リハビリテーションのためのニューロサイエンス

出版社: メジカルビュー社
著者:
発行日: 2015-09-30
分野: 臨床医学:外科  >  リハビリ医学
ISBN: 9784758316842
電子書籍版: 2015-09-30 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

5,280 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

5,280 円(税込)

商品紹介

実験や脳の活動変化などの視覚的な表現を伴う解説についてはイラストや動画を挿入し,最新機器によるリハビリテーションの様子や,リハビリテーション時の患者の変化を示す内容を視覚的に理解することができるようになっている。また,側注に用語解説を設け専門用語をわかりやすく解説しているので,脳科学・脳神経学の入門書としても最適である。リハビリテーションスタッフが知るべき脳科学研究をまとめた,リハビリテーションスタッフのための脳科学解説書である。

目次

  • リハビリテーションのためのニューロサイエンス

    ―目次―

    1章 脳の機能と損傷による変化
      1 脳神経科学の基礎理論
      2 運動機能・感覚機能
        〜運動にかかわる大脳皮質と皮質下脳領域の役割〜
      3 運動にかかわる大脳皮質各領域の役割
      4 神経損傷後の神経回路再編成
      5 記憶のダイナミクスとそのメカニズム

    2章 リハビリテーションによる脳の変化
      1 生体外部からの刺激がもたらす効果:
         動物実験による基礎研究
      2 サル脳損傷からの回復過程にみる脳内変化
      3 手指の機能回復を可能にする神経回路の解明
      4 ミラーセラピー:鏡を使ったリハビリテーション
      5 手指の拘縮に対するリハビリテーション
        〜手からの刺激がいかに重要か〜

    3章 リハビリテーションの新たな戦略
      1 BMI(brain-machine interface)によるリハビリテーション
      2 ニューロフィードバックを用いたリハビリテーション介入
      3 ロボットによる歩行リハビリテーション
      4 人工神経接続によるリハビリテーション

    4章 リハビリテーションの実践と脳科学
      臨床での実践で,脳に何が起こっているのか
       臨床での取り組みを脳科学者と相互ディスカッションする意義
       症例A:歩行障害
       症例B:上肢機能障害
       症例C:認知(高次脳)機能障害,高齢者

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1章 脳の機能と損傷による変化

P.21 掲載の参考文献
1) 潮見泰藏:脳卒中に対する標準的理学療法介入 何を考え, どう進めるか? , 文光堂, 2007.
2) Spruston N. Pyramidal neurons:dendritic structure and synaptic integration. Nature Reviews Neuroscience 9:206-221, 2008.
3) Urakawa S, et al:Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecort in-positive cells following striatal lesions in rats. Neuroscience 144(3):920-933, 2007.
4) Adam D, et al:The p38α MAPK Regulates Microglial Responsiveness to Diffuse Traumatic Brain Injury. J Neurosci 33(14):6143-6153, 2013.
5) Urakawa S, et al:Rearing in enriched environment increases parvalbumin-positive small neurons in the amygdala and decreases anxiety-like behavior of male rats. BMC Neurosci 14:13, 2013.
6) Kandel ER, et al:Principles of Neural Science. 5th ed, McGraw-Hill Education, 2012.
7) Kwan KY, et al:Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139(9):1535-1546, 2012.
8) 山脇健盛:脳保護療法, 現代医療 33:519-525, 2001.
9) Kuner R:Central mechanisms of pathological pain, Nat Med 16(11):1258-1266, 2010.
10) Nahmani M, Turrigiano GG:Adult cortical plasticity following injury:Recapitulation of critical period mechanisms?, Neuroscience 26(283)4-16, 2014.
11) Xerri C, et al:Interplay between intra- and interhemispheric remodeling of neural networks as a substrate of functional recovery after stroke:adaptive versus maladaptive reorganization. Neuroscience 26(283):178-201, 2014.
12) Taub E, et al:New treatments in neurorehabilitation founded on basic research. Nat Rev Neurosc i3(3):228-236, 2002.
13) Nudo RJ, et al:Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791-1794, 1996.
14) Humm JL, et al:Use-dependent exacerbation of brain damage occurs during an early post-lesion vulnerable period. Brain Res 9(783):286-292, 1998.
15) Xerri C, Zennou-Azogui:Influence of the postlesion environment and chronic piracetam treatment on the organization of the somatotopic map in the rat primary somatosensory cortex after focal cortical injury. Neuroscience 118(1):161-177, 2003.
16) Xerri C, Zennou-Azogui:Early and moderate sensory stimulation exerts a protective effect on perileison representation of somatosensory cortex after focal ischemic damage. PLoS One 9(6):e99767, 2014.
17) 潮見泰藏:ビジュアル実践リハ脳・神経系リハビリテーション, 羊土社, 2012.
P.42 掲載の参考文献
1) 小澤瀞司ほか監:標準生理学 第8版, 医学書院, 2014.
2) 豊田順一ほか監:標準生理学 第6版, 医学書院, 2005.
3) アーサー・C. ガイトン 著, 御手洗玄洋 総監訳:ガイトン生理学 第11版, エルセビア・ジャパン, 2010.
4) Guyton AC, Hall JE:Textbook of Medical Physiology, Elsevier, 2006.
5) 白尾智明 監訳:リッピンコットシリーズ イラストレイテッド神経科学, 丸善出版, 2013.
6) Kandel ER, et al:Principles of Neural Science. 4th ed, McGraw-Hill Medical, 2000.
7) Schmidt RF, Thews G:Human Physiology, Springer-Verlag, 1983.
8) 日本経済新聞社:別冊サイエンス, Scientific American, Science Illustrated 4 脳, 日本経済新聞社, 1997.
9) 西野仁雄:イチローの脳を科学する, 幻冬舎, 2008.
10) 西野仁雄:イチローは脳をどう鍛えたか, 経済界, 2011.
P.73 掲載の参考文献
1) Daniel Kahneman:Thinking, Fast and Slow, Farrar, Straus and Giroux, 2011.
2) Scott SH:Optimal feedback control and the neural basis of volitional motor control. Nat Rev Neurosci 5:532-546, 2004.
3) Mark L. Latash:Fundamentals of Motor Control, Academic Press, 2012.
4) Picard N, et al:Extended practice of a motor skill is associated with reduced metabolic activity in M1. Nat Neurosci 16(9):1340-1347, 2013.
5) Cisek P, et al:Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269-298, 2010.
6) Rizzolatti G, et al:Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol Rev 94(2):655-706, 2014.
7) Kurata K, et al:Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys. J Neurophysiol 71(3):1151-1164, 1994.
8) Ochiai T, Mushiake H, et al:Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. CerebCortex 15(7):929-937, 2004.
9) Rizzolatti G, et al:The functional role of the parieto-frontal mirror circuit:interpretations and misinterpretations. Nat Rev Neurosci 11(4):264-274, 2010.
10) Wise SP:The primate premotor cortex:past, present, and preparatory. Annu Rev Neurosci 8:1-19, 1985.
11) Hoshi E, et al:Integration of target and body-part information in the premotor cortex when planning action. Nature 408(6811):466-470, 2000.
12) Passingham RE, et al:Medial frontal cortex:from self-generated action to reflection on one's own performance. Trends Cogn Sci 14(1):16-21, 2009.
13) Tanji J:Sequential organization of multiple movements:involvement of cortical motor areas. Annu Rev Neurosci 24:631-651. 2001.
14) Mita A, et al:Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 12(4):502-507, 2009.
15) Nakajima T, Mushiake H, et al:Two-dimensional representation of action and arm-use sequences in the presupplementary and supplementary motor areas. J Neurosci 33(39):15533-15544, 2013.
16) Shima K, et al:Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad Sci USA 93(16):8694-8698, 1996.
17) Strick PL, et al:Motor areas on the medial wall of the hemisphere. Novartis Found Symp 218:64-75, 1998.
18) Paus T:Primate anterior cingulate cortex:where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417-424, 2001.
19) Shima K, et al:Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282(5392):1335-1338, 1998.
20) Iwata J, et al:Neurons in the cingulate motor area signal context-based and outcome-based volitional selection of action. Exp Brain Res 229(3):407-17, 2013.
21) Miller EK, et al:An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167-202, 2001.
22) Goldman-Rakic PS:Cellular basis of working memory. Neuron 14(3):477-485, 1995.
23) Mushiake H, et al:Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50(4):631-641, 2006.
24) Duncan J:An adaptive coding model of neural function in prefrontal cortex. Nat Rev Neurosci 2(11):820-829, 2001.
25) Shima K, et al:Categorization of behavioural sequences in the prefrontal cortex. Nature 445(7125):315-318, 2006.
26) Koechlin E, et al:Anterior prefrontal function and the limits of human decision-making. Science 318(5850):594-598, 2007.
27) Shenhav A, et al:The expected value of control:an integrative theory of anterior cingulate cortex function. Neuron 79(2):217-240, 2013.
28) Kringelbach ML:The human orbitofrontal cortex:linking reward to hedonic experience. Nat Rev Neurosci 6(9):691-702, 2005.
29) Ullsperger M, et al:Neurophysiology of performance monitoring and adaptive behavior. Physiol Rev 94(1):35-79, 2014.
30) Frith CD, et al:Mechanisms of social cognition. Annu Rev Psychol 63:287-313, 2012.
31) Rushworth MF, et al:Frontal cortex and reward-guided learning and decision-making. Neuron 70(6):1054-1069, 2011.
32) Matsuzaka Y, Mushiake H, et al:Neuronal activity in the primate dorsomedial prefrontal cortex contributes to strategic selection of response tactics. Proc Natl Acad Sci USA 109(12):4633-4638, 2012.
33) Gottlieb J:From thought to action:the parietal cortex as a bridge between perception, action, and cognition. Neuron 53(1):9-16, 2007.
34) Bisley JW, et al:Attention, intention, and priority in the parietal lobe. Annu Rev Neurosci 33:1-21, 2010.
35) Andersen RA, et al:Multimodal representation of spacein the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303-330, 1997.
36) Andersen RA, et al:Intention, action planning, and decision making in parietal-frontal circuits. Neuron 63(5):568-583, 2009.
37) Desmurget M, et al:Movement intention after parietal cortex stimulation in humans. Science 324(5928):811-813, 2009.
38) Haggard P:Human volition:towards a neuroscience of will. Nat Rev Neurosci 9(12):934-946, 2008.
39) Corbetta M, et al:Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201-215, 2002.
40) Blanke O:Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci 13(8):556-571, 2012.
41) Raichle ME, et al:A default mode of brain function. Proc Natl Acad Sci USA 98(2):676-682, 2001.
42) Menon V, et al:Saliency, switching, attention and control:a network model of insula function. Brain Struct Funct 214(5-6):655-667, 2010.
43) Northoff G:Immanuel Kant's mind and the brain's resting state. Trends Cogn Sci 16(7):356-359, 2012.
44) Roelofs A, et al:Anterior cingulate cortex activity can be independent of response conflict in Stroop-like tasks. Proc Natl Acad Sci USA 103(37):13884-13889, 2006.
45) Fox MD, et al:The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102(27):9673-9678, 2005.
P.87 掲載の参考文献
1) Matsui H, et al:An exploration of the association between very early rehabilitation and outcome for the patients with acute ischaemic stroke in Japan:a nationwide retrospective cohort survey. BMC Health Serv Res 10:213, 2010.
2) 小澤瀞司ほか監:標準生理学 第8版, p. 192-201, 医学書院, 2014.
3) Allred RP, et al:Use it and/or lose it-experience effects on brain remodeling a cross time after stroke. Front Human Neurosci 8:379(1-8), 2014.
4) Murphy TH, Corbett D:Plasticity during stroke recovery:from synapse to behavior. Nat Rev Neurosci 10(12):861-872, 2009.
5) Zhang S, Murphy TH:Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol 5(5):e119, 2007.
6) Brown CD, et al:Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke, J Neurosci 27(15):4101-4109, 2007.
7) Brown CD, et al:Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab 30(4):783-791, 2010.
8) Winship IR, Murphy TH:In vivo calcium imaging reveals functional rewiring of single somatosensory neurons after stroke. J Neurosci 28:6592-6606, 2008.
9) Kowianski P, et al:The astrocytic contribution to neurovascular coupling-Still more questions than answers?. Neurosci Res75(3):171-183, 2013.
10) Rossi DJ, et al:Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 10(11):1377-1386, 2007.
11) Swanson RA, et al:Astrocyte influences on ischemic neuronal death. Curr Mol Med 4(2):193-205, 2004.
12) Takatsuru Y, et al:Critical role of the astrocyte for functional remodeling in contralateral hemisphere of somatosensory cortex after stroke. J Neurosci 33(11):4683-4692, 2013.
13) Eyo UB, Wu LJ:Bidirectional microglia-neuron communication in the healthy brain. Neural Plast:456857(1-11), 2013.
14) Miyamoto A, et al:Microglia and synapse interactions:fine tuning neural circuits and candidate molecules. Front Cell Neurosci 7:70(1-6), 2013.
15) Wake H, et al:Microglia:actively surveying and shaping neuronal circuit structure and function. Trends Neurosci 36(4):209-217, 2013.
16) Wake H, et al:Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974-3980, 2009.
17) Morris, et al:Microglia:A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40-53, 2013.
18) Nimmerjahn A, et al:Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314-1318, 2005.
19) Xu HT, et al:Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci10(5):549-551, 2007.
20) Crosson B, et al:Functional MRI of language in aphasia:a review of the literature and the methodological challenges. Neuropsychol Rev 17(2):157-177, 2007.
21) Weiller C, et al:Recovery from Wernicke's aphasia:a positron emission tomographic study. Ann Neurol 37(6):723-732, 1995.
22) Cao Y, et al:Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis. Stroke 29(1):112-122, 1998.
23) Chollet F, et al:The functional anatomy of motor recovery after stroke in humans:a study with positron emission tomography. Ann Neurol 29(1):63-71, 1991.
24) Calautti C, Baron JC:Functional neuroimaging studies of motor recovery after stroke in adults:a review. Stroke 34(6):1553-1566, 2003.
25) 高鶴裕介:レーザーを用いた脳梗塞研究~今できていること. これからやるべきこと~, レーザー研究 41:96-100, 2013.
26) Takatsuru Y, et al:Contribution of neuronal and glial circuit in intact hemisphere for functional remodeling after focal ischemia. Neurosci Res 78:38-44, 2014.
27) 小澤瀞司ほか監:標準生理学 第8版, p. 218-231, 医学書院, 2014.
28) Takatsuru Y, et al:Neuronal circuit remodeling in the contralateral cortical hemisphere during functional recovery from cerebral infarction. J Neurosci 29(32):10081-10086, 2009.
29) Takatsuru Y, et al:Activity of layer II/III neurons in the somatosensory cortex(SSC)plays a critical role on functional recovery after focal stroke in contralateral SSC. Neurosci Lett 543:168-171, 2013.
30) 高鶴裕介ほか:局所脳梗塞後の機能回復に関わる神経回路再編のメカニズム, 群馬医学 96:97-101, 2012.
31) Takatsuru Y, et al:Critical role of the astrocyte for functional remodeling in contralateral hemisphere of somatosensory cortex after stroke. J Neurosci 33(11):4683-4692, 2013.
32) Danbolt NC:Glutamate uptake. Prog. Neurobiol 65(1):1-105, 2001.
33) Rothstein JD, et al:Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3):675-686, 1996.
34) Shimamoto K, et al:Characterization of novel L-threo-b-benzyloxyaspartate derivatives, potent blockers of the glutamate transporter. Mol Pharmaco 65(4):1008-1015, 2004.
35) Tsukada S, et al:Effects of a novel glutamate transporter blocker, (2S, 3S)-3-[3-[4-(trifluoromethyl)benzoylamino]benzyloxy]aspartate (TFB-TBOA), on activities of hippocampal neurons, on activities of hippocampal neurons. Neuropharmacology 48(4):479-491, 2005.
P.104 掲載の参考文献
1) Johansen JP, et al:Molecular mechanisms of fear learning and memory. Cell 147(3):509-524, 2011.
2) Maren S, et al:The contextual brain:implications for fear conditioning, extinction and psychopathology. Nat Rev Neurosci 14(6):417-428, 2013.
3) McGaugh JL:Memory--a century of consolidation. Science 287(5451):248-251, 2000.
4) Stanton PK, Sarvey JM:Blockade of long-term potentiation in rat hippocampal CA1 region by inhibitors of protein synthesis. J Neurosci 4(12):3080-3088, 1984.
5) Abel T, et al:Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88(5):615-626, 1997.
6) Barrientos RM, et al:Memory for context is impaired by injecting anisomycin into dorsal hippocampus following context exploration. Behav Brain Res 134(1-2):299-306, 2002.
7) Kang H, et al:An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106(6):771-783, 2001.
8) Impey S, et al:Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21(4):869-883, 1998.
9) Bito H, et al:CREB phosphorylation and dephosphorylation:a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87:1203-1214, 1996.
10) Hikosaka O, et al:Central mechanisms of motor skill learning. Curr Opin Neurobiol 12(2):217-222, 2002.
11) Peng JY, Li BM:Protein synthesis is essential not only for consolidation but also for maintenance and post-retrieval reconsolidation of acrobatic motor skill in rats. Mol Brain 2:12, 2009.
12) Kawashima T, et al:Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci USA 106(1):316-321, 2009.
13) Liu X, et al:Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381-385, 2012.
14) Nader K, et al:Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406(6797):722-726, 2000.
15) Lee JL, et al:Divergent cellular pathways of hippocampal memory consolidation and reconsolidation. Hippocampus 23(3):233-244, 2013.
16) Fukushima H, et al:Enhancement of fear memory by retrieval through reconsolidation. Elife 3:e02736, 2014.
17) Whitlock JR, et al:Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093-1097, 2006.
18) Suzuki A, et al:Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24(20):4787-4795, 2004.
19) Medina JF, et al:Inhibition of climbing fibres is a signal for the extinction of conditioned eyelid responses. Nature 416(6878):330-333, 2002.
20) Cohen MR, et al:Reversal of motor learning in the vestibulo-ocular reflex in the absence of visual input. Learn Mem 11:559-565, 2004.
21) Rudy JW, et al:Understanding contextual fear conditioning:insights from a two-process model. Neurosci Biobehav Rev 28(7):675-685, 2004.
22) Fanselow MS:Factors governing one-trial contextual conditioning. Anim Learning & Behavior 18(3):264-270, 1990.
23) Ohkawa N, et al:Artificial Association of Pre-stored Information to Generate a Qualitatively New Memory. Cell Rep 11(2):261-269, 2015.
24) Reijmers LG, et al:Localization of a stable neural correlate of associative memory. Science 317〔5842):1230-1233, 2007.
25) Fenno L, et al:The development and application of optogenetics. Annu Rev Neurosci 34:389-412, 2011.
26) Kim JJ, Fanselow MS:Modality-specific retrograde amnesia of fear. Science 256(5057):675-677, 1992.
27) Wiltgen BJ, Tanaka KZ:Systems consolidation and the content of memory. Neurobiol Learn Mem 106:365-371, 2013.
28) Kitamura T, et al:Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139(4):814-827, 2009.
29) Kitamura T, Inokuchi K:Role of adult neurogenesis in hippocampal-cortical memory consolidation. Mol Brain 7:13, 2014.
30) Opendak M, Gould E:Adult neurogenesis:a substrate for experience-dependent change. Trends Cogn Sci 19(3):151-161, 2015.

2章 リハビリテーションによる脳の変化

P.120 掲載の参考文献
1) 浦川 将ほか:豊かな飼育環境は雄ラット性行動時の社会的接触を減少させる, 日本生理学雑誌69(10), 2007.
2) Nithianantharajah J, et al:Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697-709, 2006.
3) van Praag H, et al:Neural consequences of environmental enrichment. Nat Rev Neurosci 1(3):191-198, 2000.
4) Hebb, D. O.:The Organization of Behavior. Wiley & Sons, 1949.
5) Rosenzweig MR, et al:Effects of environmental complexity and training on brain chemistry and anatomy:a replication and extension. J Comp Physiol Psychol 55:429-437, 1962.
6) Gelfo F, et al:Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat. Neurobiol Learn Mem 91:353-365, 2009.
7) Johansson BB, et al:Neuronal plasticity and dendritic spines:effect of environmental enrichment on intact and postischemic rat brain. J Cereb Blood Flow Metab 22(1):89-96, 2002.
8) 宮田卓樹ほか:脳の発生学 ニューロンの誕生・分化・回路形成, 化学同人, 2013.
9) 岡野栄之:脳の再生-中枢神経系の幹細胞生物学と再生戦略-, 脳科学ライブラリー, 朝倉書店, 2014.
10) Ghashghaei HT, et al:Neuronal migration in the adult brain:are we there yet?, Nat Rev Neurosci 8(2):141-151, 2007.
11) Curtis MA, et al:Neurogenesis and progenitor cells in the adult human brain:a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 72(7):990-1005, 2012.
12) Rakic P:Neurogenesis in adult primate neocortex:an evaluation of the evidence. Nat Rev Neurosci 3:65-71, 2002.
13) Gould E:How widespread is adult neurogenesis in mammals?. Nat Rev Neurosci 8:481-488, 2007.
14) Curtis MA, et al:Neurogenesis in humans. Eur J Neurosci 33(6):1170-1174, 2011.
15) Kempermann G, et al:More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493-495, 1997.
16) van Praag H, et al:Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266-270, 1999.
17) Brown J, et al:Enriched environment and physical activity stimulate hippocampal but not olfactory bulb neurogenesis. Eur J Neurosci 17(10):2042-2046, 2003.
18) Cajal SRy:Degeneration and Regeneration of the Nervous System. J Neurosci 9(36):378-379, 1928.
19) Arvidsson A, et al:Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963-970, 2002.
20) Kokaia Z, et al:Neurogenesis after ischaemic brain insults. Curr Opin Neurobiol 13(1):127-132, 2003.
21) Nakatomi H, et al:Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110(4):429-441, 2002.
22) Lichtenwalner RJ, et al:Adult neurogenesis and the ischemic forebrain. J Cereb Blood Flow Metab 26(1):1-20, 2006.
23) Komitova M, et al:Effects of cortical ischemia and postischemic environmental enrichment on hippocampal cell genesis and differentiation in the adult rat. J Cereb Blood Flow Metab 22(7):852-860, 2002.
24) Komitova M, et al:Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36(6):1278-1282, 2005.
25) Urakawa S, et al:Environmental enrichment brings a beneficial effect on beam walking and enhances the migration of doublecortin-positive cells following striatal lesions in rats. Neuroscience 144(3):920-933, 2007.
26) Dobrossy MD, et al:Environmental enrichment affects striatal graft morphology and functional recovery. Eur J Neurosci 19(1):159-168, 2004.
27) Hicks AU, et al:Enriched environment enhances transplanted subventricular zone stem cell migration and functional recovery after stroke. Neuroscience 146(1):31-40, 2007.
28) Lledo PM, et al:Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7(3):179-93, 2006.
P.135 掲載の参考文献
1) Vilensky JA, et al:Lesion of the precentral gyrus in nonhuman primates:a pre-medline bibliography. Int J Primatology 23(6):1319-1333, 2002.
2) Rizzolatti G, et al:The cortical motor system. Neuron 31(6):889-901, 2001.
3) Tanji J:Sequential organization of multiple movements:involvement of cortical motor areas. Annu Rev Neurosci 24:631-651, 2001.
4) Dum RP, et al:Motor areas in the frontal lobe of the primate. Physiol Behav 77(4-5):677-682, 2002.
5) Passingham RE, et al:The long-term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys. Brain 106(Pt 3):675-705, 1983.
6) Lawrence DG, et al:The development of motor control in the rhesus monkey:evidence concerning the role of corticomotoneuronal connections. Brain 99(2):235-254, 1976.
7) Galea MP, et al:Postnatal maturation of the direct corticospinal projections in the macaque monkey. Cereb Cortex 5:518-540, 1995.
8) Lemon RN:Neural control of dexterity:what has been achieved?. Exp Brain Res 128(1-2):6-12, 1999.
9) Jones TA, et al:Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci 19(22):10153-10163, 1999.
10) Cotman CW, et al:Exercise:a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295-301, 2002.
11) Young NA, et al:Development of motor maps in rats and their modulation by experience. J Neurophysiol 108(5):1309-1317, 2012.
12) Nudo RJ, et al:Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75(5):2144-2149, 1996.
13) Murata Y, Higo N, et al:Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys. J Neurophysiol 99(2):773-786, 2008.
14) Plautz EJ, et al:Effects of repetitive motor training on movement representations in adult squirrel monkeys:role of use versus learning. Neurobiol Learn Mem 74(1):27-55, 2000.
15) Biernaskie J, et al:Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci 24(5):1245-1254, 2004.
16) Krajacic A, et al:Advantages of delaying the onset of rehabilitative reaching training in rats with incomplete spinal cord injury. Eur J Neurosci 29(3):641-651, 2009.
17) Girgis J, et al:Reaching training in rats with spinal cord injury promotes plasticity and task specific recovery. Brain 130(Pt 11):2993-3003, 2007.
18) Higo N, et al:Increased expression of the growth-associated protein 43 gene in the sensorimotor cortex of the macaque monkey after lesioning the lateral corticospinal tract. J Comp Neurol 516(6):493-506, 2009.
19) Nishimura Y, et al:Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 318(5853):1150-1155, 2007.
20) Humm JL, et al:Use-dependent exaggeration of brain injury:is glutamate involved?. Exp Neurol 157(2):349-358, 1999.
21) Choi DW, et al:Glutamate neurotoxicity in cortical cell culture. J Neurosci 7(2):357-368, 1987.
22) Michaels RL, et al:Glutamate neurotoxicity in vitro:antagonist pharmacology and intracellular calcium concentrations. J Neurosci 10(1):283-292, 1990.
23) Carmichael ST, et al:Growth-associated gene expression after stroke:evidence for a growth-promoting region in periinfarct cortex. Exp Neurol 193(2):291-311, 2005.
24) Sugiyama Y, Higo N, et al:Effects of early versus late rehabilitative training on manual dexterity after corticospinal tract lesion in macaque monkeys. J Neurophysiol 109(12):2853-2865, 2013.
25) Higo N:Effects of rehabilitative training on recovery of hand motor function:a review of animal studies. Neurosci Res 78:9-15, 2013.
26) Winchester P, et al:Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury. Neurorehab Neur Rep 19(4):313-324, 2005.
27) Scivoletto G, et al:Early versus delayed inpatient spinal cord injury rehabilitation:an Italian study. Arch Phys Med Rehabil 86(3):512-516, 2005.
28) Sumida M, et al:Early rehabilitation effect for traumatic spinal cord injury. Arch Phys Med Rehabil 82(3):391-395, 2001.
29) Murata Y, Higo N, et al:Temporal plasticity involved in recovery from manual dexterity deficit after motor cortex lesion in macaque monkeys. J Neurosci 35(1):84-95, 2015.
30) Higo N, et al:Compensatory changes in neuronal firing in the perilesional motor cortex:a single unit recording study in the macaque monkey. Soc Neurosci Abstr 566:6, 2013.
31) Biernaskie J, et al:Enriched rehabilitative training promotes improved forelimb motor function and enhanced dendritic growth after focal ischemic injury. J Neurosci 21(14):5272-5280, 2001.
32) Lindau NT, et al:Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy. Brain137(Pt-3):739-756, 2014.
33) Starkey ML, et al:Rehabilitative training following unilateral pyramidotomy in adult rats improves forelimb function in a nontask-specific way. Exp Neurol 232(1):81-89, 2011.
34) Fagg AH, et al:Modeling parietal-premotor interactions in primate control of grasping. Neural Netw 11(7-8):1277-1303, 1998.
35) Strittmatter SM, et al:GAP-43 as a plasticity protein in neuronal form and repair. J Neurobiol 23(5):507-520, 1992.
36) He Q, et al:Modulation of actin filament behavior by GAP-43(neuromodulin)is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci 17(10):3515-3524, 1997.
37) Benowitz LI, et al:GAP-43:an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20(2):84-91, 1997.
38) Mizutani K, et al:Alteration of protein expression profile following voluntary exercise in the perilesional cortex of rats with focal cerebral infarction. Brain Res 1416:61-68, 2011.
39) Keyvani K, et al:Gene expression profiling in the intact and injured brain following environmental enrichment. J Neuropathol Exp Neurol 63(6):598-609, 2004.
40) Higo N, et al:Expression of GAP-43 and SCG10 mRNAs in lateral geniculate nucleus of normal and monocularly deprived macaque monkeys. J Neurosci 20(16):6030-6038, 2000.
41) Shevde LA, et al:Osteopontin:an effector and an effect of tumor metastasis. Curr Mol Med 10(1):71-81, 2010.
42) Chakraborty G, et al:The multifaceted roles of osteopontin in cell signaling, tumor progression and angiogenesis. Curr Mol Med 6(8):819-830, 2006.
43) Standal T, et al:Role of osteopontin in adhesion, migration, cell survival and bone remodeling. Exp Oncol 26(3):179-184, 2004.
44) Yamamoto T, et al:Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery. PloS One 8(5):e65701, 2013.
45) Higo N, et al:SPP1 is expressed in corticospinal neurons of the macaque sensorimotor cortex. J Comp Neurol 518(13):2633-2644, 2010.
P.150 掲載の参考文献
1) Nudo RJ:Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638-644, 2006.
2) Oudega M, Perez MA:Corticospinal reorganization after spinal cord injury. J Physiol 590(Pt 16):3647-3663, 2012.
3) Kuypers HG:A new look at the organization of the motor system. Prog Brain Res 57:381-403, 1982.
4) Lemon RN:The G. L. Brown Prize Lecture. Cortical control of the primate hand. Exp Physiol 78(3):263-301, 1993.
5) Lemon RN:Descending pathways in motor control. Annu Rev Neurosci 31:195-218, 2008.
6) Illert M, et al:Integration in descending motor pathways controlling the forelimb in the cat. 3. Convergence on propriospinal neurones transmitting disynaptic excitation from the corticospinal tract and other descending tracts. Exp Brain Res 29(3-4):323-346, 1977.
7) Illert M, et al:Integration in descending motor pathways controlling the forelimb in the cat. 5. Properties of and monosynaptic excitatory convergence on C3-C4 propriospinal neurones. Exp Brain Res 33(1):101-130, 1978.
8) Alstermark B, Sasaki S:Integration in descending motor pathways controlling the forelimb in the cat. 13. Corticospinal effects in shoulder, elbow, wrist, and digit motoneurones. Exp Brain Res 59(2):353-364, 1985.
9) Alstermark B, et al:Disynaptic pyramidal excitation in forelimb motoneurons mediated via C(3)-C(4)propriospinal neurons in the Macaca fuscata. J Neurophysiol 82(6):3580-3585, 1999.
10) Sasaki S, et al:Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J Neurophysiol 92(5):3142-3147, 2004.
11) Nishimura Y, et al:Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 318(5853):1150-1155, 2007.
12) Edgley SA, et al:Ipsilateral actions of feline corticospinal tract neurons on limb motoneurons. J Neurosci 24(36):7804-7813, 2004.
13) Jankowska E, et al:How to enhance ipsilateral actions of pyramidal tract neurons. J Neurosci 25(32):7401-7405, 2005.
14) Jankowska E, Edgley SA:How can corticospinal tract neurons contribute to ipsilateral movements? A question with implications for recovery of motor functions. Neuroscientist 12(1):67-79, 2006.
15) Nishimura Y, et al:Neural substrates for the motivational regulation of motor recovery after spinal-cord injury. PLoS One 6(9):e24854, 2011.
16) Gossen M and Bujard H:Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89(12):5547-5551, 1992.
17) Yamamoto M, et al:Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J Neurosci 23(17):6759-67, 2003.
18) Kinoshita M, Isa T, et al:Genetic dissection of the circuit for hand dexterity in primates. Nature 487(7406):235-8, 2012.
19) Kato S, et al:A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 22(2):197-206, 2011.
20) Zhou X, et al:Optimization of the Tet-On system for regulated gene expression through viral evolution. Gene Ther 13(19):1382-1390, 2006.
21) Wahl AS, et al:Neuronal repair. Asynchronous therapy restores motor control by rewiring of the rat corticospinal tract after stroke. Science 344(6189):1250-1255, 2014.
22) Nishimura Y, Isa T:Cortical and subcortical compensatory mechanisms after spinal cord injury in monkeys. Exp Neurol. 235(1):152-61, 2012.
23) Isa T, Nishimura Y.:Plasticity for recovery after partial spinal cord injury-hierarchical organization. Neurosci Res 78:3-8, 2014.
P.167 掲載の参考文献
1) Ramachandran VS, Rogers-Ramachandran D:Synaesthesia in phantom limbs induced with mirrors. Proc Biol Sci 263(1369):377-386, 1996.
2) Ramachandran VS, Hirstein W:The perception of phantom limbs. The D. O. Hebb lecture. Brain 121(Pt 9):1603-1630, 1998.
3) Chan BL, et al:Mirror therapy for phantom limb pain. N Engl J Med 357:2206-2207, 2007.
4) Thieme H, et al:Mirror therapy for improving motor function after stroke. Stroke 44(1):e1-2, 2013.
5) Gallese V, et al:Action recognition in the premotor cortex. Brain 119(Pt 2):593-609, 1996.
6) Iacoboni M, et al:Cortical mechanisms of human imitation. Science 286(5449):2526-2528, 1999.
7) Dohle C, et al:Mirror therapy promotes recovery from severe hemiparesis:a randomized controlled trial. Neurorehabil Neural Repair 23(3):209-217, 2009.
8) Michielsen ME, et al:The neuronal correlates of mirror therapy:an fMRI study on mirror induced visual illusions in patients with stroke. J Neurol Neurosurg Psychiatry 82(4):393-398, 2011.
9) Carr LJ, et al:Evidence for bilateral innervation of certain homologous motoneurone pools in man. J Physiol 475(2):217-227, 1994.
10) Staudt M, et al:Two types of ipsilateral reorganization in congenital hemiparesis:a TMS and fMRI study. Brain 125(Pt 10):2222-2237, 2002.
11) Garry MI, et al:Mirror, mirror on the wall:viewing a mirror reflection of unilateral hand movements facilitates ipsilateral M1 excitability. Exp Brain Res 163(1):118-122, 2005.
12) Tominaga W, et al:A mirror reflection of a hand modulates stimulus-induced 20-Hz activity. Neuroimage 46(2):500-504, 2009.
13) Aoyama T, et al:The effects of kinesthetic illusory sensation induced by a visual stimulus on the corticomotor excitability of the leg muscles. Neurosci Lett 514(1):106-109, 2012.
14) Kaneko F, et al:Kinesthetic illusory feeling induced by a finger movement movie effects on corticomotor excitability. Neuroscience 149(4):976-984, 2007.
15) Naito E, Ehrsson HH:Somatic sensation of hand-object interactive movement is associated with activity in the left inferior parietal cortex. J Neurosci 26(14):3783-3790, 2006.
16) Naito E, et al:Illusory arm movements activate cortical motor areas:a positron emission tomography study. J Neurosci 19(14):6134-6144, 1999.
17) Naito E, et al:Human limb-specific and non-limb-specific brain representations during kinesthetic illusory movements of the upper and lower extremities. Eur J Neurosci 25(11):3476-3487, 2007.
18) Wasaka T, Kakigi R:The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution. BMC Neurosci 13:138, 2012.
19) Fritzsch C, et al:Different effects of the mirror illusion on motor and somatosensory processing. Restor Neurol Neurosci 32(2):269-280, 2014.
20) Nojima I, et al:Human motor plasticity induced by mirror visual feedback. J Neurosci 32(4):1293-1300, 2012.
21) Jennum P, et al:Speech localization using repetitive transcranial magnetic stimulation. Neurology 44(2):269-273, 1994.
22) Murata Y, Higo N, et al:Effects of motor training on the recovery of manual dexterity after primary motor cortex lesion in macaque monkeys. J Neurophysiol 99(2):773-786, 2008.
23) Mukamel R, et al:Single-neuron responses in humans during execution and observation of actions. Curr Biol 20(8):750-756, 2010.
24) Avanzini P, et al:Spatiotemporal dynamics in understanding hand-object interactions. Proc Natl Acad Sci USA 110(40):15878-15885, 2013.
25) Bortoletto M, et al:Visual-motor interactions during action observation are shaped by cognitive context. J Cogn Neurosci 25(11):1794-1806, 2013.
26) Decety J, et al:Brain activity during observation of actions. Influence of action content and subject's strategy. Brain 120(Pt 10):1763-1777, 1997.
27) Bach P, et al:On the role of object information in action observation:an fMRI study. Cereb Cortex 20(12):2798-2809, 2010.
28) Mima T, et al:Attention modulates both primary and second somatosensory cortical activities in humans:a magnetoencephalographic study. J Neurophysiol 80(4):2215-2221, 1998.
29) Wenderoth N, et al:The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. Eur J Neurosci 22(1):235-246, 2005.
30) Cavanna AE, Trimble MR:The precuneus:a review of its functional anatomy and behavioural correlates. Brain 129(Pt 3):564-583, 2006.
31) Michielsen ME, et al:Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients:a phase II randomized controlled trial. Neurorehabil Neural Repair 25(3):223-233, 2011.
32) Bhasin A, et al:Neural interface of mirror therapy in chronic stroke patients:a functional magnetic resonance imaging study. Neurol India 60(6):570-576, 2012.
33) Hamzei F, et al:Functional plasticity induced by mirror training:the mirror as the element connecting both hands to one hemisphere. Neurorehabil Neural Repair 26(5):484-496, 2012.
34) Lappchen CH, et al:Optical illusion alters M1 excitability after mirror therapy:a TMS study. J Neurophysiol 108(10):2857-2861, 2012.
35) Bae SH, Jeong WS, Kim KY:Effects of Mirror Therapy on Subacute Stroke Patients' Brain Waves and Upper Extremity Functions. J Phys Ther Sci 24(11):1119-1122, 2012.
36) Carson RG, Ruddy KL:Vision modulates corticospinal suppression in a functionally specific manner during movement of the opposite limb. J Neurosci 32(2):646-652, 2012.
37) Nojima I, et al:Mirror visual feedback can induce motor learning in patients with callosal disconnection. Exp Brain Res 227(1):79-83, 2013.
P.179 掲載の参考文献
1) Reisa A. Sperling, et al:Toward defining the preclinical stages of Alzheimer's disease:Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease, Alzheimer's & Dementia 7(3):280-292, 2011.
2) Diluca M, Olesen J:The cost of brain diseases:A burden or a challenge? Neuron 82(6):1205-1208, 2014.
3) Kawahira K, et al:Effects of intensive repetition of a new facilitation technique on motor functional recovery of the hemiplegic upper limb and hand. Brain Inj 24(10):1202-1213, 2010.
4) Nishino H, et al:Contracture of finger and hand and disturbance in speech were improved in a short duration by grasping a high repulsion cushion grip. J Neurosci Neuroengineer l4:1-8, 2015.
5) NPO法人健康な脳づくり 編:認知症にならないために, p. 71-98, ゆいぽおと, 2014.
6) Meister IG, et al:The dorsal premotor cortex orchestrates concurrent speech and fingertapping movements. Eur J Neurosci 29(10):2074-2082, 2009.
7) Gentilucci M and Corbalis MC:From manual gesture to speech:a gradual transition. Neurosci Biobehav Rev 30(7):949-960, 2006.
8) Inui N:Interactions of speech and manual movement in a syncopated task. Percep Mot Skills 105(2):447-457, 2007.
9) 西野仁雄:ミラクルグリップ~握れば脳が若返る~. 文藝春秋, 2015.

3章 リハビリテーションの新たな戦略

P.200 掲載の参考文献
1) Mudry A, Mills M:The early history of the cochlear implant:a retrospective. JAMA Otolaryngol Head Neck Surg 139(5):446-453, 2013.
2) Lewis PM, et al:Restoration of vision in blind individuals using bionic devices:a review with a focus on cortical visual prostheses. Brain Res 1595:51-73, 2015.
3) Miocinovic S, et al:History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70(2):163-171, 2013
4) Hochberg LR, et al:Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164-171, 2006.
5) Pistohl T, et al:Prediction of arm movement trajectories from EcoG-recordings in humans. J Neurosci Methods 167(1):105-114, 2008.
6) Neuper C, et al:Motor imagery and EEG-based control of spelling devices and neuroprostheses. Prog Brain Res 159:393-409, 2006.
7) Sanes JN, Donoghue JP:Plasticity and primary motor cortex. Annu Rev Neurosci 23:393-415, 2000.
8) Nicolelis MA, Levedev MA:Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 10(7):530-540, 2009.
9) Hochberg LR, et al:Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372-375, 2012.
10) Fernandez E, et al:Acute human brain responses to intracortical microelectrode arrays:challenges and future prospects. Frontiers in Neuroengineering 7:24, 2014.
11) Ray S, et al:Neural correlates of high-gamma oscillations(60-200 Hz)in macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28(45):11526-11536, 2008.
12) Crone NE, et al:High-frequency gamma oscillations and human brain mapping with electrocorticography. Progress in Brain Res 159:275-295, 2006.
13) Yanagisawa T, et al:Neural decoding using gyral and intrasulcal electrocorticograms. Neuroimage 45(4):1099-1106, 2009.
14) Rathelot JA, Strick PL:Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci USA106(3):918-923, 2009.
15) Leuthardt EC, et al:Microscale recording from human motor cortex:implications for minimally invasive electrocorticographic brain-computer interfaces. Neurosurg Focus 27(1):E10, 2009.
16) Pfurtscheller G, et al:Foot and hand area mu rhythms. Int J Psychophysiol 26(1-3):121-135, 1997.
17) Nambu I, Osu R, et al:Single-trial reconstruction of finger-pinch forces from human motor-cortical activation measured by near-infrared spectroscopy(NIRS). Neuroimage 47(2):628-637, 2009.
18) deCharms RC, et al:Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1):436-443, 2004.
19) Yoo SS, Jolesz FA:Functional MRI for neurofeedback:feasibility study on a hand motor task. Neuroreport 13(11):1377-1381, 2002.
20) M ellinger J, et al:An MEG-based brain-computer interface(BCI). Neuroimage 36(3):581-593, 2007.
21) Niazi IK, et al:Detection of movement-related cortical potentials based on subject-independent training. Med Biol Eng Comput 51(5):507-512, 2013.
23) Hinterberger T, et al:Brain areas activated in fMRI during self-regulation of slow cortical potential (SCPs). Exp Brain Res 152(1):113-122, 2003.
24) Birbaumer N:Slow cortical potentials:Plasticity, operant control, and behavioral effects. The Neuroscientists 5(2):74-78, 1999
25) Ritter P, et al:Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Human Brain Mapp 30(4):1168-1187, 2009.
26) Pfurtscheller G, et al:Event-related synchronization(ERS)in the alpha band-an electrophysiological correlate of cortical idling:a review. Int J Psychophysiol 24(1-2):39-46, 1996.
27) Pfurtscheller G:Event-related synchronization(ERS):an electrophysiological correlate of cortical areas at rest. Electroencephalogr Clin Neurophysiol 83:62-69, 1992.
28) Steriade M, Llinas R:The functional states of the thalamus and the associated neuronal interplay. Phys Rev 68(3):649-742, 1988.
29) Ono T, et al:Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery. Clin Neurophysiol 124(9):1779-1786, 2013.
30) Hjorth B:Principles for transformation of scalp EEG from potential field into source distribution. J Clin Neurophysiol 8(4):391-396, 1991.
31) Brunner C, et al:Online control of a brain-computer interface using phase synchronization. IEEE Trans Biomed Eng 53(12Pt 1):2501-2506, 2006.
32) Krusienski DJ, et al:A mu-rhythm matched filter for continuous control of a brain-computer interface. IEEE Trans Biomed Eng 54(2):273-280, 2007.
33) Ramoser H, et al:Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441-446, 2000.
34) Muller-Gerking J, et al:Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol 110:787-798, 1999.
35) Besserve M, et al:Classification methods for ongoing EEG and MEG signals. BIol Res 40(4):415-437, 2007.
36) Lotte F, et al:A review of classification algorithms for EEG-based brain-computer interfaces. J Neural Eng 4(2):R1-R13, 2007.
37) Leuthardt EC, et al:The emerging world of motor neuroprosthetics:a neurosurgical perspective. Neurosurg 59:1-14, 2006.
38) Plow EB, et al:Within-limb somatotopy in primary motor cortex-revealed using fMRI. Cortex 46(3):310-321, 2010.
39) Yoshimura N, et al:Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents. NeuroImage 59(12):1324-1337, 2012.
40) Iversen IH, et al:A brain-computer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis. Clin Neurophysiol 119(10):2214-2223, 2008.
41) Kubler A, et al:The thought translation device:a neurophysiological approach to communication in total motor paralysis. Exp Brain Res 124(2):223-232, 1999.
42) Nijboer F, et al:A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol 119(8):1909-1916, 2008.
43) Sellers EW, Donchin E:A P300-based brain-computer interface:initial tests by ALS patients. Clin Neurophysiol 117(3):538-548, 2006.
44) Pfurtscheller G, et al:Brain oscillations control hand orthosis in a tetraplegic. Neurosci Lett 292(3):211-214, 2000.
45) Pfurtscheller G, et al:'Thought' -control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351:33-36, 2003.
46) Muller-Putz GR, et al:EEG-based neuroprosthesis control:A step towards clinical practice. Neurosci Lett 382:169-174, 2005.
47) Lauer RT, et al:EEG-based control of a hand grasp neuroprosthesis. Neuroreport 10(8):1767-1771, 1999.
48) Formaggio E, et al:Brain oscillatory activity during motor imagery in EEG-fMRI coregistration. Magnetic resonance imaging 28(10):1403-1412, 2010.
49) Yuan H, et al:Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex:an EEG and fMRI study of motor imagery and movements. NeuroImage 49(3):2596-2606, 2010.
50) Fadiga L, et al:Corticospinal excitability is specifically modulated by motor imagery:a magnetic stimulation study. Neuropsychologia 37(2):147-158, 1999.
51) Hashimoto R, Rothwell J:Dynamic changes in corticospinal excitability during motor imagery. Exp Brain Res 125(1):75-81, 1999.
52) Kasai T, et al:Evidence for facilitation of motor evoked potentials (MEPs)induced by motor imagery. Brain Res 744(1):147-150, 1997.
53) Takemi M, et al:Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex. J Neurophysiol 110(5):1158-1166, 2013.
54) Ono T, et al:Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery. Clin Neurophysiol 124(9):1779-1786, 2013.
55) Nudo RJ, et al:Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24(8):1000-1019, 2001.
56) Blanton S, et al:Constraint-induced movement therapy in stroke rehabilitation:perspectives on future clinical applications. NeuroRehabilitation 23(1):15-28, 2008.
57) Muraoka Y:Development of an EMG recording device from stimulation electrodes for functional electrical stimulation. Front Med Biol Eng 11(4):323-333, 2002.
58) Fujiwara T, et al:Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation(HANDS)therapy in patients with chronic stroke. Neurorehabil Neural Repair 23(2):125-132, 2008.
59) Hara Y, et al:Hybrid power-assisted functional electrical stimulation to improve hemiparetic upper-extremity function. Am J Phys Med Rehabil 85(12):977-985, 2006.
60) Daly JJ, Wolpaw JR:Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032-1043, 2008.
61) Heinrich H, et al:Annotation:neurofeedback-train your brain to train behaviour. J Child Psychol Psychiatry 48(1):3-16, 2007.
62) Woodford H, Price C:EMG biofeedback for the recovery of motor function after stroke. Cochrane Database Syst Rev 18(2):CD004585, 2007.
63) Sharma N, et al:Motor imagery:a backdoor to the motor system after stroke? Stroke 37(7):1941-1952, 2006.
64) 牛場潤一, 春日翔子:Bニューロリハビリテーションの新たな展開:脳血管障害からの機能回復, BMIリハビリテーション, 神経治療学31(6):2014.
65) Buch E, et al:Think to move:a neuromagnetic brain-computer interface(BCI)system for chronic stroke. Stroke 39:910-917, 2008.
66) Pfurtscheller G, et al:Rehabilitation with brain-computer interface systems. Computer 41(10):58-65, 2008.
67) Daly JJ, et al:Feasibility of a new application of noninvasive Brain Computer Interface(BCI):a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther 33(4):203-211, 2009.
68) Broetz D, et al:Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke:a case report. Neurorehabil Neural Repair 24(7):674-679, 2010.
69) Caria A, et al:Chronic stroke recovery after combined BCI training and physiotherapy:A care report. Psychophysiology 48:578-582, 2011.
70) Ang KK, et al:Clinical study of neurorehabilitationo in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. Conf Proc IEEE Eng Med Biol Soc 1:5549-5552, 2010.
71) 文部科学省:脳科学研究戦略推進プログラム(http://www.nips.ac.jp/srpbs/, 2015年9月閲覧).
72) Shindo K, et al:Effects of neurofeedback training with an electroencephalogram-based Brain Computer Interface for hand paralysis in patients with chronic stroke. J Rehabil Med 43(10):951-957, 2011.
73) Ono T, et al:Multimodal sensory feedback associated with motor attempts alters BOLD responses to paralyzed hand movement in chronic stroke patients. Brain Topogr 28(2):340-351, 2014.
74) Mukaino M, et al:Efficacy of brain-computer interface-driven neuromuscular electrical stimulation for chronic paresis after stroke. J Rehabil Med 46(4):378-382, 2014.
75) Ono T, et al:Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng 7:19, 2014.
76) 牛場潤一:ブレイン-マシン・インターフェースによる神経リハビリテーション(ブレイン-マシン・インターフェース特集), ヒューマンインタフェース学会誌13(3):125-130, 2011.
77) Baron JC, et al:Neuroimaging in stroke recovery:a position paper from the First International Workshop on Neuroimaging and Stroke Recovery. Cerebrovasc Dis 18(3):260-267, 2004.
78) Ward NS, Cohen LG:Mechanisms underlying recovery of motor function after stroke. Arch Neurol 61(12):1844-1848, 2004.
79) Classen J, et al:Paired associative stimulation. Suppl Clin Neurophysiol 57:563-569, 2004.
80) Chen R, Udupa K:Measurement and modulation of plasticity of the motor system in humans using transcranial magnetic stimulation. Motor Control 13(4):442-453, 2009.
81) Murase N, et al:Influence of interhemispheric interactions on motor function in chronic stroke. Ann Neurol 55(3):400-409, 2004.
82) Ramachandran VS, Altschuler EL:The use of visual feedback, in particular mirror visual feedback, in restoring brain function. Brain 132(7):1693-1710, 2009.
83) Roll JP, Vedel JP:Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47(2):177-190, 1982.
84) Ushiba J, et al:Changes of reflex size in upper limbs using wrist splint in hemiplegic patients. Electromyogr Clin Neurophysiol 44(3):175-182, 2004.
85) Fujiwara T, et al:Electrophysiological and clinical assessment of a simple wrist-hand splint for patients with chronic spastic hemiparesis secondary to stroke. Electromyogr Clin Neurophysiol 44(7):423-429, 2004.
86) Hashimoto Y, et al:Functional recovery from chronic writer's cramp by brain-computer interface rehabilitation:a case report. BMC Neurosci 15:103, 2014.
87) 牛場潤一:Brain-Machine Interfaceの現在, 未来, Brain and Nerve 62(2):101-111, 2010.
88) 牛場潤一:ブレイン・マシン・インターフェースとリハビリテーション, 老年医学 49:140-146, 2012.
89) 牛場潤一:リハビリテーション医学におけるニューロフィードバックの応用, 分子精神医学14(3):164-179, 2014.
90) Leo P., Ushiba J, et al:Neuro-Rehabilitation with Brain Interface, p.14, River Publishers, 2015.
P.217 掲載の参考文献
1) Duncan PW, et al:Defining post-stroke recovery, implications for design and interpretation of drug trials. Neuropharmacology 39(5):835-841, 2000.
2) Calautti C, Baron JC:Functional neuroimaging studies of motor recovery after stroke in adults:a review. Stroke 34(6):1553-1566, 2003.
3) Ward NS, et al:Neural correlates of outcome after stroke:a cross-sectional fMRI study. Brain 126(Pt 6):1430-1448, 2003.
4) Nudo RJ, et al:Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 16(2):785-807, 1996.
5) Nudo RJ, et al:Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269):1791-1794, 1996.
6) Kwakkel G, et al:Intensity of leg and arm training after primary middle-cerebral-artery stroke:a randomised trial. Lancet 354(9174):191-196, 1999.
7) Taub E, et al:Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 74(4):347-354, 1993.
8) Wolf SL, et al:Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke:the EXCITE randomized clinical trial. JAMA 296(17):2095-2104, 2006.
9) Miller KJ, et al:Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA 107(9):4430-4435, 2010.
10) Ruby P, Decety J:Effect of subjective perspective taking during simulation of action:a PET investigation of agency. Nat Neurosci 4(5):546-550, 2001.
11) Page SJ, et al:Mental practice in chronic stroke:results of a randomized, placebo-controlled trial. Stroke 38(4):1293-1297, 2007.
12) Ietswaart M, et al. Mental practice with motor imagery in stroke recovery:randomized controlled trial of efficacy. Brain 134(Pt 5):1373-1386, 2011
13) Guillot A, et al:Brain activity during visual versus kinesthetic imagery:an fMRI study. Hum Brain Mapp 30(7):2157-2172, 2009.
14) Stinear CM, et al:Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Exp Brain 168(1-2):157-164, 2006.
15) Fregni F, Pascual-Leone A:Technology insight:noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nature clinical practice Neurology 3(7):383-393, 2007.
16) Hummel FC, Cohen LG:Drivers of brain plasticity. Curr Opin Neurol 18(6):667-674, 2005.
17) Kotchoubey B, et al:Modification of slow cortical potentials in patients with refractory epilepsy:a controlled outcome study. Epilepsia 42(3):406-416, 2001.
18) Fuchs T, et al:Neurofeedback treatment for attention-deficit/hyperactivity disorder in children:a comparison with methylphenidate. Appl Psychophysiol Biofeedback 28(1):1-12, 2003.
19) Weiskopf N, et al:Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging(fMRI):methodology and exemplary data. Neuroimage 19(3):577-586, 2003.
20) deCharms RC, et al:Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1):436-443, 2004.
21) Sacchet MD, et al:Volitional control of neuromagnetic coherence. Frontiers in neuroscience 6:189, 2012.
22) Mihara M, et al:Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. PLoS One 7(3):e32234, 2012.
23) Shibata K, et al:Perceptual learning incepted by decoded fMRI neurofeedback without stimulus presentation. Science 334(6061):1413-1415, 2011.
24) Mihara M, et al:Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims:a pilot study. Stroke 44(4):1091-1098, 2013.
25) Miyai I, et al:Cortical mapping of gait in humans:a near-infrared spectroscopic topography study. Neuroimage 14(5):1186-1192, 2001.
26) Jahn K, et al:Brain activation patterns during imagined stance and locomotion in functional magnetic resonance imaging. Neuroimage 22(4):1722-1731, 2004.
27) Mihara M, et al:Cortical control of postural balance in patients with hemiplegic stroke. Neuroreport 23(5):314-319, 2012.
28) Fujimoto H, et al:Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage 85:547-554, 2013.
29) 宮井一郎, 三原雅史:立位歩行能力改善のためのNeurofeedback装置の開発を目指して, 平成25年度 厚生労働科学研究費補助金(難治性疾患等克服研究事業)希少性難治性疾患患者に関する医療の向上及び患者支援のあり方に関する研究(研究代表者:西澤正豊)分担研究報告書2014:122-4, 2014.
30) Milliken, G. W, et al:Distal forelimb representations in primary motor cortex are redistributed after forelimb restriction:a longitudinal study in adult squirrel monkeys. J. Neurophysiol 109(5):1268-1282, 2013.
P.240 掲載の参考文献
1) 高木草薫:歩行の神経機構Review, BRAIN MEDICAL 19:7-15, 2007.
2) Nishimaru H:The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Acta Physiol 197(2):83-97, 2009.
3) Vinay L, et al:Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 53(5):635-647, 2000.
4) 木村彰男ほか:宇宙からみたリハビリテーション医学. リハビリテーション医学 46(12):753-786, 2009.
5) Klarner T, et al:Preservation of common rhythmic locomotor control despite weakened supraspinal regulation after stroke. Front Integr Neurosci 8:95, 2014.
6) Drew T, et al:Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res Rev 57(1):199-211, 2008.
7) 中陦克己ほか:歩行と大脳皮質, BRAIN MEDICAL 19:33-39, 2007.
8) Malouin F, et al:Brain activation during motor imagery of locomotor-related tasks:a PET study. Hum Brain Mapp 19(1):47-62, 2003.
9) Suzuki M, et al:Prefrontal and premotor cortices are involved in adapting walking and running speed on the treadmill:an optical imaging study. Neuroimage 23(3):1020-1026, 2004.
10) Suzuki M, et al:Activities in the frontal cortex and gait performance are modulated by preparation. An fNIRS study. Neuroimage 39(2):600-607, 2008.
11) Miyai I, et al:Longitudinal Optical Imaging Study for Locomotor Recovery After Stroke. Stroke 34:2866-2870, 2003.
12) 浦川 将ほか:ロボットスーツHALの特性からリハビリテーションへの適応を探る, ロボットによる歩行リハビリテーションの再考. みんなの理学療法 27:18-25, 2015.
13) 中井 啓ほか:脳神経外科リハビリテーションにおけるロボティクス技術の応用, No Shinkei Geka 42:605-613, 2014.
14) Hocoma社ホームページ(http://www.hocoma.com/en/products/lokomat/, 2015年9月閲覧).
15) 和田 太:歩行訓練ロボット;リハを支えるテクノロジー最前線(J Clin Rehabil 19:4-8, 2010.
16) 和田 太:訓練ロボットによる歩行機能再建-イメージと知覚の影響-. Jpn J Rehabil Med 47:161-165, 2010.
17) Schuck A, et al:Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial. J Neuroeng Rehabil 9:31, 2012.
18) Krishnan C, et al:Active robotic training improves locomotor function in a stroke survivor. J Neuroeng Rehabil 9:57, 2012.
19) Krishnan C, et al:Reducing robotic guidance during robot-assisted gait training improves gait function:a case report on a stroke survivor. Arch Phys Med Rehabil 94(6):1202-1206, 2013.
20) 蜂須賀研二:ロボットリハビリテーションの最近の進歩. 脳と循環13:41-45, 2008.
21) ReWalk Roboticsホームページ(http://rewalk.com/, 2015年9月閲覧).
22) Hondaホームページ(http://www.honda.co.jp/robotics/rhythm/, 2015年9月閲覧).
23) 山海嘉之ほか:サイバニクスを駆使したHAL(Hybrid Assistive Limbs)最前線, 分子脳血管病11:25-34, 2012.
24) van den Brand R, et al:Restoring voluntary control of locomotion after paralyzing spinal cord injury. Science 336(6085):1182-11825, 2012.
25) Jin SY, et al:Characteristics of injury of the corticospinal tract and corticoreticular pathway in hemiparetic patients with putaminal hemorrhage. BMC Neurol 14:121, 2014.
26) Sung HJ, et al:Functional role of the corticoreticular pathway in chronic stroke patients, Stroke 44(4):1099-1104, 2014.
27) Wall A, et al:Clinical application of the Hybrid Assistive Limb (HAL)for gait training-a systematic review. Front Syst Neurosci 9:48, 2015.
28) Kandel ER, et al:Principles of Neural Science. 5th ed. McGraw-Hill Education, 2012.
29) 竹宮 隆ほか:運動適応の科学-トレーニングの科学的アプローチ, 杏林書院, 1998.
P.252 掲載の参考文献
1) Hochberg LR, et al:Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372-375, 2012.
2) Collinger JL, et al:High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 6736:61816-61819, 2012
3) Nishimura Y, et al:Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 318(5853):1150-1155, 2007.
4) Nishimura Y, et al:Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 7:57, 2013.
5) Dimitrijevic M. R, et al:Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci 860:360-376, 1998.
6) Gerasimenko Y, et al:Novel and direct access to the human locomotor spinal circuitry. J Neurosci 30(10):3700-3708, 2010.
7) Sasada S, et al:Volitional Walking via Upper Limb Muscle-Controlled Stimulation of the Lumbar Locomotor Center in Man. J Neurosci 34(33):11131-11142, 2014.
8) Handa Y, et al:Functional electrical stimulation for the control of the upper extremities. Med Prog Technol 12(1-2):51-63, 1987.
9) Zanos S, et al:The Neurochip-2:an autonomous head-fixed computer for recording and stimulating in freely behaving monkeys. IEEE Trans Neural Syst Rehabil Eng 19(4):427-435, 2001.
10) J. Mavoori, et al:An autonomous implantable computer for neural recording and stimulation in unrestrained primates. J. Neurosci. Methods 148(1):71-77, 2005.
11) Barthelemy D, et al:Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats. J Neurophysiol 96(6):3273-3292, 2006.
12) Barthelemy D, et al:Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J Neurophysiol 97(3):1986-2000, 2007.
13) Hebb, D. O.:The Organization of Behavior. Wiley & Sons, 1949.
14) Henry Markram, et al:Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science 275(5297):213-215, 1997.
15) Nishimura Y, et al:Spike-Timing-Dependent Plasticity in Primate Corticospinal Connections Induced during Free Behavior. Neuron 80(5):1301-1309, 2013.
16) 西村幸男:再生・再建の工夫 人工神経接続による神経補綴, JOHNS 30(10):1483-1487, 2014.

4章 リハビリテーションの実践と脳科学

P.272 掲載の参考文献
1) Shik ML, et al:Control of walking and running by means of electrical stimulation of the mesencephalon. Biophysics 11(4):756-765, 1966.
2) 須藤真史ほか:脳卒中片麻痺に対する理学療法効果と判定-理学療法効果判定の指標としてのFRT, TUGTの可能性, PTジャーナル 35:879-884, 2001.
3) NEIL R. CARLSON 著, 泰羅雅登ほか訳:カールソン神経科学テキスト 脳と行動, 2007.

最近チェックした商品履歴

Loading...