17 : 41-50, 2002.
39) Lee GR, et al : Regulation of the Th2 cytokine locus by a locus control region. Immunity 19 : 145-153, 2003.
P.368 掲載の参考文献
1) Jacob J, et al : In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl) acetyl. I. The architecture and dynamics of responding cell populations. J Exp Med 173 : 1165-1175, 1991.
2) Paramithiotis E, Cooper MD : Memory B lymphocytes migrate to bone marrow in humans. Proc Natl Acad Sci USA 94 : 208-212, 1997.
4) Muramatsu M, et al : Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102 : 553-563, 2000.
6) Ye BH, et al : Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science 262 : 747-750, 1993.
7) Fukuda T, et al : The murine BCL6 gene is induced in activated lymphocytes as an immediate early gene. Oncogene 11 : 1657-1663, 1995.
8) Dhordain P, et al : Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 Oncoprotein. Proc Natl Acad Sci USA 94 : 10762-10767, 1997.
9) Fukuda T, et al : Disruption of the Bcl6 gene results in an impaired germinal center formation. J Exp Med 186 : 439-448, 1997.
10) Toyama H, et al : Memory B cells without somatic hypemlutation are generated from Bcl6-deficient B cells. Immunity 17 : 329-339, 2002.
11) Shaffer AL, et al : BCL-6 represses genes that function in lymphocyte differentiation, infiammation, and cell cycle control. Immunity 13 : 199-212, 2000.
12) Turner CA Jr, et al : Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77 : 297-306, 1994.
13) McHeyzer-Williams LJ, et al : Antigen-specific B cell memory : expression and replenishment of a novel b 220 (-) memory b cell compartment. J Exp Med 191 : 1149-1166, 2000.
14) Martin F, et al : B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a "natural immune memory". Immnol Rev 175 : 70-79, 2000.
P.373 掲載の参考文献
1) Kaech SM, et al : Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4 (12) : 1191-1198, 2003.
4) Murali-Krishna K, et al : Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286 (5443) : 1377-1381, 1999.
5) Lodolce JP, et al : IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9 (5) : 669-676, 1998.
6) Kennedy MK, et al : Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191 (5) : 771-780, 2000.
7) Goldrath AW, et al : Cytokine requirements for acute and Basal homeostatic proliferation of naive and memory CD8+ T cells. J Exp Med 195 (12) : 1515-1522, 2002.
8) Burkett PR, et al : IL-15R alpha expression on CD8+ T cells is dispensable for T cell memory. Proc Natl Acad Sci USA 100 (8) : 4724-4729, 2003.
10) Dubois S, et al : IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17 (5) : 537-547, 2002.
11) Kamimura D, et al : Evidence of a novel IL-2/15Rbeta-targeted cytokine involved in homeostatic proliferation of memory CD8+ T cells. J Immunol 173 (10) : 6041-6049, 2004.
12) Ku CC, et al : Control of homeostasis of CD8+ memory T cells by opposing cytokines. Science 288 (5466) : 675-678, 2000.
14) Sun JC, et al : CD4+ Tcells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 5 (9) : 927-933, 2004.
P.380 掲載の参考文献
2) Sprent J, Kishimoto H : The thymus and negative selection. Immunol Rev 185 : 126-135, 2002.
3) 高浜洋介 : T細胞の分化と機能. 免疫学最新イラストレイテッド, p77-94, 羊土社, 2003.
5) 新田剛, 高浜洋介 : T細胞選択を制御する分子シグナル. 臨床免疫 39 : 201-208, 2003.
8) Takahama Y, et al : Negative selection of precursor thymocytes before their differentiation into CD4+ CD8+ cells. Science 258 : 653-656, 1992.
9) Chidgey AP, Boyd RL : Positive selection of low responsive, potentially autoreactive T cells induced by high avidity, non-deleting interactions. Int Immunol 10 : 999-1008, 1998.
11) Ramsdell F, et al : Anondeletional mechanism of thymic self tolerance. Science 246 : 1038-1041, 1989.
12) Roberts JL, et al : Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J Exp Med 171 : 935-940, 1990.
14) Benlagha K, et al : Athymic precursor to the NK T cell lineage. Science 296 : 553-555, 2002.
15) Wang R, et al : Interactions between double positive thymocytes and high affinity ligands presented by cortical epithelial cells generate double negative thymocytes with T cell regulatory activity. Proc Natl Acad Sci USA 99 : 2181-2186, 2002.
16) Kajiura F, et al : NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172 : 2067-2075, 2004.
P.387 掲載の参考文献
1) Tan EM : Autoantibodies in pathology and cell biology. Cell 67 : 841-842, 1991.
2) Goodnow CC : Balancing immunity and tolerance : deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci USA 93 : 2264-2271, 1996.
5) Sakaguchi S : Regulatory T cells : key controllers of immunologic self-tolerance. Cell 101 : 455-458, 2000.
7) Zhou Z, Menard HA : Autoantigenic posttranslational modifications of proteins : does it apply to rheumatoid arthritis? Curr Opin Rheumatol 14 : 250-253, 2002.
P.393 掲載の参考文献
1) Wells H : Studies on the chemistry of anaphylaxis. III. Experiments with isolated proteins, especially those of hen'segg. J Infect Dis 9 : 147-151, 1911.
2) Chase MW : Inhibition of experimental drug allergy by prior feeding of the sensitizing agent. Proc Soc Exp Biol 61 : 257-259, 1946.
4) Jin T, et al : A novel strategy for organ allografts using sublethal (7 Gy) irradiation followed by injection of donor bone marrow cells via portal vein. Transplantation 71 : 1725-1731, 2001.
6) Viney JL, et al : Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 160 : 5815-5825, 1998.
7) Tanaka K, Ishikawa H : Role of intestinal bacterial flora in oral tolerance induction. Histol Histopathol 19 : 907-914, 2004.
8) Fujihashi K, et al : Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci USA 98 : 3310-3315, 2001.
9) Spahn TW, et al : Mesenteric lymph nodes are critical for the induction of high-dose oral tolerance in the absence of Peyer's patches. Eur J Immunol 32 : 1109-1113, 2002.
10) Suh ED, et al : Splenectomy abrogates the induction of oral tolerance in experimental autoimmune uveoretinitis. Curr Eye Res 12 : 833-839, 1993.
11) Tsuji NM, et al : Interleukin-10-secreting Peyer's patch cells are responsible for active suppression in low-dose oral tolerance. Immunology 103 : 458-464, 2001.
12) Sudo N, et al : The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159 : 1739-1745, 1997.
P.399 掲載の参考文献
1) Park JR : Cytokine regulation of apoptosis in hematopoietic precursor cells. Curr Opin Hematol 3 : 191-196, 1996.
2) Lagasse E, Weissman IL : bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J Exp Med 179 : 1047-1052, 1994.
3) 須田貴司 : 免疫とアポトーシス. 遺伝子医学 3 : 101-108, 1999.
4) 鍔田武志 : リンパ球選択とアポトーシス. 実験医学増刊 22 : 163-169, 2004.
5) Fukuyama H, et al : Transgenic expression of Fas in T cells blocks lymphoproliferation but not autoimmune disease in MRL-lpr mice. J Immunol 160 : 3805-3811, 1998.
6) Fukuyama H, et al : Requirement of Fas expression in B cells for tolerance induction. Eur J Immunol 32 : 223-230, 2002.
8) Hennino A, et al : FLICE-inhibitory protein is a key regulator of germinal center B cell apoptosis. J Exp Med 193 : 447-458, 2001.
9) 須田貴司 : アポトーシスと炎症は親戚関係. 実験医学増刊 19 : 198-205, 2001.
12) Kang TB, et al : Caspase-8 serves both apoptotic and nonapoptotic roles. J Immunol 173 : 2976-2984, 2004.
13) Greten FR, et al : IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118 : 285-296, 2004.
15) Nakamoto Y, et al : Prevention of hepatocellular carcinoma development associated with chronic hepatitis by anti-fas ligand antibody therapy. J Exp Med 196 : 1105-1111, 2002.
P.406 掲載の参考文献
1) Jacobson MD, et al : Programmed cell death in animal development. Cell 88 : 347-354, 1997.
2) Zimmermann KC, et al : The machinery of programmed cell death. Pharmacol Ther 92 : 57-70, 2001.
3) Yuan J, et al : The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1beta-converting enzyme. Cell 75 : 641-652, 1993.
4) Nicholson DW, Thornberry NA : Caspases : killer proteases. Trends Biochem Sci 22 : 299-306, 1997.
6) Duckett CS, et al : A conserved family of cellular genes related to the baculov血s iap gene and encoding apoptosis inhibitors. EMBO J 15 : 2685-2694, 1996.
7) Green DR, Reed JC : Mitochondria and apoptosis. Science 281 : 1309-1312, 1998.
8) Hengartner MO, Horvitz HR : C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76 : 665-676, 1994.
9) Reed JC, et al : Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366 : 127-137, 1998.
11) Zou H, et al : An APAF-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274 : 11549-11556, 1999.
12) Nagata S, Golstein P : The Fas death factor. Science 267 : 1449-1456, 1995.
14) Lord SJ, et al : Granzyme B : a natural born killer. Immunol Rev 193 : 31-38, 2003.
P.412 掲載の参考文献
1) Von Pierquet C : Verhalten der kutanen Tuberkulin-wahrend der Masern. Munch Med Wochenschr 34 : 1297-1300, 1908.
2) Nossal GJ, Pike BL : Clonal anergy : persistence in tolerant mice of antigen-binding B lymphocytes incapable of responding to antigen or mitogen. Proc Natl Acad Sci USA 77 : 1602-1606, 1980.
4) Schwartz RH : A cell culture model for T lymphocyte clonal anergy. Science 248 : 1349-1356, 1990.
5) Kang SM, et al : Transactivation by AP-1 is a molecular target of T cell clonal anergy. Science 257 : 1134-1138, 1992.
6) Chambers CA, Allison JP : Co-stimulation in T cell responses. Curr Opin Immunol 9 : 396-404, 1997.
7) Chambers CA, et al : The role of CTLA-4 in the regulation and initiation of T-cell responses. Immunol Rev 153 : 27-46, 1996.
8) Becker JC, et al : Negative transcriptional regulation in anergic T cells. Proc Natl Acad Sci USA 92 : 2375-2378, 1995.
10) Powell JD, et al : Inhibition of cell cycle progression by rapamycin induces T cell clonal anergy even in the presence of costimulation. J Immunol 162 : 2775-2784, 1999.
12) Leung HT, et al : Cytotoxic T lymphocyte-associated molecule-4, a high-avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. J Biol Chem 270 : 25107-25114, 1995.
13) Perrin pJ, et al : CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J Immunol 157 : 1333-1336, 1996.
14) Waterhouse P, et al : Lymphoproliferative disorders With early lethality in mice deficient in Ctla-4. Science 270 : 985-988, 1995.
15) Marengere LE, et al : Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272 : 1170-1173, 1996.
17) Jenkins MK, et al : Inhibition of antigen-specific proliferation of type 1 murine T cell clones after stimulation with immobilized anti-CD3 monoclonal antibody. J Immunol 144 : 16-22, 1990.
18) Macian F, et al : Transcriptional mechanisms underlying lymphocyte tolerance. Cell 109 : 719-731, 2002.
19) Reif K, et al : Anegative role for phosphoinositide 3-kinase in T-cell antigen receptor function. Curr Biol 7 : 285-293, 1997.
20) Feske S, et al : Ca2+ /calcineurin signalling in cells of the immune system. Biochem Biophys Res Commun 311 : 1117-1132, 2003.
21) Shibasaki F, et al : Calcineurin as a multifunctional regulator. J Biochem (Tokyo) 131 : 1-15, 2002.
23) Zhu J, et al : Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93 : 851-861, 1998.
24) Beals CR, et al : Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275 : 1930-1934, 1997.
25) Kehlenbach RH, et al : Nucleocytoplasmic shuttling factors including Ran and CRMl mediate nuclear export of NFAT in vitro. J Cell Biol 141 : 863-874, 1998.
26) Im SH, Rao A : Activation and deactivation of gene expression by Ca2+ /calcineurin-NFAT-mediated signaling. Mol Cells 18 : 1-9, 2004.
27) Baksh S, et al : NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol Cell 10 : 1071-1081, 2002.
28) Feske S, et al : Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2 : 316-324, 2001.
P.419 掲載の参考文献
1) Itoh M, et al : Thymus and autoimmunity : production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 162 : 5317-5326, 1999.
3) Bensinger SJ, et al : Major histocompatibility comlex class II-positive cortical epithelium mediates the selection of CD4+ CD25+ immunoregulatory T cells. J Exp Med 194 : 427-438, 2001.
4) Fontenot JD, et al : Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4 : 330-336, 2003.
7) Gregori S, et al : Dynamics of pathogenic and suppressor T cells in autoimmune diabetes development. J Immunol 171 : 4040-4047, 2003.
8) Salonon B, et al : B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12 : 431-440, 2000.
9) Goudy KS, et al : Systemic overexpression of IL-10 induces CD4+ CD25+ cell populations in vivo ameliorates type I diabetes in nonobese diabetic mice in a dose-dependent fashion. J Immunol 171 : 2270-2278, 2003.
11) Read S, et al : Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+ CD4+ regulatory cells that control intestinal inflammation. J Exp Med 192 : 295-302, 2000.
15) Kursar M, et al : Regulatory CD4+ CD25+ T cells restrict memory CD8+ T cell responses. J Exp Med 196 : 1585-1592, 2002.
P.426 掲載の参考文献
2) Ober RJ, et al : Visualizing the site and dynamics of IgG salvage by the MHC class 1-related receptor, FcRn. J Immunol 172 : 2021-2029, 2004.
4) Yajima K, et al : FcγRIIB deficiency with Fas mutation is sufficient for the development of systemic autoimmune disease. Eur J Immunol 33 : 1020-1029, 2003.
5) Kyogoku C, et al : Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus : contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 46 : 1242-1254, 2002.
6) Li X, et al : A novel polymorphism in the Fcγ receptor IIB (CD32B) transmembrane region alters receptor signaling. Arthritis Rheum 48 : 3242-3252, 2003.
7) Siriboonrit U, et al : Association of Fcγ receptor IIb and IIIb polymorphisms with susceptibility to systemic lupus erythematosus in Thais. Tissue Andgens 61 : 374-383, 2003.
8) Chu ZT, et al : Association of Fcγ receptor IIb polymorphism with susceptibility to systemic lupus erythematosus in Chinese : a common susceptibility gene in the Asian populations. Tissue Antigens 63 : 21-27, 2004.
9) Su K, et al : A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcγRIIb alters receptor expression and associates with autoimmunity. L Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172 : 7186-7191, 2004.
10) Ibariez C, Montoro-Ronsano JB : Intravenous immunoglobulin preparations and autoimmune disorders : Mechanism of action. Curr Pharm Biotechnol 4 : 239-247, 2003.
11) Samuelsson A, et al : Anti-infiammatory activity of MG mediated through the inhibitory Fc receptor. Science 291 : 484-486, 2001.
12) Bruhns P, et al : Colony-sdmuladng factor-1-dependent macrophages are responsible for MG protection in antibody-induced autoimmune disease. Immunity 18 : 573-581, 2003.
13) Akilesh S, et al : The MHC class I-like Fc receptor promotes humorally mediated autoirnmune disease. J Clin Invest 113 : 1328-1333, 2004.
P.436 掲載の参考文献
5) Kunkel EJ, Butcher EC : Chemokines and the tissue-specific migration of lymphocytes. Immunity 16 : 1-4, 2002.
8) Yeh JC, et al : Novel sulfated lymphocyte homing receptors and their control by a Corel extension beta 1, 3-N-acetylglucosaminyltransferase. Cell 105 : 957-969, 2001.
9) Dustin ML, et al : Membranes as messengers in T cell adhesion signaling. Nat Immunol 5 : 363-372, 2004.
10) Xiong J-P, et al : Crystal structure of the extracellular segment of integrinαVβ3. Science 294 : 339-345, 2001.
11) Muller WA : Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24 : 327-334, 2003.
14) Holger U, et al : Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. Trends Pharmacol Sci 24 : 640-647, 2003.
15) Iwata M, et al : Retinoic acid imprints gut-homing specificity on T cells. Immunity 21 : 527-538, 2004.
P.442 掲載の参考文献
2) Randolph GJ : Dendritic cell migration to lymph nodes : cytoldnes, chemokines, and lipid mediators. Semin Immunol 13 : 267-274, 2001.
3) Baekkevold ES, et al : The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J Exp Med 193 : 1105-1111, 2001.
4) Panina-Bordignon P, et al : The C-C chemokine receptors CCR4 and CCR8 identify airway T cells of allergen-challenged atopic asthmatics. J Clin Invest 107 : 1357-1364, 2001.
6) Iellem A, et al : Unique chemotactic response profile and spechic expression of chemokine receptors CCR4 and CCR8 by CD4+ CD25+ regulatory T cells. J Exp Med 194 : 847-853, 2001.
7) Kim CH, et al : Subspecialization of CXCR5+ T cells : B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J Exp Med 193 : 1373-1381, 2001.
9) Bowman EP, et al : Developmental switches in chemokine response profiles during B cell differentiation and maturation. J Exp Med 191 : 1303-1318, 2000.
10) Liao F, et al : Human B cells become highly responsive to macrophage-inflammatory protein-3α/CC chemokine ligand-20 after cellular activation without changes in CCR6 expression or ligand binding. J Immunol 168 : 4871-4880, 2002.
11) Nakayama T, et al : Cutting edge : profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues. J Immunol 170 : 1136-1140, 2003.
12) Hieshima K, et al : CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol 173 : 3668-3675, 2004.
13) Nishimura M, et al : Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+ /granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CRI expression. J Immunol 168 : 6173-6180, 2002.
14) Campbell JJ, et al : Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166 : 6477-6482, 2001.
15) Geissmann F, et al : Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19 : 71-82, 2003.
P.453 掲載の参考文献
1) Kiyono H, McGhee JR : The mucosal immune system. In : Fundamental Immunology (ed by Paul WE), p 909-946, Lippincott-Ravan, Philadelphia, 1998.
3) Yamamoto M, et al : Alternate mucosal immune system : organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J Immunol 164 : 5184-5191, 2000.
4) Hamada H, et al : Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168 : 57-64, 2002.
5) Shikina T, et al : IgA class switch occurs in the organized nasopharynx-and gut-associated lymphoid tissue, but not in the diffuse lamina propria of airways and gut. J Immunol 172 : 6259-6264, 2004.
6) Yamamoto M, et al : Role of gut-associated lymphoreticular tissues in antigen-specific intestinal IgA immunity. J Immunol 173 : 762-769, 2004.
8) Lorenz RG, et al : Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin β receptor, and TNF receptor I function. J Immunol 170 : 5475-5482, 2003.
11) Fujihashi K, et al : γδT cell-deficient mice have impaired mucosal immunoglobulin A responses. J Exp Med 183 : 1929-1935, 1996.
12) Yamamoto S, et al : Listeria monocytogenes-induced gamma interferon secretion by intestinal intraepithelialγ/δT lymphocytes. Infect lmmun 61 : 2154-2161, 1993.
13) Roberts SJ, et al : T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93 : 11774-11779, 1996.
14) Boismenu R, Havran WL : Modulation of epithelial cell growth by intraepithelial γδT cells. Science 266 : 1253-1255, 1994.
15) Komano H, et al : Homeostatic regulation of intestinal epithelia by intraepithelial γδT cells. Proc Natl Acad Sci USA 92 : 6147-6151, 1995.
16) Fujihashi K, et al : Interleukin 2 (IL-2) and interleukin 7 (IL-7) reciprocally induce IL-7 and IL-2 receptors on γδT -cell receptor-positive intraepithelial lymphocytes. Proc Natl Acad Sci USA 93 : 3613-3618, 1996.
P.458 掲載の参考文献
1) Roberts SJ, et al : T-cell αβ+ and γδ+ deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium. Proc Natl Acad Sci USA 93 : 11774-11779, 1996.
2) Davies A, et al : Infection-induced expansion of a MHC class Ib-dependent intestinal intraepithelial γδT cell subset. J Immunol 172 : 6828-6837, 2004.
3) Shen Y, et al : Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295 : 2255-2258, 2002.
4) Lehner T, et al : The role of γδT cells in generating antiviral factors and β-chemokines in protection against mucosal simian immunodeficiency virus infection. Eur J Immunol 30 : 2245-2256, 2000.
5) Uezu K, et al : Accumulation of γδT cells in the lungs and their regulatory roles in Th1 response and host defense against pulmonary infection with Cryptococcus neoformans. J Immunol 172 : 7629-7634, 2004.
6) McVay LD, et al : Changes in human mucosal γδT cell repertoire and function associated with the disease process in inflammatory bowel disease. Mol Med 3 : 183-203, 1997.
7) Groh V, et al : Recognition of stress-induced MHC molecules by intestinal epithelial γδT cells. Science 279 : 1737-1740, 1998.
8) Chen Y, et al : Protection of the intestinal mucosa by intraepithelial γδT cells. Proc Natl Acad Sci USA 99 : 14338-14343, 2002.
9) Tsuchiya T, et al : Role of γδT cells in the inflammatory response of experimental colitis mice. J Immunol 171 : 5507-5513, 2003.
10) Inagaki-Ohara K, et al : Mucosal T cells bearing TCRγδ play a protective role in intestinal inflammation. J Immunol 173 : 1390-1398, 2004.
11) Kapp JA, et al : γδT -cell clones from intestinal intraepithelial lymphocytes inhibit development of CTL responses ex vivo. Immunology 111 : 155-164, 2004.
12) Kawaguchi-Miyashita M, et al : An accessory role of TCRγδ+ cells in the exacerbation of inflammatory bowel disease in TCRαmutant mice. Eur J Immunol 31 : 980-988, 2001.
13) Komano H, et al : Homeostatic regulation of intestinal epithelia by intraepithelial γδT cells. Proc Natl Acad Sci USA 92 : 6147-6151, 1995.
14) Jameson J, et al : A role for skin γδT cells in wound repair. Science 296 : 747-749, 2002.
15) Yang H, et al : Intestinal intraepithelial lymphocyte γδ-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. J Immunol 172 : 4151-4158, 2004.
P.466 掲載の参考文献
1) 相磯貞和 : 腸管の解剖と機能. 炎症性腸疾患診療ハンドブック (日比紀文編), p11-19, 真興交易医書出版, 1999.
2) Ishikawa H, et al : New gut associated lymphoid tissue "cryptopatches" breed murine intestinal intraepithelial T cell precursors. Immunol Rev 20 : 243-250, 1999.
3) 光岡知足 : 腸内細菌, 南江堂, 1990.
6) Sakaguchi S : Naturally arising CD4+ regulatory T cells for immunological self-tolerance and negative control of immune responses. Annu Rev Immunol 22 : 531-560, 2004.
8) Sakaguchi S, et al : Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155 : 1151-1164, 1995.
9) Read S, et al : Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD4+ CD25+ regulatory cells that control intestinal inflammation. J Exp Med 193 : 295-302, 2000.
10) Takahashi T, et al : Immunologic self-tolerance maintained by CD4+ CD25+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 193 : 303-310, 2000.
12) Fontenot JD, et al : Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4 : 330-336, 2003.
13) Khattri R, et al : An essential role for Scurfin in CD4+ CD25+ Tregulatory cells. Nat Immunol 4 : 337-342, 2003.
16) Chen W, et al : Conversion of peripheral CD4+ CD25- native T cells to CD4+ CD25+ regulatory T cells by TGF-β induction of trascription factor Foxp3. J Exp Med 198 : 1875-1886, 2003.
17) Walker MR, et al : Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+ CD25- T cells. J Clin Invest 112 : 1437-1443, 2003.
18) Baecher-Allan C, et al : CD4+ CD25 high regulatory T cells in human peripheral blood. J Immunol 167 : 1245-1253, 2001.
19) Makita S, et al : CD4+ CD25bright T cells in human intestinal lamina propria as regulatory cells. J Immunol 173 : 3119-3130, 2004.
21) Creed TJ, et al : Basiliximab (anti-CD25) in combination with steroids may be an effective new treatment for steroid-resistant ulcerative colitis. Aliment Pharmacol Ther 18 : 65-75, 2003.
22) Assche GV, et al : A pilot study on the use of the humanized anti-interleukin-2 receptor antibody daclizumab in active ulcerative colitis. Am J Gastroenterol 98 : 369-376, 2003.
23) Groux H : Type 1 T-regulatory cells : their role in the control of immune responses. Transplantation 75 : S8-12, 2003.
24) Dieckmann D, et al : Human CD4+ CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J Exp Med 196 : 247-253, 2002.
25) Groux H, et al : ACD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389 : 737-742, 1997.
26) Weiner HL : Oral tolerance : immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 3 : 947-954, 2001.
27) Jonuleit H, et al : Infectious tolerance : human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ Thelper cells. J Exp Med 196 : 255-260, 2002.
P.473 掲載の参考文献
1) 清野宏ほか (編) : 粘膜免疫, 中山書店, 2001.
2) 清野宏 : 粘膜免疫と経口免疫寛容. 標準免疫学 (谷口克, 宮坂昌之編), p316-326, 医学書院, 2002.
3) 高橋一郎 : 消化管の意外な働きと経口ワクチン. 粘膜免疫 (清野宏ほか編), p224-239, 中山書店, 2001.
4) Kunisawa J, et al : Novel hybrid delivery system, fusogenic liposome, for the induction of mucosal and systemic immune responses. J Immunol 167 : 1406-1412, 2001.
5) Ijima H, et al : Mucosal immune networks in the gut for the control of infectious diseases. Rev Med Virol 11 : 117-133, 2001.
6) 清野宏 : 粘膜ワクチンの新展開-粘膜アジュバントとしての無毒化変異毒素. Molecular Medicine 36 : 208-219, 1999.

臨床編

P.482 掲載の参考文献
1) Gordon S : Pattern recognition receptors : Doubling up for the innate immune responses. Cell 111 : 927-930, 2002.
3) Sabroe I : Toll-like receptors in health and disease : Complex questions remain. J Immunol 171 : 1630-1635, 2003.
4) Krieg A : Now I know my CpGs. Trends Microbiol 9 : 249-252, 2001.
6) 猪原直弘 : Nodタンパク質を介する細菌と宿主の相互作用. 日細菌誌 59 : 483-496, 2004.
11) East L, Isacke CM : The mannose receptor family. Biochim Biophys Acta 1572 : 364-386, 2002.
13) Geijtenbeek TB, et al : Mycobacteria target DC-SIGN to suppress dendritic cell fUnction. J Exp Med 197 : 7-17, 2003.
P.487 掲載の参考文献
4) Madakamutil LT, et al : CD8αα mediated survival and differentiation of CD8 memory T cell precursors. Science 304 : 590-593, 2004.
5) Sallusto F, et al : Two subsets of memory T lymphocytes with distinct homing potential and effector functions. Nature 401 : 708-712, 1999.
7) Janssen EM, et al : CD4+ Tcells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421 : 852-856, 2003.
8) Khanolkar A, et al : CD4 T cell-dependent CD8 T cell maturation. J Immunol 172 : 2834-2844, 2004.
10) Grayson JM, et al : Gene expression in antigen-specific CD8+ T cells during viral infection. J immunol 166 : 795-799, 2001.
11) Gupta M, et al : Persistent infection with ebola virus under condition of partial immunity. J Virol 78 : 958-967, 2004.
12) Badovinac VP, et al : Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290 : 1354-1357, 2000.
P.493 掲載の参考文献
4) Diebold SS, et al : Innate antiviral responses by means of TLR7-mediated recognition of singlestranded RNA. Science 303 : 1529-1531, 2004.
5) Matsukura S, et al : Expression of IL-6, IL-8 and RANTES on human bronchial epithelial cells, NCI-H292, induced by influenza virus A. J Allergy Clin Immunol 98 : 1080-1087, 1996.
7) 久賀秀樹ほか : 成人の気管支喘息の急性増悪におけるピコルナウイルス (ライノウイルス) 感染の関与 ; RT-PCR法を用いた検討. アレルギー 49 : 358-364, 2000.
9) Matsumoto M, et al : Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 171 : 3154-3162, 2003.
11) Matsumoto M, et al : Toll-like receptor 3 : A link between Toll-like receptor, interferon and Viruses. Microbiol Immunol 48 : 147-154, 2004.
P.501 掲載の参考文献
2) Levitskaya J, et al : Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen I. Proc Natl Acad Sci USA 94 : 12616, 1997.
3) Gilbert MJ, et al : Selective interference with class I major histocompatibility complex presentation of the major immediate-early protein following infection with human cytomegalovirus. J Virol 67 : 3461, 1993.
4) York IA, et al : A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77 : 525, 1994.
5) Ahn K, et al : The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6 : 613, 1997.
6) Jones TR, et al : Human cytomegalovirus US3 impairs transport and maturation of major histocompatibility complex class I heavy chains. Proc Natl Acad Sci USA 93 : 11327, 1996.
8) Spriggs MK, et al : The extracellular domain of the Epstein-Barr virus BZLF2 protein binds the HLA-DR beta chain and inhibits antigen presentation. J Virol 70 : 5557, 1996.
9) Lewandowski GA, et al : Interference with major histocompatibility complex class II-restricted antigen presentation in the brain by herpes simplex virus type 1 : apossible mechanism of evasion of the immune response. Proc Natl Acad Sci USA 90 : 2005, 1993.
11) Gao JL, Murphy PM : Human cytomegalovirus open reading frame US28 encodes a functional β chemokine receptor. J Biol Chem 269 : 2853, 1994.
12) Isegawa Y, et al : Human herpesvirus 60pen reading frame U12 encodes a functional β-chemokine receptor. J Virol 72 : 6104, 1998.
14) Penfold MET, et al : Cytomegalovirus encodes a potent α chemokine. Proc Natl Acad Sci USA 96 : 9839, 1999.
15) Zou P, et al : Human herpesvirus 6 open reading frame U83 encodes a fUnctional chemokine. J Virol 73 : 5926, 1999.
16) Moore PS, et al : Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274 : 1739, 1996.
17) Kledal TN, et al : A broad-spectrum chemokine antagonist encoded by Kaposi'ssarcoma-associated herpesvirus. Science 277 : 1656, 1997.
18) Stine JT, et al : KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95 : 1151, 2000.
19) Yasukawa M, et al : Down-regulation of CXCR4 by human herpesvirus 6 (HHV-6) and HHV-7. J Immunol 162 : 5417, 1999.
20) Hasegawa A, et al : Transcriptional down-regulation of CXCR4 induced by impaired association of transcription regulator YY1 with c-Myc in human herpesvirus 6-infected cells. J Immunol 166 : 1125, 2001.
P.507 掲載の参考文献
1) 岡野素彦ほか : 慢性活動性EBウイルス感染症 (CAEBV) 診断指針 (EBウイルス研究会配布資料), 2004.
2) Imashuku S : Clinical features and treatment strategies of Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis. Crit Rev Oncol Hematol 44 : 259-272, 2002.
3) Ishihara S, et al : Hypersensitivity to mosquito bites conceals clonal lymphoproliferation of Epstein-Barr viral DNA-positive natural killer cells. Jpn J Cancer Res 88 : 82-87, 1977.
4) Katagiri Y, et al : Hydroa vacciniforme-like eruptions in a patient with chronic active EB virus infection. J Dermatol 30 : 400-404, 2003.
7) 磯部泰司 : リンパ球へのEBウイルス感染. 血液・腫瘍科 48 : 416-421, 2004.
10) 今宿晋作ほか : 慢性EBウイルス感染症における免疫異常. 臨床免疫 39 : 161-168, 2003.
11) Zaitsu M, et al : High frequency of QPY allele and linkage disequilibrium of granzyme-Bin Epstein-Barr-virus-associated hemophagocytic lymphohistiocytosis. Tissue Antigens 64 : 611-615, 2004.
12) Chan KCA, et al : Molecular characterization of circulating EBV DNA in the plasma of nasopharyngeal carcinoma and lymphoma patients. Cancer Res 63 : 2028-2032, 2003.
15) Imashuku S, et al : Longitudinal follow-up of patients With Epstein-Barr virus (EBV)-associated haemophagocytic lymphohistiocytosis (HLH). Haematologica 89 : 183-188, 2004.
P.513 掲載の参考文献
1) Uchiyama T, et al : Adult T-ce111eukemia : clinical and hematologic features of 16 cases. Blood 50 : 481-492, 1977.
2) Hinuma Y, et al : Adult T-cell leukemia : antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA 78 : 6476-6480, 1981.
3) Osame M, et al : HTLV-I associated myelopathy, a new clinical entity. Lancet i : 1031-1032, 1986.
4) Gessain A, et al : Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet ii : 407-410, 1985.
5) Hino S : Primary prevention of adult T cell leukemia (ATL) in Nagasaki, Japan by refraining from breast-feeding. In : Gann Monograph on Cancer Research, Vol 50 (ed by Sugamura K, et al), p 241-251, Japan Science Societies Press, Tokyo, 2003.
6) Manel N, et al : The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115 : 449-459, 2003.
7) Sagara Y, et al : 71-kilodalton heat shock cognate protein acts as a cellular receptor for syncytium formation induced by human T-cell lymphotropic Virus type 1. J Virol 72 : 535-541, 1998.
8) Pinon JD, et al : Human T-cell leukemia virus type 1 envelope glycoprotein gp46 interacts with cell surface heparan sulfate proteoglycans. J Virol 77 : 9922-9930, 2003.
9) Tajima K : The 4th nation-wide study of adult T-cell leukemia/lymphoma (ATL) in Japan : estimates of risk of ATL and its geographical and clinical features. The T-and B-cell Malignancy Study Group. Int J Cancer 45 : 237-243, 1990.
10) Hisada M, et al : Predictors of level of circulating abnormal lymphocytes among human T-lymphotropic virus type I carriers in Japan. Int J Cancer 77 : 188-192, 1998.
11) Hasegawa A, et al : Expansion of human T-cell leukemia virus type 1 (HTLV-I) reservoir in orally infected rats : Inverse correlation with HTLV-I-specific cellular immune response. J Virol 77 : 2956-2963, 2003.
12) Usuku K, et al : HLA haplotype-linked high immune responsiveness against HTLV-I in HTLV-I-associated myelopathy : comparison with adult T-cell leukemia/lymphoma. Ann Neurol 23 (Suppl) : S143-150, 1988.
13) Furukawa Y, et al : Frequent clonal proliferation of human T-cell leukemia virus type 1 (HTLV-I)-infected T cells in HTLV-I-associated myelopathy (HAM-TSP). Blood 80 : 1012-1016, 1992.
14) Yoshida M : Multiple viral strategies of HTLV-I for dysregulation of cell growth control. Annu Rev Immunol 19 : 475-496, 2001.
17) Mori N, et al : Constitutive activation of NF-kappaB in primary adult T-cell leukemia cells. Blood 93 : 2360-2368, 1999.
19) Kannagi M, et al : Predominant recognition of human T cell leukemia virus type I (HTLV-I) pX gene products by human CD8+ cytotoxic T cells directed against HTLV-I-infected cells. Int Immunol 3 : 761-767, 1991.
20) Kannagi M, et al : Expression of the target antigen for cytotoxic T lymphocytes on adult T-cel1-leukemia cells. Int J Cancer 54 : 582-588, 1993.
21) Ohashi T, et al : Induction of adult T-cell leukemia-like lymphoproliferative disease and its inhibition by adoptive immunotherapy in T-cell-deficient nude rats inoculated with syngeneic human T cell leukemia virus type 1-immortalized cells. J Virol 73 : 6031-6040, 1999.
22) Ohashi T, et al : Prevention of adult T-cell leukemia-like lymphoproliferative disease in rats by adoptively transferred T cells from a donor immunized with human T-cell leukemia virus type 1 Tax-coding DNA vaccine. J Virol 74 : 9610-9616, 2000.
23) Hanabuchi S, et al : Regression of human T-cell leukemia virus type I (HTLV-I)-associated lymphomas in a rat model : peptide-induced T-cell immunity. J Natl Cancer Inst 93 : 1775-1783, 2001.
24) Arnulf B, et al : Loss of the ex vivo but not the reinducible CD8+ T-cell response to Tax in human T-cell leukemia virus type 1-infected patients with adult T-cell leukemia/lymphoma. Leukemia 18 : 126-132, 2004.
27) Ishiguro N, et al : A rat model of human T lymphocyte virus type I (HTLV-I) infection. 1. Humoral antibody response, provirus integration, and HTLV-I-associated myelopathy/tropical spastic paraparesis-like myelopathy in seronegative HTLV-I carrier rats. J Exp Med 176 : 981-989, 1992.
28) Kubota R, et al : HTLV-I specific IFN-gamma+ CD8+ lymphocytes correlate with the proviral load in peripheral blood of infected individuals. J Neuroimmunol 102 : 208-215, 2000.
29) Bangham CR : The immune response to HTLV-I. Curr Opin Immunol 12 : 397-402, 2000.
30) Tsukasaki K, et al : Deoxycoformycin-containing combination chemotherapy for adult T-cell leukemia-lymphoma : Japan Clinical Oncology Group Study (JCOG9109). Int J Hematol 77 : 164-170, 2003.
36) Nasr R, et al : Arsenic/interferon specifically reverses 2 distinct gene networks critical for the survival of HTLV-I-infected leukemic cells. Blood 101 : 4576-4582, 2003.
37) Waldmann TA, et al : Radioimmunotherapy of interleukin-2R alpha-expressing adult T-cell leukemia with yttrium-90-labeled anti-Tac. Blood 86 : 4063-4075, 1995.
38) Taylor GP, et al : Effect of lamivudine on human T-cell leukemia virus type 1 (HTLV-I) DNA copy number, T-cell phenotype, and anti-tax cytotoxic T-cell frequency in patients with HTLV-I-associated myelopathy. J Virol 73 : 10289-10295, 1999.
39) Izumo S, et al : Interferon-alpha is effective in HTLV-I-associated myelopathy : a multicenter, randomized, double-blind, controlled trial. Neurology 46 : 1016-1021, 1996.
40) Broder CC, Collman RG : Chemokine receptors and HIV. J Leukoc Biol 62 : 20-29, 1997.
41) Geijtenbeek TB, et al : DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100 : 587-597, 2000.
42) Paxton WA, et al : Relative resistance to HIV-1 infection of CD4 lymphocytes from persons who remain uninfected despite multiple high-risk sexual exposure. Nat Med 2 : 412-417, 1996.
43) Kaul R, et al : HIV-1-specific mucosal CD8+ lymphocyte responses in the cerviX of HIV-1-resistant prostitutes in Nairobi. J Immunol 164 : 1602-1611, 2000.
44) Stranford SA, et al : Lack of infection in HIV-exposed individuals is associated with a strong CD8 (+) cell noncytotoxic anti-HIV response. Proc Natl Acad Sci USA 96 : 1030-1035, 1999.
45) Koup RA, et al : Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68 : 4650-4655, 1994.
46) Lefrere JJ, et al : The risk of disease progression is determined during the first year of human immunodeficiency virus type 1 infection. J Infect Dis 177 : 1541-1548, 1998.
48) Rosenberg ES, et al : Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278 : 1447-1450, 1997.
49) Levy JA : The search for the CD8+ cell anti-HIV factor (CAF). Trends Immunol 24 : 628-632, 2003.
50) Kestler HW, et al : Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65 : 651-662, 1991.
51) Salghetti S, et al : Human immunodeficiency virus type 1 Nef and p561ck protein-tyrosine kinase interact with a common element in CD4 cytoplasmic tail. Proc Natl Acad Sci USA 92 : 349-353, 1995.
53) Mueller YM, et al : Increased CD95/Fas-induced apoptosis of HIV-specific CD8 (+) T cells. Immunity 15 : 871-882, 2001.
54) Carrington M, et al : HLA and HIV-1 : heterozygote advantage and B*35-Cw*04 disadvantage. Science 283 : 1748-1752, 1999.
55) Kubo M, et al : Abrogation of in vitro suppression of human immunodeficiency virus type 1 (HIV-1) replication mediated by CD8+ Tlymphocytes of asymptomatic HIV-1 carriers by staphylococcal enterotoxin B and phorbol esters through induction of tumor necrosis factor alpha. J Virol 71 : 7560-7566, 1997.
56) Wong JK, et al : Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278 : 1291-1295, 1997.
59) French MA, et al : Immune restoration disease after antiretroviral therapy. AIDS 18 : 1615-1627, 2004.
P.520 掲載の参考文献
1) 渡辺直煕 : 蠕虫感染とIgE. 日本における寄生虫学の研究 6 (石崎達, 小島荘明編), p 325-342, 財団法人目黒寄生虫館, 1999.
2) Watanabe N, Kobayashi A : Nippostrongylus brasiliensis : Radioresistant IgE antibody-forming cells in infected rats. Exp Parasitol 68 : 216-222, 1989.
3) Yanagihara Y, et al : Detection and characterization of IgE-producing cells in patients with clonochiasis. Int Arch Allergy Appl Immunol 89 : 197-201, 1989.
5) Bell RG : The generation and expression of immunity to Trichinella spiratis in laboratory rodents. In : Advances in Parasitology, Vol 41 (ed by Baker JR), p 149-217, Academic Press, London, 1998.
6) Coffinan RL, et al : Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science 245 : 308-310, 1989.
7) Takamoto M, et al : Occurrence of interleukin-5 production by CD4-CD8- (double-negative) T cells in lungs of both normal and congenitally athymic nude mice infected with Toxoca ra canis. Immunology 85 : 285-291, 1995.
8) 吉村堅太郎 : 寄生虫感染と好酸球. 日本における寄生虫学の研究 6 (石崎達, 小島荘明編), p 361-389, 財団法人目黒寄生虫館, 1999.
9) Orr TSC, Blair AMJ : Potentiated reagin response to egg-albumin and conalbumin in. Nippostrongylus brasiliensis infected rats. Life Sci 8 : 1073-1077, 1969.
10) Watanabe N, Kobayashi A : Sensitivity of passive cutaneous anaphylaxis in rats. Suppression of passive cutaneous anaphylactic reactions in rats infected with Nippostrongylus brasiliensis. Int Arch Allergy Appl Immunol 86 : 436-439, 1988.
11) Tullis DCH : Bronchial asthma associated with intestinal parasites. N Engl J Med 282 : 370-372, 1970.
12) Editorial. IgE parasite and allergy. Lancet i : 894, 1976.
P.526 掲載の参考文献
3) 厚生労働省「インフルエンザ脳症の発症因子の解明と治療および予防方法の確立に関する研究」平成15年度報告書 (主任研究者森島恒雄), 2004.
4) Mizuguchi M, Takashima S : Imaging and pathology in pediatric neurological disorders. Neuropathology 22 (2) : 85-89, 2002.
5) Ito Y, et al : Detection of influenza virus RNA by reverse transcription-PCR and proinflammatory cytokines in influenza virus-associated encephalopathy. J Med Virol 58 : 420-425, 1999.
6) Ichiyama T, et al : Cerebrospinal fluid and serum levels of cytokines and soluble tumor necrosis factor receptor in influenza virus-associated encephalopathy. Scand J Infect Dis 35 (1) : 59-61, 2003.
10) Kawashima H, et al : High concentration of serum NOx (nitrite/nitrate) obtained from patients with influenza virus-associated encephalopathy. Pediatr International 44 (6) : 705-707, 2002.
11) 布井博幸ほか : インフルエンザ感染症における重症度判定のためのマーカーの検討. 小児感染免疫 13 : 225-232, 2001.
P.532 掲載の参考文献
1) Yamashita M, et al : A prospective study on congenital cytomegalovirus infection. Jpn J Obst Gynecol Neonatal Hematol 12 : 44-48, 2000.
2) Pass RF : Cytomegalovirus. In : Fields Virology, 4th ed, Lippincott Williams & Wilkins, Philadelphia, 2001.
3) Rowe WP, et al : Cytopathogenic agent resembling salivary gland virus recovered from tissue cultures of human adenoids. Proc Soc Exp Biol Med 92 : 418-424, 1956.
4) Weller TH, et al : Isolation of intranuclear inclusion agents from infants and illnesses resembling cytomegalic inclusion disease. Proc Soc Exp Biol Med 94 : 4, 1957.
5) Chee MS, et al : Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD 169. Curr Top Microbiol Immunol 154 : 125-170, 1990.
8) Grefte JM, et al : Cytomegalovirus antigenemia assay : identification of the viral antigen as the lower matrix protein pp65. J Infect Dis 166 : 683-684, 1992.
10) Aono T, et al : Monitoring of human cytomegaloVirus infections in pediatric bone marrow transplant recipients by nucleic acid sequence-based amplhication. J Infect Dis 178 : 1244-1249, 1998.
12) Whitley RJ, et al : Ganciclovir treatment of symptomatic congenital cytomegalovirus infection : results of a phase II study. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis 175 : 1080-1086, 1997.
13) Trivedi D, et al : Generation of cytomegalovirus (CMV)-specific T lymphocytes using protein-spanning pools of pp65-derived pentadecapeptides for adoptive immunotherapy. Blood 2004 ; Epub ahead of print.
P.538 掲載の参考文献
2) Nicholson KG, et al : Respiratory viruses and exacerbations of asthma in adults. Br Med J 307 : 982-986, 1993.
5) Terajima M, et al : Rhinovirus infection of primary cultures of human tracheal epithelium : role of ICAM-1 and IL-1β. Am J Physiol 273 : L749-L759, 1997.
6) Suzuki T, et al : Type 2 rhinovirus infection of cultured human tracheal epithelial cells : role of LDL receptor. Am J physiol 280 : L409-L420, 2001.
9) Openshaw PJ, Turner-Warwick M : Observations on sputum production in patients with variable airway obstruction : implications for the diagnosis of asthma and chronic bronchitis. Respir Med 83 : 25-31, 1989.
13) Hosoda M, et al : Effects of rhinovirus infection on histamine and cytokine production by cell lines from human mast cells and basophils. J Immunol 169 : 1482-1491, 2002.
P.544 掲載の参考文献
1) IOM : Emerging Infections : Microbial Threats to Health in the United States, Institute of Medicine, Washington DC, 1992.
2) CDC : Addressing Emerging Infectious Diseases Threats : A Prevention Strategy for the United States, Centers for Disease Control and Prevention, Atlanta, 1994.
3) USDHHS : Infectious Disease-A Global Health Threat, National Science and Technology Council, Committee on International Science, Engineering and Technology Working Group on Emerging and Re-emerging Infectious Diseases, DHSS, Washington DC, 1995.
4) IOM : Microbial Threats to Health : Emergence, Detection, and Response, Committee on Emerging Microbial Threats to Health in the 21th Century, IOM, Washington DC, 2003.
6) World Health Organization : Communicable Disease Surveillance and Response. Severe acute respiratory syndrome (SARS) : Status of the outbreak and lessons for the immediate future, WHO, Geneva, 20 May, 2003. http://www.who.int/csr/media/sars_wha.pdf
7) World Health Organization : Communicable Disease Surveillance and Response. Consensus documents on the epidemiology of severe acute respiratory syndrome (SARS), WHO, Geneva, November, 2003.
P.553 掲載の参考文献
1) 宮澤恵二ほか : 細胞増殖抑制因子 : TGF-β. 新・細胞増殖因子のバイオロジー, p82, 羊土社, 2001.
3) Miyazono K : A new partner for inhibitory Smads. Cytokine Growth Factor Rev 13 : 7-9, 2002.
4) Massague J, et al : TGF-β signaling in growth control, cancer, and heritable disorders. Cell 103 : 295-309, 2000.
5) Markowitz S, et al : Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science 268 : 1336-1338, 1995.
6) Hahn SA, et al : DPC4, a candidate tumor suppressor gene at human chromosome 18q21. 1. Science 271 : 350-353, 1996.
8) Kurokawa M, et al : The oncoprotein Evi-1 represses TGF-β signalling by inhibidng Smad3. Nature 374 : 92-96, 1998.
9) Lee DK, et al : Human T-cell lymphotropic virus type 1 tax inhibits transforming growth factor-β signaling by blocking the association of Smad proteins with Smad-binding element. J Biol Chem 277 : 33766-33775, 2002.
10) Li QL, et al : Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109 : 113-124, 2002.
11) Kaji H, et al : Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor typeβ signaling. Proc Natl Acad Sci USA 98 : 3837-3842, 2001.
12) Derynck R, et al : TGF-β signaling in tumor suppression and cancer progression. Nat Genet 29 : 117-129, 2001.
13) Yin JJ, et al : TGF-β signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J Clin Invest 103 : 197-206, 1999.
14) Gorelik L FIavell RA : Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat Med 7 : 1118-1122, 2001.
15) Muraoka RS, et al : Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109 : 1551-1559, 2002.
P.560 掲載の参考文献
1) Van der Bruggen P, et al : A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254 : 1643-1647, 1991.
2) Lee KH, et al : Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 163 : 6292-6300, 1999.
3) Ikeda H, et al : The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci 95 : 697-703, 2004.
4) Mosmann TR, Sad S : The expanding universe of T-cell subset : Th1, Th2 and more. Immunol Today 17 : 138-146, 1996.
5) Sakaguchi S : Regulatory T cells : key controllers of immunologic self-tolerance. Cell 101 : 455-458, 2000.
6) Klinman DM : Immunotherapeutic use of CpG oligodeoxynucleotides. Nat Rev 4 : 1-10, 2004.
7) Henmi H, et al : A toll-like receptor recognizes bacterial DNA. Nature 408 : 740-745, 2000.
8) Roman M, et al : Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 3 : 849-854, 1997.
12) Ludewig B, et al : In vivo antigen loading and activation of dendritic cells via a liposomal peptide vaccine mediates protective antiviral and antitumour immunity. Vaccine 19 : 23-32, 2001.
13) Davila E, et al : Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 63 : 3281-3288, 2003.
14) Nishimura T, et al : Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190 : 617-628, 1999.
15) Chamoto K, et al : Potentiation of tumor eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells. Cancer Res 64 : 386-390, 2004.
P.566 掲載の参考文献
1) Kawakami Y, et al : Identification of human tumor antigens and its implication for diagnosis and treatment of cancer. Cancer Sci 95 : 784-791, 2004.
2) Wang HY, et al : Tumor-specific human CD4+ regulatory T cells and their ligands : implications for immunotherapy. Immunity 20 : 107-118, 2004.
3) Kawakami Y, et al : Isolation of a new melanoma antigen, MART-2, containing a mutated epitope recognized by autologous tumor infiltrating T lymphocytes. J Immunol 166 : 2871-2877, 2001.
4) Wang R, et al : Development of a retrovirus-based complementary DNA expression system for the cloning of tumor antigens. Cancer Res 58 : 3519-3525, 1998.
5) Wang RF, et al : Cloning genes encoding MHC class II-restricted antigens : mutated CDC27 as a tumor antigen. Science 284 : 1351-1354, 1999.
6) Nathalie V, et al : An antigenic peptide produced by peptide splicing in the proteasome. Science 304 : 587-590, 2004.
7) Pieper R, et al : Biochemical identification of a mutated human melanoma antigen recognized by CD4 (+) Tcells. J Exp Med 189 : 757-766, 1999.
8) Ishikawa T, et al : Tumor-specific immunological recognition of frameshift-mutated peptides in colon cancer with microsatellite instability. Cancer Res 63 : 5564-5572, 2003.
9) Kiniwa Y, et al : Tumor antigens isolated from a patient with vitiligo and T-cell-infiltrated melanoma. Cancer Res 61 : 7900-7907, 2001.
10) Matsuzaki Y, et al : Systematic identification of human melanoma antigens using serial analysis of gene expression (SAGE). J Immunother 28 : 10-19, 2005.
12) Morel S, et al : Processing of some antigens by the standard proteasome but not by the immunoproteasome results in poor presentation by dendritic cells. Immunity 12 : 107-117, 2000.
P.573 掲載の参考文献
2) Melief CJ : Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res 58 : 143-175, 1992.
4) Uenaka A, et al : Cryptic CTL epitope on a murine sarcoma Meth A generated by exon extension as anovel mechanism. J Immunol 170 : 4862-4868, 2003.
5) Sahin U, et al : Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92 : 11810-11813, 1995.
6) Uenaka A, Nakayama E : Murine leukemia RL male 1 and sarcoma Meth A antigens recognized by cytotoxic T lymphocytes (CTL). Cancer Sci 94 : 931-936, 2003.
7) Tanaka M, et al : Inhibition of RL male 1 tumor growth in BALB/c mice by introduction of the RLakt gene coding for antigen recognized by cytotoxic T-lymphocytes and the GM-CSF gene by in vivo electroporation. Cancer Sci 95 : 154-159, 2004.
8) Ikeda H, et al : Mutated mitogen-activated protein kinase : a tumor rejection antigen of mouse sarcoma. Proc Natl Acad Sci USA 94 : 6375-6379, 1997.
9) Shiku H, et al : Development of a cancer vaccine : peptides, proteins, and DNA. Cancer Chemother Pharmacol 46 (Suppl) : S77-S82, 2000.
12) Dunbar PR, et al : A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J Immunol 165 : 6644-6652, 2000.
13) Onizuka S, et al : Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res 59 : 3128-3133, 1999.
14) Shimizu J, et al : Induction of tumor immunity by removing CD25+ CD4+ T cells : a common basis between tumor immunity and autoimmunity. J Immunol 163 (10) : 5211-5218, 1999.
P.578 掲載の参考文献
1) Taniguchi M, et al : The regulatory role of Vα14 NKT cells in innate and acquired immune response. Annu Rev Immunol 21 : 483-513, 2003.
2) Kawano T, et al : CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278 (5343) : 1626-1629, 1997.
3) Fujii S, et al : Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 198 (2) : 267-279, 2003.
4) Toura I, et al : Cutting edge : inhibition of experimental tumor metastasis by dendritic cells pulsed with α-galactosylceramide. J Immunol 163 (5) : 2387-2391, 1999.
5) Rogers PR, et al : Expansion of human Vα24+ NKT cells by repeated stimulation with KRN7000. J Immunol Methods 285 (2) : 197-214, 2004.
6) Kawano T, et al : Antitumor cytotoxicity mediated by ligand-activated human Vα24 NKT cells. Cancer Res 59 (20) : 5102-5105, 1999.
7) Gumperz JE, et al : Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195 (5) : 625-636, 2002.
8) Motohashi S, et al : Preserved IFN-γ production of circulating Vα24 NKT cells in primary lung cancer patients. Int J Cancer 102 (2) : 159-165, 2002.
9) Tahir SM, et al : Loss of IFN-γ production by invariant NK T cells in advanced cancer. J Immunol 167 (7) : 4046-4050, 2001.
10) Yanagisawa K, et al : Impaired proliferative response of Vα24 NKT cells from cancer patients against α-galactosylceramide. J Immunol 168 (12) : 6494-6499, 2002.
11) Fujii S, et al : Severe and selective deficiency of interferon-γ-producing invariant natural killer T cells in patients with myelodysplastic syndromes. Br J Haematol 122 (4) : 617-622, 2003.
14) Giaccone G, et al : A phase I study of the natural killer T-cell ligand α-galactosylceramide (KRN 7000) in patients with solid tumors. Clin Cancer Res 8 (12) : 3702-3709, 2002.
15) Nieda M, et al : Therapeutic activation of Vα24+ Vβ11+ NKT cells in human subjects results in highly coordinated secondary activation of acquired and innate immunity. Blood 103 (2) : 383-389, 2004.
P.583 掲載の参考文献
1) van der Bruggen P, et al : A gene encoding an antigen recognized by cytotoxic T lymphocytes on a human melanoma. Science 254 : 1643-1647, 1991.
2) Robbins PF : Tumor antigen discovered with T cells. In : Handbook of Cancer Vaccines (ed by Morse MA, et al), p 31-48, Humana Press, New Jersey, 2004.
5) Huang AY, et al : Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264 : 961-965, 1994.
6) Parker KC, et al : Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J Immunol 152 : 163-175, 1994.
7) Rammensee HG, et al : MHC ligands and peptide motifs : first listing. Immunogenetics 41 : 178-228, 1995.
8) Marincola FM, et al : Escape of human solid tumors from T-cell recognition : molecular mechanisms and functional significance. Adv Immunol 74 : 181-273, 2000.
9) Noguchi M, et al : Induction of cellular and humoral immune responses to tumor cells and peptides in HLA-A24 positive hormone-refractory prostate cancer patients by peptide vaccination. Prostate 87 : 80-92, 2003.
10) Tsuda N, et al : Vaccination with predesignated or evidence-based peptides for patients with recurrent gynecologic cancers. J Immunother 27 : 60-72, 2004.
15) Akatsuka Y, et al : Identification of a polymorphic gene, BCL2A1, encoding two new hematopoietic lineage-specific minor histocompatibility antigen. J Exp Med 197 : 1489-1500, 2003.
P.590 掲載の参考文献
1) 黒木政秀 : 腫瘍マーカー測定系の問題点. Prog Med 11 : 155-167, 1991.
2) 川上雪彦 : 社会保険・老人保健/検査点数早見表. 第3部検査生化学的検査II (社会保険研究所調査室編), 社会保険研究所, 2002.
3) 黒木政秀ほか : 癌の診断と治療における腫瘍関連抗原の新しい応用法. 日気食会報 55 : 55-64, 2004.
4) 大倉久直ほか (編) : 腫瘍マーカーマニュアル, 医学書院, 1999.
5) 櫻林郁之介 : 腫瘍マーカーの概説. 臨床医 24 : 2230-2233, 1998.
6) Kuroki M, et al : Significance of tumor-associated antigens in the diagnosis and therapy of cancer : an overview. Anticancer Res 22 : 4255-4264, 2002.
7) 第24回日本分子腫瘍マーカー研究会プログラム・講演抄録, 第24回日本分子腫瘍マーカー研究会事務局, 2004.
8) Ho SB, et al : Quanthication of colorectal cancer micrometastases in lymph nodes by nested and realtime reverse transcriptase-PCR analysis for carcinoembryonic antigen. Clin Cancer Res 10 : 5777-5784, 2004.
9) Nakatsura T, et al : Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 306 : 16-25, 2003.
11) Tureci O, et al : The SSX-2 gene, which is involved in the t (X ; 18) translocation of synovial sarcomas, codes for the human tumor antigen HOM-MEL-40. Cancer Res 56 : 4766-4772, 1996.
15) Sreekumar A, et al : Profiling of cancer cells using protein microarrays : discovery of novel radiation-regulated proteins. Cancer Res 61 : 7585-7593, 2001.
P.600 掲載の参考文献
1) Jennings CD, Foon KA : Recent advances in flow cytometry : Application to the diagnosis of hematologic malignancy. Blood 90 (8) : 2863-2892, 1997.
2) Kipps TJ : The cluster of differentiation (CD) antigens. In : Williams Hematology, 6th ed (ed by Beutler E, et al), p 141-152, McGraw-Hill, New York, 2001.
3) Weir EG, Borowitz MJ : Flow cytometry in the diagnosis of acute leukemia. Semin Hematol 38 (2) : 124-138, 2001.
4) Stetler-Stevenson M, Braylan RC : Flow cytometric analysis of lymphomas and lymphoproliferative disorders. Semin Hematol 38 (2) : 111-123, 2001.
6) Jaffe ES, et al (ed) : World Health Organization Classification of Tumours. Pathology and genetics of tumours of hematopoietic and lymphoid tissues, IARC Press, Lyon, 2001.
7) NCCLS : Clinical applications of flow cytometry : Immunophenotyping of leukemic cells ; Approved guideline. NCCLS document H43-A, 1998.
8) 日本臨床検査標準協議会, FCM-WG : フローサイトメトリーによる造血器腫瘍細胞表面抗原検査に関するガイドライン (JCCLS H2-P・V-1.0). JCCLS 18 (2) : 69-107, 2003.
9) 川合陽子 : FAB分類, 造血器腫瘍表面マーカーとリンパ球サブセット. 慶大病院血液検査マニュアル (渡辺清明編), p105-128, 医学書院, 1991.
10) 川合陽子ほか : 造血器腫瘍表面マーカー・リンパ球サブセットによる免疫学的分類. 臨床病理 43 : 931-939, 1995.
11) 川合陽子ほか : 血液形態とイムノフェノタイピング. 臨床病理 48 : 694-701, 2000.
12) 川合陽子 : 表面マーカー検査. Medical Technology 29 (3) : 279-288, 2001.
13) 清水長子, 川合陽子 : フローサイトメトリーによる細胞表面マーカー. 臨床検査 46 (11) : 1274-1282, 2002.
14) 佐藤尚武 : 血液疾患と細胞表面マーカー検査-含細胞内抗原検索-. 臨床病理 50 (8) : 753-760, 2002.
15) van Dongen JJ : Proposals for immunological classification of acute leukemias. Leukemia 9 (12) : 2149-2150, 1995.
16) Vecchio LD, et al : Immunological classhication of acute leukemias : comments on the EGIL proposals. Leukemia 10 : 1832-1833, 1996.
17) Rothe G, et al : Consensus protocol for the flow cytometric immunophenotyping of hematopoietic malignancies. Working Group on Flow Cytometry and Image Analysis. Leukemia 10 (5) : 877-895, 1996.
18) 川合陽子, . 三ツ橋雄之 : 急性リンパ性白血病の形態と表面形質. 臨床検査 41 : 249-253, 1997.
19) Legrand O, et al : The immunophenotype of 177 adults with acute myeloid leukemia : proposal of a prognostic score. Blood 96 (3) 1870-877, 2000.
20) Holden JT, et al : Interobserver variability in the assessment of flow cytometric immunophenotyping of hematolymphoid neoplasms. Blood 96 (Suppl 11) : 717a, 2000.
P.606 掲載の参考文献
1) Yamada A, et al : Multidrug resistance-associated protein 3 (MRP3) is a tumor rejection antigen recognized by HLA-A2402-restricted cytotoxic T lymphocytes. Cancer Res 61 : 6459-6466, 2001.
2) Yamada A, et al : Gene and peptide analyses of newly defined lung cancer rejection antigens recognized by HLA-A2402-restricted tumor-specific cytotoxic T lymphocytes. Cancer Res 63 : 2829- 2835, 2003.
4) Miyagi Y, et al : Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination of SART3 peptides. Clin Cancer Res 7 : 3950-3962, 2001.
5) Gohara R, et al : Cellular and humoral immune responses to tumor cells and peptides in lung cancer patients vaccinated with cyclophilin B peptide. J Immunother 25 : 439-444, 2002.
6) Noguchi M, et al : Immunological evaluation of individualized peptide vaccination with a low dose of estramustine for HLA-A24 (+) HRPC patients. Prostate 2004. (in press)
P.612 掲載の参考文献
8) Pegram MD, Reese DM : Combined biological therapy of breast cancer using monoclonal antibodies directed against HER2/neu protein and vascular endothelial growth factor. Semin Oncol 29 (3 Suppl 11) : 29-37, 2002.
9) Foon KA, et al : Clinical and immune responses in resected colon cancer patients treated with antiidiotype monoclonal antibody vaccine that mimics the carcinoembryonic antigen. J Clin Oncol 17 : 2889-2895, 1999.
12) Krasner C, Joyce RM : Zevalin : 90yttrium labeled anti-CD20 (ibritumomab tiuxetan), a new treatment for non-Hodgkin's lymphoma. Curr Pharm Biotechnol 2 : 341-349, 2001.
13) Chenson BD : Bexxar (Corixa/GlaxoSmithKline). Curr Opin Investig Drugs 3 : 165-170, 2002.
14) Pangalis GA, et al : Campath-1H (anti-CD52) monoclonal antibody therapy in lymphoproliferative disorders. Med Oncol 18 : 99-107, 2001.
P.617 掲載の参考文献
1) Saenz-Badillos J, et al : RNA as a tumor vaccine : a review of the literature. Exp Derrnatol 10 : 143-154, 2001.
3) Saeboe-Larssen S, et al : mRNA-based electrotransfection of human dendritic cells and induction of cytotoxic T lymphocyte responses against the telomerase catalytic subunit (hTERT). J Immunol Methods 259 : 191-203, 2002.
7) Bonehill A, et al : Efficient presentation of known HLA class II-restricted MAGE-A3 epitopes by dendritic cells electroporated with messenger RNA encoding an invariant chain with genetic exchange of class II-associated invariant chain pepdde. Cancer Res 63 : 5587-5594, 2003.
8) Bonehill A, et al : Messenger RNA-electroporated dendritic cells presenting MAGE-A3 simultaneously in HLA class I and class II molecules. J Immunol 172 : 6649-6657, 2004.
12) Fong L, et al : Dendritic cell-based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol 167 : 7150-7156, 2001.
13) Su Z, et al : Enhanced induction of telomerase-specific CD4 (+) T cells using dendritic cells transfected with RNA encoding a chimeric gene product. Cancer Res 62 : 5041-5048, 2002.
14) Fukui M, et al : Therapeutic effect of dendritic cells loaded with a fusion mRNA encoding tyrosinase-related protein 2 and enhanced green fluorescence protein on B16 melanoma. Tumour Biol 2004. (in press)
15) Su Z, et al : Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63 : 2127-2133, 2003.
P.631 掲載の参考文献
1) 田所憲治, 十字猛夫 : 輸血後GVHD. 日本臨牀 60 (増刊号1) : 724-731, 2002.
2) Morishima M, et al : The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow transplant from serologically HLA-A, HLA-B, and HLA-DR matched unrelated donors. Blood 99 : 4200-4206, 2002.
3) 赤塚美樹 : マイナー組織適合抗原の生物学的意義. 最新医学 56 : 186-191, 2001.
5) Campbell JDM, et al : Evolution of bone marrow transplantation-the original immunotherapy. Trends Immunol 22 : 88-92, 2001.
8) Lederer SR, et al : Impact of humoral alloreactivity early after transplantation on the long-term survival of renal allografts. Kidney Int 59 : 334-341, 2001.
9) Lai L, et al : Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295 : 1089-1092, 2002.
P.636 掲載の参考文献
2) Van Parijs L, et al : The roles of costimulation and Fas in T cell apoptosis and peripheral tolerance. Immunity 4 : 321-328, 1996.
3) Khoury SJ, Sayegh MH : The roles of the new negative T cell costimulatory pathways in regulating autoimmunity. Immunity 20 : 529-538, 2004.
4) Racusen LC, et al : Antibody-mediated rejection criteria-an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant 3 : 708-714, 2003.
5) Alexandre GP, et al : Present experiences in a series of 26 ABO-incompatible living donor renal allografts. Transplant Proc 19 : 4538-4542, 1987.
6) Auchincloss H, et al : Prevention of alloantibody formation after skin grafting Without prolongation of graft survival by anti-L3T4 in vivo. Transplantation 45 : 1118-1123, 1988.
7) Auchincloss H Jr, et al : Transplantation Immunology. In : Fundamental Immunology, 4th ed (ed by Paul WE), p 1175-1235, Lippincott-Raven, Philadelphia, 1999.
9) Hancock WW, et al : Immunopathogenesis of accelerated allograft rejection in sensitized recipients : humoral and nonhumoral mechanisms. Transplantation 73 : 1392-1397, 2002.
10) Heeger PS, et al : Comprehensive assessment of determinant specificity, frequency, and cytokine signature of the primed CD8 cell repertoire induced by a minor transplantation antigen. J Immunol 165 : 1278-1284, 2000.
11) Burrows SR, et al : An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope : implications for graft-versus-host disease. J Exp Med 179 : 1155-1161, 1994.
12) Solez K, et al : Solid Organ Transplant Rejection : Mechanisms, Pathology, and Diagnosis, Marcel Dekker, New York, 1996.
13) Cosio FG, et al : Impact of acute rejection and early allograft function on renal allograft survival. Transplantation 63 : 1611-1615, 1997.
14) Izutani H, et al : Evidence that graft coronary arteriosclerosis begins in the early phase after transplantation and progresses without chronic immunoreaction. Histopathological analysis using a retransplantation model. Transplantation 60 : 1073-1079, 1995.
P.646 掲載の参考文献
1) Tagliacozzi G : De Curorum Cbirurgia 18 : 61, 1597.
2) Voronoy YY : El Siglo Med 97 : 296, 1936.
3) Billingham RE, et al : Actively acquired tolerance of foreign cells. Nature 172 : 603-606, 1953.
4) Liegeois A, et al : Microchimerism : a stable state of low-ratio proliferation of allogeneic bone marrow. Transplant Proc 9 : 273-276, 1977.
5) Owen RD : Immunogenetic consequences of vascular anastomosis between bovine twins. Science 102 : 400-401, 1945.
6) Starzl TE, et al : Cell migration and chimerism after whole organ transplantation ; the basis of graft acceptance. Hepatology 17 : 1127-1152, 1993.
7) Elkins WL, Guttmam RD : Pathogenesis of a local graft versus host reaction : Immunogenicity of circulating host leukocytes. Science 159 : 1250-1251, 1968.
8) Starzl TE, et al : Systemic chimerism in human female recipients of male livers. Lancet 340 : 876-877, 1992.
9) Starzl TE, et al : Chimerism and donor-specific nonreactivity 27 to 29 years after kidney allotransplantation. Transplantation 55 : 1272-1277, 1993.
10) Burnet FM, Fenner F : The Production of Antibodies, Macmillan, Melbourne, 1949.
11) Kappler JW, et al : Tcells tolerance by clonal elimination. Cell 49 : 273-280, 1987.
12) Jenkins MK, Schwarz RH : Antigen presentation by chemically modhied splenocytes induces antigen-specific T cell unresponsiveness. J Exp Med 165 : 302-319, 1987.
13) Hall B : Mechanisms maintaining enhancement of allografts ; I ; Demonstration of a specific suppressor cell. J Exp Med 161 : 123-133, 1985.
14) Miyamoto M, et al : Male skin isografts can induce unresponsiveness in female rats. Transplantation 30 : 180-184, 1980.
15) Kamada N, et al : Fully allogeneic liver grafting in rats induces a state of systemic non-reactivity to donor transplantation antigens. Transplantation 29 : 429-431, 1980.
P.652 掲載の参考文献
1) Sakaguchi S : Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22二531-562, 2004.
3) sakaguchi s, et al : Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells : their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev 182 : 18-32, 2001.
5) Ono M : in preparation.
6) Maloy KI, Powrie F : Regulatory T cells in the control of immune pathology. Nat Immunol 2 : 816-822, 2001.
7) Chatila TA, et al : JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 106 : R75-81, 2000.
11) Fontenot JD, et al : Foxp3 programs the development and function of CD4+ CD25+ regulatory T cells. Nat Immunol 4 : 330-336, 2003.
12) Khattri R, et al : An essential role for Scurfin in CD4+ CD25+ Tregulatory cells. Nat Immunol 4 : 337-342, 2003.
14) Wood KI, Sakaguchi S : Regulatory T cells in transplantation tolerance. Nat Rev Immunol 3 : 199-210, 2003.
P.657 掲載の参考文献
1) Aguado B, et al : Complete structure and gene map of a human major histocompatiblity complex (MHC). Nature 401 : 921-923, 1999.
3) Nermine L, et al : Human leukocyte antigen-G expression after heart transplantation is associated with a reduced incidence of rejection. Circulation 105 : 1949-1954, 2002.
4) Caroline C, et al : Biopsy associated with fewer acute rejections following combined liver-kidney transplantation : Possible implications for monitoring patients. Hum Immunol 64 : 1033-1038, 2003.
6) Sutherland DER, et al : Evolution of kidney, pancreas, and islet transplantation for patients with diabetes at the University of Minnesota. Am J Surg 166 : 456-491, 1993.
7) Sasazuki T, et al : Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. N Engl J Med 339 : 1177-1185, 1998.
8) Ketheesan N, et al : The significance of HLA matching in cardiac transplantation. J Heart Lung Transplant 18 : 226-230, 1999.
9) Smits JM, et al : Three-year survival rates for all consecutive heart-only and lung-only transplants performed in Eurotransplant, 1997-1999. Clin Transpl 89-100, 2003.
10) Jan WK van den Berg, et al : Long-term outcome of lung transplantation is predicted by the number of HLA-DR mismatches. Transplantation 71 : 368-373, 2001.
P.664 掲載の参考文献
1) Miyagawa S, et al : The mechanism of discordant xenograft rejection. Transplantation 46 : 825-830, 1988.
2) Miyagawa S, et al : Prolonging discordant xenograft survival with anticomplement reagents K76COOH and FUT175. Transplantation 55 : 709-713, 1993.
3) Galili U, et al : Natural anti-α (1-3)-linked galactose residues. J Exp Med 162 : 573-582, 1985.
4) Galili U, et al : Man, apes, and old monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 263 : 17755-17762, 1988.
5) Phelps J, et al : Production of α1, 3-galacto syltransferase-deficient pigs. Science 299 (5605) : 411-414, 2003.
6) Dorling A : Are anti-endothelial cell antibodies a pre-requisite for the acute vascular rejection of xenografts? Xenotransplantation 10 : 16-23, 2003.
7) Paradis K, et al : Search for cross-species transmission of porcine endogenous retrovirus in patients treated with living pig tissue. Science 285 (5431) : 1236-1241, 1999.
P.669 掲載の参考文献
1) Taylor DO, et al : The Registry of the International Society for Heart and Lung Transplantation : twenty-first official adult heart transplant report-2004. J Heart Lung Transplant 23 (7) : 796-803, 2004.
2) Griepp RB, Ergin MA : The history of experimental heart transplantation. J Heart Transplant 3 : 145-151, 1984.
3) 中田精三 : 心移植. 新移植免疫学 (藤原大美編), p182-197, 中外医学社, 2000.
5) 福嶌鴬教偉 : 心臓移植における免疫抑制療法. Ther Res 25 (5) : 970-974, 2004.
6) Buhler L : Xenotransplantation literature update. Xenotransplantation 11 : 3-10, 2004.
P.677 掲載の参考文献
2) Starzl TE, et al : Homotransplantation of the liver in humans. Surg Gynecol Obstet 117 : 659-676, 1963.
3) Nagasue N, et al : Segmental (partial) liver transplantation from a living donor. Transplant Proc 24 : 1958-1959, 1992.
4) Gregori S, et al : Regulatory T cells induced by 1 alpha, 25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol 167 : 1945-1953, 2001.
5) Chiffoleau E, et al : Role for thymic and splenic regulatory CD4+ T cells induced by donor dendritic cells in allograft tolerance by LF15-0195 treatment. J Immunol 168 : 5058-5069, 2002.
6) Graca L, et al : Identification of regulatory T cells in tolerated allografts. J Exp Med 195 : 1641-1646, 2002.
7) Sakaguchi S, et al : Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155 : 1151-1164, 1995.
8) Jonuleit H, et al : Identification and functional characterization of human CD4 (+) CD25 (+) T cells with regulatory properties isolated from peripheral blood. J Exp Med 193 : 1285-1294, 2001.
9) Dieckmann D, et al : Ex vivo isolation and characterization of CD4 (+) CD25 (+) T cells with regulatory properties from human blood. J Exp Med 193 : 1303-1310, 2001.
10) Shimizu J, et al : Induction of tumor immunity by removing CD25+ CD4+ T cells : a common basis between tumor immunity and autoimmunity. J Immunol 163 : 5211-5218, 1999.
13) Louis S, et al : The blood of operationally tolerant recipients of kidney allograft is characterized by an increase in CD4+ CD25+ T cells [Abstract]. Am J Transplant 3 : 328, 2004.
14) Takatsuki M, et al : Weaning of immunosuppression in living donor liver transplant recipients. Transplantation 72 : 449-454, 2001.
15) Oike F, et al : Complete withdrawal of immunosuppression in living donor liver transplantation. Transplant Proc 34 : 1521, 2002.
P.684 掲載の参考文献
1) Toronto Lung Transplant Group : Unilateral lung transplantation for pulmonary fibrosis. N Engl J Med 314 : 1140-1145, 1986.
2) Trulock EP, et al : The registry of the International Society for Heart and Lung Transplantation : twenty-first official adult lung and heart-lung transplant report-2004. J Heart Lung Transplant 23 : 804-815, 2004.
4) Miyoshi S, et al : Single lung transplantation from a brain-dead donor for a patient with idiopathic pulmonary fibrosis. A breakthrough after new legislation in Japan. Jpn J Thorac Cardiovasc Surg 49 : 398-403, 2001.
5) 松村輔二ほか : 本邦初の脳死肺移植-右片肺移植-. 今日の移植 13 : 418-425, 2000.
6) Kriett JM, et al : Lung transplantation without the use of antilymphocyte antibody preparations. J Heart Lung Transplant 12 : 915-922, 1993.
7) Trulock EP, et al : The role of transbronchial lung biopsy in the treatment of lung transplant recipients : an analysis of 200 consecutive procedures. Chest 102 : 1049-1054, 1992.
8) Starnes VA, et al : Adecade of living lobar lung transplantation : recipient outcomes. J Thorac Cardiovasc Surg 127 : 114-122, 2004.
9) Date H, et al : Living-donor lobar lung transplantation for various lung diseases. J Thorac Cardiovasc Surg 126 : 476-481, 2003.
P.689 掲載の参考文献
1) Detterling R : Discussion : Alican F, et al : Intestinal transplantation : Laboratory experience and report of a clinical case. Am J Surg 121 : 150-159, 1971.
2) Todo S, et al : Outcome analysis of 71 clinical intestinal transplantation. Ann Surg 222 : 270-282 1995.
3) Goulet O, et al : Successful small bowel transplantation in an infant. Transplantation 53 : 940-943 1992.
4) Abu-Elmagd K, et al : Clinical intestinal transplantation : adecade of experience at a single center. Ann Surg 234 : 404-417, 2001.
5) Carreno MR, et al : Induction therapy with daclizumab as part of the immunosuppressive regimen in human small bowel and multiorgan transplants. Transplant Proc 33 : 1015-1016, 2001.
6) 長谷川利路ほか : 臨床生体小腸移植の現況と展望 ; 周術期管理の工夫. 小児外科 36 : 765-772, 2004.
8) Starzl TE, et al : Tolerogenic immunosuppression for organ transplantation. Lancet 361 : 1502-1510, 2003.
9) Sindhi R, et al : Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. Transplantation 72 : 851-855, 2000.
10) Langnas AN : Advances in small-intestine transplantation. Transplantation 77 : S75-S78, 2004.
11) Grant D, et al : Presented at the VIII Intestinal Small Bowel Transplant Symposium, Miami, September 2003. Available at : www.intestinaltransplant.org
P.694 掲載の参考文献
1) 骨髄移植推進財団 : 日本骨髄バンクを介した非血縁者間骨髄移植の成績報告書, 2004年12月.
2) 日本造血細胞移植学会 : 平成13年度全国調査報告書. JSHCT monograph, Vol 5, 2001年12月 (http://www.jshct.com/guide).
3) 名古屋BMTグループ : 造血細胞移植マニュアル (第3版), 日本医学館, 2004年9月.
4) 日本造血細胞移植学会 : 造血細胞移植ガイドライン. 急性GVHD. JSHCT monograph, Vol 1, p 19-49, 1997 (http://www.jshct.com/guide).
5) Shlomchik WD, et al : Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 285 : 412-415, 1999.
7) Sasazuki T, et al : Effect of matching of class I HLA alleles on clinical outcome after transplantation of hematopoietic stem cells from an unrelated donor. N Engl J Med 339 : 1177-1185, 1998.
8) Morishima Y, et al : The clinical significance of human leukocyte antigen (HLA) allele compatibility in patients receiving a marrow from serologically HLA-A, HLA-B, and HIA-DR matched unrelated donors. Blood 99 : 4200-4206, 2002.
9) Petersdorf EW, et al : Effect of HLA class II gene disparity on clinical outcome in unrelated donor hematopoietic cell transplantation for chronic myeloid leukemia : the US National Marrow Donor Program Experience. Blood 98 : 2922-2929, 2001.
10) Morishima Y, et al on behalf of the IHWC HCT Component : HLA-A2 allele compatibility and its effect to clinical outcome in hematopoietic cell transplantation (HCT) from unrelated donors. In : HLA 2004 : Immunobiology of the Human MHC (Proceedings of the 13th International Histocompatibility Workshop and Conference) (ed by Hansen J, Dupont B), IHWG Press, Seattle, 2004.
11) Flomenberg N, et al : Impact of HLA-class I and class II high resolution matching on outcomes of unrelated donor BMT. Blood 104 : 1923-1930, 2004.
12) Ruggeri L et al : Effectiveness of donor natural killer cell alloreaCtivity in mismatched hematopoietic transplants. Science 295 : 2097-2100, 2002.
13) Morishima Y, et al : Clinical significance of killer Ig-like receptor (KIR) on acute GVHD, rejection and leukemia relapse on patients transplanted non-T cell depleted marrow from unrelated donor ; Roles of inhibitory KIR epitope matching and activating KIR genotype. Blood 102 : 153a, 2003 (abstract#526).
14) Akatsuka Y, Morishima Y : Major and minor histocompatibility antigens in allogeneic hematopoietic stem cell transplantation. Curr Opin Organ Transplant 9 : 64-71, 2004.
P.698 掲載の参考文献
1) Coughlin SS, et al : Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 159 : 1160-1167, 2004.
4) Matsumoto S, et al : Transplantation. Efficacy of human islet isolation from the tail section of the pancreas for the possibility of living donor islet transplantation. Transplantation 78 : 839-843, 2004.
6) Shapiro AMJ, et al : Edmonton'sislet success has indeed been replicated elsewhere. Lancet 362 : 1212, 2003.
7) Hering BJ, et al : Islet transplantation. In : Transplantation of the Pancreas (ed by Gruessner RWB, Sutherland DER), p 583-626, Springer-Verlag, New York, 2004.
10) Matsumoto S, et al : Improved islet yields from Macaca nemestrina and marginal human pancreata after two-layer method preservation and endogenous trypsin inhibition. Am J Transplant 3 : 53-63, 2003.
11) Matsumoto S, et al : Immediate reversal of diabetes in primates following intraportal transplantation of porcine islets purified on a new histidine-lactobionate-iodixanol gradient. Transplantation 67 : S220, 1999.
12) Matsumoto I, et al : Improvement in islet yield from obese donors for human islet transplants. Transplantation 78 : 880-885, 2004.
P.704 掲載の参考文献
1) Alexandre GPJ, et al : ABO incompatible related and unrelated living donor renal allografts. Transplant Proc 18 : 452-459, 1986.
2) Ota K, et al : Japanese Biosynsorb ABO blood type incompatible kidney transplantation group : Multicenter trial of ABO-incompatible kidney transplantation. Transplant Int 5 (Suppl) : 40-45, 1992.
3) Takahashi K : A review of humoral rejection in ABO incompatible kidney transplantation, with local (intrarenal) DIC as the underlying condition. Acta Med Biol 45 (3) : 95-102, 1997.
4) 高橋公太 : ABO血液型不適合腎移植における液性拒絶反応の考察. 今日の移植 10 : 675-681, 1997.
5) Onitsuka S, et al : Peritubular capillary deposition of C4d complement fragment in ABO-incompatible renal transplantation with humoral rejection. Clin Transplant 13 (Suppl 1) : 33-36, 1999.
6) Saito K, et al : Efficacy of tacrolimus in ABO incompatible kidney transplantation : clinicopathological aspect of humoral rejection. Transplant Proc 31 : 2851, 1999.
7) Takahashi K : Accommodation in ABO-incompatible kidney transplantation : Why do kidney grafts survive? Transplant Proc 36 (Suppl 2S) : 193S-196S, 2004.
8) Takahashi K, et al : First report of a seven-year survey on ABO-incompatible kidney transplantation in Japan. Clin Exp Nephrol 5 : 119-125, 2001.
10) 齋藤和英, 高橋公太 : Basiliximab (新しい免疫抑制薬). 腎と透析 55 : 581-586, 2003.
11) Takahashi K : Accommodation in ABO-incompatible Kidney Transplantation, Elsevier BV, Amsterdam, 2004.
13) Christopher J, et al : Plasmapheresis, CMV hyperimmune globulin, and anti-CD20 allow ABOincompatible renal transplantation without splenectomy. Am J Transplant 4 : 1315-1322, 2004.
P.709 掲載の参考文献
1) Segerer S, Nelson PJ : Chemokine receptors, and renal disease : from basic science to pathophysiologic and therapeutic studies. J Am Soc Nephrol 11 : 152-176, 2000.
2) Newstead CG, Lamb WR : Serum and urine IL-6 and TNF-alpha in renal transplant recipients with graft dysfunction. Transplantation 56 : 831-835, 1993.
3) Casiraghi F, Ruggenenti P : Sequential monitoring of urine-soluble interleukin 2 receptor and interleukin 6 predicts acute rejection of human rena1 allografts before clinical or laboratory signs of renal dysfunction. Transplantation 63 : 1508-1514, 1997.
5) Xu GP, Sharma VK : Intragraft expression of IL-10 messenger RNA : a novel correlate of renal allograft rejection. Kidney Int 48 : 1504-1507, 1995.
6) Strehlau J, Pavlakis M : Quantitative detection of immune activation transcripts as a diagnostic tool in kidney transplantation. Proc Natl Acad Sci USA 94 : 695-700, 1997.
7) Fischereder M, Luckow B : CC chemokine receptor 5 and renal-transplant surviva1. Lancet 357 : 1758-1761, 2001.
8) Sandoz PF, Bielmann D : Value of urinary sediment in the diagnosis of interstitial rejection in renal transplants. Transplantation 41 : 343-348, 1986.
9) Kyo M, Mihatsch MJ : Renal graft rejection or cyclosporin toxicity? Early diagnosis by a combination of Papanicolaou and immunocytochemical staining of urinary cytology specimens. Transplant Int 5 : 71-76, 1992.
10) Hollenbeck M, Hilbert N : Increasing sensitivity and spechicity of Doppler sonographic detection of renal transplant rejecdon with serial investigation technique. Clin Investig 72 : 609-615, 1994.
11) Merkus JW, van Asten WN : Doppler spectrum analysis in the differential diagnosis of renal transplant dysfunction. Clin Transplant 10 : 420-428, 1996.
12) Takahashi S, Tsuda K : Imaging evaluation of the renal transplant : usefulness of serial Doppler ultrasonography. Japanese Journal of Diagnostic Imaging 20 : 167-175, 2000.
14) Racusen LC, Colvin RB : Antibody-mediated rejection criteria-an addition to the Banff 97 classification of renal allograft rejection. Am J Transplant 3 : 708-714, 2003.
15) Crespo M, Pascual M : Acute humoral rejection in renal allograft recipients : I. Incidence, serology and clinical characteristics. Transplantation 71 : 652-658, 2001.
16) Mauiyyedi S, Crespo M : Acute humoral rejection in kidney transplantation : II. Morphology, immunopathology, and pathologic classification. J Am Soc Nephrol 13 : 779-787, 2002.
17) Lederer SR, Kluth-Pepper B : Impact of humoral alloreactivity early after transplantation on the long-term survival of renal allografts. Kidney Int 59 : 334-341, 2001.
18) Herzenberg AM, Gill JS : C4d deposition in acute rejection : an independent long-term prognostic factor. J Am Soc Nephrol 13 : 234-241, 2002.

最近チェックした商品履歴

Loading...