1) 伊古田勇人, 平戸純子 : 脳腫瘍, 細胞診の実際とトピックス. 病理と臨床 2013, 31 (臨時増刊号) : 234-241
2) Louis DN, Ohgaki H, Wiestler OD et al (eds) : WHO classification of tumours of the central nervous system. Updated 4th edition, IARC, Lyon, 2016
3) Ironside JW, Moss TH, Louis DN et al (eds) : Diagnostic Pathology of Nervous System Tumours, Churchill Livingstone, London, 2002
4) Rhodes RH, Davis RL : An unusual fibro-osseous component in intracranial lesions. Hum Pathol 1978, 9 : 309-319
5) Burger PC, Scheithauer BW (eds) : Calcifying pseudoneoplasm of the neuraxis. AFIP Atlas of Tumor Pathology Series 4, Tumors of the central nervous system, 2007, 495-497
6) Blumcke I, Thom M, Aronica E et al : International consensus classification of hippocampal sclerosis in temporal lobe epilepsy : A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54 : 1315-1329
7) 宮田元 : てんかん外科病理診-up-to-date- : 海馬硬化症と皮質異形成のILAE組織分類. 病理と臨床 2015, 33 : 388-394
8) Blumcke I, Thom M, Aronica E et al : The clinicopathologic spectrum of focal cortical dysplasias : A consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia 2011, 52 : 158-174
9) Lennon VA, Kryzer TJ, Pittock SJ et al : IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 2005, 202 : 473-477
10) Hardy TA, Chataway J : Tumefactive demyelination : an approach to diagnosis and management. J Neurol Neurosurg Psychiatry 2013, 84 : 1047-1053
11) Fuller GN, Burger PC : Central nervous system. Histology for Pathologists, 4th ed., Mills SE ed., Lippincott Williams and Wilkins, 2012, 295-341
12) AbdelRazek MA, Venna N, Stone JH : IgG4-related disease of the central and peripheral nervous systems. Lancet Neurol 2018, 17 : 183-192
13) Lindstrom KM, Cousar JB, Lopes MB : IgG4-related meningeal disease : clinicopathological fatures and proposal for diagnostic criteria. Acta Neuropathol 2010, 120 : 765-776
14) Swain RS, Tihan T, Horval AE et al : Inflammatory myofibroblastic tumor of the central nervous system and its relationship to inflammatory pseudotumor. Hum Pathol 2008, 39 : 410-419
15) Lui PC, Fan YS, Wong SS et al : Inflammatory pseudotumors of the central nervous system. Hum Pathol 2009, 40 : 1611-1617
16) 日本脳神経外科学会, 日本病理学会 (編) : 脳腫瘍取扱い規約, 第4版, 金原出版, 2018
17) 日本脳腫瘍病理学会 (編) : 脳腫瘍臨床病理カラーアトラス, 第4版, 医学書院, 2017
18) 小森隆司, 廣瀬隆則 (編) : 脳腫瘍, 腫瘍病理鑑別診断アトラス, 文光堂, 2017
19) 中里洋一 (編) : アトラス脳腫瘍病理, 中外医学社, 2017
20) 廣瀬隆則 : WHO中枢神経系腫瘍分類改訂第4版の概要. 病理と臨床 2017, 35 : 402-411
23) Watanabe T, Nobusawa S, Kleihues P et al : IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 2009, 174 : 1149-1153
24) Yan H, Parsons DW, Jin G et al : IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009, 360 : 765-773
25) Nobusawa S, Watanabe T, Kleihues P et al : IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 2009, 15 : 6002-6007
26) Ichimura K, Narita Y, Hawkins CE : Diffusely infiltrating astrocytomas : pathology, molecular mechanisms and markers. Acta Neuropathol 2015, 129 : 789-808
27) Arita H, Narita Y, Yoshida A et al : IDH1/2 mutation detection in gliomas. Brain Tumor Pathol 2015, 32 : 79-89
28) Capper D, Zentgraf H, Balss J et al : Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 2009, 118 : 599-601
29) Heaphy CM, de Wilde RF, Jiao Y et al : Altered telomeres in tumors with ATRX and DAXX mutations. Science 2011, 333 : 425
30) Jiao Y, Killela PJ, Reitman ZJ et al : Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 2012, 3 : 709-722
31) Liu XY, Gerges N, Korshunov A et al : Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 2012, 124 : 615-625
32) Wiestler B, Capper D, Holland-Letz T et al : ATRX loss refines the classification of anaplastic gliomas and identifies a subgroup of IDH mutant astrocytic tumors with better prognosis. Acta Neuropathol 2013, 126 : 443-451
33) Arita H, Narita Y, Fukushima S et al : Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 2013, 126 : 267-276
34) Louis DN, Perry A, Burger P et al : International Society of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 2014, 24 : 429-435
35) Sonoda Y, Yokoo H, Tanaka S et al : Practical procedures for the integrated diagnosis of astrocytic and oligodendroglial tumors. Brain Tumor Pathol 2019, 36 : 56-62
36) Brat DJ, Aldape K, Colman H et al : cIMPACTNOW update 3 : recommended diagnostic criteria for "Diffuse astrocytic glioma, IDH-wildtype, with molecular features of glioblastoma, WHO grade IV". Acta Neuropathol 2018, 136 : 805-810
37) 田中伸哉 : びまん性膠腫. 病理と臨床 2017, 35 : 412-421
38) 信澤純人 : 脳腫瘍の分子病理学とパラフィン切片を用いた検索の実際. 病理と臨床 2017, 35 : 453-459
39) Takami H, Yoshida A, Fukushima S et al : Revisiting TP53 Mutations and Immunohistochemistry--A Comparative Study in 157 Diffuse Gliomas. Brain Pathol 2015, 25 : 256-265
40) Kleinschmidt-DeMasters BK, Alassiri AH, Birks DK et al : Epithelioid versus rhabdoid glioblastomas are distinguished by monosomy 22 and immunohistochemical expression of INI-1 but not claudin 6. Am J Surg Pathol 2010, 34 : 341-354
41) Kleinschmidt-DeMasters BK, Aisner DL, Birks DK et al Epithelioid GBMs show a high percentage of BRAF V600E mutation. Am J Surg Pathol 2013, 37 : 685-698
42) Nakajima N, Nobusawa S, Nakata S et al : BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas : a histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol 2018, 28 : 663-673
43) Perry A, Miller CR, Gujrati M et al : Malignant gliomas with primitive neuroectodermal tumor-like components : a clinicopathologic and genetic study of 53 cases. Brain Pathol 2009, 19 : 81-90
44) Korshunov A, Capper D, Reuss D et al : Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologic entity. Acta Neuropathol 2016, 131 : 137-146
45) Hinrichs BH, Newman S, Appin CL et al : Farewell to GBM-O : Genomic and transcriptomic profiling of glioblastoma with oligodendroglioma component reveals distinct molecular subgroups. Acta Neuropathol Commun 2016, 4 : 4
46) Herrlinger U, Jones DTW, Glas M et al : Gliomatosis cerebri : no evidence for a separate brain tumor entity. Acta Neuropathol 2016, 131 : 309-319
47) Louis DN, Giannini C, Capper D et al : cIMPACT-NOW update 2 : diagnostic clarifications for diffuse midline glioma, H3 K27M-mutant and diffuse astrocytoma/anaplastic astrocytoma, IDH-mutant. Acta Neuropathol 2018, 135 : 639-642
48) Bechet D, Gielen GG, Korshunov A et al : Specific detection of methionine 27 mutation in histone 3 variants (H3K27M) in fixed tissue from high-grade astrocytomas. Acta Neuropathol 2014, 128 : 733-741
49) Bender S, Tang Y, Lindroth AM et al : Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. Cancer Cell 2013, 24 : 660-672
50) Venneti S, Garimella MT, Sullivan LM et al : Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 2013, 23 : 558-564
51) Reifenberger J, Reifenberger G, Liu L et al : Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 1994, 145 : 1175-1190
52) Cairncross JG, Ueki K, Zlatescu MC et al : Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998, 90 : 1473-1479
53) Natte R, van Eijk R, Eilers P et al : Multiplex ligation-dependent probe amplification for the detection of 1p and 19q chromosomal loss in oligodendroglial tumors. Brain Pathol 2005, 15 : 192-197
54) Sahm F, Reuss D, Koelsche C et al : Farewell to oligoastrocytoma : in situ molecular genetics favor classification as either oligodendroglioma or astrocytoma. Acta Neuropathol 2014, 128 : 551-559
55) Collins VP, Jones DT, Giannini C : Pilocytic astrocytoma : pathology, molecular mechanisms and markers. Acta Neuropathol 2015, 129 : 775-788
56) Rodriguez FJ, Scheithauer BW, Burger PC et al : Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 2010, 34 : 147-160
57) Johnson MW, Eberhart CG, Perry A et al : Spectrum of pilomyxoid astrocytomas : intermediate pilomyxoid tumors. Am J Surg Pathol 2010, 34 : 1783-1791
58) Kleinschmidt-DeMasters BK, Donson AM, Vogel H et al : Pilomyxoid astrocytoma (PMA) shows significant differences in gene expression vs. pilocytic astrocytoma (PA) and variable tendency toward maturation to PA. Brain Pathol 2015, 25 : 429-440
59) Phi JH, Park SH, Chae JH et al : Congenital subependymal astrocytoma : clinical considerations and expression of radial glial cell markers in giant cells. Childs Nerv Syst 2008, 24 : 1499-1503
60) Hewer E, Vajtai I : Consistent nuclear expression of thyroid transcription facto 1 in subependymal giant cell astrocytomas suggests lineage-restricted histogenesis. Clin Neuropathol 2015, 34 : 128-131
61) Ida CM, Rodriguez FJ, Burger PC et al : Pleomorphic xanthoastrocytoma : Natural history and long-term follow-up. Brain Pathol 2015, 25 : 575-586
62) Reifenberger G, Kaulich K, Wiestler OD et al : Expression of the CD34 antigen in pleomorphic xanthoastrocytomas. Acta Neuropathol 2003, 105 : 358-364
63) Schindler G, Capper D, Meyer J et al : Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011, 121 : 397-405
64) Giannini C, Scheithauer BW, Burger PC et al : Pleomorphic xanthoastrocytoma. Cancer 1999, 85 : 2033-2045
65) Hirose T, Ishizawa K, Sugiyama K et al : Pleomorphic xanthoastrocytoma : a comparative pathologic study between conventional and anaplastic types. Histopathology 2008, 52 : 183-193
66) Schmidt Y, Kleinschmidt-DeMasters BK, Aisner DL et al : Anaplastic PXA in adults : case series with clinicopathologic and molecular features. J Neurooncol 2013, 111 : 59-69
67) 佐々木惇 : 上衣系腫瘍. 病理と臨床 2017, 35 : 429-433
68) Kawano N, Ohba Y, Nagashima K : Eosinophilic inclusions in ependymoma represent microlumina : a light and electron microscopic study. Acta Neuropathol 2000, 99 : 214-218
69) Preusser M, Budka H, Rossler K et al : OLIG2 is a useful immunohistochemical marker in differential diagnosis of clear cell primary CNS neoplasms. Histopathology 2007, 50 : 365-370
70) Ishizawa K, Komori T, Shimada S et al : Olig2 and CD99 are useful negative markers for the diagnosis of brain tumors. Clin Neuropathol 2008, 27 : 118-128
71) Kawano N, Yada K, Aihara M et al : Oligodendroglioma-like cells (clear cells) in ependymoma. Acta Neuropathol 1983, 62 : 141-144
72) Hirato J, Nakazato Y, Iijima M et al : An usual variant of ependymoma with extensive tumor cell vacuolization. Acta Neuropathol 1997, 93 : 310-316
73) Vajtai I, Mucs Z, Varga Z et al : Signet-ring cell ependymoma : case report with implications for pathogenesis and differential diagnosis. Pathol Res Pract 1999, 195 : 853-858
74) Ruchoux MM, Kepes JJ, Dhellemmes P et al : Lipomatous differentiation in ependymomas : a report of three cases and comparison with similar changes reported in other central nervous system neoplasms of neuroectodermal origin. Am J Surg Pathol 1998, 22 : 338-346
75) Mezmezian MB, Del Cano V, Olvi LG : Report of a case of giant cell ependymoma with unusual clinical and pathological presentation. Neuropathology 2019, 39 : 313-318
76) Parker M, Mohankumar KM, Panchihewa C et al : C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma. Nature 2014, 506 : 451-455
77) Pajtler KW, Witt H, Sill M et al : Molecular classification of ependymal tumors across all CNS compartments, histological grades, and age groups. Cancer Cell 2015, 27 : 728-743
78) Sasaki A, Hirato J, Hirose T et al : Reviews of ependymomas : assessment of consensus in pathological diagnosis and correlation with genetic profiles and outcome. Brain Tum Pathol 2019, 6 : 92-101
79) Bielle F, Villa C, Giry M et al : Chordoid gliomas of the third ventricle share TTF-1 expression with organum vasculosum of the lamina terminalis. Am J Surg Pathol 2015, 39 : 948-956
80) Preusser M, Hoischen A, Novak K et al : Angiocentric glioma : report of clinico-pathologic and genetic findings in 8 cases. Am J Surg Pathol 2007, 31 : 1709-1718
81) Lehman NL, Hattab EM, Mobley BC et al : Morphological and molecular features of astroblastoma, including BRAF V600E mutations, suggest an ontological relationship to other cortical-based gliomas of children and young adults. Neuro-oncol 2017, 19 : 31-42
82) Hirose T, Nobusawa S, Sugiyama K et al : Astroblastoma : A distinct tumor entity characterized by alterations of the X chromosome and MN1 rearrangement. Brain Pathol 2018, 28 : 684-694
83) Jeibmann A, Hasselblatt M, Gress J et al : Prognostic implications of atypical histologic features in choroid plexus papilloma. J Neuropathol Exp Neurol 2006, 65 : 1069-1073
84) Judkins AR, Burger PC, Hamilton RL et al : INI1 protein expression distinguishes atypical teratoid/rhabdoid tumor from choroid plexus carcinoma. J Neuropathol Exp Neurol 2005, 64 : 391-397
85) Komori T, Arai N : Dysembryoplastic neuroepithelial tumor, a pure glial tumor? Immunohistochemical and morphometric studies. Neuropathology 2013, 33 : 459-468
86) Chappe C, Padovani L, Scavarda D et al : Dysembryoplastic neuroepithelial tumors share with pleomorphic xanthoastrocytomas and gangliogliomas BRAF V600E mutation and expression. Brain Pathol 2013, 23 : 574-583
87) Matsumura N, Nobusawa S, Ito J et al : Multiplex ligation-dependent probe amplification analysis is useful for detecting a copy number gain of the FGFR1 tyrosine kinase domain in dysembryoplastic neuroepithelial tumors. J Neurooncol 2019, 143 : 27-33
88) Huse JT, Edgar M, Halliday J et al : Multinodular and vacuolating neuronal tumors of the cerebrum : 10 cases of a distinctive seizure-associated lesion. Brain Pathol 2013, 23 : 515-524
89) Komori T, Scheithauer BW, Anthony DC et al : Papillary glioneuronal tumor : a new variant of mixed neuronal-glial neoplasm. Am J Surg Pathol 1998, 22 : 1171-1183
90) Tanaka Y, Yokoo H, Komori T et al : A distinct pattern of Olig2-positive cellular distribution in papillary glioneuronal tumors : a manifestation of the oligodendroglial phenotype? Acta Neuropathol 2005, 110 : 39-47
91) Bridge JA, Liu XQ, Sumegi J et al : Identification of a novel, recurrent SLC44A1-PRKCA fusion in papillary glioneuronal tumor. Brain Pathol 2013, 23 : 121-128
92) Komori T, Scheithauer BW, Hirose T : A rosette-forming glioneuronal tumor of the fourth ventricle : infratentorial form of dysembryoplastic neuroepithelial tumor? Am J Surg Pathol 2002, 26 : 582-591
93) Kitamura Y, Komori T, Shibuya M et al : Comprehensive genetic characterization of rosette-forming glioneuronal tumors : independent component analysis by tissue microdissection. Brain Pathol 2018, 28 : 87-93
94) Deng MY, Sill M, Chiang J et al : Molecularly defined diffuse leptomeningeal glioneuronal tumor (DLGNT) comprises two subgroups with distinct clinical and genetic features. Acta Neuropathol 2018, 136 : 239-253
95) Yokoo H, Nobusawa S, Takebayashi H et al : Anti-human Olig2 antibody as a useful immunohistochemical marker of normal oligodendrocytes and gliomas. Am J Pathol 2004, 164 : 1717-1725
96) Brat DJ, Scheithauer BW, Eberhart CG et al : Extraventricular neurocytomas : pathologic features and clinical outcome. Am J Surg Pathol 2001, 25 : 1252-1260
97) Fevre-Montange M, Szathmari A, Champier J et al : Pineocytoma and pineal parenchymal tumors of intermediate differentiation presenting cytologic pleomorphism : a multicenter study. Brain Pathol 2008, 18 : 354-359
98) Jouvet A, Saint-Pierre G, Fauchon F et al : Pineal parenchymal tumors : a correlation of histological features with prognosis in 66 cases. Brain Pathol 2000, 10 : 49-60
99) Jouvet A, Fauchon F, Liberski P et al : Papillary tumor of the pineal region. Am J Surg Pathol 2003, 27 : 505-512
100) Heim S, Sill M, Jones DT et al : Papillary tumor of the pineal region : A distinct molecular entity. Brain Pathol 2016, 26 : 199-205
101) 平戸純子 : 胎児性腫瘍. 病理と臨床 2017, 35 : 444-452
102) Taylor MD, Northcott PA, Korshunov A et al : Molecular subgroups of medulloblastoma : the current consensus. Acta Neuropathol 2012, 123 : 465-472
103) Goschzik T, Zur Muhlen A, Kristiansen G et al : Molecular stratification of medulloblastoma : comparison of histological and genetic methods to detect Wnt activated tumours. Neuropathol Appl Neurobiol 2015, 41 : 135-144
104) Kaur K, Kakker A, Kumar A et al : Integrating molecular subclassification of medulloblastoma into routine clinical practice : A simplified approach. Brain Pathol 2016, 26 : 334-343
105) Zhukova N, Ramaswamy V, Renke M et al : Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol 2013, 31 : 2927-2935
106) Eberhart CG, Brat DJ, Cohen KJ et al : Pediatric neuroblastic brain tumors containing abundant neuropil and true rosettes. Pediatr Dev Pathol 2000, 3 : 346-352
107) Korshunov A, Remke M, Gessi M et al : Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes. Acta Neuropathol 2010, 120 : 253-260
108) Nobusawa S, Yokoo H, Hirato J et al : Analysis of chromosome 19q13.42 amplification in embryonal brain tumors with ependymoblastic multilayered rosettes. Brain Pathol 2012, 22 : 689-697
109) Korshunov A, Sturm D, Ryzhova M et al : Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity. Acta Neuropathol 2014, 128 : 279-289
110) Korshunov A, Ryzhova M, Jones DT et al : LIN28A immunoreactivity is a potent diagnostic marker of embryonal tumor with multilayered rosettes (ETMR). Acta Neuropathol 2012, 124 : 875-881
111) Schneppenheim R, Fruhwald MC, Gesk S et al : Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome. Am J Hum Genet 2010, 86 : 279-284
112) Hasselblatt M, Gesk S, Oyen F et al Nonsense mutation and inactivation of SMARCA4 (BRG1) in an atypical teratoid/rhabdoid tumor showing retained SMARCB1 (INI1) expression. Am J Surg Pathol 2011, 35 : 933-935
113) Nakata S, Nobusawa S, Hirose T et al : Sellar atypical teratoid/rhabdoid tumor (AT/RT) : a clinicopathologically and genetically distinct variant of AT/RT. Am J Surg Pathol 2017, 41 : 932-940
114) Judkins AR, Mauger J, Ht A et al : Immunohistochemical analysis of hSNF5/INI1 in pediatric CNS neoplasms. Am J Surg Pathol 2004, 28 : 644-650
115) Sturm D, Orr BA, Toprak UH et al : New brain tumor entities emerge from molecular classification of CNS-PNETs. Cell 2016, 164 : 1060-1072
116) Yoshida Y, Nobusawa S, Nakata S et al : CNS high-grade neuroepithelial tumor with BCOR internal tandem duplication : a comparison with its conterparts in the kidney and soft tissue. Brain Pathol 2018, 28 : 710-720
117) Ferris SP, Velazquez Vega J, Aboian M et al : High-grade neuroepithelial tumor with BCOR exon 15 internal tandem duplication-a comprehensive clinical, radiographic, pathologic, and genomic analysis. Brain Pathol 2020, 30 : 46-62
118) Yokoo H, Arai H, Isoda K et al : Characterization of eosinophilic hyaline droplets in schwannoma. Acta Neuropathol 2003, 105 : 170-176
119) Clark VE, Erson-Omay EZ, Serin A et al : Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339 : 1077-1080
120) Reuss DE, Piro RM, Jones DT et al : Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations. Acta Neuropathol 2013, 125 : 351-358
121) Vaubel RA, Chen SG, Raleigh DR et al : Meningiomas with rhabdoid features lacking other histologic features of malignancy : a study of 44 cases and review of the literature. J Neuropathol Exp Neurol 2016, 75 : 44-52
122) Schweizer L, Koelsche C, Sahm F et al Meningeal hemangiopericytoma and solitary fibrous tumors carry the NAB2-STAT6 fusion and can be diagnosed by nuclear expression of STAT6 protein. Acta Neuropathol 2013, 125 : 651-658
123) Wang L, Motoi T, Khanin R et al : Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 2012, 51 : 127-139
124) Vujovic S, Henderson S, Presneau N et al : Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 2006, 209 : 157-165
126) Haroche J, Charlotte F, Arnaud L et al : High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 2012, 120 : 2700-2703
127) Techavichit P, Sosothikul D, Chaichana T et al : BRAF V600E mutation in pediatric intracranial and cranial juvenile xanthogranuloma. Hum Pathol 2017, 69 : 118-122
128) Kong DS, Nam DH, Lee JI et al : Intracranial growing teratoma syndrome mimicking tumor relapse : a diagnostic dilemma. J Neurosurg Pediatr 2009, 3 : 392-396
129) Sekine S, Shibata T, Kokubu A et al : Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 2002, 161 : 1997-2001
130) Larkin SJ, Preda V, Karavitaki N et al : BRAF V600E mutations are characteristic for papillary craniopharyngioma and may coexist with CTNNB1-mutated adamantinomatous craniopharyngioma. Acta Neuropathol 2014, 127 : 927-929