心臓血管外科手術エクセレンス 3 冠動脈疾患の手術

出版社: 中山書店
著者:
発行日: 2020-03-16
分野: 臨床医学:外科  >  心臓/血管外科
ISBN: 9784521744797
電子書籍版: 2020-03-16 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

28,600 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

28,600 円(税込)

商品紹介

本巻では,冠動脈疾患とそれに関連する疾患に対する手術法を取りあげた.
冠動脈疾患に対するバイパス術としてOn-pump CABG,Conventional CABGなど,虚血性心筋症に対するDor手術,SAVE手術など,心室中隔穿孔に対するDaggett法,David-Komeda法などの手術手技に加え,ECMOや人工補助心臓についても解説した.
特設動画サイトへはQRコードから簡単にアクセスできる.

目次

  • 1 CABGにおけるFFRの意義
     CABGにおけるFFRの意義

    2 左冠動脈主幹部病変と3枝病変のエビデンス
     左冠動脈主幹部病変と3枝病変のエビデンス

    3 冠動脈バイパス術
     On-pump CABGのテクニック
     Conventional CABGのテクニック
     Off-pump CABGの視野展開のコツと落とし穴
     Off-pump CABGのテクニック
     Coversion回避のコツと落とし穴
     冠動脈吻合のコツと落とし穴
     埋没冠動脈に対するアプローチ
     びまん性冠動脈病変に対するアプローチ
     川崎病巨大冠動脈瘤に対する外科的アプローチ
     冠動脈瘤を伴う冠動静脈瘻に対するアプローチ
     再手術冠動脈バイパス術のテクニック

    4 グラフト
     グラフト選択とエビデンス
     グラフティングパターン

    5 今後の冠動脈バイパス術
     MICS CABG のテクニック:
      左小開胸
      胸骨部分正中切開
     手術支援ロボットの冠動脈バイパス術への応用
     ハイブリッド冠血行再建の方向性

    6 虚血性心筋症に対する外科的アプローチ
     左心室形成術のprosとcons
     左室形成術のテクニック:
      Dor手術
      SAVE手術
      Overlapping法
      ELIET
     虚血性僧帽弁逆流の手術適応:現在のエビデンス
     虚血性僧帽弁逆流に対する形成術

    7 心筋梗塞機械的合併症に対する手術
     心室中隔穿孔に対する手術のタイミング
     心室中隔穿孔に対する手術のテクニック:
      Daggett変法による急性期手術
      David-Komeda法
      サンドイッチ法
     左室自由壁破裂に対する手術のテクニック
     乳頭筋断裂に対する僧帽弁形成術のテクニック

    8 ECMO,補助心臓,その他
     V-A ECMO, V-V ECMO, Central ECMOの適応
     NIPRO-VAD植え込み手術
     補助人工心臓EVAHEART植え込み手術
     HeartMate II植え込み手術
     小児用補助人工心臓Berlin Heart EXCOR

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1 CABG における FFR の意義

P.8 掲載の参考文献
1) Boden WE, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007 ; 356 : 1503-16.
2) Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease : 2-year follow-up of the FAME (Fractional Flow Reserve Versus Angiography for Multivessel Evaluation) study. J Am Coll Cardiol 2010 ; 56 : 177-84.
3) De Bruyne B, et al. Fractional flow reserve-guided PCI for stable coronary artery disease. N Engl J Med 2014 ; 371 : 1208-17.
4) Windecker S, et al. ESC/EACTS myocardial revascularization guidelines 2014. Eur Heart J 2014 ; 35 : 2541-619.
5) BARI-2D Study Group. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009 ; 360 : 2503-15.
7) Pijls NH, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996 ; 334 : 1703-8.
8) Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol 2010 ; 55 : 173-85.
9) Mouden M, et al. Myocardial perfusion imaging with a cadmium zinc telluride-based gamma camera versus invasive fractional flow reserve. Eur J Nucl Med Mol Imaging 2014 ; 41 : 956-62.
10) Lima RS, et al. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003 ; 42 : 64-70.
11) Tonino PA, et al. Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 2010 ; 55 : 2816-21.
12) Curzen N, et al. Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain? : the RIPCORD study. Circ Cardiovasc Interv 2014 ; 7 : 248-55.
13) Shiono Y, et al. Impact of myocardial supply area on the transstenotic hemodynamics as determined by fractional flow reserve. Catheter Cardiovasc Interv 2014 ; 84 : 406-13.
14) Hamilos M, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation 2009 ; 120 : 1505-12.
15) Serruys PW, et al, SYNTAX Investigators. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009 ; 360 : 961-72.
17) Genereux P, et al. SYNTAX score reproducibility and variability between interventional cardiologists, core laboratory technicians, and quantitative coronary measurements. Circ Cardiovasc Interv 2011 ; 4 : 553-61.
18) Nam CW, et al. Functional SYNTAX score for risk assessment in multivessel coronary artery disease. J Am Coll Cardiol 2011 ; 58 : 1211-8.
19) Van Belle E, et al. Outcome impact of coronary revascularization strategy reclassification with fractional flow reserve at time of diagnostic angiography : insights from a large French multicenter fractional flow reserve registry. Circulation 2014 ; 129 : 173-85.
20) Farooq V, et al. Quantification of incomplete revascularization and its association with five-year mortality in the synergy between percutaneous coronary intervention with taxus and cardiac surgery & (SYNTAX) trial validation of the residual SYNTAX score. Circulation 2013 ; 128 : 141-51.
21) Kobayashi Y, et al. The prognostic value of residual coronary stenoses after functionally complete revascularization. J Am Coll Cardiol 2016 ; 67 : 1701-11.
22) Ferguson TB Jr, et al. Fractional flow reserve-guided coronary artery bypass grafting : can intraoperative physiologic imaging guide decision making? J Thorac Cardiovasc Surg 2013 ; 146 : 824-35.
23) Botman CJ, et al. Does stenosis severity of native vessels influence bypass graft patency? A prospective fractional flow reserve-guided study. Ann Thorac Surg 2007 ; 83 : 2093-7.
24) Sabik JF 3rd, et al. Does grafting coronary arteries with only moderate stenosis affect long-term mortality? J Thorac Cardiovasc Surg 2016 ; 151 : 806-11.
25) Toth G, et al. Fractional flow reserve-guided versus angiography-guided coronary artery bypass graft surgery. Circulation 2013 ; 128 : 1405-11.
26) Toth GG, et al. Graft patency after FFR-guided versus angiography-guided coronary artery bypass grafting : the GRAFFITI trial. EuroIntervention 2019 ; 15 : e999-1005.
27) Thuesen AL, et al. Fractional Flow Reserve Versus Angiographically-Guided Coronary Artery Bypass Grafting. J Am Coll Cardiol 2018 ; 72 : 2732-43.
28) Zimmermann FM, et al. Rationale and design of the Fractional Flow Reserve versus Angiography for Multivessel Evaluation (FAME) 3 Trial : a comparison of fractional flow reserve-guided percutaneous coronary intervention and coronary artery bypass graft surgery in patients with multivessel coronary artery disease. Am Heart J 2015 ; 170 : 619-26.
29) Sellke FW, et al. Current state of surgical myocardial revascularization. Circ J 2010 ; 74 : 1031-7.
30) Shiono Y, et al. Impact of functional focal versus diffuse coronary artery disease on bypass graft patency. Int J Cardiol 2016 ; 222 : 16-21.
31) Min JK, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography fractional flow reserve from CT angiography. JAMA 2012 ; 308 : 1237-45.
32) Norgaard BL, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease : the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography : Next Steps). J Am Coll Cardiol 2014 ; 63 : 1145-55.

2 左冠動脈主幹部病変と3枝病変のエビデンス

P.14 掲載の参考文献
1) Califf RM, et al. 27th Bethesda Conference : matching the intensity of risk factor management with the hazard for coronary disease events. Task Force 5. Stratification of patients into high, medium and low risk subgroups for purposes of risk factor management. J Am Coll Cardiol 1996 ; 27 : 1007-19.
3) Yusuf S, et al. Effect of coronary artery bypass graft surgery on survival : overview of 10-year results from randomized trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 1994 ; 344 : 563-70.
4) Cameron A, et al. Coronary bypass surgery with internalthoracic-artery grafts : effects on survival over a 15-year period. N Engl J Med 1996 ; 334 : 216-9.
5) Baigent C, et al, Cholesterol Treatment Trialists' (CTT) Collaborators. Efficacy and safety of cholesterollowering treatment : prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 2005 ; 366 : 1267-78.
6) Bypass Angioplasty Revascularization Investigation (BARI) Investigators. Comparison of coronary bypass surgery with angioplasty in patients with multivessel disease. N Engl J Med 1996 ; 335 : 217-25.
7) BARI Investigators. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol 2007 ; 49 : 1600-6.
8) Head SJ, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease : a pooled analysis of individual patient data. Lancet 2018 ; 391 : 939-48.
9) Velazquez EJ, et al, STICH Investigators. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med 2011 ; 364 : 1607-16.
10) Velazquez EJ, et al. STICHES Investigators. Coronaryartery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 2016 ; 374 : 1511-20.
11) Thuijs DJFM, et al, SYNTAX Extended Survival Investigators. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with threevessel or left main coronary artery disease : 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019 ; 394 : 1325-34.

3 冠動脈バイパス術

P.20 掲載の参考文献
1) Taggart DP. Off-pump coronary artery bypass grafting (OPCABG) - a 'personal' European perspective. J Thorac Dis 2016 ; 8 (Suppl 10) : S829-31.
P.25 掲載の参考文献
1) Takagi H, Umemoto T, for the All-Literature Investigation of Cardiovascular Evidence (ALICE) Group. Worse longterm survival after off-pump than on-pump coronary artery bypass grafting. J Thorac Cardiovasc Surg 2014 ; 148 : 1820-9.
2) Lazar HL. Should off-pump coronary artery bypass surgery be abandoned? A potential solution. J Thorac Cardiovasc Surg 2014 ; 148 : 1829-31.
3) Hayashida N, et al. Minimally diluted tepid blood cardioplegia. Ann Thorac Surg 1998 ; 65 : 615-21.
4) Isomura T, et al. Axillary artery cannulation for cardiopulmonary bypass in the presence of diseased ascending aorta. Eur J Cardiothorac Surg 1996 ; 10 : 481.
P.31 掲載の参考文献
1) Arai H, et al. A new multisuction cardiac positioner for multivessel off-pump coronary artery bypass grafting. Innovations (Phila) 2006 ; 1 : 126-30.
P.37 掲載の参考文献
1) Nakajima H, et al. Determinants for successful sequential radial artery grafting to the left circumflex and right coronary arteries. Interact Cardiovasc Thorac Surg 2011 ; 12 : 125-9.
P.43 掲載の参考文献
1) 冠動脈外科学会全国アンケート. http://www.jacas.org/enquete/2016.html
2) Masuda M, et al. Thoracic and cardiovascular surgery in Japan during 2014. Gen Thorac Cardiovasc Surg 2017 ; 65 : 671-8.
3) Wu ZK, et al. Arrhythmias in off-pump coronary artery bypass grafting and the antiarrhythmic effect of regional ischemic preconditioning. J Cardiothoracic Vasc Anesth 2003 ; 17 : 459-64.
P.59 掲載の参考文献
1) Fukui T, et al. Long segmental reconstruction of diffusely diseased left anterior descending coronary artery with left internal thoracic artery with or without endarterectomy. Ann Thorac Surg 2005 ; 80 : 2098-105.
2) Takanashi S, et al. Coronary endarterectomy in the left anterior descending artery. J Cardiol 2008 ; 52 : 261-8.
3) 西川幸作ほか. 心拍動下冠動脈バイパス術におけるLong onlay-patch grafting法. 日外会誌 2013 ; 114 : 334-5.
4) Fukui T, et al. Extensive reconstruction of the left anterior descending coronary artery with an internal thoracic artery graft. Ann Thorac Surg 2011 ; 91 : 445-51.
P.69 掲載の参考文献
1) Armsby JR, et al. Managemant of coronary artery fistulae. J Am Coll Cardiol 2002 ; 39 : 1026-32.
2) 青木功雄ほか. 大動脈の太さに匹敵するまで拡張蛇行した62歳の先天性冠動静脈瘻の1治験例. 胸部外科 2000 ; 53 : 1115-8.
3) Ozler A, et al. Resection of a right coronary artery aneurysm with fistula to the coronary artery. Ann Thorac Surg 2008 ; 85 : 649-51.
4) 阿部恒平ほか. 右冠動静脈瘻に伴う右冠動脈本幹全長の瘤化に対する解剖学的右冠動脈置換術. 日冠疾会誌 2009 ; 15 : 223-6.
P.72 掲載の参考文献
1) Yaku H, Doi K. Redo coronary artery bypass grafting. Gen Thorac Cardiovasc Surg 2014 ; 62 : 453-60.
2) 夜久均, 天野篤. まい・てくにっく 再OPCABにおける剥離法. 胸部外科 2006 ; 59 ; 276-7.
3) Ito K, et al. Left ventricular apex venting during deep hypothermia in a case of difficult re-entry into the mediastinum. J Cardiovasc Surg (Torino) 2001 ; 42 : 493-4.
4) Navia D, et al. Is the internal thoracic artery the conduit of choice to replace a stenotic vein graft? Ann Thorac Surg 1994 ; 57 : 40-4.
5) Wendler O, et al. Free flow capacity of skeletonized versus pedicled internal thoracic artery grafts in coronary artery bypass grafts. Eur J Cardiothorac Surg 1999 ; 15 : 247-50.
6) Dohi M, et al. Upgrading redo coronary artery bypass graft by recycling in situ arterial graft. Ann Thorac Surg 2014 ; 98 : 311-4.
7) Dohi M, et al. The off-pump technique in redo coronary artery bypass grafting reduces mortality and major morbidities : propensity score analysis of data from the Japan Cardiovascular Surgery Database. Eur J Cardiothorac Surg 2015 ; 47 : 299-307 ; discussion 307-8.

4 グラフト

P.78 掲載の参考文献
1) Loop FD, et al. Influence of the internal-mammary-artery graft on 10-year survival and other cardiac events. N Engl J Med 1986 ; 314 : 1-6.
2) Bourassa MG. Fate of venous grafts : the past, the present, and the future. J Am Coll Cardiol 1991 ; 5 : 1081-3.
3) Fitzgibbon GM, et al. Coronary bypass fate and patient outcome : angiographic follow up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 1996 ; 28 : 616-26.
4) Campeau L, et al. The relation of risk factors to the development of atherosclerosis in saphenous vein bypass grafts and the progression of disease in native circulation : a study 10 years after aortocoronary bypass surgery. N Engl J Med 1984 ; 311 : 1329-32.
5) Sabik III JF, et al. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg 2005 ; 79 : 544-51.
6) Yang Z, et al. Different proliferative properties of smooth muscle cells of human arterial and venous bypass vessels role of PDGF receptors, mitogen-activated protein kinase, and cyclin-dependent kinase inhibitors. Circulation 1998 ; 97 : 181-7.
7) Pick AW, et al. Single versus bilateral internal mammary artery grafts : 10-year outcome analysis. Ann Thorac Surg 1997 ; 64 : 599-605.
8) Buxton BF, et al. Bilateral internal thoracic artery grafting may improve outcomes of coronary artery surgery, riskadjusted survival. Circulation 1998 ; 98 : II 1-6.
9) Lytle BW, et al. Two internal thoracic artery grafts are better than one. J Thorac Cardiovasc Surg 1999 ; 117 : 855-72.
10) Taggart DP, et al. Effect of arterial revascularization on survival : a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 2001 ; 358 : 870-5.
11) Rizzoli G, et al. Does the use of bilateral internal mammary artery (IMA) grafts provide incremental benefit relative to the use of a single IMA graft? A metaanalysis approach. Eur J Cardiathorac Surg 2002 ; 22 : 781-6.
12) Bonacchi M, et al. Early and late outcome of skeletonised bilateral internal mammary arteries anastomosed to the left coronary system. Heart 2005 ; 91 : 195-202.
13) Kurlansky PA, et al. Thirty-year follow-up defines survival benefit for second internal mammary artery in propensity-matched groups. Ann Thorac Surg 2010 ; 90 : 101-8.
14) Kinoshita T, et al. Off-pump bilateral skeletonized internal thoracic artery grafting in elderly patients. Ann Thorac Surg 2012 ; 93 : 531-6.
15) Medalion B, et al. Should bilateral internal thoracic artery grafting be used in elderly patients undergoing coronary artery bypass grafting? Circulation 2013 ; 127 : 2186-93.
16) Puskas JD, et al. Bilateral internal thoracic artery grafting is associated with significantly improved long-term survival, even among diabetic patients. Ann Thorac Surg 2012 ; 94 : 710-6.
17) Dorman MJ, et al. Bilateral internal mammary artery grafting enhances survival in diabetic patients : a 30-year follow-up of propensity score-matched cohorts. Circulation 2012 ; 126 : 2935-42.
18) Taggart DP, et al. ART Investigators. Randomized trial of bilateral versus single internal-thoracic-artery grafts. N Engl J Med 2016 ; 375 : 2540-9.
19) Bical O, et al. Bilateral skeletonized mammary artery grafting : experience with 560 consecutive patients. Eur J Cardiothorac Surg 1996 ; 10 : 971- 6.
20) Paz Y, et al. Vasoactive response of different parts of human internal thoracic artery to isosorbide-dinitrate and nitroglycerin : an in-vitro study. Eur J Cardiothorac Surg 2001 ; 19 : 254-9.
21) Matsa M, et al. Bilateral skeletonized internal thoracic artery grafts in patients with diabetes mellitus. J Thorac Cardiovasc Surg 2001 ; 121 : 668-74.
22) Kramer A, et al. Bilateral skeletonized internal thoracic artery grafting in 303 patients seventy years and older. J Thorac Cardiovasc Surg 2000 ; 120 : 290-7.
23) Higami T, et al. Early results of coronary grafting using ultrasonically skeletonized internal thoracic artery. Ann Thorac Surg 2001 ; 71 : 1224-8.
24) Windecker S, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014 ; 35 : 2541-619.
25) Tatoulis J, et al. The right internal thoracic artery : the forgotten conduit-5,766 patients and 991 angiograms. Ann Thorac Surg 2011 ; 92 : 9-15.
26) Shah PJ, et al. Factors affecting patency of internal thoracic artery graft : clinical and angiographic study in 1434 symptomatic patients operated between 1982 and 2002. Eur J Cardiothorac Surg 2004 ; 26 : 118-24.
27) Fukui T, et al. Angiographic outcomes of right internal thoracic artery grafts in situ or as free grafts in coronary artery bypass grafting. J Thorac Cardiovasc Surg 2010 ; 139 : 868-73.
28) Lev-Ran O, et al. Arterial myocardial revascularization with in situ crossover right internal thoracic artery to left anterior descending artery. Ann Thorac Surg 2001 ; 72 : 798-803.
29) Tatoulis J, et al. Patencies of 2,127 arterial to coronary conduits over 15 years. Ann Thorac Surg 2004 ; 77 : 93-101.
30) Calafiore AM, et al. Composite arterial conduits for wider arterial myocardial revascularization. Ann Thorac Surg 1994 ; 58 : 185-90.
31) Tector AJ, et al. Total revascularization with T grafts. Ann Thorac Surg 1994 ; 57 : 33-8.
32) Hwang HY, et al. Complete revascularization of the threevessel territories using a left internal thoracic artery composite graft. Ann Thorac Surg 2015 ; 100 : 59-67.
33) Legare JF, et al. Composite arterial grafts versus conventional grafting for coronary artery bypass grafting. J Thorac Cardiovasc Surg 2004 ; 127 : 160-6.
34) Hwang HY, et al. Bilateral internal thoracic artery in situ versus y-composite gaftings : five-year angiographic patency and long-term clinical outcomes. Ann Thorac Surg 2011 ; 92 : 579-86.
35) Glineur D, et al. Comparison of bilateral internal thoracic artery revascularization using in situ or Y graft configurations : a prospective randomized clinical, functional, and angiographic midterm evaluation. Circulation 2008 ; 118 : S216-21.
36) Fukui T, et al. Angiographic outcomes of right internal thoracic artery grafts in situ or as free grafts in coronary artery bypass grafting. J Thorac Cardiovasc Surg 2010 ; 139 : 868-73.
37) Navia D, et al. Total arterial off-pump coronary revascularization using bilateral internal thoracic arteries in triple-vessel disease : surgical technique and clinical outcomes. Ann Thorac Surg 2008 ; 86 : 524-31.
38) Calafiore AM, et al. Bilateral internal thoracic artery grafting : long-term clinical and angiographic results of in situ versus y grafts. J Thorac Cardiovasc Surg 2000 ; 120 : 990-6.
39) Lev-Ran O, et al. Bilateral internal thoracic artery grafting : mirterm results of composite versus in situ crossover graft. Ann Thorac Surg 2002 ; 74 : 704-11.
40) Wendler O, et al. T grafts with the right internal thoracic artery to the left internal thoracic artery versus the left internal thoracic and radial artery : flow dynamics in the internal thoracic artery main stem. J Thorac Cardiovasc Surg 1999 ; 118 : 841-8.
41) Nakajima H, et al. Competitive flow in arterial composite grafts and effect of graft arrangement in off-pump coronary revascularization. Ann Thrac Surg 2004 ; 78 : 481-6.
42) Sabik JF III, et al. Does competitive flow reduce internal thoracic artery graft patency? Ann Thorac Surg 2003 ; 76 : 1490-7.
43) Manabe S, et al. Incearsed graft occlusion or string sign in composite arterial grafting for mildly stenosed target vessels. Ann Thorac Surg 2010 ; 89 : 683-8.
44) Zacharias A, et al. Late results of conventional versus all-arterial revascularization based on internal thoracic and radial arterial grafting. Ann Thorac Surg 2009 ; 87 : 19-26.
45) Buxton BF, et al. Total arterial revascularization with internal thoracic and radial artery grafts in triple-vessel coronary artery disease is associated with improved survival. J Thorac Cardiovasc Surg 2014 ; 148 : 1238-44.
46) Tatoulis J, et al. Total arterial revascularization : a superior strategy for diabetic patients who require coronary surgery. Ann Thorac Surg 2016 ; 102 : 1948-55.
47) Habib RH, et al. CABG vs PCI Greater benefit in longterm outcomes with multiple arterial bypass grafting. J Am Coll Cardiol 2015 ; 66 : 1417-27.
48) Benedetto U, et al. Impact of multiple arterial grafts in off-pump and on-pump coronary artery bypass surgery. J Thorac Cardiovasc Surg 2017 ; 153 : 300-9.
49) Locker C, et al. Multiple arteria grafts improve late survival of patients undergoing coronary artery bypass graft surgery analysis of 8622 patients with multivessel disease. Circulation 2012 ; 126 : 1023-30.
50) Suzuki T, et al. In off-pump surgery, skeletonized gastroepiploic artery graft is superior to saphenous vein graft in patients with bilateral internal thoracic artery grafting. Ann Thorac Surg 2011 ; 91 : 1159-64.
51) Suzuki T, et al. Impact of total arterial reconstruction on long-term mortality and morbidity : off-pump total arterial reconstruction versus non-total arterial reconstruction. Ann Thorac Surg 2015 ; 100 : 2244-9.
52) Mohammadi S, et al. Impact of the radial artery as an additional arterial conduit during in-situ bilateral internal mammary artery grafting : a propensity scorematched study. Ann Thorac Surg 2016 ; 101 : 913-8.
53) Benedetto U, et al. Are three arteries better than two? Impact of using the radial artery in addition to bilateral internal thoracic artery grafting on long-term survival. J Thorac Cardiovasc Surg 2016 ; 152 : 862-9.
54) 循環器病の診断と治療に関するガイドライン (2010年度合同研究班報告). 虚血性心疾患に対するバイパスグラフトと手術術式の選択ガイドライン (2011年改訂版). http://www.j-circ.or.jp/guideline/pdf/JCS2011_ochi_h.pdf
P.84 掲載の参考文献
1) Kurlansky PA, et al. Thirty-year follow-up defines survival benefit for second internal mammary artery in propensity-matched groups. Ann Thorac Surg 2010 ; 90 : 101-8.
2) Asai T, Tabata S. Skeletonization of the right gastroepiploic artery using an ultrasonic scalpel. Ann Thorac Surg 2002 ; 74 : 1715-7.
3) Shimizu T, et al. Flow capacity of gastroepiploic artery versus vein grafts for intermediate coronary artery stenosis. Ann Thorac Surg 2005 ; 80 : 124-30.

5 今後の冠動脈バイパス術

P.94 掲載の参考文献
1) 菊地慶太. 【低侵襲手術の最前線】心臓血管領域 低侵襲冠状動脈バイパス術の臨床成績とその工夫. 胸部外科 2016 ; 69 : 581-8.
2) 菊地慶太. 両側内胸動脈を用いた低侵襲冠動脈バイパス術 (MICS CABG). 冠疾患誌 2016 ; 22 : 70-7.
3) Kikuchi K, et al. Off-pump minimally invasive coronary artery bypass grafting with a heart positioner : direct retraction for a better exposure. Innovations 2015 ; 10 : 183-7.
P.100 掲載の参考文献
1) e Silva AM, et al. Off-pump versus on-pump coronary artery revascularization : effects on pulmonary function. Interact Cardiovasc Thorac Surg 2010 ; 11 : 42-5.
2) Bauer M, et al. Ministernotomy versus complete sternotomy for coronary bypass operations : no difference in postoperative pulmonary function. J Thorac Cardiovasc Surg 2001 ; 121 : 702-7.
3) Guizilini S, et al. Ministernotomy in myocardial revascularization preserves postoperative pulmonary function. Arq Bras Cardiol 2010 ; 95 : 587-93.
P.104 掲載の参考文献
1) Ishikawa N, et al. Robot-assisted minimally invasive direct coronary artery bypass grafting. ThoraCAB. Circ J 2014 ; 78 : 399-402.
2) Tarui T, et al. A novel robotic bilateral internal mammary artery harvest using double docking technique for coronary artery bypass grafting. Innovations 2017 ; 12 : 74-6.
3) Watanabe G, et al. Novel sternum lifting technique for robotic internal thoracic artery graft harvesting. Innovations 2013 ; 8 : 76-9.
4) Watanabe G, et al. Off-pump CABG with synchronized arterial flow ensuring system. Ann Thorac Surg 2005 ; 80 : 1893-7.
5) Srivastava S, et al. Beating heart totally endoscopic coronary artery bypass. Ann Thorac Surg 2010 ; 89 : 1873-9.
6) Balkhy HH, et al. Integrating coronary anastomotic connectors and robotics toward a totally endoscopic beating heart approach : review of 120 cases. Ann Thorac Surg 2011 ; 92 : 821-7.
P.111 掲載の参考文献
1) Harskamp RE, et al. Standardizing definitions for hybrid coronary revascularization. J Thorac Cardiovasc Surg 2014 ; 147 : 556-60.
2) Harskamp RE. Current state and future direction of hybrid coronary revascularization. Curr Opin Cardiol 2015 ; 30 : 643-9.
3) Gosev I, Leacche M. Hybrid coronary revascularization : the future of coronary artery bypass surgery or an unfulfilled promise? Circulation 2014 ; 130 : 869-71.
4) Harskamp RE, et al. Status quo of hybrid coronary revascularization for multi-vessel coronary artery disease. Ann Thorac Surg 2013 ; 96 : 2268-77.
5) Tatoulis J, et al. Patencies of 2127 arterial to coronary conduits over 15 years. Ann Thorac Surg 2004 ; 77 : 93-101.
6) Nishioka H, et al. Difference in acetylcholine-induced nitric oxide release of arterial and venous grafts in patients after coronary bypass operations. J Thorac Cardiovasc Surg 1998 ; 116 : 454-9.
7) Fitzgibbon GM, et al. Coronary bypass graft fate and patient outcome : angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 1996 ; 28 : 616-26.
8) Navarese EP, et al. Safety and efficacy outcomes of first and second generation durable polymer drug eluting stents and biodegradable polymer biolimus eluting stents in clinical practice : comprehensive network meta-analysis. BMJ 2013 ; 347 : f6530.
9) Stone GW, et al. Comparison of an everolimus-eluting stent and a eluting stent in patients with coronary artery disease : a randomized trial. JAMA 2008 ; 299 : 1903-13.
10) Stefanini GG, et al. The impact of patient and lesion complexity on clinical and angiographic outcomes after revascularization with zotarolimus- and everolimuseluting stents : a substudy of the RESOLUTE All Comers Tria (l a randomized comparison of a zotarolimuseluting stent with an everolimus-eluting stent for percutaneous coronary intervention). J Am Coll Cardiol 2011 ; 57 : 2221-32.
13) Stone GW, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med 2016 ; 375 : 2223-35.
14) Makikallio T, et al. Percutaneous coronary angioplasty versus coronary artery bypass grafting in treatment of unprotected left main stenosis (NOBLE) : a prospective, randomised, open-label, non-inferiority trial. Lancet 2016 ; 388 : 2743-52.
15) Head SJ, et al. Mortality after coronary artery bypass grafting versus percutaneous coronary intervention with stenting for coronary artery disease : a pooled analysis of individual patient data. Lancet 2018 ; 391 : 939-48.
16) Weintraub WS, et al. Comparative effectiveness of revascularization strategies. N Engl J Med 2012 ; 366 : 1467-76.
17) Shahian DM, et al. Predictors of long-term survival after coronary artery bypass grafting surgery : results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database (the ASCERT study). Circulation 2012 ; 125 : 1491-500.
18) Fihn SD, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease : a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2012 ; 60 : e44-164.
19) Bonatti J, et al. Hybrid coronary revascularization : which patients? When? How? Curr Opin Cardiol 2010 ; 25 : 568-74.
20) Repossini A, et al. Hybrid coronary revascularization in 100 patients with multivessel coronary disease. Ann Thorac Surg 2014 ; 98 : 574-80 ; discussion 580-1.
21) Avgerinos DV, Charitakis K. Hybrid coronary revascularization : present and future. Hellenic J Cardiol 2015 ; 56 : 193-6.
22) Harskamp RE, et al. Comparison of hybrid coronary revascularization versus coronary artery bypass grafting in patients ≧ 65 years with multivessel coronary artery disease. Am J Cardiol 2014 ; 114 : 224-9.
23) Harskamp RE, et al. Clinical outcomes after hybrid coronary revascularization versus coronary artery bypass surgery : a meta-analysis of 1,190 patients. Am Heart J 2014 ; 167 : 585-92.
24) Panoulas VF, et al. Hybrid coronary revascularization : promising, but yet to take off. J Am Coll Cardiol 2015 ; 65 : 85-97.
25) Saha T, et al. Hybrid revascularization : a review. Cardiology 2018 ; 140 : 35-44.
26) Adams C, et al. Single-stage hybrid coronary revascularization with long-term follow-up. Eur J Cardiothorac Surg 2014 ; 45 : 438-42.
27) Halkos ME, et al. Clinical and angiographic results after hybrid coronary revascularization. Ann Thorac Surg 2014 ; 97 : 484-90.
28) Repossini A, et al. Hybrid revascularization in multivessel coronary artery disease. Eur J Cardiothorac Surg 2013 ; 44 : 288-93.
29) Bonatti JO, et al. Hybrid coronary revascularization using robotic totally endoscopic surgery : perioperative outcomes and 5-year results. Ann Thorac Surg 2012 ; 94 : 1920-6.
30) Rab ST, et al. Hybrid coronary revascularization for the treatment of left main coronary stenosis : a feasibility study. Catheter Cardiovasc Interv 2012 ; 80 : 238-44.
31) Bonaros N, et al. Closed chest hybrid coronary revascularization for multivessel disease-current concepts and techniques from a two-center experience. Eur J Cardiothorac Surg 2011 ; 40 : 783-7.
32) Holzhey DM, et al. Minimally invasive hybrid coronary artery revascularization. Ann Thorac Surg 2008 ; 86 : 1856-60.
33) Kiaii B, et al. Simultaneous integrated coronary artery revascularization with long-term angiographic follow up. J Thorac Cardiovasc Surg 2008 ; 136 : 702-8.
34) Harskamp RE, et al. Comparative effectiveness of hybrid coronary revascularization vs coronary artery bypass grafting. J Am Coll Surg 2015 ; 221 : 326-334. e1.
35) Rosenblum JM, et al. Hybrid coronary revascularization versus coronary artery bypass surgery with bilateral or single internal mammary artery grafts. J Thorac Cardiovasc Surg 2016 ; 151 : 1081-9.
36) Leacche M, et al. Comparison of 30-day outcomes of coronary artery bypass grafting surgery versus hybrid coronary revascularization stratified by SYNTAX and euroSCORE. J Thorac Cardiovasc Surg 2013 ; 145 : 1004-12.
37) Gasior M, et al. Hybrid revascularization for multivessel coronary artery disease. JACC Cardiovasc Interv 2014 ; 7 : 1277-83.
38) Tajstra M, et al. POL-MIDES Study Investigators. Hybrid coronary revascularization in selected patients with multivessel disease : 5-year clinical outcomes of the prospective randomized pilot study. JACC Cardiovasc Interv 2018 ; 11 : 847-52.
39) Puskas JD, et al. Hybrid coronary revascularization for the treatment of multivessel coronary artery disease : a multicenter observational study. J Am Coll Cardiol 2016 ; 68 : 356-65.
40) Ejiofor JI, et al. Robotic CABG and hybrid approaches : the current landscape. Prog Cardiovasc Dis 2015 ; 58 : 356-64.
41) Kiaii B, et al. Simultaneous integrated coronary artery revascularization with long-term angiographic followup. J Thorac Cardiovasc Surg 2008 ; 136 : 702-8.
42) Gulati R, et al. The SYNTAX trial : a perspective. Circ Cardiovasc Interv 2009 ; 2 : 463-7.
43) Shen L, et al. One-stop hybrid coronary revascularization versus coronary artery bypass grafting and percutaneous coronary intervention for the treatment of multivessel coronary artery disease : 3-year follow-up results from a single institution. J Am Coll Cardiol 2013 ; 61 : 2525-33.
44) Kon ZN, et al. Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass. J Thorac Cardiovasc Surg 2008 ; 135 : 367-75.

6 虚血性心筋症に対する外科的アプローチ

P.116 掲載の参考文献
1) Burch GE, et al. Ischemic cardiomyopathy. Am Heart J 1972 ; 83 : 340-50.
2) Suma H, et al. Septal anterior ventricular exclusion procedure for idiopathic dilated cardiomyopathy. Ann Thorac Surg 2006 ; 82 : 1344-8.
3) Athanasuleas CL, et al. Surgical ventricular restoration in the treatment of congestive heart failure due to postinfarction ventricular dilation. J Am Coll Cardiol 2004 ; 44 : 1439-45.
4) Jones RH, et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med 2009 ; 360 : 1705-17.
5) Suma H, et al. Current status of surgical ventricular restoration for ischemic cardiomyopathy. Semin Thoracic Surg 2012 ; 24 : 294-301.
P.120 掲載の参考文献
1) Shah PJ, et al. Survival after myocardial revascularization for ischemic cardiomyopathy : a prospective ten-year follow-up study. J Thorac Cardiovasc Surg 2003 ; 126 : 1320-7.
2) Menicanti L, Di Donato M. Dor procedure : what has changed after fifty years of clinical practice? J Thorac Cardiovasc Surg 2002 ; 124 : 886-90.
3) Dor V, et al. Favorable effects of left ventricular reconstruction in patients excluded from the Surgical Treatment for Ischemic Heart Failure (STICH) trial. J Thorac Cardiovasc Surg 2011 ; 141 : 905-16.
4) Cho Y, et al. Non-heart transplant surgical approaches with left ventricular restoration and mitral operation for advanced ischaemic cardiomyopathy. Eur J Cardiothorac Surg 2014 ; 46 : 849-56.
5) Buckberg G. Outcomes of left ventricular reconstruction when established parameters are followed, and subsequent questions. Eur J Cardiothorac Surg 2012 ; 42 : 393-7.
6) Cho Y, et al. Long-term results and mid-term features of left ventricular reconstruction procedures on left ventricular volume, geometry, function and mitral regurgitation. Eur J Cardiothorac Surg 2012 ; 42 : 462-9.
P.125 掲載の参考文献
1) Isomura T, et al. Surgical ventricular restoration (SVR) for ischemic cardiomyopathy. Is the SVR Alternative Treatment to Heart Transplantation? J Jpn Coron Assoc 2016 ; 22 : 266-72.
2) Dor V, et al. Efficacy of endoventricular patch plasty in large postinfarction akinetic scar and severe left ventricular dysfunction : Comparison with a series of large dyskinetic scars. J Thorac Cardiovasc Surg 1998 ; 116 : 50-9.
3) Isomura T, et al. Septal anterior ventricular exclusion operation (Pacopexy) for ischemic dilated cardiomyopathy : treat form not disease. Eur J Cardiothorac Surg 2006 ; 29 Suppl 1 : S245-50.
4) Matsui Y, et al. Overlapping cardiac volume reduction operation. J Thorac Cardiovasc Surg 2002 ; 124 : 395-7.
5) Isomura T, et al. Posterior restoration procedures and the long-term results in indicated patients with dilated cardiomyopathy. Interact Cardiovasc Thorac Surg 2015 ; 20 : 725-31.
6) Michler RE, et al. Insights from STICH trial : Change in left ventricular size after coronary artery bypass grafting with and without surgical ventricular reconstruction. J Thorac Cardiovasc Surg 2013 ; 146 : 1139-
P.133 掲載の参考文献
1) Wakasa S, et al. Risk scores for predicting mortality after surgical ventricular reconstruction for ischemic cardiomyopathy : results of a Japanese multicenter study. J Thorac Cardiovasc Surg 2014 ; 147 : 1868-74.
2) Matsui Y, et al. Overlapping cardiac volume reduction operation. J Thorac Cardiovasc Surg 2002 ; 124 : 395-7.
3) Dang AB, et al. Effect of ventricular size and patch stiffness in surgical anterior ventricular restoration : a finite element model study. Ann Thorac Surg 2005 ; 79 : 185-93.
4) Ueno T, et al. Mid-term changes of left ventricular geometry and function after Dor, SAVE, and Overlapping procedure. Eur J Cardiothorac Surg 2007 ; 32 : 52-7.
5) Matsui Y, et al. Integrated overlapping ventriculoplasty combined with papillary muscle plication for severely dilated heart failure. J Thorac Cardiovasc Surg 2004 ; 127 : 1221-3.
P.139 掲載の参考文献
1) Jones RH, et al. Coronary bypass surgery with or without surgical ventricular reconstruction. N Engl J Med 2009 ; 360 : 1705-17.
2) Yamaguchi A, et al. Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy. Ann Thorac Surg 2005 ; 79 : 456-61.
3) Athanasuleas CL, et al, RESTORE group. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J Am Coll Cardiol 2004 ; 44 : 1439-45.
4) Yaku H, et al. Endocardial linear infarct exclusion technique for infarcted lateral wall. Interact Cardiovasc Thorac Surg 2017 ; 24 : 460-1.
5) Ohira S, et al. Ten-year experience of endocardial linear infarct exclusion technique for ischaemic cardiomyopathy. Eur J Cardiothorac Surg 2018 ; 53 : 440-7.
6) Yamazaki S, et al. Ventricular volume and myocardial viability, evaluated using cardiac magnetic resonance imaging, affect long-term results after surgical ventricular reconstruction. Eur J Cardiothorac Surg 2016 ; 50 : 704-12.
P.146 掲載の参考文献
1) Michler RE et al. Two-year outcomes of surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med 2016 ; 374 : 1932-41.
2) Goldstein D, et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N Engl J Med 2016 ; 374 : 344-53.
3) Nishimura RA, et al. 2017 AHA/ACC Focused Update of the 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease : A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2017 ; 70 : 252-89.
4) Zhu F, et al. Mechanism of persistent ischemic mitral regurgitation after annuloplasty : importance of augmented posterior mitral leaflet tethering. Circulation 2005 ; 112 : I396-401.
5) Capoulade R, et al, Cardiothoracic Surgical Trials Network (CTSN) Investigators. Impact of left ventricular to mitral valve ring mismatch on recurrent ischemic mitral regurgitation after ring annuloplasty. Circulation 2016 ; 134 : 1247-56.
6) Braun J, et al. Restrictive mitral annuloplasty cures ischemic mitral regurgitation and heart failure. Ann Thorac Surg 2008 ; 85 : 430-7.
7) Magne J, et al. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation 2007 ; 115 : 782-91.
8) Rama A, et al. Papillary muscle approximation for functional ischemic mitral regurgitation. Ann Thorac Surg 2007 ; 84 : 2130-1.
9) Wakasa S, et al. The extent of papillary muscle approximation affects mortality and durability of mitral valve repair for ischemic mitral regurgitation. J Cardiothorac Surg 2014 ; 9 : 98.
10) Nappi F, et al. Papillary muscle approximation versus restrictive annuloplasty alone for severe ischemic mitral regurgitation. J Am Coll Cardiol 2016 ; 67 : 2334-46.
11) Messas E, et al. Chordal cutting : a new therapeutic approach for ischemic mitral regurgitation. Circulation 2001 ; 104 : 1958-63.
12) Borger MA, et al. Initial results of the chordal-cutting operation for ischemic mitral regurgitation. J Thorac Cardiovasc Surg 2007 ; 133 : 1483-92.
13) Kron IL, et al. Surgical relocation of the posterior papillary muscle in chronic ischemic mitral regurgitation. Ann Thorac Surg 2002 ; 74 : 600-1.
14) Fattouch K, et al. Papillary muscle relocation and mitral annuloplasty in ischemic mitral valve regurgitation : midterm results. J Thorac Cardiovasc Surg 2014 ; 148 : 1947-50.
15) Watanabe T, et al. Influence of procedural differences on mitral valve configuration after surgical repair for functional mitral regurgitation : in which direction should the papillary muscle be relocated? J Cardiothorac Surg 2014 ; 9 : 185.
16) de Varennes B, et al. Initial results of posterior leaflet extension for severe type IIIb ischemic mitral regurgitation. Circulation 2009 ; 119 : 2837-43.
17) Ikeda N, et al. Extended posterior leaflet augmentation for ischemic mitral regurgitation-augmented posterior leaflet snuggling up to anterior leaflet. Circ J 2019 ; 83 : 567-75.
18) Obase K, et al. Echocardiographic visualization and quantification of mitral complex during mitral repair for severe functional mitral regurgitation. J Thorac Cardiovasc Surg 2017 ; 154 : 1252-5.
P.151 掲載の参考文献
1) Deja MA, et al. Influence of mitral regurgitation repair on survival in the surgical treatment for ischemic heart failure trial. Circulation 2012 ; 125 : 2639-48.
2) Magne J, et al. Ischemic mitral regurgitation : a complex multifaceted disease. Cardiology 2009 ; 112 : 244-59.
3) Kron IL, et al. Predicting recurrent mitral regurgitation after mitral valve repair for severe ischemic mitral regurgitation. J Thorac Cardiovasc Surg 2015 ; 149 : 752-61.
4) Goldstein D, et al, for the CTSN. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N Engl J Med 2016 ; 374 : 344-53.
5) Nappi F, et al. Papillary muscle approximation versus restrictive annuloplasty alone for severe ischemic mitral regurgitation. J Am Coll Cardiol 2016 ; 67 : 2334-46.

7 心筋梗塞機械的合併症に対する手術

P.158 掲載の参考文献
1) Menon V, et al. Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction : a report from the SHOCK Trial Registry. J Am Coll Cardiol 2000 ; 36 : 1110-6.
2) Arnaoutakis GJ, et al. Surgical repair of ventricular septal defect after myocardial infarction : outcomes from the Society of Thoracic Surgeons National Detabase. Ann Thorac Surg 2012 ; 94 : 436-44.
3) Jones BM, et al. Ventricular septal rupture complicating acute myocardial infarction : a contemporary review. Eur Heart J 2014 ; 35 : 2060-8.
4) Papalexopoulou N, et al. What is the best timing of surgery in patients with post-infarct ventricular septal rupture? Interact Cardiovasc Thorac Surg 2013 ; 16 : 193-6.
5) Attia R, Blauth C. Which patients might be suitable for a septal occluder device closure of postinfarction ventricular septal rupture rather than immediate surgery? Interact Cardiovasc Thorac Surg 2010 ; 11 : 626-9.
P.164 掲載の参考文献
1) Sanders RJ, et al. Perforation of the interventricular septum complicating myocardial infarction. Am Heart J 1956 ; 51 : 736-48.
2) Crenshaw BS, et al. Risk factors, angiographic patterns, and outcomes in patients with ventricular septal defect complicating acute myocardial infarction. GUSTO-I (Global Utilization of Streotokinase and TPA for Occluded Coronary Arteries) Trial Investigators. Circulation 2000 ; 101 : 27-32.
3) Moreyra AE, et al. Trends in incidence and mortality rates of ventricular septal rupture during acute myocardial infarction. Am J Cardiol 2010 ; 106 : 1095-100.
4) Yamazaki F. Current review of surgical repair of postinfarction ventricular septal defect. J Jpn Coron Assoc 2016 ; 22 : 119-25.
5) Cing-Mars A, et al. Risk factors of mortality after surgical correction of ventricular septal defect following myocardial infarction : Retrospective analysis and review of the literature. Int J Cardiol 2016 ; 206 : 27-36.
6) Huang SM, et al. Risk factors and outcome analysis after surgical management of ventricular septal rupture complicating acute myocardial infarction : a retrospective analysis. J Cardiothorac Surg 2015 ; 10 : 66.
7) Daggett WN, et al. Surgery for post-myocardial infarct ventricular septal defect. Ann Surg 1977 ; 186 : 260-71.
8) Daggett WN, et al. Improved results of surgical management of postinfarction ventricular septal rupture. Ann Surg 1982 ; 196 : 269-77.
9) Dawson AG, et al. Does the placement of an Amplatzer septal occlude device confer benefit in patients with a post-infarction ventricular septal defect? Interact Cardiovasc Thorac Surg 2014 ; 19 : 1040-7.
10) Higashiue S, et al. Surgical management of ventricular septal rupture complicating acute myocardial infarction. J Jpn Coron Assoc 2007 ; 13 : 256-61.
11) Cooley DA, et al. Surgical repair of ruptured interventricular septum following acute myocardial infarction. Surgery 1957 ; 41 : 930-7.
12) Isoda S, et al. Sandwich Technique via right ventricle incision to repair postinfarction ventricular septal defect. J Card Surg 2004 ; 19 : 149-50.
13) David TE, et al. Postinfarction ventricular septal rupture : repair by endocardial patch with infarct exclusion. J Thorac Cardiovasc Surg 1995 ; 110 : 1315-22.
P.171 掲載の参考文献
1) Komeda M, et al. Surgical repair of postinfarction ventricular septal defect. Circulation 1990 ; 82 (Suppl IV) : 243-7.
2) David TE, et al. Postinfarction ventricular septal rupture : repair by endocardial patch with infarct exclusion. J Thorac Cardiovasc Surg 1995 ; 110 : 1315-22.
P.179 掲載の参考文献
1) Isoda S, et al. Surgical repair of postinfarction ventricular septal defects-2013 update. Ann Thorac Cardiovasc Surg 2013 ; 19 : 95-102.
2) Isoda S, et al. Sandwich technique via a right ventricular incision to repair post-infarction ventricular septal defect. J Card Surg 2004 ; 19 : 149-50.
3) Isoda S, et al. "Sandwich technique" via a right ventricular incision to repair postinfarction ventricular septal defects. J Card Surg 2015 ; 30 : 488-93.
4) Isoda S, et al. Pitfalls for the "Sandwich technique" via a right ventricular incision to repair post-infarction ventricular septal defects. Gen Thorac Cardiovasc Surg 2017 ; 65 : 187-93.
5) Asai T, et al. Postinfarction ventricular septal defect : right ventricular approach-the extended "sandwich" patch. Semin Thorac Cardiovasc Surg 2012 ; 24 : 59-62.
P.184 掲載の参考文献
1) Komiya T. Surgical treatment of left ventricular free wall rupture : patch-glue technique. J Jpn Coron Assoc 2007 ; 13 : 246-50.
2) Sakaguchi G, et al. Surgical treatment for postinfarction left ventricular free wall rupture. Ann Thorac Surg 2008 ; 85 : 1344-7.

8 ECMO, 補助心臓, その他

P.210 掲載の参考文献
1) Yamazaki K, et al. Completely pulsatile high flow circulatory support with a constant-speed centrifugal blood pump : mechanisms and early clinical observations. Gen Thorac Cardiovasc Surg 2007 ; 55 : 158-62.
2) Bartoli CR, et al. Left ventricular assist device design reduces von Willebrand factor degradation : a comparative study between the HeartMate II and the EVAHEART left ventricular assist system. Ann Thorac Surg 2017 ; 103 : 1239-45.
3) Ichihara Y, et al. Preservation of von Willebrand factor multimers and function in patients with an EVAHEART centrifugal-type, continuous-flow left ventricular assist device. J Heart Lung Transplant 2017 ; 36 : 814-7.
4) Saito S, et al. Post-approval study of a highly pulsed, low-shear-rate, continuous-flow, left ventricular assist device, EVAHEART : a Japanese multicenter study using J-MACS. J Heart Lung Transplant 2014 ; 33 : 599-608.
5) Imamura T, Kinugawa K. Centrifugal pump EVAHEART prevents development of aortic insufficiency preserving pulse pressure. Int Heart J 2016 ; 57 : 127-8.
P.216 掲載の参考文献
1) Maltais S, et al. PREVENtion of HeartMate II Pump Thrombosis Through Clinical Management : The PREVENT multi-center study. J Heart Lung Transplant 2017 ; 36 : 1-12. Epub 2016 Nov 16.
2) Klodell CT, et al. Factors related to pump thrombosis with the heartmate II left ventricular assist device. J Card Surg 2015 ; 30 : 775-80.
3) Adamson RM, et al. Principles of HeartMate II implantation to avoid pump malposition and migration. J Card Surg 2015 ; 30 : 296-9.

最近チェックした商品履歴

Loading...