がん生物学イラストレイテッド 第2版

出版社: 羊土社
著者:
発行日: 2019-09-01
分野: 基礎・関連科学  >  生物/分子生物
ISBN: 9784758120968
電子書籍版: 2019-09-01 (第2版第2刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

7,480 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

7,480 円(税込)

商品紹介

がん生物学の好評テキスト,「がんと免疫」「がんの診断と治療」を充実させてついに改訂! めまぐるしく進展するがん研究の今・将来への展望がこの一冊に.がんの発生から治療まで豊富なイラストで徹底解説.

目次

  • 序論 がん研究の歴史

    第1章 がんの原因と誘因
    1.がんの原因としての変異原物質
    2.腫瘍ウイルス(肝炎ウイルス)
    3.腫瘍ウイルス(HTLV,HPV,EBV など)
    4.ヘリコバクター・ピロリ
    5.ホルモン
    6.放射線

    第2章 がん遺伝子とがん抑制遺伝子
    1.チロシンキナーゼ とRas
    2.白血病がん遺伝子
    3.N-MYC
    4.Wnt シグナル
    5.細胞周期,細胞接着にかかわるがん抑制遺伝子
    6.p53
    7.TGF-β

    第3章 がんにおけるゲノム・エピゲノム異常
    1.ゲノム異常
    2.DNA修復とゲノム不安定性
    3.エピジェネティック異常
    4.がんとncRNA

    第4章 がん細胞の特性
    1.細胞周期とテロメア
    2.オートファジー
    3.がんの細胞死(アポトーシスを中心に)
    4.がんと代謝
    5.がん幹細胞
    6.多段階発がん

    第5章 がんの悪性化:浸潤と転移
    1.細胞運動と浸潤
    2.上皮間葉転換(EMT)
    3.血管とリンパ管
    4.炎症とがん
    5.転移

    第6章 がんと免疫
    1.がん抗原
    2.サイトカインとケモカイン
    3.免疫チェックポイント阻害薬

    第7章 がんの分子標的治療
    1.ABLキナーゼ阻害薬,FLT3阻害薬と耐性克服
    2.HER2 抗体(トラスツズマブなど)
    3.EGFR 阻害薬(ゲフィチニブなど)
    4.血管新生阻害薬(ベバシズマブなど)
    5.ALK阻害薬(クリゾチニブなど)

    第8章 がんの診断と治療
    1.腫瘍マーカー
    2.診断法の進歩(大腸がんを例として)
    3.手術法の進歩
    4.放射線・診断と治療
    5.がんゲノム医療(Precision Medicine)
    6.エクソソーム
    7.ドラッグデリバリーシステム
    8.遺伝子治療
    9.人工知能(AI)の支援によるがん診断の将来

    第9章 各組織・器官のがん生物学
    1.肺がん
    2.大腸がん
    3.胃がん
    4.乳がん
    5.膵がん
    6.脳腫瘍

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

序論 がん研究の歴史

P.22 掲載の参考文献
1) 「世界初の人工発癌に成功した山際勝三郎」(小高 健/著), 学会出版センター, 2006
2) Rous P:A SARCOMA OF THE FOWL TRANSMISSIBLE BY AN AGENT SEPARABLE FROM THE TUMOR CELLS. J Exp Med, 13:397-411, 1911
4) Jove R & Hanafusa H:Cell transformation by the viral src oncogene. Annu Rev Cell Biol, 3:31-56, 1987
5) Slamon DJ, et al:Human breast cancer:correlation of relapse and survival with amplification of theH ER-2/neu oncogene. Science, 235:177-182, 1987
6) Hanahan D & Weinberg RA:The hallmarks of cancer. Cell, 100:57-70, 2000
7) Lynch TJ, et al:Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 350:2129-2139, 2004
9) Goldberg AD, et al:Epigenetics:a landscape takes shape. Cell, 128:635-638, 2007
10) Ferrara N:Vascular endothelial growth factor:basic science and clinical progress. Endocr Rev, 25:581-611, 2004
11) Shibuya M & Claesson-Welsh L:Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 312:549-560, 2006
12) Alitalo K & Carmeliet P:Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 1:219-227, 2002
13) Iwai Y, et al:Cancer immunotherapies targeting the PD-1 signaling pathway. J Biomed Sci, 24:26, 2017

第1章 がんの原因と誘因

P.32 掲載の参考文献
1) Vineis P, et al:Models of carcinogenesis:an overview. Carcinogenesis, 31:1703-1709, 2010
2) Beranek DT:Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents. Mutat Res, 231:11-30, 1990
3) Yang D, et al:4-Chloro-6-methoxyindole is the precursor of a potent mutagen(4-chloro-6-methoxy-2-hydroxy-1-nitroso-indolin-3-one oxime)that forms during nitrosation of the fava bean(Vicia faba). Carcinogenesis, 5:1219-1224, 1984
4) Sugimura T, et al:Heterocyclic amines:Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci, 95:290-299, 2004
5) Nakagama H, et al:Modeling human colon cancer in rodents using a food-borne carcinogen, PhIP. Cancer Sci, 96:627-636, 2005
6) Totsuka Y, et al:Structural determination of a mutagenic aminophenylnorharman produced by the comutagen norharman with aniline. Carcinogenesis, 19:1995-2000, 1998
7) IARC(International Agency for Research on Cancer):Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, Vol.56, p245, IARC, Lyon, 1993
8) Shen HM & Ong CN:Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. Mutat Res, 366:23-44, 1996
9) Grollman AP:Aristolochic acid nephropathy:Harbinger of a global iatrogenic disease. Environ Mol Mutagen, 54:1-7, 2013
10) IARC(International Agency for Research on Cancer):Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, Vol.3, p45, IARC, Lyon, 1973
11) 豊國伸哉, 他:アスベスト誘発中皮腫発がん機構の解明. 日衛誌, 66:562-567, 2011
12) Ferguson LR:Chronic inflammation and mutagenesis. Mutat Res, 690:3-11, 2010
P.45 掲載の参考文献
1) Uemoto S, et al:Transmission of hepatitis B virus from hepatitis B core antibody-positive donors in living related liver transplants. Transplantation, 65:494-499, 1998
2) Johnson CL & Gale M Jr:CARD games between virus and host get a new player. Trends Immunol, 27:1-4, 2006
3) BLUMBERG BS, et al:A "NEW" ANTIGEN IN LEUKEMIA SERA. JAMA, 191:541-546, 1965
4) Haruna Y, et al:Expression of X protein and hepatitis B virus replication in chronic hepatitis. Hepatology, 13:417-421, 1991
5) Kato N:Molecular virology of hepatitis C virus. Acta Med Okayama, 55:133-159, 2001
6) Shimakami T, et al:Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci USA, 109:941-946, 2012
7) Miyanari Y, et al:Hepatitis C virus non-structural proteins in the probable membranous compartment function in viral genome replication. J Biol Chem, 278:50301-50308, 2003
8) Yan H, et al:Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. Elife, 1:e00049, 2012
9) Ploss A & Rice CM:Towards a small animal model for hepatitis C. EMBO Rep, 10:1220-1227, 2009
10) Ujino S, et al:Hepatitis C virus utilizes VLDLR as a novel entry pathway. Proc Natl Acad Sci USA, 113:188-193, 2016
11) Lau CC, et al:Viral-human chimeric transcript predisposes risk to liver cancer development and progression. Cancer Cell, 25:335-349, 2014
12) Endo Y, et al:Expression of activation-induced cytidine deaminase in human hepatocytes via NF-kappaB signaling. Oncogene, 26:5587-5595, 2007
13) Moriya K, et al:The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med, 4:1065-1067, 1998
14) Moriishi K, et al:Critical role of PA28gamma in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proc Natl Acad Sci USA, 104:1661-1666, 2007
15) Miyanari Y, et al:The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol, 9:1089-1097, 2007
16) Korenaga M, et al:Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species(ROS)production. J Biol Chem, 280:37481-37488, 2005
17) Kato N, et al:Activation of intracellular signaling by hepatitis B and C viruses:C-viral core is the most potent signal inducer. Hepatology, 32:405-412, 2000
18) Kamatani Y, et al:A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet, 41:591-595, 2009
19) Jiang DK, et al:Genetic variants in STAT 4 and HLA-DQ genes confer risk of hepatitis B virus-related hepatocellular carcinoma. Nat Genet, 45:72-75, 2013
P.53 掲載の参考文献
1) Martin D & Gutkind JS:Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene, 27 Suppl 2:S31-S42, 2008
2) Mui UN, et al:Viral Oncology:Molecular Biologyand Pathogenesis. J Clin Med, 6:doi:10.3390/jcm6120111, 2017
3) El-Sharkawy A, et al:Epstein-Barr Virus-Associated Malignancies:Roles of Viral Oncoproteins in Carcinogenesis. Front Oncol, 8:265, 2018
4) Einsiedel L, et al:Human T-Lymphotropic Virus type 1c subtype proviral loads, chronic lung disease and survival in a prospective cohort of Indigenous Australians. PLoS Negl Trop Dis, 12:e0006281, 2018
5) Giam CZ & Semmes OJ:HTLV-1 Infection and Adult T-Cell Leukemia/Lymphoma-A Tale of Two Proteins:Tax and HBZ. Viruses, 8:doi:10.3390/v8060161, 2016
6) Rosewick N, et al:Cis-perturbation of cancer drivers by the HTLV-1/BLV proviruses is an early determinant of leukemogenesis. Nat Commun, 8:15264, 2017
7) Satou Y, et al:The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome. Proc Natl Acad Sci USA, 113:3054-3059, 2016
8) Iwanaga M, et al:Human T-cell leukemia virus type I(HTLV-1)proviral load and disease progression in asymptomatic HTLV-1 carriers:a nationwide prospective study in Japan. Blood, 116:1211-1219, 2010
9) Kobayashi S, et al:CADM1 expression and stepwise downregulation of CD7 are closely associated with clonal expansion of HTLV-I-infected cells in adult T-cell leukemia/lymphoma. Clin Cancer Res, 20:2851-2861, 2014
10) Firouzi S, et al:Clonality of HTLV-1-infected T cells as a risk indicator for development and pro-gression of adult T-cell leukemia. Blood Adv, 1:1195-1205, 2017
11) Scott RS:Epstein-Barr virus:a master epigenetic manipulator. Curr Opin Virol, 26:74-80, 2017
12) Schulz TF & Cesarman E:Kaposi Sarcoma-associated Herpesvirus:mechanisms of oncogenesis. Curr Opin Virol, 14:116-128, 2015
13) Gunther T & Grundhoff A:Epigenetic manipulation of host chromatin by Kaposi sarcoma-associated herpesvirus:a tumor-promoting factor? Curr Opin Virol, 26:104-111, 2017
14) Wang X, et al:Involvement of Human Papillomaviruses in Cervical Cancer. Front Microbiol, 9:2896, 2018
15) Durzynska J, et al:Human papillomaviruses in epigenetic regulations. Mutat Res Rev Mutat Res, 772:36-50, 2017
P.66 掲載の参考文献
1) Murata-Kamiya N, et al:Helicobacter pylori exploits host membrane phosphatidylserine for delivery, localization, and pathophysiological action of the CagA oncoprotein. Cell Host Microbe, 7:399-411, 2010
2) Kwok T, et al:Helicobacter exploits integrin for type IV secretion and kinase activation. Nature, 449:862-866, 2007
3) Hatakeyama M:Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer, 4:688-694, 2004
4) Higashi H, et al:SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295:683-686, 2002
5) Tartaglia M & Gelb BD:Noonan syndrome and related disorders:genetics and pathogenesis. Annu Rev Genomics Hum Genet, 6:45-68, 2005
6) Saadat I, et al:Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature, 447:330-333, 2007
7) Umeda M, et al:Helicobacter pylori CagA causes mitotic impairment and induces chromosomal instability. J Biol Chem, 284:22166-22172, 2009
8) Ren S, et al:Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. J Biol Chem, 281:32344-32352, 2006
9) Hayashi T, et al:Tertiary structure-function analysis reveals the pathogenic signaling potentiation mechanism of Helicobacter pylori oncogenic effector CagA. Cell Host Microbe, 12:20-33, 2012
10) Hayashi T, et al:Differential Mechanisms for SHP2 Binding and Activation Are Exploited by Geographically Distinct Helicobacter pylori CagA Oncoproteins. Cell Rep, 20:2876-2890, 2017
11) Ohnishi N, et al:Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA, 105:1003-1008, 2008
12) Miura M, et al:Differential oncogenic potential of geographically distinct Helicobacter pylori CagA isoforms in mice. Int J Cancer, 125:2497-2504, 2009
13) Saito Y, et al:Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. J Exp Med, 207:2157-2174, 2010
P.75 掲載の参考文献
1) 加藤茂明:脂溶性リガンドによる転写制御の分子メカニズム. 実験医学増刊, 18:122-128, 2000
2) Bourdeau V, et al:Genome-wide identification of high-affinity estrogen response elements in human and mouse. Mol Endocrinol, 18:1411-1427, 2004
3) Carroll JS, et al:Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122:33-43, 2005
4) 林 慎一, 吉田敦行:ホルモン療法. 臨床腫瘍学, 272-278, 2003
5) Kato S, et al:Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science, 270:1491-1494, 1995
6) Norman AW, et al:Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov, 3:27-41, 2004
7) Al-Hajj M, et al:Prospective identification of tumorigenicbreast cancer cells. Proc Natl Acad Sci USA, 100:3983-3988, 2003
8) Shackleton M, et al:Generation of a functional mammary gland from a single stem cell. Nature, 439:84-88, 2006
9) Sorlie T, et al:Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA, 98:10869-10874, 2001
10) Orimo A, et al:Stromal fibroblasts present in invasivehuman breast carcinomas promote tumor growthand angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121:335-348, 2005
P.80 掲載の参考文献
1) De Bont R & van Larebeke N:Endogenous DNA damage in humans:a review of quantitative data. Mutagenesis, 19:169-185, 2004
2) Maynard S, et al:Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis, 30:2-10, 2009
3) Tsuzuki T, et al:Significance of error-avoiding mechanisms for oxidative DNA damage in carcinogenesis. Cancer Sci, 98:465-470, 2007
4) Pluskota-Karwatka D:Modifications of nucleosides by endogenous mutagens-DNA adducts arising from cellular processes. Bioorg Chem, 36:198-213, 2008
5) Nakamura N:A hypothesis:radiation-related leukemia is mainly attributable to the small number of people who carry pre-existing clonally expanded preleukemic cells. Radiat Res, 163:258-265, 2005
6) Kominami R & Niwa O:Radiation carcinogenesis in mouse thymic lymphomas. Cancer Sci, 97:575-581, 2006
7) Yamashita S & Saenko V:Mechanisms of Disease:molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab, 3:422-429, 2007
8) Sinnott B, et al:Exposing the thyroid to radiation:a review of its current extent, risks, and implications. Endocr Rev, 31:756-773, 2010
9) Wright EG:Manifestations and mechanisms of nontargeted effects of ionizing radiation. Mutat Res, 687:28-33, 2010
10) Takahashi M, et al:The FOXE 1 locus is a major genetic determinant for radiation-related thyroid carcinoma in Chernobyl. Hum Mol Genet, 19:2516-2523, 2010

第2章 がん遺伝子とがん抑制遺伝子

P.93 掲載の参考文献
1) Hirai H, et al:A novel putative tyrosine kinase receptor encoded by the eph gene. Science, 238:1717-1720, 1987
2) Wu B, et al:Potent and Selective EphA 4 Agonists for the Treatment of ALS. Cell Chem Biol, 24:293-305, 2017
3) Hollingworth P, et al:Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nat Genet, 43:429-435, 2011
4) Hunter T:Discovering the first tyrosine kinase. Proc Natl Acad Sci USA, 112:7877-7882, 2015
5) 「Textbook of Biochemistry with Clinical Correlations, 7th Edition」(Devlin TM, eds), Wiley, 2010
6) Foulkes JG, et al:Purification and characterization of a protein-tyrosine kinase encoded by the Abelson murine leukemia virus. J Biol Chem, 260:8070-8077, 1985
7) 「デブリン生化学 原書7版」(上代淑人, 他/監訳), 丸善出版, 2012
8) Manning G, et al:The protein kinase complement of the human genome. Science, 298:1912-1934, 2002
9) Luetteke NC, et al:Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development, 126:2739-2750, 1999
10) Zhao X, et al:Role of kinase-independent and-dependent functions of FAK in endothelial cell survival and barrier function during embryonic development. J Cell Biol, 189:955-965, 2010
11) I-DCC and the KOMP-DCC, International Knockout Mouse Consortium(http://www.mousephenotype.org/about-ikmc/)
12) Grassot J, et al:Origin and molecular evolution of receptor tyrosine kinases with immunoglobulin-like domains. Mol Biol Evol, 23:1232-1241, 2006
13) Leung KF, et al:Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem, 282:1487-1497, 2007
14) Hantschel O, et al:Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol Cell, 19:461-473, 2005
15) 丸 義朗:「がんをくすりで治す」とは?-役に立つ薬理学-, 朝日新聞社, 2007
16) Ferguson KM, et al:EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell, 11:507-517, 2003
17) McCormick F:c-Raf in KRas Mutant Cancers:A Moving Target. Cancer Cell, 33:158-159, 2018
18) Xu W, et al:Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol Cell, 3:629-638, 1999
19) Lietha D, et al:Structural basis for the autoinhibition of focal adhesion kinase. Cell, 129:1177-1187, 2007
20) Nagar B, et al:Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell, 112:859-871, 2003
21) Maru Y:Molecular biology of chronic myeloid leukemia. Cancer Sci, 103:1601-1610, 2012
22) Alonso A, et al:Protein tyrosine phosphatases in the human genome. Cell, 117:699-711, 2004
23) Rolli V, et al:Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell, 10:1057-1069, 2002
24) Lindahl P, et al:Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science, 277:242-245, 1997
25) Simanshu DK, et al:RAS Proteins and Their Regulators in Human Disease. Cell, 170:17-33, 2017
26) Hunter JC, et al:Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol Cancer Res, 13:1325-1335, 2015
27) Wohlgemuth S, et al:Recognizing and defining true Ras binding domains I:biochemical analysis. J Mol Biol, 348:741-758, 2005
28) Neel NF, et al:The RalGEF-Ral Effector Signaling Network:The Road Less Traveled for Anti-Ras Drug Discovery. Genes Cancer, 2:275-287, 2011
29) Karnoub AE & Weinberg RA:Ras oncogenes:split personalities. Nat Rev Mol Cell Biol, 9:517-531, 2008
30) Adviento B, et al:Autism traits in the RASopathies. J Med Genet, 51:10-20, 2014
31) Katagiri K, et al:Spatiotemporal regulation of the kinase Mst1 by binding protein RAPL is critical for lymphocyte polarity and adhesion. Nat Immunol, 7:919-928, 2006
32) Murillo MM, et al:RAS interaction with PI3K p110 α is required for tumor-induced angiogenesis. J Clin Invest, 124:3601-3611, 2014
33) Marx-Stoelting P, et al:Hepatocarcinogenesis in mice with a conditional knockout of the hepatocyte growth factor receptor c-Met. Int J Cancer, 124:1767-1772, 2009
34) Amin E, et al:Deciphering the Molecular and Functional Basis of RHOGAP Family Proteins:A SYSTEMATIC APPROACH TOWARD SELECTIVE INACTIVATION OF RHO FAMILY PROTEINS. J Biol Chem, 291:20353-20371, 2016
35) Tomar A, et al:A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J Cell Sci, 122:1852-1862, 2009
36) Frank SR, et al:p190 RhoGAP promotes contact inhibition in epithelial cells by repressing YAP activity. J Cell Biol, 217:3183-3201, 2018
37) Shimamura T, et al:Hsp90 inhibition suppresses mutant EGFR-T790M signaling and overcomes kinase inhibitor resistance. Cancer Res, 68:5827-5838, 2008
38) Sigismund S, et al:Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell, 15:209-219, 2008
39) Tsukahara F & Maru Y:Bag1 directly routes immature BCR-ABL for proteasomal degradation. Blood, 116:3582-3592, 2010
40) Paull EO, et al:Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events(TieDIE). Bioinformatics, 29:2757-2764, 2013
41) Drake JM, et al:Phosphoproteome Integration Reveals Patient-Specific Networks in Prostate Cancer. Cell, 166:1041-1054, 2016
42) Cancer Genome Atlas Research Network.:Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499:43-49, 2013
43) Cancer Genome Atlas Research Network.:Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 173:321-337. e10, 2018
44) Rikova K, et al:Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell, 131:1190-1203, 2007
45) Lemke G:Biology of the TAM receptors. Cold Spring Harb Perspect Biol, 5:a009076, 2013
46) Dufies M, et al:Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget, 2:874-885, 2011
47) Walker BA, et al:Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 132:587-597, 2018
48) 「Inflammation and metastasis」(Maru Y, eds), Springer, 2016.
P.103 掲載の参考文献
1) O'Brien SG, et al:Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med, 348:994-1004, 2003
2) Kralovics R, et al:A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med, 352:1779-1790, 2005
3) Dawson MA, et al:JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature, 461:819-822, 2009
4) Ichikawa M, et al:AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med, 10:299-304, 2004
5) Cheung N, et al:Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol, 9:1208-1215, 2007
6) Okada Y, et al:hDOT1L links histone methylation to leukemogenesis. Cell, 121:167-178, 2005
7) Yokoyama A & Cleary ML:Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell, 14:36-46, 2008
8) Naoe T & Kiyoi H:Gene mutations of acute myeloid leukemia in the genome era. Int J Hematol, 97:165-174, 2013
9) Cancer Genome Atlas Research Network.:Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 368:2059-2074, 2013
10) Tadokoro Y, et al:De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells. J Exp Med, 204:715-722, 2007
11) Challen GA, et al:Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet, 44:23-31, 2011
P.110 掲載の参考文献
1) Weiss WA, et al:Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J, 16:2985-2995, 1997
2) Bjerke L, et al:Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discov, 3:512-519, 2013
3) Swartling FJ, et al:Pleiotropic role for MYCN in medulloblastoma. Genes Dev, 24:1059-1072, 2010
4) MacPherson D, et al:Murine bilateral retinoblastoma exhibiting rapid-onset, metastatic progression and N-myc gene amplification. EMBO J, 26:784-794, 2007
5) Kawagoe H, et al:Overexpression of N-Myc rapidly causes acute myeloid leukemia in mice. Cancer Res, 67:10677-10685, 2007
6) Dardenne E, et al:N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer Cell, 30:563-577, 2016
7) Schwab M:MYCN in neuronal tumours. Cancer lett, 204:179-187, 2004
8) Albihn A, et al:MYC in oncogenesis and as a target for cancer therapies. Adv Cancer Res, 107:163-224, 2010
9) Pugh TJ, et al:The genetic landscape of high-risk neuroblastoma. Nat Genet, 45:279-284, 2013
10) Bell E, et al:MYCN oncoprotein targets and their therapeutic potential. Cancer Lett, 293:144-157, 2010
11) Cotterman R, et al:N-myc regulates a widespcread euchromatic program in the human genome partially independent of its role as a classical transcription factor. Cancer Res, 68:9654-9662, 2008
12) Corvetta D, et al:Physical interaction between MYCN oncogene and polycomb repressive complex 2(PRC2)in neuroblastoma:functional and therapeutic implications. J Biol Chem, 288:8332-8341, 2013
13) Tsubota S, et al:PRC2-Mediated Transcriptomic Alterations at the Embryonic Stage Govern Tumorigenesis and Clinical Outcome in MYCN-Driven Neuroblastoma. Cancer Res, 77:5259-5271, 2017
14) Hurlin, JP:N-Myc functions in transcription and development. Birth Defects Res. C. Embryo Today, 75:340-352, 2005
15) Stieder V & Lutz W:Regulation of N-myc expression in development and disease. Cancer Lett, 180:107-119, 2002
16) van Bokhoven H, et al:MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome. Nat Genet, 37:465-467, 2005
17) Nakagawara A, et al:Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med, 328:847-854, 1993
18) Gustafson, W.C. & Weiss, W.A.:Myc proteins as therapeutic targets. Oncogene, 29:1249-1259, 2010
19) Suenaga Y, et al:NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet, 10:e1003996, 2014
20) 末永雄介, 他:神経内分泌腫瘍と脳腫瘍におけるMYCファミリー遺伝子-p53 ファミリー遺伝子との攻防. 実験医学, 36:501-507, 2018
21) Liu PY, et al:Effects of a novel long noncoding RNA, lncUSMycN, on N-Myc expression and neuroblastoma progression. J Natl Cancer Inst, 106:doi:10.1093/jnci/dju113, 2014
22) Yoda H, et al:Direct Targeting of MYCN Gene Amplification by Site-Specific DNA Alkylation in Neuroblastoma. Cancer Res, 79:830-840, 2019
23) Sholler GLS, et al:Maintenance DFMO Increases Survival in High Risk Neuroblastoma. Sci Rep, 8:14445, 2018
24) Rickman DS, et al:The Expanding World of N-MYC-Driven Tumors. Cancer Discov, 8:150-163, 2018
25) Fletcher JI, et al:Too many targets, not enough patients:rethinking neuroblastoma clinical trials. Nat Rev Cancer, 18:389-400, 2018
26) Ruiz-Perez MV, et al:The MYCN Protein in Health and Disease. Genes(Basel), 8:doi:10.3390/genes8040113, 2017
P.121 掲載の参考文献
1) Logan CY & Nusse R:The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 20:781-810, 2004
2) Kikuchi A, et al:Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol, 19:119-129, 2009
3) Polakis P:The many ways of Wnt in cancer. Curr Opin Genet Dev, 17:45-51, 2007
4) Kikuchi A & Yamamoto H:Tumor formation due to abnormalities in the beta-catenin-independent pathway of Wnt signaling. Cancer Sci, 99:202-208, 2008
5) Nishita M, et al:Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol, 20:346-354, 2010
6) Yamamoto H, et al:Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling. Dev Cell, 15:37-48, 2008
7) Sato A, et al:Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J, 29:41-54, 2010
8) Koo BK, et al:Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors. Nature, 488:665-669, 2012
9) Steinhart Z, et al:Corrigendum:Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med, 23:1384, 2017
10) Gurney A, et al:Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci USA, 109:11717-11722, 2012
11) Zhan T, et al:Wnt signaling in cancer. Oncogene, 36:1461-1473, 2017
12) Ying Y & Tao Q:Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics, 4:307-312, 2009
13) Jiang X, et al:Inactivating mutations of RNF43 confer Wnt dependency in pancreatic ductal adenocarcinoma. Proc Natl Acad Sci USA, 110:12649-12654, 2013
14) Koo BK, et al:Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia. Proc Natl Acad Sci USA, 112:7548-7550, 2015
15) Yamamoto H, et al:Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene, 29:2036-2046, 2010
16) Matsumoto S, et al:Binding of APC and dishevelled mediates Wnt5a-regulated focal adhesion dynamics in migrating cells. EMBO J, 29:1192-1204, 2010
17) Yamamoto H, et al:Laminin gamma2 mediates Wnt5a-induced invasion of gastric cancer cells. Gastroenterology, 137:242-52, 252. e1, 2009
18) Sato A, et al:The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and inter-feron-γ in colitis. Sci Rep, 5:10536, 2015
19) Niehrs C:Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene, 25:7469-7481, 2006
20) Kimura H, et al:CKAP4 is a Dickkopf1 receptor and is involved in tumor progression. J Clin Invest, 126:2689-2705, 2016
21) Shinno N, et al:Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug. Oncogene, 37:3471-3484, 2018
22) Matsumoto S, et al:A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J, 33:702-718, 2014
23) Fujii S, et al:Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene, 34:4834-4844, 2015
24) Fujii S, et al:Epigenetic upregulation of ARL4C, due to DNA hypomethylation in the 3'-untranslated region, promotes tumorigenesis of lung squamous cell carcinoma. Oncotarget, 7:81571-81587, 2016
P.131 掲載の参考文献
1) Knudson AG:Two genetic hits(more or less)to cancer. Nat Rev Cancer, 1:157-162, 2001
2) Hanahan D & Weinberg RA:Hallmarks of cancer:the next generation. Cell, 144:646-674, 2011
3) Jones PA & Baylin SB:The epigenomics of cancer. Cell, 128:683-692, 2007
4) Vogelstein B & Kinzler KW:Cancer genes and the pathways they control. Nat Med, 10:789-799, 2004
5) Weinberg RA:The retinoblastoma protein and cell cycle control. Cell, 81:323-330, 1995
6) Sherr CJ:The INK4a/ARF network in tumour suppression. Nat Rev Mol Cell Biol, 2:731-737, 2001
7) Abbas T & Dutta A:p21 in cancer:intricate networks and multiple activities. Nat Rev Cancer, 9:400-414, 2009
8) Cavallaro U & Christofori G:Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer, 4:118-132, 2004
9) Murakami Y:Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci, 96:543-552, 2005
10) OMIM Home(http://www.ncbi.nlm.nih.gov/omim/)
P.140 掲載の参考文献
1) Levine AJ & Oren M:The first 30 years of p53:growing ever more complex. Nat Rev Cancer, 9:749-758, 2009
2) 田中知明:概論-p53ワールド~その発見30年の歴史, 現在そして未来. 実験医学, 28:370-377, 2010
3) el-Deiry WS, et al:WAF1, a potential mediator of p53 tumor suppression. Cell, 75:817-825, 1993
4) Cho Y, et al:Crystal structure of a p53 tumor suppressor-DNA complex:understanding tumorigenic mutations. Science, 265:346-355, 1994
5) Bode AM & Dong Z:Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer, 4:793-805, 2004
6) Toledo F & Wahl GM:Regulating the p53 pathway:in vitro hypotheses, in vivo veritas. Nat Rev Cancer, 6:909-923, 2006
7) Donehower LA & Lozano G:20 years studying p53 functions in genetically engineered mice. Nat Rev Cancer, 9:831-841, 2009
8) Vogelstein B, et al:Surfing the p53 network. Nature, 408:307-310, 2000
9) He L, et al:microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer, 7:819-822, 2007
10) 的場聖明, 松原弘明:p53によるエネルギー代謝制御. 実験医学, 28:390-396, 2010
11) 荒川博文:p53によるオートファジーの制御. 実験医学, 28:397-403, 2010
12) 鈴木 洋, 宮園浩平:p53によるmicroRNA発現の制御. 実験医学, 28:390-396, 2010
13) Yang A & McKeon F:P63 and P73:P53 mimics, menaces and more. Nat Rev Mol Cell Biol, 1:199-207, 2000
14) 田村直紀, Candeias MM:p53 mRNA およびp53 アイソフォームの新たな機能. 実験医学, 35:2351-2357, 2017
15) 藤原俊義:進化するp53遺伝子を用いたがんウイルス療法. 実験医学, 35:2364-2365, 2017
16) Brown CJ, et al:Awakening guardian angels:drugging the p53 pathway. Nat Rev Cancer, 9:862-873, 2009
17) Bykov VJN, et al:Targeting mutant p53 for efficient cancer therapy. Nat Rev Cancer, 18:89-102, 2018
18) 滝川雅大, 大木理恵子:野生型・変異型p53を標的とした抗がん剤の現状. 実験医学, 35:2367-2368, 2017
19) Li T, et al:Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell, 149:1269-1283, 2012
20) Valente LJ, et al:p53 efficiently suppresses tumor development in the complete absence of its cell-cycle inhibitory and proapoptotic effectors p21, Puma, and Noxa. Cell Rep, 3:1339-1345, 2013
21) Jiang L, et al:Ferroptosis as a p53-mediated activity during tumour suppression. Nature, 520:57-62, 2015
22) Bieging KT, et al:Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer, 14:359-370, 2014
23) Hong H, et al:iPS 細胞樹立を制御するp53経路. 実験医学, 28:378-382, 2010
24) 南野 徹:老化分子としてのp53と生活習慣病. 実験医学, 28:383-389, 2010
P.150 掲載の参考文献
1) Heldin CH, et al:TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390:465-471, 1997
2) Miyazono K, et al:Intracellular and extracellular TGF-β signaling in cancer:some recent topics. Front Med, 12:387-411, 2018
3) Massague J, et al:TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 103:295-309, 2000
4) Derynck R, et al:TGF-beta signaling in tumor suppression and cancer progression. Nat Genet, 29:117-129, 2001
5) Ikushima H & Miyazono K:TGFbeta signalling:a complex web in cancer progression. Nat Rev Cancer, 10:415-424, 2010
6) Li QL, et al:Causal relationship between the loss of RUNX 3 expression and gastric cancer. Cell, 109:113-124, 2002
7) Thiery JP & Sleeman JP:Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 7:131-142, 2006
8) De Wever O & Mareel M:Role of tissue stroma in cancer cell invasion. J Pathol, 200:429-447, 2003
9) Yoshimura A, et al:Cellular and molecular basis for the regulation of inflammation by TGF-beta. J Biochem, 147:781-792, 2010
10) Mundy GR:Metastasis to bone:causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2:584-593, 2001

第3章 がんにおけるゲノム・エピゲノム異常

P.162 掲載の参考文献
1) Hill DA, et al:DICER 1 mutations in familial pleuropulmonary blastoma. Science, 325:965, 2009
2) Sun T, et al:Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell, 144:703-718, 2011
3) Stephens PJ, et al:Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144:27-40, 2011
4) Bignell GR, et al:Signatures of mutation and selectionin the cancer genome. Nature, 463:893-898, 2010
5) Santarius T, et al:A census of amplified and overexpressed human cancer genes. Nat Rev Cancer, 10:59-64, 2010
6) Totoki Y, et al:Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet, 46:1267-1273, 2014
7) Sandberg AA & Meloni-Ehrig AM:Cytogenetics and genetics of human cancer:methods and accomplishments. Cancer Genet Cytogenet, 203:102-126, 2010
8) Tomlins SA, et al:Recurrent fusion of TMPRSS 2 and ETS transcription factor genes in prostate cancer. Science, 310:644-648, 2005
9) Elsasser SJ, et al:Cancer. New epigenetic drivers of cancers. Science, 331:1145-1146, 2011
10) Soda M, et al:Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448:561-566, 2007
11) Hanahan D & Weinberg RA:Hallmarks of cancer:the next generation. Cell, 144:646-674, 2011
12) Aoki Y, et al:The RAS/MAPK syndromes:novel roles of the RAS pathway in human genetic disorders. Hum Mutat, 29:992-1006, 2008
13) O' Shaughnessy J, et al:Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med, 364:205-214, 2011
14) Mirza MR, et al:Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer. N Engl J Med, 375:2154-2164, 2016
15) Takata R, et al:Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet, 42:751-754, 2010
16) Leary RJ, et al:Development of personalized tumor biomarkers using massively parallel sequencing. Sci Transl Med, 2:20ra14, 2010
17) McDermott U, et al:Genomics and the continuum of cancer care. N Engl J Med, 364:340-350, 2011
P.175 掲載の参考文献
1) Barnes DE & Lindahl T:Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet, 38:445-476, 2004
2) 續 輝久, 他:酸化的DNA損傷と発癌. ゲノム医学, 7:17-21, 2007
3) Lans H, et al:Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet, 6:e1000941, 2010
4) Nakamura K, et al:Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol Cell, 41:515-528, 2011
5) 「現代人のための放射線生物学」(小松賢志/著), 京都大学学術出版会, 2017
6) Datta A & Brosh RM Jr:Holding All the Cards-How Fanconi Anemia Proteins Deal with Replication Stress and Preserve Genomic Stability. Genes(Basel), 10:doi:10.3390/genes10020170, 2019
7) Jiricny J:The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol, 7:335-346, 2006
P.184 掲載の参考文献
1) Feinberg AP, et al:Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet, 17:284-299, 2016
2) Jones PA:Functions of DNA methylation:islands, start sites, gene bodies and beyond. Nat Rev Genet, 13:484-492, 2012
3) Greer EL & Shi Y:Histone methylation:a dynamic mark in health, disease and inheritance. Nat Rev Genet, 13:343-357, 2012
4) Ushijima T & Asada K:Aberrant DNA methylation in contrast with mutations. Cancer Sci, 101:300-305, 2010
5) Takeshima H & Ushijima T:Accumulation of genetic and epigenetic alterations in normal cells and cancer risk. NPJ Precis Oncol, 3:7, 2019
6) Hattori N & Ushijima T:Epigenetic impact of infection on carcinogenesis:mechanisms and applications. Genome Med, 8:10, 2016
7) Moran S, et al:Precision medicine based on epigenomics:the paradigm of carcinoma of unknown primary. Nat Rev Clin Oncol, 14:682-694, 2017
8) Dawson MA:The cancer epigenome:Concepts, challenges, and therapeutic opportunities. Science, 355:1147-1152, 2017
9) Dhanak D & Jackson P:Development and classes of epigenetic drugs for cancer. Biochem Biophys Res Commun, 455:58-69, 2014
P.192 掲載の参考文献
1) Ha M & Kim VN:Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 15:509-524, 2014
2) Bracken CP, et al:A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet, 17:719-732, 2016
3) 鈴木 元, 高橋 隆:がんとmicroRNA. 血液・腫瘍科, 61:621-626, 2010
4) 長田啓隆, 高橋 隆:microRNA発現異常と発癌. 実験医学増刊, 29:200-205, 2011
5) Aquino-Jarquin G:Emerging Role of CRISPR/Cas9 Technology for MicroRNAs Editing in Cancer Research. Cancer Res, 77:6812-6817, 2017
6) Takamizawa J, et al:Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 64:3753-3756, 2004
7) Suzuki M, et al:Targeting ceramide synthase 6-dependent metastasis-prone phenotype in lung cancer cells. J Clin Invest, 126:254-265, 2016
8) Arima C, et al:Lung adenocarcinoma subtypes definable by lung development-related miRNA expression profiles in association with clinicopathologic features. Carcinogenesis, 35:2224-2231, 2014
9) Matsubara H, et al:Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92. Oncogene, 26:6099-6105, 2007
10) Schmitt AM & Chang HY:Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 29:452-463, 2016
11) Bhan A, et al:Long Noncoding RNA and Cancer:A New Paradigm. Cancer Res, 77:3965-3981, 2017
12) Hosono Y, et al:Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA. Cell, 171:1559-1572. e20, 2017
13) Kondo Y, et al:Long non-coding RNAs as an epigenetic regulator in human cancers. Cancer Sci, 108:1927-1933, 2017
14) Sanchez Calle A, et al:Emerging roles of long noncoding RNA in cancer. Cancer Sci, 109:2093-2100, 2018

第4章 がん細胞の特性

P.201 掲載の参考文献
1) Miyoshi T, et al:Fission yeast Pot1-Tpp1 protects telomeres and regulates telomere length. Science, 320:1341-1344, 2008
2) Xin H, et al:TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature, 445:559-562, 2007
3) Verdun RE, et al:Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell, 20:551-561, 2005
4) Verdun RE & Karlseder J:The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell, 127:709-720, 2006
5) d'Adda di Fagagna F, et al:A DNA damage checkpoint response in telomere-initiated senescence. Nature, 426:194-198, 2003
6) Cesare AJ & Karlseder J:A three-state model of telomere control over human proliferative boundaries. Curr Opin Cell Biol, 24:731-738, 2012
7) Hayashi MT, et al:A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol, 19:387-394, 2012
8) Van Ly D, et al:Telomere Loop Dynamics in ChromosomeEnd Protection. Mol Cell, 71:510-525. e6, 2018
9) Hayashi MT, et al:Cell death during crisis is mediated by mitotic telomere deprotection. Nature, 522:492-496, 2015
10) Sabourin M, et al:Telomerase and Tel1p preferentially associate with short telomeres in S. cerevisiae. Mol Cell, 27:550-561, 2007
11) Bianchi A & Shore D:Increased association of telomerase with short telomeres in yeast. Genes Dev, 21:1726-1730, 2007
12) Zhao Y, et al:Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell, 138:463-475, 2009
13) Greider CW:Regulating telomere length from the inside out:the replication fork model. Genes Dev, 30:1483-1491, 2016
14) Nandakumar J, et al:The TEL patch of telomere protein TPP1 mediates telomerase recruitment and processivity. Nature, 492:285-289, 2012
15) Schmidt JC, et al:Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres. Cell, 166:1188-1197. e9, 2016
16) Zhang Y, et al:Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci USA, 110:5457-5462, 2013
17) Hirai Y, et al:NEK6-mediated phosphorylation of human TPP1 regulates telomere length through telomerase recruitment. Genes Cells, 21:874-889, 2016
18) Wang F, et al:The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature, 445:506-510, 2007
P.210 掲載の参考文献
1) Kuma A, et al:The role of autophagy during the early neonatal starvation period. Nature, 432:1032-1036, 2004
2) Hara T, et al:Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441:885-889, 2006
3) Komatsu M, et al:Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell, 131:1149-1163, 2007
4) Rogov V, et al:Interactions between autophagyr eceptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell, 53:167-178, 2014
5) Mizushima N, et al:The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27:107-132, 2011
6) Itakura E, et al:The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell, 151:1256-1269, 2012
7) Takamura A, et al:Autophagy-deficient mice develop multiple liver tumors. Genes Dev, 25:795-800, 2011
8) Inami Y, et al:Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol, 193:275-284, 2011
9) Guo JY, et al:Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev, 25:460-470, 2011
10) Rao S, et al:A dual role for autophagy in a murine model of lung cancer. Nat Commun, 5:3056, 2014
11) Strohecker AM, et al:Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov, 3:1272-1285, 2013
12) Karsli-Uzunbas G, et al:Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov, 4:914-927, 2014
13) Rosenfeldt MT, et al:p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504:296-300, 2013
14) Yang A, et al:Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov, 4:905-913, 2014
15) Rosenfeldt MT, et al:PTEN deficiency permits the formation of pancreatic cancer in the absence of autophagy. Cell Death Differ, 24:1303-1304, 2017
16) Levy J, et al:Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat Cell Biol, 17:1062-1073, 2015
17) Santanam U, et al:Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev, 30:399-407, 2016
18) Xie X, et al:Atg7 Overcomes Senescence and Promotes Growth of BrafV600E-Driven Melanoma. Cancer Discov, 5:410-423, 2015
19) Gammoh N, et al:Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy, 12:1431-1439, 2016
20) Amaravadi R, et al:Recent insights into the function of autophagy in cancer. Genes Dev, 30:1913-1930, 2016
21) Brosens LA, et al:Pancreatic adenocarcinoma pathology:changing "landscape". J Gastrointest Oncol, 6:358-374, 2015
22) Lebovitz CB, et al:Cross-cancer profiling of molecular alterations within the human autophagy interaction network. Autophagy, 11:1668-1687, 2015
23) Yang S, et al:Pancreatic cancers require autophagy for tumor growth. Genes Dev, 25:717-729, 2011
24) Komatsu M, et al:The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12:213-223, 2010
25) Saito T, et al:p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat Commun, 7:12030, 2016
26) Umemura A, et al:p62, Upregulated during Preneoplasia, Induces Hepatocellular Carcinogenesis by Maintaining Survival of Stressed HCC-Initiating Cells. Cancer Cell, 29:935-948, 2016
27) Rabinowitz JD & White E:Autophagy and metabolism. Science, 330:1344-1348, 2010
28) Guo JY, et al:Autophagy provides metabolic substratesto maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev, 30:1704-1717, 2016
29) Settembre C, et al:TFEB links autophagy to lysosomal biogenesis. Science, 332:1429-1433, 2011
30) Perera RM, et al:Transcriptional control of autophagy-lysosome function drives pancreatic cancer metabolism. Nature, 524:361-365, 2015
31) Sousa CM, et al:Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 536:479-483, 2016
32) Katheder NS, et al:Microenvironmental autophagy promotes tumour growth. Nature, 541:417-420, 2017
33) Levy JMM, et al:Targeting autophagy in cancer. Nat Rev Cancer, 17:528-542, 2017
34) Briceno E, et al:Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg Focus, 14:e3, 2003
35) Sotelo J, et al:Adding chloroquine to conventional treatment for glioblastoma multiforme:a randomized, double-blind, placebo-controlled trial. Ann Intern Med, 144:337-343, 2006
36) Rosenfeld MR, et al:A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy, 10:1359-1368, 2014
37) Eng CH, et al:Macroautophagy is dispensable for growth of KRAS mutant tumors and chloroquine efficacy. Proc Natl Acad Sci USA, 113:182-187, 2016
P.218 掲載の参考文献
1) Kim H, et al:Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol, 8:1348-1358, 2006
2) Villunger A, et al:p53-and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science, 302:1036-1038, 2003
3) Shibue T, et al:Integral role of Noxa in p53-mediated apoptotic response. Genes Dev, 17:2233-2238, 2003
4) Kobayashi Y & Yonehara S:Novel cell death by downregulation of eEF1A1 expression in tetraploids. Cell Death Differ, 16:139-150, 2009
5) Overholtzer M, et al:A nonapoptotic cell death process, entosis, that occurs by cell-in-cell invasion. Cell, 131:966-979, 2007
P.227 掲載の参考文献
1) Warburg O:On the origin of cancer cells. Science, 123:309-314, 1956
3) Hay N:Reprogramming glucose metabolism in cancer:can it be exploited for cancer therapy? Nat Rev Cancer, 16:635-649, 2016
4) Satoh K, et al:Global metabolic reprogramming of colorectal cancer occurs at adenoma stage and is induced by MYC. Proc Natl Acad Sci USA, 114:E7697-E7706, 2017
5) Cairns RA, et al:Regulation of cancer cell metabolism. Nat Rev Cancer, 11:85-95, 2011
6) Dang CV, et al:The interplay between MYC and HIF in cancer. Nat Rev Cancer, 8:51-56, 2008
7) Kawauchi K, et al:p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits cell transformation. Nat Cell Biol, 10:611-618, 2008
8) Vousden KH & Ryan KM:p53 and metabolism. Nat Rev Cancer, 9:691-700, 2009
9) Schofield CJ & Ratcliffe PJ:Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol, 5:343-354, 2004
10) Semenza GL:Hypoxia-inducible factors:mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci, 33:207-214, 2012
11) Gao P, et al:c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 458:762-765, 2009
12) Adam J, et al:Rare insights into cancer biology. Oncogene, 33:2547-2556, 2014
13) Peng M, et al:Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism. Science, 354:481-484, 2016
14) Chang CH, et al:Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 162:1229-1241, 2015
15) 高塚奈津子, 茶本健司:がん局所の代謝改善による免疫抑制の解除. 実験医学, 36:1468-1473, 2018
16) Brand A, et al:LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab, 24:657-671, 2016
17) Mezrich JD, et al:An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol, 185:3190-3198, 2010
18) Deaglio S, et al:Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med, 204:1257-1265, 2007
19) Keir ME, et al:PD-1 and its ligands in tolerance andimmunity. Annu Rev Immunol, 26:677-704, 2008
20) Sancho P, et al:MYC/PGC-1α Balance Determines the Metabolic Phenotype and Plasticity of Pancreatic Cancer Stem Cells. Cell Metab, 22:590-605, 2015
P.234 掲載の参考文献
1) Clarke MF, et al:Cancer stem cells--perspectives on current status and future directions:AACR Workshop on cancer stem cells. Cancer Res, 66:9339-9344, 2006
2) Ebben JD, et al:The cancer stem cell paradigm:a new understanding of tumor development and treatment. Expert Opin Ther Targets, 14:621-632, 2010
3) Quintana E, et al:Efficient tumour formation by single human melanoma cells. Nature, 456:593-598, 2008
4) Zheng H, et al:Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol, 73:427-437, 2008
5) Kalluri R & Weinberg RA:The basics of epithelial-mesenchymal transition. J Clin Invest, 119:1420-1428, 2009
6) Mani SA, et al:The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133:704-715, 2008
7) Santisteban M, et al:Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res, 69:2887-2895, 2009
8) Tsuji T, et al:Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res, 69:7135-7139, 2009
9) Sato R, et al:Concise Review:Stem Cells and Epithelial-Mesenchymal Transition in Cancer:Biological Implications and Therapeutic Targets. Stem Cells, 34:1997-2007, 2016
P.240 掲載の参考文献
2) Rajagopalan H, et al:The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer, 3:695-701, 2003
3) Leggett B & Whitehall V:Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology, 138:2088-2100, 2010
4) Toyota M, et al:CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA, 96:8681-8686, 1999
5) Markowitz SD & Bertagnolli MM:Molecular origins of cancer:Molecular basis of colorectal cancer. N Engl J Med, 361:2449-2460, 2009
6) Cancer Genome Atlas Network.:Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487:330-337, 2012
7) Liu Y, et al:Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell, 33:721-735. e8, 2018
8) Guinney J, et al:The consensus molecular subtypes of colorectal cancer. Nat Med, 21:1350-1356, 2015
9) Morales CP, et al:Hallmarks of cancer progression in Barrett's oesophagus. Lancet, 360:1587-1589, 2002
10) Weaver JMJ, et al:Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet, 46:837-843, 2014
11) Wang K, et al:Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet, 46:573-582, 2014
12) Australian Pancreatic Cancer Genome Initiative.:Whole genomes redefine the mutational landscape of pancreatic cancer. Nature, 518:495-501, 2015
13) Furukawa T, et al:Distinct progression pathways involving the dysfunction of DUSP6/MKP-3 in pancreatic intraepithelial neoplasia and intraductal papillary-mucinous neoplasms of the pancreas. Mod Pathol, 18:1034-1042, 2005
14) Furukawa T, et al:Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci Rep, 1:161, 2011
15) Wu J, et al:Whole-exome sequencing of neoplastic cysts of the pancreas reveals recurrent mutations in components of ubiquitin-dependent pathways. Proc Natl Acad Sci USA, 108:21188-21193, 2011

第5章 がんの悪性化 : 浸潤と転移

P.250 掲載の参考文献
1) Buccione R, et al:Invadopodia:specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev, 28:137-149, 2009
2) Yamaguchi H, et al:Cell migration in tumors. Curr Opin Cell Biol, 17:559-564, 2005
3) Yilmaz M & Christofori G:Mechanisms of motility in metastasizing cells. Mol Cancer Res, 8:629-642, 2010
4) Mitra SK & Schlaepfer DD:Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol, 18:516-523, 2006
5) Pollard TD & Borisy GG:Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112:453-465, 2003
6) Mogilner A & Keren K:The shape of motile cells. Curr Biol, 19:R762-R771, 2009
7) Kessenbrock K, et al:Matrix metalloproteinases:regulators of the tumor microenvironment. Cell, 141:52-67, 2010
8) Itoh Y & Seiki M:MT 1 -MMP:a potent modifier of pericellular microenvironment. J Cell Physiol, 206:1-8, 2006
9) Hoshino D, et al:Signaling inputs to invadopodia and podosomes. J Cell Sci, 126:2979-2989, 2013
10) Hoshino D, et al:Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep, 5:1159-1168, 2013
P.260 掲載の参考文献
1) Dumont N & Arteaga CL:Targeting the TGF beta signaling network in human neoplasia. Cancer Cell, 3:531-536, 2003
2) Wyckoff JB, et al:Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res, 67:2649-2656, 2007
3) Rorth P:Collective cell migration. Annu Rev Cell Dev Biol, 25:407-429, 2009
4) Psaila B & Lyden D:The metastatic niche:adapting the foreign soil. Nat Rev Cancer, 9:285-293, 2009
5) Fischer KR, et al:Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature, 527:472-476, 2015
6) Zheng X, et al:Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature, 527:525-530, 2015
7) Takai Y, et al:The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu Rev Cell Dev Biol, 24:309-342, 2008
8) Kawano S, et al:Silencing of ErbB3/ErbB2 signaling by immunoglobulin-like Necl-2. J Biol Chem, 284:23793-23805, 2009
9) Sugiyama H, et al:Interaction of Necl-4/CADM4 with ErbB3 and integrin α6 β4 and inhibition of ErbB2/ErbB3 signaling and hemidesmosome disassembly. Genes Cells, 18:519-528, 2013
10) Mizutani K, et al:Nectin-like molecule-4/cell adhesion molecule 4 inhibits the ligand-induced dimerization of ErbB3 with ErbB2. Sci Rep, 7:11375, 2017
11) Leptin M:twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev, 5:1568-1576, 1991
12) Yang MH, et al:Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol, 12:982-992, 2010
13) Sanchez-Tillo E, et al:ZEB1 represses E-cadherin and induces an EMT by recruiting the SWI/SNF chromatin-remodeling protein BRG1. Oncogene, 29:3490-3500, 2010
14) Shimono Y, et al:Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 138:592-603, 2009
15) Mani SA, et al:The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133:704-715, 2008
16) Puisieux A, et al:Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol, 16:488-494, 2014
17) Terry S, et al:New insights into the role of EMT intumor immune escape. Mol Oncol, 11:824-846, 2017
18) Nieto MA, et al:EMT:2016. Cell, 166:21-45, 2016
P.271 掲載の参考文献
1) Avraamides CJ, et al:Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer, 8:604-617, 2008
2) 「がん微小環境と標的治療」(宮園浩平/監, 高倉伸幸, 他/編), 羊土社, 2015
3) Welti J, et al:Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J Clin Invest, 123:3190-3200, 2013
4) Shibuya M & Claesson-Welsh L:Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res, 312:549-560, 2006
5) Sato Y:Delta-like 4 and vasohibin 1:two endothelium-produced negative regulators of angiogenesis with distinctive roles. Eur Cytokine Netw, 20:220-224, 2009
6) Jain RK:Normalization of tumor vasculature:an emerging concept in antiangiogenic therapy. Science, 307:58-62, 2005
7) Missiaen R, et al:The reciprocal function and regulation of tumor vessels and immune cells offers new therapeutic opportunities in cancer. Semin Cancer Biol, 52:107-116, 2018
8) Xiao L & Dudley AC:Fine-tuning vascular fate during endothelial-mesenchymal transition. J Pathol, 241:25-35, 2017
9) Stacker SA, et al:Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer, 14:159-172, 2014
P.279 掲載の参考文献
1) Aggarwal BB, et al:Inflammation and cancer:how hot is the link? Biochem Pharmacol, 72:1605-1621, 2006
2) Lin WW & Karin M:A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest, 117:1175-1183, 2007
3) Apte RN & Voronov E:Is interleukin-1 a good or bad 'guy' in tumor immunobiology and immunotherapy? Immunol Rev, 222:222-241, 2008
4) Dinarello CA:Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev, 29:317-329, 2010
5) Shinko D, et al:Cancer-Related Systemic Inflammation:The Challenges and Therapeutic Opportunities for Personalized Medicine. Clin Pharmacol Ther, 102:599-610, 2017
6) Setrerrahmane S & Xu H:Tumor-related interleukins:old validated targets for new anti-cancer drug development. Mol Cancer, 16:153, 2017
7) CANTOS Trial Group.:Effect of interleukin-1β inhibition with canakinumab on incident lung cancer inp atients with atherosclerosis:exploratory resultsfrom a randomised, double-blind, placebo-controlled trial. Lancet, 390:1833-1842, 2017
8) Galdiero MR, et al:Cancer Inflammation and Cytokines. Cold Spring Harb Perspect Biol, 10:doi:10.1101/cshperspect. a028662, 2018
9) Ono M:Molecular links between tumor angiogenesis and inflammation:inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci, 99:1501-1506, 2008
10) Costa C, et al:Angiogenesis and chronic inflammation:cause or consequence? Angiogenesis, 10:149-166, 2007
11) Qian BZ & Pollard JW:Macrophage diversity enhances tumor progression and metastasis. Cell, 141:39-51, 2010
12) Pollard JW:Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 4:71-78, 2004
13) Torisu H, et al:Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma:possible involvement of TNFalpha and IL-1alpha. Int J Cancer, 85:182-188, 2000
14) Nakao S, et al:Infiltration of COX-2-expressing macrophages is a prerequisite for IL-1 beta-induced neovascularization and tumor growth. J Clin Invest, 115:2979-2991, 2005
15) Watari K, et al:Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages. PLoS One, 9:e99568, 2014
16) Watari K, et al:Role of macrophages in inflammatory lymphangiogenesis:Enhanced production of vascular endothelial growth factor C and D through NF-kappaB activation. Biochem Biophys ResCommun, 377:826-831, 2008
P.288 掲載の参考文献
1) Iwakawa R, et al:Association of p16 homozygous deletions with clinicopathologic characteristics and EGFR/KRAS/p53 mutations in lung adenocarcinoma. Clin Cancer Res, 14:3746-3753, 2008
2) Hoshino A, et al:Tumour exosome integrins determine organotropic metastasis. Nature, 527:329-335, 2015
3) Hamidi H & Ivaska J:Every step of the way:integrins in cancer progression and metastasis. Nat Rev Cancer, 18:533-548, 2018
4) 「The biology of Cancer」(Weinberg RA), Garland Science, 2008
5) Kalluri R & Weinberg RA:The basics of epithelial mesenchymal transition. J Clin Invest, 119:1420-1428, 2009
6) Brabletz T, et al:EMT in cancer. Nat Rev Cancer, 18:128-134, 2018
7) Yokota J:Tumor progression and metastasis. Carcinogenesis, 21:497-503, 2000
8) Visvader JE & Lindeman GJ:Cancer stem cells in solid tumours:accumulating evidence and unresolved questions. Nat Rev Cancer, 8:755-768, 2008
9) Turajlic S & Swanton C:Metastasis as an evolutionary process. Science, 352:169-175, 2016
10) Bakhoum SF, et al:Chromosomal instability drives metastasis through a cytosolic DNA response. Nature, 553:467-472, 2018
11) Eilers M & Eisenman RN:Myc's broad reach. Genes Dev, 22:2755-2766, 2008
12) Hill R & Wu H:PTEN, stem cells, and cancer stem cells. J Biol Chem, 284:11755-11759, 2009
13) Kogan-Sakin I, et al:Mutant p53(R175H)upregulates Twist1 expression and promotes epithelial-mesenchymal transition in immortalized prostate cells. Cell Death Differ, 18:271-281, 2011
14) Tapia N & Scholer HR:p53 connects tumorigenesis and reprogramming to pluripotency. J Exp Med, 207:2045-2048, 2010
15) Meyerson M, et al:Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet, 11:685-696, 2010
16) Stephens PJ, et al:Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144:27-40, 2011
17) Turajlic S, et al:Tracking Cancer Evolution Reveals Constrained Routes to Metastases:TRACERx Renal. Cell, 173:581-594. e12, 2018

第6章 がんと免疫

P.299 掲載の参考文献
1) van der Bruggen P, et al:A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science, 254:1643-1647, 1991
2) Van den Eynde BJ & van der Bruggen P:T cell defined tumor antigens. Curr Opin Immunol, 9:684-693, 1997
3) van der Bruggen P et al:Peptide Database. 2001(http://www.cancerimmunity.org/peptidedatabase/Tcellepitopes.htm)
4) Dunn GP, et al:The three Es of cancer immunoediting. Annu Rev Immunol, 22:329-360, 2004
6) Snyder A, et al:Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med, 371:2189-2199, 2014
7) Le DT, et al:PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med, 372:2509-2520, 2015
8) Wang RF:Tumor antigens discovery:perspectives for cancer therapy. Mol Med, 3:716-731, 1997
9) Cheever MA, et al:The prioritization of cancer antigens:a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res, 15:5323-5337, 2009
10) Caballero OL & Chen YT:Cancer/testis(CT)antigens:potential targets for immunotherapy. Cancer Sci, 100:2014-2021, 2009
11) Almeida LG, et al:CTdatabase:a knowledge-base of high-throughput and curated data on cancer-testis antigens. Nucleic Acids Res, 37:D816-D819, 2009
12) Neller MA, et al:Antigens for cancer immunotherapy. Semin Immunol, 20:286-295, 2008
13) June CH:Adoptive T cell therapy for cancer in the clinic. J Clin Invest, 117:1466-1476, 2007
14) Dudley ME, et al:Adoptive cell therapy for patients with metastatic melanoma:evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol, 26:5233-5239, 2008
15) Hawkins RE, et al:Development of adoptive cell therapy for cancer:a clinical perspective. Hum Gene Ther, 21:665-672, 2010
16) Brenner MK & Heslop HE:Adoptive T cell therapy of cancer. Curr Opin Immunol, 22:251-257, 2010
17) Morgan RA, et al:Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314:126-129, 2006
18) Johnson LA, et al:Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 114:535-546, 2009
19) Parkhurst MR, et al:T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther, 19:620-626, 2011
20) Robbins PF, et al:Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol, 29:917-924, 2011
21) Kageyama S, et al:Cytokine Release Syndrome and Tumor Responses in a First-in-Man Trial of a Novel Affinity-Enhanced TCR-Gene Transduced T Cell Transfer Targeting NY-ESO-1 Antigen. 58th American Society of Hematology Annual Meeting & Exposition 2017
22) Bendle GM, et al:Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat Med, 16:565-70, 1p following 570, 2010
23) Okamoto S, et al:Improved expression and reactivity of transduced tumor-specific TCRs in human lymphocytes by specific silencing of endogenous TCR. Cancer Res, 69:9003-9011, 2009
24) Sadelain M, et al:The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol, 21:215-223, 2009
25) Maude SL, et al:Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med, 371:1507-1517, 2014
26) Rosenberg SA & Restifo NP:Adoptive cell transfer as personalized immunotherapy for human cancer. Science, 348:62-68, 2015
P.314 掲載の参考文献
1) Cytokines and cytokine receptors. 「Clinical Immunology」pp138-171, MOSBY, 2008
2) Miller JS, et al: 'First-in-human' phase I dose escalation trial of IL-15N72D/IL-15R α-Fc superagonist complex(ALT-803)demonstrates immune activation with anti-tumor activity in patients with relapsed hematological malignancy. blood, 126:1957, 2015
3) Shah JJ, et al:Siltuximab(CNTO 328)with lenalidomide, bortezomib and dexamethasone in newly diagnosed, previously untreated multiple myeloma:an open-label phase I trial. Blood Cancer J, 6:e396, 2016
4) Norelli M, et al:Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med, 24:739-748, 2018
5) Kim HJ & Cantor H:CD4 T-cell subsets and tumor immunity:the helpful and the not-so-helpful. Cancer Immunol Res, 2:91-98, 2014
6) Martin-Orozco N, et al:T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity, 31:787-798, 2009
7) Mantovani A, et al:Cancer-related inflammation. Nature, 454:436-444, 2008
8) Balkwill F & Mantovani A:Inflammation and cancer:back to Virchow? Lancet, 357:539-545, 2001
9) Germano G, et al:Cytokines as a key component of cancer-related inflammation. Cytokine, 43:374-379, 2008
10) El-Omar EM, et al:The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature, 412:99, 2001
11) Klein B, et al:Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood, 73:517-526, 1989
12) 「Clinical Immunology 5th Edition」(Rich R, , et al, eds), Elsevier, 2018
13) Dranoff G:Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 4:11-22, 2004
14) Gao J, et al:Loss of IFN-γ Pathway Genes in Tumor Cells as a Mechanism of Resistance to Anti-CTLA-4 Therapy. Cell, 167:397-404. e9, 2016
15) Zaretsky JM, et al:Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med, 375:819-829, 2016
16) Todd MB, et al:A first-in-human study of pegylated recombinant human IL-10(AM0010), daily administered for four months in selected advanced solid tumors. J Clin Oncol, 32:15 suppl tps3126, 2014
17) Naing A, et al:Safety, Antitumor Activity, and Immune Activation of Pegylated Recombinant Human Interleukin-10(AM0010)in Patients With Advanced Solid Tumors. J Clin Oncol, 34:3562-3569, 2016
18) Kaushansky K:Lineage-specific hematopoietic growth factors. N Engl J Med, 354:2034-2045, 2006
19) Balkwill F:Cancer and the chemokine network. Nat Rev Cancer, 4:540-550, 2004
20) Manes S, et al:CCR5 expression influences the progression of human breast cancer in a p53-dependent manner. J Exp Med, 198:1381-1389, 2003
21) Ishida T, et al:Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma:its close association with skin involvement and unfavorable outcome. Clin Cancer Res, 9:3625-3634, 2003
22) Lee CC, et al:Tumor-Associated Macrophage:Its Role in Tumor Angiogenesis. J Cancer Molecules, 2:135-140, 2006
23) Strieter RM, et al:The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J Biol Chem, 270:27348-27357, 1995
24) Arenberg DA, et al:Interferon-gamma-inducible protein 10(IP-10)is an angiostatic factor that inhibits human non-small cell lung cancer(NSCLC)tumorigenesis and spontaneous metastases. J Exp Med, 184:981-992, 1996
25) Peled A, et al:Development of novel CXCR4-based therapeutics. Expert Opin Investig Drugs, 21:341-353, 2012
26) Yamamoto K, et al:Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol, 28:1591-1598, 2010
27) Jacobs JF, et al:Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment:a phase I/II study in metastatic melanoma patients. Clin Cancer Res, 16:5067-5078, 2010
28) Jacobs JF, et al:Regulatory T cells in melanoma:the final hurdle towards effective immunotherapy? Lancet Oncol, 13:e32-e42, 2012
29) Ishida T, et al:Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res, 66:5716-5722, 2006
30) Ketcham JM, et al:CCR4 Antagonists Inhibit Treg Trafficking into the Tumor Microenvironment. ACS Med Chem Lett, 9:953-955, 2018
31) Ishida T, et al:Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma:its close association with skin involvement and unfavorable outcome. Clin Cancer Res, 9:3625-3634, 2003
32) Ishida T, et al:Stevens-Johnson Syndrome associated with mogamulizumab treatment of adult T-cell leukemia/lymphoma. Cancer Sci, 104:647-650, 2013
33) Kurose K, et al:Phase Ia Study of FoxP3 + CD4 Treg Depletion by Infusion of a Humanized Anti-CCR4 Antibody, KW-0761, in Cancer Patients. Clin Cancer Res, 21:4327-4336, 2015
P.324 掲載の参考文献
1) 「がん免疫療法 腫瘍免疫学の最新知見から治療法のアップデートまで」(河上 裕/編), 実験医学増刊号, 羊土社, 2016
2) Chen DS & Mellman I:Elements of cancer immunity and the cancer-immune set point. Nature, 541:321-330, 2017
3) Yaguchi T & Kawakami Y:Cancer-induced heterogeneous immunosuppressive tumor microenvironments and their personalized modulation. Int Immunol, 28:393-399, 2016
4) Kawakami Y, et al:Improvement of cancer immunotherapy by combining molecular targeted therapy. Front Oncol, 3:136, 2013
5) Khalil DN, et al:The future of cancer treatment:immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol, 13:273-290, 2016
6) Weber JS, et al:Management of Adverse Events Following Treatment With Anti-Programmed Death-1 Agents. Oncologist, 21:1230-1240, 2016
7) 河上 裕:腫瘍免疫. 「標準免疫学 第3版」(谷口 克/監, 宮坂昌之, 小安重夫/編), 医学書院, 2013
8) 「The Biology of Cancer 2nd edition」(Weinberg RA, eds), Garland Science, 2013

第7章 がんの分子標的治療

P.331 掲載の参考文献
1) Hochhaus A, et al:Long-Term Outcomes of ImatinibTreatment for Chronic Myeloid Leukemia. N Engl J Med, 376:917-927, 2017
2) Cortes JE, et al:Final 5-Year Study Results of DASISION:The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol, 34:2333-2340, 2016
3) Hochhaus A, et al:Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase:5-year update of the randomized ENESTnd trial. Leukemia, 30:1044-1054, 2016
4) Quintas-Cardama A & Cortes J:Molecular biology of bcr-abl 1-positive chronic myeloid leukemia. Blood, 113:1619-1630, 2009
5) Shah NP, et al:Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib(STI571)in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell, 2:117-125, 2002
6) White DL, et al:Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica, 97:907-914, 2012
7) Krause DS & Van Etten RA:Tyrosine kinases as targets for cancer therapy. N Engl J Med, 353:172-187, 2005
8) Valent P:Emerging stem cell concepts for imatinib-resistant chronic myeloid leukaemia:implications for the biology, management, and therapy of the disease. Br J Haematol, 142:361-378, 2008
9) Kim T, et al:Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood, 129:38-47, 2017
10) Puttini M, et al:In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl + neoplastic cells. Cancer Res, 66:11314-11322, 2006
11) Cortes JE, et al:A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med, 369:1783-1796, 2013
12) Kiyoi H & Naoe T:Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation. Int J Hematol, 83:301-308, 2006
13) Verstraete K & Savvides SN:Extracellular assembly and activation principles of oncogenic class III receptor tyrosine kinases. Nat Rev Cancer, 12:753-766, 2012
14) Smith CC, et al:FLT3 D835 mutations confer differential resistance to type II FLT3 inhibitors. Leukemia, 29:2390-2392, 2015
15) Stone RM, et al:Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N Engl J Med, 377:454-464, 2017
16) Weisberg E, et al:Drug resistance in mutant FLT3-positive AML. Oncogene, 29:5120-5134, 2010
17) Kindler T, et al:FLT3 as a therapeutic target in AML:still challenging after all these years. Blood, 116:5089-5102, 2010
P.338 掲載の参考文献
1) Cho HS, et al:Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature, 421:756-760, 2003
2) Slamon DJ, et al:Human breast cancer:correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 235:177-182, 1987
3) Franklin MC, et al:Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell, 5:317-328, 2004
4) Nahta R, et al:Mechanisms of disease:understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol, 3:269-280, 2006
5) Lin SX, et al:Molecular therapy of breast cancer:progress and future directions. Nat Rev Endocrinol, 6:485-493, 2010
6) Hudis CA:Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med, 357:39-51, 2007
7) Pohlmann PR, et al:Resistance to Trastuzumab in Breast Cancer. Clin Cancer Res, 15:7479-7491, 2009
P.343 掲載の参考文献
1) Lynch TJ, et al:Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 350:2129-2139, 2004
2) Hirano T, et al:In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget, 6:38789-38803, 2015
3) Maemondo M, et al:Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 362:2380-2388, 2010
4) Zhou C, et al:Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer(OPTIMAL, CTONG-0802):a multicentre, open-label, randomised, phase 3 study. Lancet Oncol, 12:735-742, 2011
5) Soria JC, et al:Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med, 378:113-125, 2018
6) Van Cutsem E, et al:Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med, 360:1408-1417, 2009
7) Kobayashi S, et al:EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 352:786-792, 2005
8) Mok TS, et al:Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med, 376:629-640, 2017
P.349 掲載の参考文献
1) Hanahan D & Weinberg RA:Hallmarks of cancer:the next generation. Cell, 144:646-674, 2011
2) Ferrara N & Henzel WJ:Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun, 161:851-858, 1989
3) Ferrara N, et al:The biology of VEGF and its receptors. Nat Med, 9:669-676, 2003
4) Carmeliet P & Jain RK:Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov, 10:417-427, 2011
5) Fukumura D, et al:Enhancing cancer immunotherapy using antiangiogenics:opportunities and challenges. Nat Rev Clin Oncol, 15:325-340, 2018
6) Folkman J:Tumor angiogenesis:therapeutic implications. N Engl J Med, 285:1182-1186, 1971
P.353 掲載の参考文献
1) Soda M, et al:Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448:561-566, 2007
2) Soda M, et al:A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci USA, 105:19893-19897, 2008
3) Takeuchi K, et al:KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res, 15:3143-3149, 2009
4) Takeuchi K, et al:Multiplex reverse transcription-PCR screening for EML4-ALK fusion transcripts. Clin Cancer Res, 14:6618-6624, 2008
5) Choi YL, et al:Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res, 68:4971-4976, 2008
6) Soda M, et al:A prospective PCR-based screening for the EML4-ALK oncogene in non-small cell lung cancer. Clin Cancer Res, 18:5682-5689, 2012
7) Kwak EL, et al:Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med, 363:1693-1703, 2010
8) Choi YL, et al:EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med, 363:1734-1739, 2010
9) Seto T, et al:CH5424802(RO5424802)for patients with ALK-rearranged advanced non-small-cell lung cancer(AF-001JP study):a single-arm, open-label, phase 1-2 study. Lancet Oncol, 14:590-598, 2013
10) Shaw AT, et al:Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med, 370:1189-1197, 2014
11) Zou HY, et al:PF-06463922, an ALK/ROS1 Inhibitor, Overcomes Resistance to First and Second Generation ALK Inhibitors in Preclinical Models. Cancer Cell, 28:70-81, 2015

第8章 がんの診断と治療

P.362 掲載の参考文献
1) Schroder FH, et al:Screening and prostate-cancer mortality in a randomized European study. N Engl J Med, 360:1320-1328, 2009
2) Andriole GL, et al:Mortality results from a randomized prostate-cancer screening trial. N Engl J Med, 360:1310-1319, 2009
3) Shimada H, et al:Serum p53 antibody is a useful tumor marker in superficial esophageal squamous cell carcinoma. Cancer, 89:1677-1683, 2000
4) Qiu J, et al:Occurrence of autoantibodies to annexin I, 14-3-3 theta and LAMR1 in prediagnostic lung cancer sera. J Clin Oncol, 26:5060-5066, 2008
5) Wang X, et al:Autoantibody signatures in prostate cancer. N Engl J Med, 353:1224-1235, 2005
6) Nagrath S, et al:Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450:1235-1239, 2007
7) Kosaka N, et al:Circulating microRNA in body fluid:a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 101:2087-2092, 2010
8) Ohira M, et al:Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell, 7:337-350, 2005
9) Matsubara J, et al:Identification of a predictive biomarker for hematologic toxicities of gemcitabine. J Clin Oncol, 27:2261-2268, 2009
10) Dancey JE, et al:Guidelines for the development and incorporation of biomarker studies in early clinical trials of novel agents. Clin Cancer Res, 16:1745-1755, 2010
11) Matsubara J, et al:Reduced plasma level of CXC chemokine ligand 7 in patients with pancreatic cancer. Cancer Epidemiol Biomarkers Prev, 20:160-171, 2011
P.368 掲載の参考文献
1) 久道 茂:がん検診の科学的検証. 日本消化器がん検診学会雑誌, 47:28-34, 2009
2) 厚生労働省:平成28年国民生活基礎調査の概況. (https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa16/dl/04.pdf)
3) Shaukat A, et al:Long-term mortality after screening for colorectal cancer. N Engl J Med, 369:1106-1114, 2013
4) Morikawa T, et al:A comparison of the immunochemical fecal occult blood test and total colonoscopy in the a symptomatic population. Gastroenterology, 129:422-428, 2005
5) Koga Y, et al:New molecular diagnosis and screening methods for colorectal cancer using fecal protein, DNA and RNA. Expert Rev Mol Diagn, 14:107-120, 2014
6) Li R, et al:Diagnostic value of fecal tumor M2-pyruvate kinase for CRC screening:a systematic review and meta-analysis. Int J Cancer, 131:1837-1845, 2012
7) Tonus C, et al:Faecal pyruvate kinase isoenzyme type M2 for colorectal cancer screening:a meta-analysis. World J Gastroenterol, 18:4004-4011, 2012
8) Fujiwara Y, et al:A new chemiluminescent enzyme immunoassay for plasma tissue factor detection. Biosens J, 3:111, 2014
9) Imperiale TF, et al:Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med, 351:2704-2714, 2004
10) Smith RA, et al:Cancer screening in the United States, 2008:a review of current American Cancer Society guidelines and cancer screening issues. CA Cancer J Clin, 58:161-179, 2008
11) Imperiale TF, et al:Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med, 370:1287-1297, 2014
12) Baxter NT, et al:Microbiota-based model improves the sensitivity of fecal immunochemical test for detecting colonic lesions. Genome Med, 8:37, 2016
13) Kanaoka S, et al:Potential usefulness of detecting cyclooxygenase 2 messenger RNA in feces for colorectal cancer screening. Gastroenterology, 127:422-427, 2004
14) Link A, et al:Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev, 19:1766-1774, 2010
15) Koga Y, et al:MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res(Phila), 3:1435-1442, 2010
16) Koga Y, et al:Fecal miR-106a is a useful marker for colorectal cancer patients with false-negative results in immunochemical fecal occult blood test. Cancer Epidemiol Biomarkers Prev, 22:1844-1852, 2013
17) Chang PY, et al:MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget, 7:10663-10675, 2016
P.374 掲載の参考文献
1) Cuschieri A, et al:Patient survival after D1 and D2 resections for gastric cancer:long-term results of the MRC randomized surgical trial. Surgical Co-operative Group. Br J Cancer, 79:1522-1530, 1999
2) Bonenkamp JJ, et al:Extended lymph-node dissection for gastric cancer. N Engl J Med, 340:908-914, 1999
3) Wu CW, et al:Nodal dissection for patients with gastric cancer:a randomised controlled trial. Lancet Oncol, 7:309-315, 2006
4) Sasako M, et al:D2 lymphadenectomy alone or with para-aortic nodal dissection for gastric cancer. N Engl J Med, 359:453-462, 2008
5) Sasako M, et al:Left thoracoabdominal approach versus abdominal-transhiatal approach for gastric cancer of the cardia or subcardia:a randomised controlled trial. Lancet Oncol, 7:644-651, 2006
6) Kurokawa Y, et al:Functional outcomes after extended surgery for gastric cancer. Br J Surg, 98:239-245, 2011
7) Clinical Outcomes of Surgical Therapy Study Group:A comparison of laparoscopically assisted and open colectomy for colon cancer. N Engl J Med, 350:2050-2059, 2004
P.385 掲載の参考文献
1) Tsuji H et al:Clinical results of fractionated proton therapy. Int. J. Radiat. Oncol. Biol. Phys., 25:49-60, 1993
2) Okada T et al:Carbon ion radiotherapy:clinical experiences at National Institute of Radiological Science(NIRS). J. Radiat. Res., 51:355-364, 2010
3) Kanai T et al:Biophysical characteristics of HIMAC clinical irradiation system for heavy-ion radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 44:201-210, 1999
4) Ando K et al:Mouse skin reactions following fractionated irradiation with carbon ions. Int. J. Radiat. Biol., 74:129-138, 1998
5) Minohara S et al:Recent innovations in carbon ion radiotherapy. J. Radiat. Res., 51:385-392, 2010
6) Tsuji H et al:Carbon-ion radiotherapy for locally advanced or unfavorably located choroidal melanoma:a Phase I/II dose-escalation study.Int. J.Radiat. Oncol. Biol. Phys., 67:857-862, 2007
7) Kamada, T et al:Efficacy and safety of carbon ion radiotherapy in bone and soft tissue sarcomas. J.Clin. Oncol., 20:4466-4471, 2002
8) Mizoe, J E et al:Dose escalation study of carbon ion radiotherapy for locally advanced head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys., 60:358-364, 2004
9) Kamada T et al:Carbon ion radiotherapy in Japan:an assessment of 20 years of clinical experience. Lancet Oncol., 16(2):e92-e100, 2015
10) Yamada S et al:Carbon-Ion Radiation Therapy for Pelvic Recurrence of Rectal Cancer. Int J. Radiat. Oncol. Biol. Phys., 96:93-101, 2016
11) Kawashiro S et al:Multi-institutional Study of Carbon-ion Radiotherapy for Locally Advanced Pancreatic Cancer:Japan Carbon-ion Radiation Oncology Study Group(J-CROS)Study 1403 Pancreas.Int. J. Radiat. Oncol. Biol. Phys., 101:1212-1221, 2018
P.394 掲載の参考文献
1) sysmex:個別化医療(http://www.sysmex.co.jp/rd/vision_directions/personalized-medicine.html)
2) Collins DC, et al:Towards Precision Medicine in the Clinic:From Biomarker Discovery to Novel Therapeutics. Trends Pharmacol Sci, 38:25-40, 2017
3) 生命科学教育用画像集:サンガー法の概略(http://cslsdb.c.u-tokyo.ac.jp/search/detail?image_repository_id=942)
4) 北海道システム・サイエンス株式会社:次世代シーケンス解析サービス(https://www.hssnet.co.jp/2/2_3_10_1.html)
5) National Human Genome Research Institute:The Cost of Sequencing a Human Genome(https://www.genome.gov/27565109/the-cost-of-sequencing-ahuman-genome/)
6) 柴田龍弘:がんゲノムを解読して得られた成果, 未読領域のもつ大きな可能性. 実験医学, 32:1838-1845, 2014
7) 片岡圭亮:がんゲノムデータ解析で何がわかるのか?実験医学, 34:2636-2641, 2016
8) 土原一哉:ポストゲノム時代の個別化治療を目指した新しい取り組み1. 次世代シークエンス技術を応用した個別医療は可能か?. 最新医学, 67:2791-2798, 2012
9) Roychowdhury S, et al:Personalized oncology through integrative high-throughput sequencing:a pilot study. Sci Transl Med, 3:111ra121, 2011
10) Neumann MHD, et al:ctDNA and CTCs in Liquid Biopsy-Current Status and Where We Need to Progress. Comput Struct Biotechnol J, 16:190-195, 2018
11) Ohtsu A, et al:[Current Status and Future Perspectives of SCRUM-Japan]. Gan To Kagaku Ryoho, 44:621-626, 2017
12) Bando H:The current status and problems confronted in delivering precision medicine in Japan and Europe. Curr Probl Cancer, 41:166-175, 2017
13) Von Hoff DD, et al:Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol, 28:4877-4883, 2010
14) Tsimberidou AM, et al:Personalized medicine in a phase I clinical trials program:the MD Anderson Cancer Center initiative. Clin Cancer Res, 18:6373-6383, 2012
P.403 掲載の参考文献
1) Valadi H, et al:Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 9:654-659, 2007
2) Pegtel DM, et al:Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci USA, 107:6328-6333, 2010
3) Zhang Y, et al:Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell, 39:133-144, 2010
5) Trajkovic K, et al:Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science, 319:1244-1247, 2008
6) Lespagnol A, et al:Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ, 15:1723-1733, 2008
7) Kosaka N, et al:Neutral sphingomyelinase 2(nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem, 288:10849-10859, 2013
8) Clayton A, et al:Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol, 180:7249-7258, 2008
9) Webber J, et al:Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res, 70:9621-9630, 2010
10) Yokoi A, et al:Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nat Commun, 8:14470, 2017
11) Tominaga N, et al:Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun, 6:6716, 2015
13) Peinado H, et al:Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med, 18:883-891, 2012
14) Nishida-Aoki N, et al:Disruption of Circulating Extracellular Vesicles as a Novel Therapeutic Strategy against Cancer Metastasis. Mol Ther, 25:181-191, 2017
P.410 掲載の参考文献
1) Matsumura Y & Maeda H:A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 46:6387-6392, 1986
2) Duncan R:The dawning era of polymer therapeutics. Nat Rev Drug Discov, 2:347-360, 2003
3) Hosokawa S, et al:Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner. Br J Cancer, 89:1545-1551, 2003
4) Matsumura Y, et al:Phase I and pharmacokinetic study of MCC-465, a doxorubicin(DXR)encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol, 15:517-525, 2004
5) Jain RK:A new target for tumor therapy. N Engl J Med, 360:2669-2671, 2009
6) Olive KP, et al:Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324:1457-1461, 2009
7) 「Clinique medicale de l'Hotel-Dieu de Paris Vol.3」(Trousseau A), JB Balliere et Fils, 1865
8) Matsumura Y, et al:Involvement of the kinin-gener-ating cascade in enhanced vascular permeability in tumor tissue. Jpn J Cancer Res, 79:1327-1334, 1988
9) McCarty JH, et al:Defective associations between blood vessels and brain parenchyma lead to cerebral hemorrhage in mice lacking alphav integrins. Mol Cell Biol, 22:7667-7677, 2002
10) Stein PD, et al:Incidence of venous thromboembolismin patients hospitalized with cancer. Am J Med, 119:60-68, 2006
11) Saito Y, et al:The inhibition of pancreatic cancer invasion-metastasis cascade in both cellular signal and blood coagulation cascade of tissue factor by its neutralisation antibody. Eur J Cancer, 47:2230-2239, 2011
12) Matsumura Y:Cancer stromal targeting(CAST)therapy. Adv Drug Deliv Rev, 64:710-719, 2012
13) Yasunaga M, et al:New concept of cytotoxic immunoconjugate therapy targeting cancer-induced fibrin clots. Cancer Sci, 102:1396-1402, 2011
14) Hisada Y, et al:Discovery of an uncovered region in fibrin clots and its clinical significance. Sci Rep, 3:2604, 2013
15) Fuchigami H, et al:Chemotherapy payload of anti-insoluble fibrin antibody-drug conjugate is released specifically upon binding to fibrin. Sci Rep, 8:14211, 2018
P.421 掲載の参考文献
1) 厚生労働省:遺伝子治療等臨床研究に関する指針(https://www.mhlw.go.jp/file/05-Shingikai-10601000-Daijinkanboukouseikagakuka-Kouseikagakuka/0000162748.pdf)
2) Czerwinska P, et al:Gene delivery methods and genome editing of human pluripotent stem cells. Rep Pract Oncol Radiother, 24:180-187, 2019
3) Vannucci L, et al:Viral vectors:a look back and ahead on gene transfer technology. New Microbiol, 36:1-22, 2013
4) Hardee CL, et al:Advances in Non-Viral DNA Vectors for Gene Therapy. Genes(Basel), 8:doi:10.3390/genes8020065, 2017
5) Gene Therapy Clinical Trial worldwide(http://www.abedia.com/wiley/)
6) 谷憲三朗:遺伝子治療の歴史と遺伝子治療の国内外の現状. 医学のあゆみ, 265:5-12, 2018
7) Friedmann T & Roblin R:Gene therapy for human genetic disease? Science, 175:949-955, 1972
8) Terheggen HG, et al:Unsuccessful trial of gene replacement in arginase deficiency. Z Kinderheilkd, 119:1-3, 1975
9) 富山朔二:遺伝子工学の問題点. 高分子, 24:314-318, 1975
10) 大野典也:第2節 アメリカ・ヨーロッパ「遺伝子治療開発研究ハンドブック」(日本遺伝子治療学会/編), pp807-839, エヌ・ティー・エス, 1999
11) Sun M:Cline loses two NIH grants. Science, 214:1220, 1981
12) Culliton BJ:Gene therapy:research in public. Science, 227:493-496, 1985
13) Rosenberg SA, et al:Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med, 323:570-578, 1990
14) Blaese RM, et al:T lymphocyte-directed gene therapy for ADA-SCID:initial trial results after 4 years. Science, 270:475-480, 1995
15) Bonini C, et al:HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science, 276:1719-1724, 1997
16) Le Doux JM, et al:Kinetics of retrovirus production and decay. Biotechnol Bioeng, 63:654-662, 1999
17) Dunbar CE, et al:Gene therapy comes of age. Science, 359:doi:10. 1126/science. aan4672, 2018
18) Raper SE, et al:Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab, 80:148-158, 2003
19) Hacein-Bey-Abina S, et al:LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science, 302:415-419, 2003
20) Hacein-Bey-Abina S, et al:A modified γ-retrovirus vector for X-linked severe combined immunodeficiency. N Engl J Med, 371:1407-1417, 2014
21) Fischer A, et al:Gene therapy for primary immunodeficiencies. Clin Genet, 88:507-515, 2015
22) undefined, et al:Germline gene-editing research needs rules. Nature, 567:145, 2019
23) Colella P, et al:Emerging Issues in AAV-Mediated In Vivo Gene Therapy. Mol Ther Methods Clin Dev, 8:87-104, 2018
24) 厚生労働省:研究に関する指針について(http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/hokabunya/kenkyujigyou/i-kenkyu/index.html)
25) Paucek RD, et al:The Cellular Immunotherapy Revolution:Arming the Immune System for Precision Therapy. Trends Immunol, 40:292-309, 2019
26) June CH, et al:CAR T cell immunotherapy for human cancer. Science, 359:1361-1365, 2018
27) Clinical Trials. gov(https://clinicaltrials.gov/)
28) Martinez-Quintanilla J, et al:Oncolytic viruses:overcoming translational challenges. J Clin Invest, 130:1407-1418, 2019
29) Inoue H & Tani K:Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ, 21:39-49, 2014
P.428 掲載の参考文献
1) NIH:Vision for the Cohort and the Precision Medicine Initiative. (https://www.nih.gov/sites/default/files/research-training/initiatives/pmi/pmi-presentationvision-cohort-precision-medicine-initiative.pdf)
2) 小林真之, 東條有伸:人工知能(AI)と臨床シークエンス. 血液フロンティア, 27:1162-1165, 2017
3) IBM Watson(https://www.ibm.com/watson/jp-ja/)
4) Hinton GE, et al:ImageNet Classification with Deep Convolutional Neural Networks. Advances in neural information processing systems, 1097-1105, 2012
5) Enlitic(https://www.enlitic.com/)
6) 喜友名朝春:e-Pathologist:人工知能による病理画像解析システム. 医用画像情報学会雑誌. 34巻2号. 105-108, 2017
7) Ehteshami Bejnordi B:Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA, 318:2199-2210, 2017
8) Hipp, J & Stumpe M:Abstract PL02-01:Advancing cancer diagnostics with artificial intelligence. AACR Annual Meeting, 2018;April:14-18, 2018
9) Gulshan V, et al:Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316:2402-2410, 2016
10) DeepMind Health(https://deepmind.com/applied/deepmind-health/)
11) Esteva A, et al:Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542:115-118, 2017
12) Preparing for the Future of Artificial Intelligence(https://obamawhitehouse.archives.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf)
13) 総務省:ICTの進化が雇用と働き方に及ぼす影響に関する調査研究」(平成28年)(http://www.soumu.go.jp/johotsusintokei/linkdata/h28_03_houkoku.pdf)

第9章 各組織・器官のがん生物学

P.442 掲載の参考文献
1) 国立がんセンターがん情報サービス:それぞれのがんの解説:肺がん(https://ganjoho.jp/public/cancer/lung/index.html)
2) Montoro DT, et al:A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature, 560:319-324, 2018
3) 日本肺癌学会:IV期非小細胞肺癌における薬物療法の意義とサブグループ別の治療方針. 「EBMの手法による肺癌診療ガイドライン2017年版」(https://www.haigan.gr.jp/guideline/2017/1/2/170102060100.html#s_1_2_6-0)
4) Herbst RS, et al:The biology and management of non-small cell lung cancer. Nature, 553:446-454, 2018
5) 日本肺癌学会:肺癌の分類. 「EBMの手法による肺癌診療ガイドライン2017年版」(https://www.haigan.gr.jp/guideline/2017/jo/17002017ha00.html)
6) McKay JD, et al:Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes. Nat Genet, 49:1126-1132, 2017
7) Lynch TJ, et al:Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med, 350:2129-2139, 2004
8) Paez JG, et al:EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy. Science, 304:1497-1500, 2004
9) Sordella R, et al:Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science, 305:1163-1167, 2004
10) Kosaka T, et al:Mutations of the epidermal growth factor receptor gene in lung cancer:biological and clinical implications. Cancer Res, 64:8919-8923, 2004
11) Arrieta O, et al:Updated Frequency of EGFR and KRAS Mutations in NonSmall-Cell Lung Cancer in Latin America:The Latin-American Consortium for the Investigation of Lung Cancer(CLICaP). J Thorac Oncol, 10:838-843, 2015
12) Maemondo M, et al:Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 362:2380-2388, 2010
13) Seto T, et al:Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced nons-quamous non-small-cell lung cancer harbouring EGFR mutations(JO25567):an open-label, randomised, multicentre, phase 2 study. Lancet Oncol, 15:1236-1244, 2014
14) Kudoh S, et al:Interstitial lung disease in Japanese patients with lung cancer:a cohort and nested case-control study. Am J Respir Crit Care Med, 177:1348-1357, 2008
15) Alexandrov LB, et al:Signatures of mutational processes in human cancer. Nature, 500:415-421, 2013
17) Cancer Genome Atlas Research Network:Comprehensive genomic characterization of squamous cell lung cancers. Nature, 489:519-525, 2012
18) Cancer Genome Atlas Research Network:Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511:543-550, 2014
19) George J, et al:Comprehensive genomic profiles of small cell lung cancer. Nature, 524:47-53, 2015
20) 貫和敏博. 今, 注目される呼吸器疾患治療薬:激変する肺がん治療-ドライバー変異の発見が3方向の治療戦略を展開. 医薬品医療機器レギュラトリーサイエンス, 48:802-808, 2017
21) Tian L, et al:Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature, 544:250-254, 2017
22) Saito H, et al:Erlotinib plus bevacizumab versus erlotinib alone in patients with EGFR-positive advanced non-squamous non-small-cell lung cancer(NEJ026):interim analysis of an open-label, ran-domised, multicentre, phase 3 trial. Lancet Oncol, 20:625-635, 2019
23) Yarchoan M, et al:Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl J Med, 377:2500-2501, 2017
24) Krieg C, et al:High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med, 24:144-153, 2018
25) Nakamura A, et al:Phase III study comparing gefitinib monotherapy(G)to combination therapy with gefitinib, carboplatin, and pemetrexed(GCP)for untreated patients(pts)with advanced non-small cell lung cancer(NSCLC)with EGFR mutations(NEJ009). J Clin Oncol 36, 2018(suppl;abstr 9005)
26) Socinski MA, et al:Atezolizumab for First-Line Treatment of Metastatic Nonsquamous NSCLC. N Engl J Med, 378:2288-2301, 2018
P.454 掲載の参考文献
1) Nishisho I, et al:Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science, 253:665-669, 1991
2) Steinbach G, et al:The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med, 342:1946-1952, 2000
3) Chan AT, et al:Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med, 356:2131-2142, 2007
4) Vogelstein B, et al:Genetic alterations during colorectal-tumor development. N Engl J Med, 319:525-532, 1988
5) Kudo S, et al:The problem of de novo colorectal carcinoma. Eur J Cancer, 31A:1118-1120, 1995
6) Warren S & Sommers SC:Pathogenesis of ulcerative colitis. Am J Pathol, 25:657-679, 1949
7) Wood LD, et al:The genomic landscapes of human breast and colorectal cancers. Science, 318:1108-1113, 2007
8) Lengauer C, et al:Genetic instability in colorectal cancers. Nature, 386:623-627, 1997
9) Martinez-Lopez E, et al:Allelic loss on chromosome 18q as a prognostic marker in stage II colorectal cancer. Gastroenterology, 114:1180-1187, 1998
10) Bronner CE, et al:Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature, 368:258-261, 1994
11) Samowitz WS, et al:Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology, 129:837-845, 2005
12) Karapetis CS, et al:K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med, 359:1757-1765, 2008
13) Barker N, et al:Crypt stem cells as the cells-of-origin of intestinal cancer. Nature, 457:608-611, 2009
14) Shimokawa M, et al:Visualization and targeting of LGR5 + human colon cancer stem cells. Nature, 545:187-192, 2017
15) 「The biology of Cancer」(Weinberg RA), Garland Science, 2008
16) Sveen A, et al:Colorectal Cancer Consensus Molecular Subtypes Translated to Preclinical Models Uncover Potentially Targetable Cancer Cell Dependencies. Clin Cancer Res, 24:794-806, 2018
17) Guinney J, et al:The consensus molecular subtypes of colorectal cancer. Nat Med, 21:1350-1356, 2015
P.464 掲載の参考文献
1) Japanese Gastric Cancer Association:Japanese classification of gastric carcinoma:3rd English edition. Gastric Cancer, 14:101-112, 2011
2) Yuasa Y:Control of gut differentiation and intestinal-type gastric carcinogenesis. Nat Rev Cancer, 3:592-600, 2003
3) Ferlay J, et al:Cancer incidence and mortality worldwide:sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer, 136:E359-E386, 2015
4) Tan RY & Ngeow J:Hereditary diffuse gastric cancer:What the clinician should know. World J Gastrointest Oncol, 7:153-160, 2015
5) Mocellin S, et al:Genetic variation and gastric cancer risk:a field synopsis and meta-analysis. Gut, 64:1209-1219, 2015
6) 「The Biology of Gastric Cancers」(Wang TC, et al eds), Springer, 2009
7) Katoh H & Ishikawa S:Genomic pathobiology of gastric carcinoma. Pathol Int, 67:63-71, 2017
8) Tan P & Yeoh KG:Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology, 149:1153-1162. e3, 2015
9) Cancer Genome Atlas Research Network.:Compre-hensive molecular characterization of gastric adenocarcinoma. Nature, 513:202-209, 2014
10) Baylin SB & Jones PA:A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer, 11:726-734, 2011
11) Padmanabhan N, et al:How to stomach an epigenetic insult:the gastric cancer epigenome. Nat Rev Gastroenterol Hepatol, 14:467-478, 2017
12) 秋山好光:胃がん, 「遺伝子医学MOOK エピジェネティクスと病気」(佐々木裕之/監, 中尾光善, 他/編), pp64-69, メディカルドゥ, 2013
13) Yuasa Y, et al:DNA methylation status is inversely correlated with green tea intake and physical activity in gastric cancer patients. Int J Cancer, 124:2677-2682, 2009
14) Puneet, et al:Epigenetic Mechanisms and Events in Gastric Cancer-Emerging Novel Biomarkers. Pathol Oncol Res, 24:757-770, 2018
15) Battaglin F, et al:Molecular biomarkers in gastroesophageal cancer:recent developments, current trends and future directions. Cancer Cell Int, 18:99, 2018
16) Shimada S, et al:Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastriccancer. Gut, 61:344-353, 2012
P.471 掲載の参考文献
1) Prat A & Perou CM:Deconstructing the molecular portraits of breast cancer. Mol Oncol, 5:5-23, 2011
2) Sorlie T, et al:Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA, 100:8418-8423, 2003
3) Prat A, et al:Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res, 12:R68, 2010
4) Goldhirsch A, et al:Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol, 24:2206-2223, 2013
5) Osborne CK & Schiff R:Mechanisms of endocrine resistance in breast cancer. Annu Rev Med, 62:233-247, 2011
6) Zardavas D, et al:Emerging targeted agents in metastatic breast cancer. Nat Rev Clin Oncol, 10:191-210, 2013
7) Miller TW, et al:Hyperactivation of phosphatidylinositol-3 kinase promotes escape from hormone dependence in estrogen receptor-positive human breast cancer. J Clin Invest, 120:2406-2413, 2010
8) Baselga J, et al:Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med, 366:520-529, 2012
9) Tripathy D, et al:Ribociclib(LEE011):Mechanism of Action and Clinical Impact of This Selective Cyclin-Dependent Kinase 4/6 Inhibitor in Various Solid Tumors. Clin Cancer Res, 23:3251-3262, 2017
10) Finn RS, et al:Palbociclib and Letrozole in Advanced Breast Cancer. N Engl J Med, 375:1925-1936, 2016
11) Alpelisib(ALP)+fulvestrant(FUL)for advanced breast cancer(ABC):results of the Phase 3 SOLAR-1 trial. Ann Oncol, 29:Supplement 8, 2018
12) Swain SM, et al:Pertuzumab, trastuzumab, and docetaxel in HER2-positive metastatic breast cancer. N Engl J Med, 372:724-734, 2015
13) Tamura K, et al:Trastuzumab deruxtecan(DS-8201a)in patients with advanced HER2-positivebreast cancer previously treated with trastuzumab emtansine:a dose-expansion, phase 1 study. Lancet Oncol:doi:10.1016/S1470-2045(19)30097-X, 2019
14) Loi S, et al:Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy:BIG 02-98. J Clin Oncol, 31:860-867, 2013
15) Mittendorf EA, et al:PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res, 2:361-370, 2014
16) Lehmann BD, et al:Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest, 121:2750-2767, 2011
17) Turner NC, et al:BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene, 26:2126-2132, 2007
18) Momozawa Y, et al:Germline pathogenic variants of 11 breast cancer genes in 7, 051 Japanese patients and 11,241 controls. Nat Commun, 9:4083, 2018
19) Antoniou A, et al:Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history:a combined analysis of 22 studies. Am J Hum Genet, 72:1117-1130, 2003
20) King MC, et al:Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science, 302:643-646, 2003
21) Foulkes WD, et al:Estrogen receptor status in BRCA1-and BRCA2-related breast cancer:the influence of age, grade, and histological type. Clin Cancer Res, 10:2029-2034, 2004
22) Underhill C, et al:A review of PARP inhibitors:from bench to bedside. Ann Oncol, 22:268-279, 2011
23) Robson M, et al:Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med, 377:523-533, 2017
P.481 掲載の参考文献
1) Mihaljevic AL, et al:Molecular mechanism of pancreatic cancer--understanding proliferation, invasion, and metastasis. Langenbecks Arch Surg, 395:295-308, 2010
2) Maitra A, et al:Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol, 16:902-912, 2003
3) Lowenfels AB & Maisonneuve P:Epidemiology and prevention of pancreatic cancer. Jpn J Clin Oncol, 34:238-244, 2004
4) Abraham SC, et al:Distinctive molecular genetic alterations in sporadic and familial adenomatous polyposis-associated pancreatoblastomas:frequent alterations in the APC/beta-catenin pathway and chromosome 11p. Am J Pathol, 159:1619-1627, 2001
5) Jones S, et al:Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science, 324:217, 2009
6) 「膵癌取扱い規約第7版」(日本膵臓学会/編), 金原出版, 2016
7) 「膵癌診療ガイドライン2016年版」(日本膵臓学会膵癌診療ガイドライン改訂委員会/編), 金原出版, 2016
8) NCCN Clinical Practice Guideline in Oncology. Panceratic Adenocarcinoma, 2017(https://www.nccn.org/patients/guidelines/pancreatic/files/assets/common/downloads/files/pancreatic.pdf)
9) Hruban RH, et al:An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol, 28:977-987, 2004
10) Oberstein PE & Saif MW:First-line treatment for advanced pancreatic cancer. Highlights from the "2011 ASCO Gastrointestinal Cancers Symposium". San Francisco, CA, USA. January 20-22, 2011. JOP, 12:96-100, 2011
11) Nakao A, et al:Clinical significance of carcinoma invasion of the extrapancreatic nerve plexus in pancreatic cancer. Pancreas, 12:357-361, 1996
12) Pandol S, et al:Desmoplasia of pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol, 7:S44-S47, 2009
13) Brown JM & Wilson WR:Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer, 4:437-447, 2004
14) Koong AC, et al:Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys, 48:919-922, 2000
15) Vaupel P & Hoeckel M:Predictive power of the tumor oxygenation status. Adv Exp Med Biol, 471:533-539, 1999
16) Semenza GL:Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol, 35:71-103, 2000
17) Warburg O, et al:[On growth of cancer cells in media in which glucose is replaced by galactose]. Hoppe Seylers Z Physiol Chem, 348:1686-1687, 1967
18) Onozuka H, et al:Hypoglycemic/hypoxic condition in vitro mimicking the tumor microenvironment markedly reduced the efficacy of anticancer drugs. Cancer Sci, 102:975-982, 2011
19) Izuishi K, et al:Remarkable tolerance of tumor cells to nutrient deprivation:possible new biochemical target for cancer therapy. Cancer Res, 60:6201-6207, 2000
20) Awale S, et al:Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res, 66:1751-1757, 2006
P.491 掲載の参考文献
1) Ostrom QT, et al:CBTRUS Statistical Report:Primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol, 19:v1-v88, 2017
2) Cagney DN, et al:Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy:a population-based study. Neuro Oncol, 19:1511-1521, 2017
3) 「WHO Classification of Tumours of the Central Nervous System, 4th ed」(D.N.Louis, et al, eds), WORLD HEALTH ORGANIZATION, 2016
4) 「脳腫瘍取扱い規約 第4版」(日本脳神経外科学会・日本病理学会/編), 金原出版, 2018
5) Boire A, et al:Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell, 168:1101-1113. e13, 2017
6) Narita Y & Shibui S:Trends and outcomes in the treatment of gliomas based on data during 2001-2004 from the Brain Tumor Registry of Japan. Neurol Med Chir(Tokyo), 55:286-295, 2015
7) Stupp R, et al:Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med, 352:987-996, 2005
8) Verhaak RG, et al:Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 17:98-110, 2010
9) Sturm D, et al:Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22:425-437, 2012
10) Yan H, et al:IDH1 and IDH2 mutations in gliomas. N Engl J Med, 360:765-773, 2009
11) Lathia JD, et al:Cancer stem cells in glioblastoma. Genes Dev, 29:1203-1217, 2015
12) Northcott PA, et al:The whole-genome landscape of medulloblastoma subtypes. Nature, 547:311-317, 2017
13) Pei Y, et al:An animal model of MYC-driven medulloblastoma. Cancer Cell, 21:155-167, 2012
14) Kayama T, et al:Effects of Surgery With Salvage Stereotactic Radiosurgery Versus Surgery With Whole-Brain Radiation Therapy in Patients With One to Four Brain Metastases(JCOG0504):A Phase III, Noninferiority, Randomized Controlled Trial. J Clin Oncol:JCO2018786186, 2018
15) Neman J, et al:Human breast cancer metastases to the brain display GABAergic properties in the neural niche. Proc Natl Acad Sci USA, 111:984-989, 2014
16) Kienast Y, et al:Real-time imaging reveals the single steps of brain metastasis formation. Nat Med, 16:116-122, 2010
17) Bos PD, et al:Genes that mediate breast cancer metastasis to the brain. Nature, 459:1005-1009, 2009
18) Valiente M, et al:Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156:1002-1016, 2014
19) Priego N, et al:STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med, 24:1024-1035, 2018
20) Zhang L, et al:Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527:100-104, 2015
21) Chen Q, et al:Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533:493-498, 2016
22) Tawbi HA, et al:Combined Nivolumab and Ipilimumab in Melanoma Metastatic to the Brain. N Engl J Med, 379:722-730, 2018

最近チェックした商品履歴

Loading...