詳説 非剛体レジストレーション 放射線治療領域

出版社: 中外医学社
著者:
発行日: 2020-12-15
分野: 臨床医学:一般  >  放射線/核医学
ISBN: 9784498065284
電子書籍版: 2020-12-15 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

8,580 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

8,580 円(税込)

商品紹介

高精度放射線治療に欠かせないツールとなりつつあるDIR.臨床で非常に有用な技術であると同時に,正しい知識を持って使用しなければ医療事故に繋がりかねない危険性も孕んでいる.本書では2018年に公開されたガイドラインを補足する形で,DIRの利用や評価方法,臨床で利用するにあたっての注意点や疑問などを114のQ&A形式で解説.医学物理士や診療放射線技師,放射線腫瘍医など,放射線治療に関わる全ての医療従事者に役立つ1冊.

目次

  • I 概論
     Q1 放射線治療領域におけるDIR の活用方法について教えてください.
     Q2 本邦ではどのくらいDIR が放射線治療で活用されているか教えてください.
     Q3 DIR ソフトウェアはどのような流れで使用されるか教えてください.
     Q4 DIR を臨床使用するにあたり,どこで,どのくらい教育を受ける必要がありますか?
     Q5 臨床使用するにあたってどのくらいのDIR の性能が必要か教えてください.
     Q6 どのような症例にDIR が有効か教えてください.
     Q7 適応放射線治療でDIR を使うとどのくらい作業を効率化できるか教えてください.
     Q8 参考となる書籍,ガイドライン,セミナーがあれば教えてください.
     Q9 DIR に関する文献のレビューを教えてください.
     Q10 DIR の臨床的側面からの有用性について教えてください.
     Q11 画像レジストレーションの概要を教えてください.
     Q12 画像レジストレーションにおける画像類似度の評価はどのように行われるか
         教えてください.
     Q13 DIR のアルゴリズム(変形モデル)にはどのような種類がありますか?
         また,どのような違いがありますか?
     Q14 幾何学的情報(解剖学的ランドマークや輪郭情報)を用いるアルゴリズムの
         特徴を教えてください.
     Q15 画像レジストレーションの最適化はどのように行われるか教えてください.
     Q16 DIR の正則化について教えてください.
     Q17 DIR を行うときの過変形とは何ですか? どのように対処すればよいでしょうか?
     Q18 DIR の誤差が生じやすいのは,どのような部位ですか?
     Q19 DIR がうまくいかなかった場合の対処法があれば,教えてください.
     Q20 DIR パラメータの1 つの変形グリッドサイズはどのように設定すべきですか?
     Q21 DIR の計算領域を指定するためのROI や輪郭は設定すべきですか?
     Q22 各DIR ソフトウェアのパラメータはどのような働きをするか教えてください.
     Q23 DIR パラメータ設定を選択する際の注意点はありますか?
         使用するDIR パラメータは,ユーザで自由に決定してもよいものですか?
         それとも施設内で統一パラメータを使用すべきですか?
     Q24 DIR ソフトのパラメータは部位ごとに分けるべきですか?
     Q25 CT とMRI などのように異なるモダリティ間でもDIR できますか?
     Q26 DVF を使ってco-registration する時の注意点について教えてください.

    II 品質保証・品質管理
     Q27 DIR の精度検証方法について教えてください.
     Q28 最も効率的なDIR の評価方法もしくは評価方法の組み合わせはどれか
         教えてください.
     Q29 異なるモダリティ画像を用いてDIR したときのDIR 精度評価法について
         教えてください.
     Q30 DIR の精度評価は,部位や活用方法によって最適な方法は異なるのでしょうか.
     Q31 ダイス係数と目標レジストレーション誤差の利点と欠点を教えてください.
     Q32 精度検証ではダイス係数やジャッカード係数が高い数値を示せばよいのでしょうか?
     Q33 精度評価のための解剖学的指標はどのような場所に設置すべきでしょうか?
         注意すべき点はありますか?
     Q34 どれほどのDIR 精度を達成すべきでしょうか?
         DIR 結果の精度の基準値,最低限の値はいくらでしょうか?
     Q35 DIR の結果をどのように保存すればよいでしょうか?
     Q36 DIR のQA を行える物理ファントムはありますか?
     Q37 DIR のコミッショニングを行う前に必要な項目について教えてください.
     Q38 DIR のコミッショニングはどのような手順で行えばよいでしょうか?
     Q39 コミッショニングにおいて臨床での使用可否を判定する基準などはありますか?
     Q40 DIR のコミッショニングおよびQA は必要でしょうか?
     Q41 他施設と同じDIR ソフトウェアを使用しているため,自施設での精度検証は
         省略してよいでしょうか?
     Q42 コミッショニングに利用できるデジタルファントムはありますか?
     Q43 定期的なQA はどのように行えばよいですか?
     Q44 DIR ソフトウェアはどのくらいの頻度でQA を行えばよいですか?
     Q45 患者ごとのQA は必要でしょうか?
     Q46 患者ごとのQA はどのようにすればよいですか?
     Q47 患者ごとにDIR 精度を評価する場合,どのくらいのDIR 精度であれば
         臨床利用できますか?
     Q48 DIR ソフトウェアと治療計画装置や治療装置との通信において注意する点は何でしょうか?

    III 使用画像について
     Q49 歯冠などによる金属アーチファクトの有無がDIR 精度に与える影響について教えてください.
     Q50 体内に金属インプラントがある場合,CT やMRI においてどのような対応策がありますか?
     Q51 腸管ガスの有無はDIR の精度に影響するかどうか教えてください.
     Q52 CT やMRI の撮像条件がDIR 精度に与える影響について教えてください.
     Q53 CT-CT 間DIR について,頭頸部領域でどのくらいのDIR 精度であるか
         教えてください.また,使用において注意すべき点があれば教えてください.
     Q54 CT-CT 間DIR について,胸部領域でどのくらいのDIR 精度であるか教えてください.
         また,使用において注意すべき点があれば教えてください.
     Q55 CT-CT 間DIR について,腹部領域でどのくらいのDIR 精度であるか教えてください.
         また,使用において注意すべき点があれば教えてください.
     Q56 CT-CT 間DIR について,骨盤領域でどのくらいのDIR 精度であるか教えてください.
     Q57 CT-CBCT 間DIR についてどのくらいのDIR 精度であるか部位ごとに教えてください.
     Q58 CT-MRI 間DIR についてどのくらいのDIR 精度であるか部位ごとに教えてください.
     Q59 CT-PET 間DIR についてどのくらいのDIR 精度であるか教えてください.
     Q60 CT 画像間のDIR で,造影効果はDIR 精度に影響を与えますか?
     Q61 DIR でMR 画像の歪みは補正できますか?
     Q62 DIR でMR 画像を用いた線量計算が可能ですか?
     Q63 MRI の撮像プロトコルを変更した場合,再度コミッショニングを実施する必要はありますか?
     Q64 MRI やPET 撮影はフラット天板を使用した方がよいのでしょうか?

    IV 自動輪郭抽出
     Q65 自動輪郭抽出について教えてください.
     Q66 自動輪郭抽出を使った際の時間短縮はどの程度か教えてください.
     Q67 セグメンテーションとプロパゲーションの違いは何ですか?
     Q68 セグメンテーションにおけるアトラスベースとモデルベースの違いについて教えてください.
     Q69 自動輪郭抽出のシングルアトラス選択法と,マルチアトラス選択法について教えてください.
     Q70 アトラスベースセグメンテーションには何例くらい登録しておく必要があるか教えてください.
     Q71 AI を使った自動輪郭抽出とDIR を使った自動輪郭抽出の違いについて教えてください.
     Q72 DIR ソフトウェアによって自動輪郭描出の精度にどのような差がありますか?
     Q73 部位ごとに最適な自動輪郭抽出法はありますか?
     Q74 頭部・頭頸部における自動輪郭抽出について,どのくらいの精度であるか教えてください.
         また,臨床利用する際の注意点についても教えてください.
     Q75 胸部における自動輪郭抽出について,どのくらいの精度であるか教えてください.
         また,臨床利用する際の注意点についても教えてください.
     Q76 腹部における自動輪郭抽出について,どのくらいの精度であるか教えてください.
         また,臨床利用する際の注意点についても教えてください.
     Q77 骨盤部における自動輪郭抽出について,どのくらいの精度であるか教えてください.
        また,臨床利用する際の注意点についても教えてください.

    V 線量の変形と合算
     Q78 DIR を用いた線量分布変形の利用法とワークフローを教えてください.
     Q79 線量分布変形のアルゴリズムについて教えてください.
     Q80 DVF を基にした線量分布変形はどのくらい正確ですか?
     Q81 線量分布合算にDIR アルゴリズムの影響はありますか?
     Q82 DIR の誤差が線量分布変形に及ぼす影響について教えてください.
     Q83 線量分布合算に必要なDIR 精度について,どこまでのDVF 誤差が許容されますか?
     Q84 合算をした線量分布の評価方法にはどのようなものがありますか?
     Q85 Inverse consistency error によるDIR を用いた線量分布変形の
        不確実性評価法について教えてください.
     Q86 目標画像と被変形画像の選択がDIR を用いた線量合算結果に及ぼす影響について教えてください.
     Q87 DIR を用いた合算線量分布において,評価したいDVH パラメータによって
       注意すべき点は異なりますか?
     Q88 IGRT で撮影されたCBCT 画像とDIR を用いて実際に照射された線量を評価できますか?
     Q89 DIR を用いた線量合算が有効な部位について教えてください.
     Q90 DIR を用いた合算線量と臨床成績には相関があるでしょうか?
     Q91 適応放射線治療においてDIR を用いた線量分布合算は有用でしょうか?
     Q92 照射法や照射時期が異なる場合のDIR について,どのような適応がありますか?
     Q93 陽子線治療や重粒子線治療においてDIR による線量合算は有用でしょうか?
         X 線治療との違いがあれば教えてください.
     Q94 4DCT とDIR を用いた4 次元線量分布計算は呼吸性移動を考慮した
         線量評価に有効ですか?
     Q95 4DCT とDIR を用いた4 次元線量分布計算によりインタープレイ効果の
         影響を考慮できますか?
     Q96 頭頸部における線量合算の利点と欠点を教えてください.
     Q97 胸部における線量合算の利点と欠点を教えてください.
     Q98 腹部における線量合算の利点と欠点を教えてください.
     Q99 骨盤部における線量合算の利点と欠点を教えてください.
     Q100 外部照射と永久挿入密封小線源治療を併用した前立腺癌症例における
          DIR 利用の利点と欠点を教えてください.
     Q101 婦人科領域においてDIR は有効でしょうか?
     Q102 婦人科領域の小線源治療および外部照射におけるDIR で
          留意すべきことはありますか?
     Q103 婦人科領域でDIR を実施した際,視覚評価で注視するべきポイントを
          教えてください.
     Q104 小線源治療で使用するアプリケータのDIR に及ぼす影響とその対処法を
          教えてください.

    VI 適応放射線治療と再照射
     Q105 生理的変化がDIR 精度に与える影響と対処法について教えてください.
     Q106 DIR で撮影時の患者体位の違いを補うことはできますか?
     Q107 再照射の治療計画においてDIR により合算線量を正しく評価できますか?
     Q108 再照射におけるDIR を用いた合算線量評価と臨床結果との関係を
          教えてください.
     Q109 再照射時のDIR を用いた治療計画法について教えてください.

    VII その他のDIR 活用
     Q110 DIR によって肺の換気能を画像化する(CT 肺換気画像)メカニズムを
          教えてください.
     Q111 CT 肺換気画像の精度を教えてください.
     Q112 CT 肺換気画像の利用方法を教えてください.
     Q113 CT 肺換気画像を臨床利用する際の注意点を教えてください.
     Q114 機能画像における利用以外で,DIR を用いた最新の研究内容について
          教えてください.

    DIR 機能を搭載した治療計画支援装置および治療計画装置

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I 概論

P.3 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 [Internet]. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
P.5 掲載の参考文献
1) Kadoya N, Kito S, Kurooka M, et al. Factual survey of the clinical use of deformable image registration software for radiotherapy in Japan. J Radiat Res. 2019 ; 60 : 546-53.
P.9 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132 : Med Phys. 2017 ; 44 : e43-76.
P.11 掲載の参考文献
1) Rigaud B, Simon A, Castelli J, et al. Evaluation of deformable image registration methods for dose monitoring in head and neck radiotherapy. Biomed Res Int. 2015 ; 2015 : 726268.
2) Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20 : perspectives on automated image segmentation for radiotherapy. Med Phys. 2014 ; 41 : 050902.
3) Rao M, Wu J, Cao D, et al. Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using image-modulated radiotherapy and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys. 2012 ; 83 : e251-6.
P.13 掲載の参考文献
1) Tao CJ, Yi JL, Chen NY, et al. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma : A multi-institution clinical study. Radiother Oncol. 2015 ; 115 : 407-11.
2) Chao KS, Bhide S, Chen H, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 1512-21.
3) Young AV, Wortham A, Wernick I, et al. Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes. Int J Radiat Oncol Biol Phys. 2011 ; 79 : 943-7.
P.14 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) AAPM. TG 132 Datasets [Internet]. AAPM [cited 2020 Jun 15]. Available from : https://www.aapm.org/pubs/reports/report132.asp
3) 角谷倫之, 木藤哲史, 黒岡正彦, 他. 米国医学物理学会タスクグループ 132 レポート日本語訳 放射線治療における画像レジストレーション・フュージョンアルゴリズムの利用法と技術. 2018.
4) 日本放射線腫瘍学会QA 委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版. 日本放射線腫瘍学会 ; 2018.
5) Shackleford J, Kandasamy N, Sharp G. High performance deformable image registration algorithms for manycore processors. Waltham : Morgan Kaufmann ; 2013.
6) Brock KK. Image processing in radiation therapy. Boca Raton : CRC Press ; 2013.
7) 篠原広行, 伊藤猛, 橋本雄幸. 医用画像位置合わせの基礎. 東京 : 医療科学社 ; 2011.
8) 有村秀孝. 放射線治療におけるDeformable Image Registration特集. 医学物理. 2019 ; 39 : 1-28.
P.17 掲載の参考文献
1) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 [Internet]. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
3) Fontanilla HP, Klopp AH, Lindberg ME, et al. Anatomic distribution of [(18) F] fluorodeoxyglucose-avid lymph nodes in patients with cervical cancer. Pract Radiat Oncol. 2013 ; 3 : 45-53.
4) Yang J, Amini A, Williamson R, et al. Automatic contouring of brachial plexus using a multi-atlas approach for lung cancer radiation therapy. Pract Radiat Oncol. 2013 ; 3 : e139-47.
5) Hoang Duc AK, Eminowicz G, Mendes R, et al. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer. Med Phys. 2015 ; 42 : 5027-34.
6) Chao KS, Bhide S, Chen H, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 1512-21.
7) Lee DS, Woo JY, Kim JW, et al. Re-irradiation of hepatocellular carcinoma : clinical applicability of deformable image registration. Yonsei Med J. 2016 ; 57 : 41-9.
8) Senthi S, Griffioen GH, van Sornsen de Koste JR, et al. Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol. 2013 ; 106 : 323-6.
9) Hardcastle N, van Elmpt W, De Ruysscher D, et al. Accuracy of deformable image registration for contour propagation in adaptive lung radiotherapy. Radiat Oncol. 2013 ; 8 : 243.
10) Jung SH, Yoon SM, Park SH, et al. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer. Med Phys. 2013 ; 40 : 011706.
11) Yang C, Liu F, Ahunbay E, et al. Combined online and offline adaptive radiation therapy : a dosimetric feasibility study. Pract Radiat Oncol. 2014 ; 4 : e75-83.
12) Song WY, Wong E, Bauman GS, et al. Dosimetric evaluation of daily rigid and nonrigid geometric correction strategies during on-line image-guided radiation therapy (IGRT) of prostate cancer. Med Phys. 2007 ; 34 : 352-65.
13) Qin A, Sun Y, Liang J, et al. Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015 ; 91 : 1026-33.
14) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy. 2016 ; 15 : 333-40.
15) Teo BK, Bonner Millar LP, Ding X, et al. Assessment of cumulative external beam and intracavitary brachytherapy organ doses in gynecologic cancers using deformable dose summation. Radiother Oncol. 2015 ; 115 : 195-202.
16) Sabater S, Andres I, Sevillano M, et al. Dose accumulation during vaginal cuff brachytherapy based on rigid/deformable registration vs. single plan addition. Brachytherapy. 2014 ; 13 : 343-51.
17) Kato S, Tran DNL, Ohno T, et al. CT-based 3D Dose-Volume Parameter of the Rectum and Late Rectal Complication in Patients with Cervical Cancer Treated with High-Dose-Rate Intracavitary Brachytherapy. J Radiat Res. 2010 ; 51 : 215-21.
18) Georg P, Potter R, Georg D, et al. Dose effect relationship for late side effects of the rectum and urinary bladder in magnetic resonance image-guided adaptive cervix cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2012 ; 82 : 653-7.
19) Vinogradskiy Y, Schubert L, Diot Q, et al. Regional lung function profiles of stage I and III lung cancer patients : an evaluation for functional avoidance radiation therapy. Int J Radiat Oncol Biol Phys. 2016 ; 95 : 1273-80.
20) Kadoya N, Cho SY, Kanai T, et al. Dosimetric impact of 4-dimensional computed tomography ventilation imaging-based functional treatment planning for stereotactic body radiation therapy with 3-dimensional conformal radiation therapy. Pract Radiat Oncol. 2015 ; 5 : e505-12.
21) Kida S, Bal M, Kabus S, et al. CT ventilation functional image-based IMRT treatment plans are comparable to SPECT ventilation functional image-based plans. Radiother Oncol. 2016 ; 118 : 521-7.
22) Yamamoto T, Kabus S, Bal M, et al. The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother Oncol. 2016 ; 118 : 227-31.
23) Yang J, Garden AS, Zhang Y, et al. Variable planning margin approach to account for locoregional variations in setup uncertainties. Med Phys. 2012 ; 39 : 5136-44.
24) Schreibmann E, Waller AF, Crocker I, et al. Voxel clustering for quantifying PET-based treatment response assessment. Med Phys. 2013 ; 40 : 012401.
25) Badawi AM, Weiss E, Sleeman WC, et al. Classifying geometric variability by dominant eigenmodes of deformation in regressing tumours during active breath-hold lung cancer radiotherapy. Phys Med Biol. 2012 ; 57 : 395-413.
26) Hardcastle N, Hofman MS, Hicks RJ, et al. Accuracy and utility of deformable image registration in (68) Ga 4D PET/CT assessment of pulmonary perfusion changes during and after lung radiation therapy. Int J Radiat Oncol Biol Phys. 2015 ; 93 : 196-204.
27) Palma DA, van Sornsen de Koste J, Verbakel WF, et al. Lung density changes after stereotactic radiotherapy : a quantitative analysis in 50 patients. Int J Radiat Oncol Biol Phys. 2011 ; 81 : 974-8.
28) Chetty IJ, Rosu-Bubulac M. Deformable registration for dose accumulation. Semin Radiat Oncol. 2019 ; 29 : 198-208.
29) Heukelom J, Fuller CD. Head and neck cancer adaptive radiation therapy (ART) : conceptual considerations for the informed clinician. Semin Radiat Oncol. 2019 ; 29 : 258-73.
P.21 掲載の参考文献
1) Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20 : perspectives on automated image segmentation for radiotherapy. Med Phys. 2014 ; 41 : 050902.
2) Schwartz DL, Garden AS, Shah SJ, et al. Adaptive radiotherapy for head and neck cancer-dosimetric results from a prospective clinical trial. Radiother Oncol. 2013 ; 106 : 80-4.
3) Glide-Hurst CK, Hugo GD, Liang J, et al. A simplified method of four-dimensional dose accumulation using the mean patient density representation. Med Phys. 2008 ; 35 : 5269-77.
4) Zou W, Yin L, Shen J, et al. Dynamic simulation of motion effects in IMAT lung SBRT. Radiat Oncol. 2014 ; 9 : 225.
5) McCann C, Purdie T, Hope A, et al. Lung sparing and dose escalation in a robust-inspired IMRT planning method for lung radiotherapy that accounts for intrafraction motion. Med Phys. 2013 ; 40 (6 Part 1) : 061705.
6) Keall PJ, Joshi S, Vedam SS, et al. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys. 2005 ; 32 : 942-51.
7) Abe T, Tamaki T, Makino S, et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat Oncol. 2014 ; 9 : 293.
8) Senthi S, Griffioen GH, De Koste JRVS, et al. Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol. 2013 ; 106 : 323-6.
9) Murphy MJ. Image-guided patient positioning : If one cannot correct for rotational offsets in external-beam radiotherapy setup, how should rotational offsets be managed? Med Phys. 2007 ; 34 (6 Part 1) : 1880-3.
10) Yang J, Garden AS, Zhang Y, et al. Variable planning margin approach to account for locoregional variations in setup uncertainties. Med Phys. 2012 ; 39 : 5136-44.
11) Paganelli C, Peroni M, Riboldi M, et al. Scale invariant feature transform in adaptive radiation therapy : a tool for deformable image registration assessment and re-planning indication. Phys Med Biol. 2012 ; 58 : 287.
12) Schreibmann E, Waller AF, Crocker I, et al. Voxel clustering for quantifying PET-based treatment response assessment. Med Phys. 2013 ; 40 : 012401.
13) Palma DA, De Koste JVS, Verbakel WF, et al. Lung density changes after stereotactic radiotherapy : a quantitative analysis in 50 patients. Int J Radiat Oncol Biol Phys. 2011 ; 81 : 974-8.
P.28 掲載の参考文献
1) Rueckert D, Sonoda LI, Hayes C, et al. Nonrigid registration using free-form deformations : application to breast MR images. IEEE Trans Med Imaging. 1999 ; 18 : 712-21.
2) Meyer CR, Boes JL, Kim B, et al. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Med Image Anal. 1997 ; 1 : 195-206.
3) Thirion J-P. Image matching as a diffusion process : an analogy with Maxwell's demons. Med Image Anal. 1998 ; 2 : 243-60.
4) Martel AL, Froh MS, Brock KK, et al. Evaluating an optical-flow-based registration algorithm for contrast-enhanced magnetic resonance imaging of the breast. Phys Med Biol. 2007 ; 52 : 3803-16.
P.32 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) Castillo R, Castillo E, Guerra R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol. 2009 ; 54 : 1849-70.
3) Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015 ; 42 : 40-53.
4) Motegi K, Tachibana H, Motegi A, et al. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J Appl Clin Med Phys. 2019 ; 20 : 229-36.
5) Kadoya N, Miyasaka Y, Yamamoto T, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. J Radiat Res. 2017 ; 58 : 720-8.
6) Brock KK, Sharpe MB, Dawson LA, et al. Accuracy of finite element model-based multi-organ deformable image registration. Med Phys. 2005 ; 32 : 1647-59.
P.34 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) Song G, Han J, Zhao Y et al. A review on medical image registration as an optimization problem. Curr Med Imaging Rev. 2017 ; 13 : 274-83.
3) Klein S, Staring M, Pluim JP. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines. IEEE Trans Image Process. 2007 ; 16 : 2879-90.
4) Stefan K, Marius S. elastix the manual ver 4.8. 2015.
5) Nocedal J, Wright S. Numerical optimization. New York : Springer ; 1999.
6) Dennis J, John E, More JJ. Quasi-Newton methods, motivation and theory. SIAM Rev. 1977 ; 19 : 46-89.
7) Hestenes MR, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand. 1952 ; 49 : 409-36.
8) Kushner H, Yin GG. Stochastic approximation and recursive algorithms and applications. Springer Science & Business Media ; 2003.
P.37 掲載の参考文献
1) Rohlfing T, Maurer CR Jr, Bluemke DA, et al. Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint. IEEE Trans Med Imaging. 2003 ; 22 : 730-41.
2) Johnson HJ, Christensen GE. Consistent landmark and intensity-based image registration. IEEE Trans Med Imaging. 2002 ; 21 : 450-61.
3) Haber E, Modersitzki J. Image registration with guaranteed displacement regularity. Int J Comput Vis. 2007 ; 71 : 361-72.
4) Modersitzki J. FLIRT with rigidity-image registration with a local non-rigidity penalty. Int J Comput Vis. 2007 ; 76 : 153-63.
5) Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015 ; 42 : 40-53.
P.40 掲載の参考文献
1) Schreibmann E, Pantalone P, Waller A, et al. A measure to evaluate deformable registration fields in clinical settings. J Appl Clin Med Phys. 2012 ; 13 : 3829.
2) Chun SY, Fessler JA. Regularized methods for topology-preserving smooth nonrigid image registration using b-spline basis. 2008 5th IEEE International Symposium on Biomedical Imaging ; 2008 : IEEE.
P.42 掲載の参考文献
1) Pace DF, Aylward SR, Niethammer M, et al. A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans Med Imaging. 2013 ; 32 : 2114-26.
2) Xie Y, Chao M, Xiong G, et al. Deformable image registration of liver with consideration of lung sliding motion. Med Phys. 2011 ; 38 : 5351-61.
3) Vandemeulebroucke J, Bernard O, Rit S, et al. Automated segmentation of a motion mask to preserve sliding motion in deformable registration of thoracic CT. Med Phys. 2012 ; 39 : 1006-15.
4) Wu Z, Rietzel E, Boldea V, et al. Evaluation of deformable registration of patient lung 4DCT with subanatomical region segmentations. Med Phys. 2008 ; 35 : 775-81.
5) Brock KK. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
6) Jamema SV, Mahantshetty U, Andersen E, et al. Uncertainties of deformable image registration for dose accumulation of high-dose regions in bladder and rectum in locally advanced cervical cancer. Brachytherapy. 2015 ; 14 : 953-62.
7) Takayama Y, Kadoya N, Yamamoto T, et. al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region : comparison between hybrid and intensity-based DIR. J Radiat Res. 2017 ; 58 : 567-71.
P.44 掲載の参考文献
1) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 [Internet]. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.46 掲載の参考文献
1) Hellier P, Barillot C, Memin E, et al. Hierarchical estimation of a dense deformation field for 3-D robust registration. IEEE Trans Med Imaging. 2001 ; 20 : 388-402.
P.47 掲載の参考文献
1) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
2) Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015 ; 42 : 40-53.
P.52 掲載の参考文献
1) Ikeda R. Impact on smoothness factor on DIR accuracy for thoracic images. 第6回 MIM Maestro ユーザーズミーティング. 東京. 2017.
2) Kirby N, Chuang C, Ueda U, et al. The need for application-based adaptation of deformable image registration. Med Phys. 2013 ; 40 : 011702.
3) 良知寿哉, 相楽裕亮, 上原隆三. 頭頸部領域におけるSmooth係数の最適値とAdaptive RTの新しい指標の検討. 第8回 MIM Maestro ユーザーズミーティング. 東京. 2019.
4) Takayama Y, Kadoya N, Yamamoto T, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region : comparison between hybrid and intensity-based DIR. J Radiat Res. 2017 ; 58 : 567-71.
5) Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015 ; 42 : 40-53.
6) Obeidat M, Narayanasamy G, Cline K, et al. Comparison of different QA methods for deformable image registration to the known errors for prostate and head-and-neck virtual phantoms. Biomed Phys Eng Express. 2016 ; 2 : 067002.
P.53 掲載の参考文献
1) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
2) Kadoya N, Kito S, Kurooka M, et al. Factual survey of the clinical use of deformable image registration software for radiotherapy in Japan. J Radiat Res. 2019 ; 60 : 546-53.
P.55 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 [Internet]. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
3) Nie K, Pouliot J, Smith E, et al. Performance variations among clinically available deformable image registration tools in adaptive radiotherapy-how should we evaluate and interpret the result? J Appl Clin Med Phys. 2016 ; 17 : 328-40.
4) Kadoya N, Miyasaka Y, Yamamoto T, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. J Radiat Res. 2017 ; 58 : 720-8.
5) Al-Mayah A, Moseley J, Velec M, et al. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy. Phys Med Biol. 2011 ; 56 : 4701-13.
P.57 掲載の参考文献
1) Wells WM, Viola P, Atsumi H, et al. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996 ; 1 : 35-51.
2) Likar B, Pernus F. A hierarchical approach to elastic registration based on mutual information. Image Vision Comput. 2001 ; 19 : 33-44.
3) Loeckx D, Slagmolen P, Maes F, et al. Nonrigid image registration using conditional mutual information. IEEE Trans Med Imaging. 2010 ; 29 : 19-29.
4) Wu RY, Liu AY, Yang J, et al. Evaluation of the accuracy of deformable image registration on MRI with a physical phantom. J Appl Clin Med Phys. 2020 ; 21 : 166-73.

II 品質保証・品質管理

P.65 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.68 掲載の参考文献
1) DIRガイドラインWG : 放射線治療における 非剛体画像レジストレーション利用のためのガイドライン [Internet]. JASTRO ; 2018 ; 1-39. [cited 2020 Jun 1]. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Loi G, Fusella M, Lanzi E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms : A multi-institutional study. Med Phys. 2018 ; 45 : 748-57.
3) Guy CL, Weiss E, Che S, et al. Evaluation of image registration accuracy for tumor and organs at risk in the thorax for compliance with TG 132 recommendations. Adv Radiat Oncol. 2019 ; 4 : 177-85.
4) Hammers JE, Pirozzi S, Lindsay D, et al. Evaluation of a commercial DIR platform for contour propagation in prostate cancer patients treated with IMRT/VMAT. J Appl Clin Med Phys. 2020 ; 21 : 14-25.
5) Mohammadi R, Mahdavi SR, Jaberi R, et al. Evaluation of deformable image registration algorithm for determination of accumulated dose for brachytherapy of cervical cancer patients. J Contemp Brachytherapy. 2019 ; 11 : 469-78.
6) Varadhan R, Karangelis G, Krishnan K, et al. A framework for deformable image registration validation in radiotherapy clinical applications. J Appl Clin Med Phys. 2013 ; 14 : 4066.
7) Latifi K, Forster KM, Hoffe SE, et al. Dependence of ventilation image derived from 4D CT on deformable image registration and ventilation algorithms. J Appl Clin Med Phys. 2013 ; 14 : 4247.
8) Bender ET, Tome WA. The utilization of consistency metrics for error analysis in deformable image registration. Phys Med Biol. 2009 ; 54 : 5561-77.
9) Takemura A, Nagano A, Kojima H, et al. An uncertainty metric to evaluate deformation vector fields for dose accumulation in radiotherapy. Phys Imaging Radiat Oncol. 2018 ; 6 : 77-82.
P.70 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.72 掲載の参考文献
1) 放射線治療における画像レジストレーション・フュージョンアルゴリズムの利用法と技術-AAPMTG-132日本語訳. 2018.
2) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版. 2018.
3) Saleh-Sayah NK, Weiss E, Salguero FJ, et al. A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field. Med Phys. 2011 ; 38 : 2318-23.
4) Salguero FJ, Saleh-Sayah NK, Yan C, et al. Estimation of three-dimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping. Med Phys. 2010 ; 38 : 343-53.
5) Hub M, Thieke C, Kessler ML, et al. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration. Med Phys. 2012 ; 39 : 2186-92.
P.75 掲載の参考文献
1) Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945 ; 26 : 297-302.
2) Nelms BE, Tome WA, Robinson G, et al. Variations in the contouring of organs at risk : test case from a patient with oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2012 ; 82 : 368-78.
3) Fitzpatrick JM, West JB. The distribution of target registration error in rigid-body point-based registration. IEEE Trans Med Imaging. 2001 ; 20 : 917-27.
P.77 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Medical Physics. 2017 ; 44 : e43-76.
2) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 [Internet]. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
P.79 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) Castillo R, Castillo E, Guerra R, et al. A framework for evaluation of deformable image registration spatial accuracy using large landmark point sets. Phys Med Biol. 2009 ; 54 : 1849-70.
3) Murphy K, van Ginneken B, Klein S, et al. Semi-automatic construction of reference standards for evaluation of image registration. Med Image Anal. 2011 ; 15 : 71-84.
P.81 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.83 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.85 掲載の参考文献
1) Sugawara Y, Kadoya N, Kotabe K, et al. Development of a dynamic deformable thorax phantom for the quality management of deformable image registration. Phys Med. 2020 ; 77 : 100-7.
P.87 掲載の参考文献
1) Fraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53 : Quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998 ; 25 : 1773-829.
2) 日本医学物理学会QA/QC委員会. X線治療計画システムに関するQAガイドライン. 日本医学物理学会 タスクグループ 01. 2007.
3) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
4) 日本放射線腫瘍学会. 外部放射線治療におけるQAシステムガイドライン 2016年度版. 東京 : 金原出版 ; 2016.
5) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.89 掲載の参考文献
1) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018年版 1版 [Internet]. 日本放射線腫瘍学会. 2018 [cited 2020.10.01]. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132 : Report. Med Phys. 2017 ; 44 : e43-76.
3) Serban M, Heath E, Stroian G, et al. A deformable phantom for 4D radiotherapy verification : Design and image registration evaluation. Med Phys. 2008 ; 35 : 1094-102.
4) Kirby N, Chuang C, Pouliot J. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms. Med Phys. 2011 ; 38 : 4583-6.
5) Yeo UJ, Taylor ML, Dunn L, et al. A novel methodology for 3D deformable dosimetry. Med Phys. 2012 ; 39 : 2203-13.
P.91 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Medical Physics. 2017 ; 44 : e43-76.
2) 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 [Internet]. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
3) Kumarasiri A, Siddiqui F, Liu C, et al. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting. Medical Physics. 2014 ; 41 : 121712.
4) 角谷倫之. 様々な医用画像に対するDIR と自動輪郭抽出. 医学物理. 2019 ; 39 : 12-9.
5) Zhang L, Wang Z, Shi C, et al. The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy. J Appl Clin Med Phys. 2018 ; 19 : 185-94.
6) Nie K, Pouliot J, Smith E, et al. Performance variations among clinically available deformable image registration tools in adaptive radiotherapy-how should we evaluate and interpret the result? J Appl Clin Med Phys. 2016 ; 17 : 5778.
P.92 掲載の参考文献
1) Kashani R, Hub M, Balter JM, et al. Objective assessment of deformable image registration in radiotherapy : a multi-institution study. Med Phys. 2008 ; 35 : 5944-53.
2) Brock KK ; Deformable Registration Accuracy Consortium. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
3) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
4) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018年版. 1版.
5) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132 : Report. Med Phys. 2017 ; 44 : e43-76.
P.94 掲載の参考文献
1) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
P.97 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.98 掲載の参考文献
1) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018年版. 1版.
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
3) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
P.100 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) 角谷倫之 (翻訳代表者), 木藤哲史, 黒岡将彦, 他. 放射線治療における画像レジストレーション・フュージョンアルゴリズムの利用法と技術 (米国医学物理学会タスクグループ 132 レポート 日本語訳). 2019.
P.101 掲載の参考文献
1) Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration : a survey. IEEE Trans Med Imaging. 2013 ; 32 : 1153-90.
2) Hub M, Karger CP. Estimation of the uncertainty of elastic image registration with the demons algorithm. Phys Med Biol. 2013 ; 58 : 3023-36.
3) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132 : Report. Med Phys. 2017 ; 44 : e43-76.
P.103 掲載の参考文献
1) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018年版 1版 [Internet]. 日本放射線腫瘍学会. 2018. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132 : Report. Med Phys. 2017 ; 44 : e43-76.
3) Paganelli C, Meschini G, Molinelli S, et al. Patient-specific validation of deformable image registration in radiation therapy : Overview and caveats. Med Phys. 2018 ; 45 : e908-22.
4) Saleh Z, Thor M, Apte AP, et al. A multiple-image-based method to evaluate the performance of deformable image registration in the pelvis. Phys Med Biol. 2016 ; 61 : 6172-80.
5) Yan C, Hugo G, Salguero FJ, et al. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations. Med Phys. 2012 ; 39 : 2119-28.
6) Moriya S, Tachibana H, Kitamura N, et al. Dose warping performance in deformable image registration in lung. Phys Med. 2017 ; 37 : 16-23.
7) Hub M, Thieke C, Kessler ML, et al. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration. Med Phys. 2012 ; 39 : 2186-92.
8) Vickress J, Battista J, Barnett R, et al. Representing the dosimetric impact of deformable image registration errors. Phys Med Biol. 2017 ; 62 : N391-403.
9) Salguero FJ, Saleh-Sayah NK, Yan C, et al. Estimation of threedimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping. Med Phys. 2011 ; 38 : 343-53.
P.105 掲載の参考文献
1) Paganelli C, Meschini G, Molinelli S, et al. Patient-specific validation of deformable image registration in radiation therapy : Overview and caveats. Med Phys. 2018 ; 45 : e908-22.
2) Kierkels RGJ, Den Otter LA, Korevaar EW, et al. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images. Phys Med Biol. 2018 ; 63 : 045026.
3) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132 : Report. Med Phys. 2017 ; 44 : e43-76.
P.106 掲載の参考文献
1) Fraass B, Doppke K, Hunt M, et al. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53 : Quality assurance for clinical radiotherapy treatment planning. Med Phys. 1998 ; 25 : 1773-829.
2) タスクグループ 01 日本医学物理学会. X線治療計画システムに関するQAガイドライン. JSMP公認ガイドライン. 2007.
3) 池田恢. 放射線治療計画のための品質保証 米国医学物理学会放射線治療委員会タスクグループ 53 報告 (AAPM TG-53 日本語訳). 2004.

III 使用画像について

P.109 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
2) Funama Y, Taguchi K, Utsunomiya D, et al. A newly-developed metal artifact reduction algorithm improves the visibility of oral cavity lesions on 320-MDCT volume scans. Phys Med. 2015 ; 31 : 66-71.
P.111 掲載の参考文献
1) Katsura M, Sato J, Akahane M, et al. Current and novel techniques for metal artifact reduction at CT : practical guide for radiologists. Radiographics. 2018 ; 38 : 450-61.
2) Hargreaves BA, Worters PW, Pauly KB, et al. Metal-induced artifacts in MRI. Am J Roentgenol. 2011 ; 197 : 547-55.
3) Jungmann PM, Agten CA, Pfirrmann CW, et al. Advances in MRI around metal. J Magn Reson Imaging. 2017 ; 46 : 972-91.
4) Koch KM, Lorbiecki JE, Hinks RS, et al. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med. 2009 ; 61 : 381-90.
5) Lu W, Pauly KB, Gold GE, et al. SEMAC : Slice encoding for metal artifact correction in MRI. Magn Reson Med. 2009 ; 62 : 66-76.
P.113 掲載の参考文献
1) Zambrano V, Furtado H, Fabri D, et al. Performance validation of deformable image registration in the pelvic region. J Radiat Res. 2013 ; 54 : 120-8.
2) Takayama Y, Kadoya N, Yamamoto T, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region : comparison between hybrid and intensity-based DIR. J Radiat Res. 2017 ; 58 : 567-71.
3) Li X, Quan EM, Li Y, et al. A fully automated method for CT-on-rails-guided online adaptive planning for prostate cancer intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 835-41.
P.115 掲載の参考文献
1) Thornqvist S, Petersen JB, Hoyer M, et al. Propagation of target and organ at risk contours in radiotherapy of prostate cancer using deformable image registration. Acta Oncol. 2010 ; 49 : 1023-32.
2) Webster GJ, Kilgallon JE, Ho KF, et al. A novel imaging technique for fusion of high-quality immobilised MR images of the head and neck with CT scans for radiotherapy target delineation. Br J Radiol. 2009 ; 82 : 497-503.
3) Hoffmann C, Krause S, Stoiber EM, et al. Accuracy quantification of a deformable image registration tool applied in a clinical setting. J Appl Clin Med Phys. 2014 ; 15 : 4564.
4) Ramadaan IS, Peick K, Hamilton DA, et al. Validation of Varian's SmartAdapt (R) deformable image registration algorithm for clinical application. Radiat Oncol. 2015 ; 10 : 73.
5) Abe T, Tamaki T, Makino S, et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat Oncol. 2014 ; 9 : 293.
P.117 掲載の参考文献
1) Hardcastle N, Tome WA, Cannon DM, et al. A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat Oncol. 2012 ; 7 : 90-6.
2) Tsuji SY, Hwang A, Weinberg V, et al. Dosimetric evaluation of automatic segmentation for adaptive IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2010 ; 77 : 707-14.
3) Roussakis YG, Dehghani H, Green S, et al. Validation of a dose warping algorithm using clinically realistic scenarios. Br J Radiol. 2015 ; 88 : 20140691.
P.119 掲載の参考文献
1) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
2) Brock KK ; Deformable Registration Accuracy Consortium. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
3) Kanai T, Kadoya N, Ito K, et al. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images. J Radiat Res. 2014 ; 55 : 1163-70.
4) Nakajima Y, Kadoya N, Kanai T, et al. Evaluation of the effect of user-guided deformable image registration of thoracic images on registration accuracy among users. Med Dosim. 2020 ; S0958-3947 : 30130-X.
5) Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys. 2015 ; 42 : 40-53.
P.121 掲載の参考文献
1) Gupta V, Wang Y, Mendez Romero A, et al. Fast and robust adaptation of organs-at-risk delineations from planning scans to match daily anatomy in pre-treatment scans for online-adaptive radiotherapy of abdominal tumors. Radiother Oncol. 2018 ; 127 : 332-8.
2) Ahunbay EE, Kimura B, Liu F, et al. Comparison of various online strategies to account for interfractional variations for pancreatic cancer. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 914-21.
3) Tai A, Liang Z, Erickson B, et al. Management of respiration-induced motion with 4-dimensional computed tomography (4DCT) for pancreas irradiation. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 908-13.
4) Ma C, Duan J, Yu S, et al. Dosimetric study of three-dimensional static and dynamic SBRT radiotherapy for hepatocellular carcinoma based on 4DCT image deformable registration. J Appl Clin Med Phys. 2020 ; 21 : 60-6.
5) Schreibmann E, Pantalone P, Waller A, et al. A measure to evaluate deformable registration fields in clinical settings. J Appl Clin Med Phys. 2012 ; 13 : 3829.
6) Fu Y, Liu S, Li HH, et al. An adaptive motion regularization technique to support sliding motion in deformable image registration. Med Phys. 2018 ; 45 : 735-47.
7) Kubota Y, Okamoto M, Li Y, et al. Evaluation of intensity- and contour-based deformable image registration accuracy in pancreatic cancer patients. Cancers (Basel). 2019 ; 11 : E1447.
8) Brock KK. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
9) Mogadas N, Sothmann T, Knopp T, et al. Influence of deformable image registration on 4D dose simulation for extracranial SBRT : A multi-registration framework study. Radiother Oncol. 2018 ; 127 : 225-32.
P.124 掲載の参考文献
1) Delpon G, Escande A, Ruef T, et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol. 2016 ; 6 : 178.
2) Wong J, Fong A, McVicar N, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020 ; 144 : 152-8.
3) Kim J, Kumar S, Liu C, et al. A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy. Phys Med Biol. 2013 ; 58 : 8077-97.
4) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
5) Latifi K, Caudell J, Zhang G, et al. Practical quantification of image registration accuracy following the AAPM TG-132 report framework. J Appl Clin Med Phys. 2018 ; 19 : 125-33.
6) Loi G, Fusella M, Lanzi E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms : A multi-institutional study. Med Phys. 2018 ; 45 : 748-57.
7) Romano C, De Marco P, Trivellato S, et al. Influence of different urinary bladder filling levels and controlling regions of interest selection on deformable image registration algorithms. Phys Med. 2020 ; 75 : 19-25.
8) Takayama Y, Kadoya N, Yamamoto T, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region : comparison between hybrid and intensity-based DIR. J Radiat Res. 2017 ; 58 : 567-71.
9) Motegi K, Tachibana H, Motegi A, et al. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J Appl Clin Med Phys. 2019 ; 20 : 229-36.
P.126 掲載の参考文献
1) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : 43-76.
2) Castadot P, Lee JA, Parraga A, et al. Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiother Oncol. 2008 ; 89 : 1-12.
3) Li X, Zhang YY, Shi YH, et al. Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy. Technol Health Care. 2016 ; 24 : 747-55.
4) Takayama Y, Kadoya N, Yamamoto T, et al. Evaluation of the performance of deformable image registration between planning CT and CBCT images for the pelvic region : comparison between hybrid and intensity-based DIR. J Radiat Res. 2017 ; 58 : 567-71.
5) Hou J, Guerrero M, Chen W, et al. Deformable planning CT to cone-beam CT image registration in head-and-neck cancer. Med Phys. 2011 ; 38 : 2088-94.
P.128 掲載の参考文献
1) Wu RY, Liu AY, Yang J, et al. Evaluation of the accuracy of deformable image registration on MRI with a physical phantom. J Appl Clin Med Phys. 2020 ; 21 : 166-73.
2) Webster GJ, Kilgallon JE, Ho KF, et al. A novel imaging technique for fusion of high-quality immobilised MR images of the head and neck with CT scans for radiotherapy target delineation. Br J Radiol. 2009 ; 82 : 497-503.
3) Fortunati V, Verhaart RF, Angeloni F, et al. Feasibility of multimodal deformable registration for head and neck tumor treatment planning. Int J Radiat Oncol Biol Phys. 2014 ; 90 : 85-93.
4) Brock KK. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
5) Velec M, Moseley JL, Svensson S, et al. Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system. Med Phys. 2017 ; 44 : 3407-17.
6) Hamdan I, Bert J, Rest CCL, et al. Fully automatic deformable registration of pretreatment MRI/CT for image-guided prostate radiotherapy planning. Med Phys. 2017 ; 44 : 6447-55.
7) Lian J, Xing L, Hunjan S, et al. Mapping of the prostate in endorectal coil-based MRI/MRSI and CT : a deformable registration and validation study. Med Phys. 2004 ; 31 : 3087-94.
8) Zhong H, Wen N, Gordon JJ, et al. An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy. Phys Med Biol. 2015 ; 60 : 2837-51.
9) van Heerden LE, Houweling AC, Koedooder K, et al. Structure-based deformable image registration : Added value for dose accumulation of external beam radiotherapy and brachytherapy in cervical cancer. Radiother Oncol. 2017 ; 123 : 319-24.
10) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy. 2016 ; 15 : 333-40.
P.131 掲載の参考文献
1) Goerres GW, Kamel E, Heidelberg TN, et al. PET-CT image co-registration in the thorax : influence of respiration. Eur J Nucl Med Mol Imaging. 2002 ; 29 : 351-60.
2) Nehmeh SA, Erdi YE, Pan T, et al. Four-dimensional (4D) PET/CT imaging of the thorax. Med Phys. 2004 ; 31 : 3179-86.
3) Hwang AB, Bacharach SL, Yom SS, et al. Can positron emission tomography (PET) or PET/Computed Tomography (CT) acquired in a nontreatment position be accurately registered to a head-and-neck radiotherapy planning CT? Int J Radiat Oncol Biol Phys. 2009 ; 73 : 578-84.
4) Kovalchuk N, Jalisi S, Subramaniam RM, et al. Deformable registration of preoperative PET/CT with postoperative radiation therapy planning CT in head and neck cancer. Radiographics. 2012 ; 32 : 1329-41.
5) Fortin D, Basran PS, Berrang T, et al. Deformable versus rigid registration of PET/CT images for radiation treatment planning of head and neck and lung cancer patients : a retrospective dosimetric comparison. Radiat Oncol. 2014 ; 9 : 50.
P.133 掲載の参考文献
1) Fukumitsu N, Nitta K, Terunuma T, et al. Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI. BMC Med Imaging. 2017 ; 17 : 30.
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.135 掲載の参考文献
1) National Electrical Manufacturers Association. Quantification and Mapping of Geometric Distortion for Special Applications. NEMA Stand Publ MS 12. 2016.
2) Aoyama T, Shimizu H, Shimizu I, et al. Geometric distortion in magnetic resonance imaging systems assessed using an open-source plugin for scientific image analysis. Radiol Phys Technol. 2018 ; 11 : 467-72.
3) Hammoud RW, Perkins G, Paloor S, et al. Clinical commissioning and quality assurance procedures for a wide bore MRI unit configured for radiation therapy planning. Int J Radiat Oncol Biol Phys. 2011 ; 81 Suppl : S899.
4) Haselgrove JC, Moore JR. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn Reson Med. 1996 ; 36 : 960-4.
5) Doran SJ, Charles-Edwards L, Reinsberg SA, et al. A complete distortion correction for MR images : I. Gradient warp correction. Phys Med Biol. 2005 ; 50 : 1343-61.
6) Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images : application to diffusion tensor imaging. Neuroimage. 2003 ; 20 : 870-88.
P.138 掲載の参考文献
1) Johnstone E, Wyatt JJ, Henry AM, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 2018 ; 100 : 199-217.
2) Lambert J, Greer PB, Menk F, et al. MRI-guided prostate radiation therapy planning : Investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol. 2011 ; 98 : 330-4.
3) Dowling JA, Lambert J, Parker J, et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI) -alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2012 ; 83 : e5-11.
4) Demol B, Boydev C, Korhonen J, et al. Dosimetric characterization of MRI-only treatment planning for brain tumors in atlas-based pseudo-CT images generated from standard T1-weighted MR images. Med Phys. 2016 ; 43 : 6557.
P.140 掲載の参考文献
1) Wu RY, Liu AY, Yang J, et al. Evaluation of the accuracy of deformable image registration on MRI with a physical phantom. J Appl Clin Med Phys. 2020 ; 21 : 166-73.
2) Murphy MJ, Wei Z, Fatyga M, et al. How does CT image noise affect 3D deformable image registration for image-guided radiotherapy planning? Med Phys. 2008 ; 35 : 1145-53.
P.142 掲載の参考文献
1) Ashamalla H, Guirgius A, Bieniek E, et al. The impact of positron emission tomography/computed tomography in edge delineation of gross tumor volume for head and neck cancers. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 388-95.
2) Sabater S, Pastor-Juan Mdel R, Berenguer R, et al. Analysing the integration of MR images acquired in a non-radiotherapy treatment position into the radiotherapy workflow using deformable and rigid registration. Radiother Oncol. 2016 ; 119 : 179-84.
3) Hwang AB, Bacharach SL, Yom SS, et al. Can positron emission tomography (PET) or PET/Computed Tomography (CT) acquired in a nontreatment position be accurately registered to a head-and-neck radiotherapy planning CT? Int J Radiat Oncol Biol Phys. 2009 ; 73 : 578-84.

IV 自動輪郭抽出

P.146 掲載の参考文献
1) Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20 : Perspectives on automated image segmentation for radiotherapy. Med Phys. 2014 ; 41 : 050902.
2) Cardenas CE, Yang J, Anderson BM, et al. Advances in auto-segmentation. Semin Radiat Oncol. 2019 ; 29 : 185-97.
3) Wong J, Fong A, McVicar N, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020 ; 144 : 152-8.
4) Yang J, Veeraraghavan H, Armato III SG, et al. Autosegmentation for thoracic radiation treatment planning : A grand challenge at AAPM 2017. Med Phys. 2018 ; 45 : 4568-81.
5) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
6) Lustberg T, van Soest J, Gooding M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018 ; 126 : 312-7.
P.148 掲載の参考文献
1) Chao KSC, Bhide S, Chen H, et al. Reduce in variation and improve efficiency of target volume delineation by a computer-assisted system using a deformable image registration approach. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 1512-21.
2) Ramadaan IS, Peick K, Hamilton DA, et al. Validation of Varian's SmartAdaptR deformable image registration algorithm for clinical application. Radiat Oncol. 2015 ; 10 : 73.
3) Walker GV, Awan M, Tao R, et al. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol. 2014 ; 112 : 321-5.
4) Reed VK, Woodward WA, Zhang L, et al. Automatic segmentation of whole breast using atlas approach and deformable image registration. Int J Radiat Oncol Biol Phys. 2009 ; 73 : 1493-500.
5) Lustberg T, van Soest J, Gooding M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018 ; 126 : 312-7.
6) Young AV, Wortham A, Wernick I, et al. Atlas-based segmentation improves consistency and decreases time required for contouring postoperative endometrial cancer nodal volumes. Int J Radiat Oncol Biol Phys. 2011 ; 79 : 943-7.
P.150 掲載の参考文献
1) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体画像レジストレーション利用のためのガイドライン 2018年版 第1版 [Internet]. 日本放射線腫瘍学会 ; 2018 [cited 2020.08.25]. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Kadoya N, Kito S, Kurooka M, et al. Factual survey of the clinical use of deformable image registration software for radiotherapy in Japan. J Radiat Res. 2019 ; 60 : 546-53.
P.152 掲載の参考文献
1) Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20 : perspectives on automated image segmentation for radiotherapy. Med Phys. 2014 ; 41 : 050902.
2) Han X, Hoogeman MS, Levendag PC, et al. Atlas-based auto-segmentation of head and neck CT images. Med Image Comput Comput Assist Interv. 2008 ; 11 : 434-41.
3) Qazi AA, Pekar V, Kim J, et al. Auto-segmentation of normal and target structures in head and neck CT images : a feature-driven model-based approach. Med Phys. 2011 ; 38 : 6160-70.
4) Stewart J, Lim K, Kelly V, et al. Automated weekly replanning for intensity-modulated radiotherapy of cervix cancer. Int J Radiat Oncol Biol Phys. 2010 ; 78 : 350-8.
P.154 掲載の参考文献
1) Rohlfing T, Brandt R, Menzel R, et al. Segmentation of three-dimensional images using non-rigid registration : Methods and validation with application to confocal microscopy images of bee brains. Proc SPIE. 2003 ; 5032 : 363-74.
2) Klein A, Mensh B, Ghosh S, et al. Mindboggle : Automated brain labeling with multiple atlases. BMC Med Imaging. 2005 ; 5 : 7.
3) Iglesias JE, Sabuncu MR. Multi-atlas segmentation of biomedical images : A survey. Med Image Anal. 2015 ; 24 : 205-19.
4) Schipaanboord B, Boukerroui D, Peressutti D, et al. Can atlas-based auto-segmentation ever be perfect? Insights from Extreme Value Theory. IEEE Trans Med Imaging. 2018 ; 38 : 99-106.
5) Takagi H, Kadoya N, Kajikawa T, et al. Multi-atlas-based auto-segmentation for prostatic urethra using novel prediction of deformable image registration accuracy. Med Phys. 2020 ; 47 : 3023-31.
P.156 掲載の参考文献
1) Schipaanboord B, Boukerroui D, Peressutti D, et al. Can atlas-based auto-segmentation ever be perfect? Insights from Extreme Value Theory. IEEE Trans Med Imaging. 2019 ; 38 : 99-106.
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : e43-76.
P.158 掲載の参考文献
1) Yang J, Veeraraghavan H, Armato SG 3rd, et al. Auto-segmentation for thoracic radiation treatment planning : A Grand Challenge at AAPM 2017. Med Phys. 2018 ; 45 : 4568-81.
2) Wong J, Fong A, McVicar N, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020 ; 144 : 152-8.
3) van Dijk LV, Van den Bosch L, Aljabar P, et al. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother Oncol. 2020 ; 142 : 115-23.
P.159 掲載の参考文献
1) Loi G, Fusella M, Lanzi E, et al. Performance of commercially available deformable image registration platforms for contour propagation using patient-based computational phantoms : A multi-institutional study. Med Phys. 2018 ; 45 : 748-57.
2) Nakajima Y, Kadoya N, Kanai T, et al. Evaluation of the effect of user-guided deformable image registration of thoracic images on registration accuracy among users. Med Dosim. 2020 ; 45 : 206-12.
3) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
4) Woo J, Kim T, Seok J, et al. Comparison of three commercial model based segmentation software and atlas based segmentation software in contouring of prostate cancer and brain cancer. Int J Radiat Oncol Biol Phys. 2015 ; 93 : E605.
5) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
6) Delpon G, Escande A, Ruef T, et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol. 2016 ; 6 : 178.
7) Nelson A, Piper J, Javorek A, et al. Comparison of 2 atlas-based segmentation methods for head and neck cancer with RTOG-defined lymph node levels. Int J Radiat Oncol Biol Phys. 2014 ; 90 : S882.
8) Raudaschl PF, Zaffino P, Sharp GC, et al. Evaluation of segmentation methods on head and neck CT : Auto-segmentation challenge 2015. Med Phys. 2017 ; 44 : 2020-36.
P.161 掲載の参考文献
1) Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20 : perspectives on automated image segmentation for radiotherapy. Med Phys. 2014 ; 41 : 050902.
2) Kumarasiri A, Siddiqui F, Liu C, et al. Deformable image registration based automatic CT-to-CT contour propagation for head and neck adaptive radiotherapy in the routine clinical setting. Med Phys. 2014 ; 41 : 121712.
3) Wang H, Garden AS, Zhang L, et al. Performance evaluation of automatic anatomy segmentation algorithm on repeat or four-dimensional computed tomography images using deformable image registration method. Int J Radiat Oncol Biol Phys. 2008 ; 72 : 210-9.
4) Raudaschl PF, Zaffino P, Sharp GC, et al. Evaluation of segmentation methods on head and neck CT : Auto-segmentation challenge 2015. Med Phys. 2017 ; 44 : 2020-36.
5) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
6) Rhee DJ, Cardenas CE, Elhalawani H, et al. Automatic detection of contouring errors using convolutional neural networks. Med Phys. 2019 ; 46 : 5086-97.
7) Zhu W, Huang Y, Zeng L, et al. AnatomyNet : Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Med Phys. 2019 ; 46 : 576-89.
P.163 掲載の参考文献
1) Zhang T, Chi Y, Meldolesi E, et al. Automatic delineation of on-line head-and-neck computed tomography images : toward on-line adaptive radiotherapy. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 522-30.
2) Stapleford LJ, Lawson JD, Perkins C, et al. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int J Radiat Oncol. 2010 ; 77 : 959-66.
3) Teguh DN, Levendag PC, Voet PWJ, et al. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys. 2011 ; 81 : 950-7.
4) Sjoberg C, Lundmark M, Granberg C, et al. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients. Radiat Oncol. 2013 ; 8 : 1-7.
5) Yang J, Beadle BM, Garden AS, et al. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy. Pract Radiat Oncol. 2014 ; 4 : e31-7.
6) Walker GV, Awan M, Tao R, et al. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol. 2014 ; 112 : 321-5.
7) Tao CJ, Yi JL, Chen NY, et al. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma : A multi-institution clinical study. Radiother Oncol. 2015 ; 115 : 407-11.
8) van Dijk LV, Van den Bosch L, Aljabar P, et al. Improving automatic delineation for head and neck organs at risk by Deep Learning Contouring. Radiother Oncol. 2020 ; 142 : 115-23.
9) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
10) Latifi K, Caudell J, Zhang G, et al. Practical quantification of image registration accuracy following the AAPM TG-132 report framework. J Appl Clin Med Phys. 2018 ; 19 : 125-33.
P.165 掲載の参考文献
1) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
2) Latifi K, Caudell J, Zhang G, et al. Practical quantification of image registration accuracy following the AAPM TG-132 report framework. J Appl Clin Med Phys. 2018 ; 19 : 125-33.
3) Schipaanboord B, Boukerroui D, Peressutti D, et al. Can atlas-based auto-segmentation ever be perfect? Insights from extreme value theory. IEEE Trans Med Imaging. 2018 ; 38 : 99-106.
4) Wang H, Garden AS, Zhang L, et al. Performance evaluation of automatic anatomy segmentation algorithm on repeat or four-dimensional computed tomography images using deformable image registration method. Int J Radiat Oncol Biol Phys. 2008 ; 72 : 210-9.
5) Zhu J, Zhang J, Qiu B, et al. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques. Acta Oncol. 2019 ; 58 : 257-64.
6) Men K, Zhang T, Chen X, et al. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning. Phys Med. 2018 ; 50 : 13-9.
7) Reed VK, Woodward WA, Zhang L, et al. Automatic segmentation of whole breast using atlas approach and deformable image registration. Int J Radiat Oncol Biol Phys. 2009 ; 73 : 1493-500.
8) Fontanilla HP, Woodward WA, Lindberg ME, et al. Automating RTOG-defined target volumes for postmastectomy radiation therapy. Pract Radiat Oncol. 2011 ; 1 : 97-104.
9) Wijesooriya K, Weiss E, Dill V, et al. Quantifying the accuracy of automated structure segmentation in 4D CT images using a deformable image registration algorithm. Med Phys. 2008 ; 35 : 1251-60.
10) Guckenberger M, Baier K, Richter A, et al. Evalution of surface-based deformable image registration for adaptive radiotherapy of non-small cell lung cancer (NSCLC). Radiat Oncol. 2009 ; 4 : 68.
P.168 掲載の参考文献
1) Mutic S, Dempsey JF. The ViewRay system : magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol. 2014 ; 24 : 196-9.
2) Lagendijk JJW, Raaymakers BW, van Vulpen M. The magnetic resonance imaging-linac system. Semin Radiat Oncol. 2014 ; 24 : 207-9.
3) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 1-16.
4) Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Radiat Oncol. 2019 ; 14 : 213.
5) Medical Segmentation Decathlon. Results [Internet]. Medical Segmentation Decathlon [cited 2020.10.01]. Available from : http://medicaldecathlon.com/results.html
6) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
7) Latifi K, Caudell J, Zhang G, et al. Practical quantification of image registration accuracy following the AAPM TG-132 report framework. J Appl Clin Med Phys. 2018 ; 19 : 125-33.
8) Brock KK. Results of a Multi-Institution Deformable Registration Accuracy Study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
9) Hoffmann C, Krause S, Stoiber EM, et al. Accuracy quantification of a deformable image registration tool applied in a clinical setting. J Appl Clin Med Phys. 2014 ; 15 : 4564.
10) Liu F, Hu Y, Zhang Q, et al. Evaluation of deformable image registration and a motion model in CT images with limited features. Phys Med Biol. 2012 ; 57 : 2539-54.
P.170 掲載の参考文献
1) Delpon G, Escande A, Ruef T, et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol. 2016 ; 6 : 178.
2) Wong J, Fong A, McVicar N, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020 ; 144 : 152-8.
3) Kim J, Kumar S, Liu C, et al. A novel approach for establishing benchmark CBCT/CT deformable image registrations in prostate cancer radiotherapy. Phys Med Biol. 2013 ; 58 : 8077.
4) La Macchia M, Fellin F, Amichetti M, et al. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer. Radiat Oncol. 2012 ; 7 : 160.
5) Latifi K, Caudell J, Zhang G, et al. Practical quantification of image registration accuracy following the AAPM TG-132 report framework. J Appl Clin Med Phys. 2018 ; 19 : 125-33.
6) Langerak T, Heijkoop S, Quint S, et al. Towards automatic plan selection for radiotherapy of cervical cancer by fast automatic segmentation of cone beam CT scans. Med Image Comput Comput Assist Interv. 2014 ; 17 : 528-35.
7) Liu Z, Liu X, Xiao B, et al. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network. Phys Med. 2020 ; 69 : 184-91.
8) Davis B, Foskey M, Rosenman J, et al. Automatic segmentation of intra-treatment CT images for adaptive radiation therapy of the prostate. Med Image Comput Comput Assist Interv. 2005 ; 8 : 442-50.
9) Gao S, Zhang L, Wang H, et al. A deformable image registration method to handle distended rectums in prostate cancer radiotherapy. Med Phys. 2006 ; 33 : 3304-12.
10) Li X, Quan EM, Li Y, et al. A fully automated method for CT-on-rails-guided online adaptive planning for prostate cancer intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 835-41.
11) Rodriguez-Vila B, Garcia-Vicente F, Gomez E. Methodology for registration of distended rectums in pelvic CT studies. Med Phys. 2012 ; 39 : 6351-9.
12) Murphy MJ, Wei Z, Fatyga M, et al. How does CT image noise affect 3D deformable image registration for imageguided radiotherapy planning? Med Phys. 2008 ; 35 : 1145-53.

V 線量の変形と合算

P.175 掲載の参考文献
1) Veiga C, Lourenco AM, Mouinuddin S, et al. Toward adaptive radiotherapy for head and neck patients : Uncertainties in dose warping due to the choice of deformable registration algorithm. Med Phys. 2015 ; 42 : 760-9.
2) Lu W, Olivera GH, Chen Q, et al. Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy. Phys Med Biol. 2006 ; 51 : 4357-74.
3) Roussakis YG, Dehghani H, Green S, et al. Validation of dose warping algorithm using clinically realistic scenarios. Br J Radiol. 2015 ; 88 : 20140691.
4) Chetty IJ, Rosu-Bubulac M. Deformable registration for dose accumulation. Semin Radiat Oncol. 2019 ; 29 : 198-208.
5) Starkschall G, Britton K, McAleer MF, et al. Potential dosimetric benefits of four-dimensional radiation treatment planning. Int J Radiat Oncol Biol Phys. 2009 ; 73 : 1560-5.
6) Glide-Hurst CK, Hugo GD, Liang J, et al. A simplified method of four-dimensional dose accumulation using the mean patient density representation. Med Phys. 2008 ; 35 : 5269-77.
7) Velec M, Moseley JL, Craig T, et al. Accumulated dose in liver stereotactic body radiotherapy : positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys. 2012 ; 83 : 1132-40.
8) Velec M, Moseley JL, Eccles CL, et al. Effect of breathing motion on radiotherapy dose accumulation in the abdomen using deformable registration. Int J Radiat Oncol Biol Phys. 2011 ; 80 : 265-72.
9) Rosu M, Chetty IJ, Balter JM, et al. Dose reconstruction in deforming lung anatomy : dose grid size effects and clinical implications. Med Phys. 2005 : 32 : 2487-95.
10) Rosu M, Hugo GD. Advances in 4 D radiation therapy for managing respiration : part II-4 D treatment planning. Z Med Phys. 2012 ; 22 : 272-80.
11) Schaly B, Kempe JA, Bauman GS, et al. Tracking the dose distribution in radiation therapy by accounting for variable anatomy. Phys Med Biol. 2004 ; 49 : 791-805.
12) Heath E, Seuntjens J. A direct voxel tracking method for four-dimensional Monte Carlo dose calculations in deforming anatomy. Med Phys. 2006 ; 33 : 434-45.
13) Siebers JV, Zhong H. An energy transfer method for 4 D Monte Carlo dose calculation. Med Phys. 2008 ; 35 : 4096-105.
14) Zhong H, Siebers JV. Monte Carlo dose mapping on deforming anatomy. Phys Med Biol. 2009 ; 54 : 5815-30.
P.177 掲載の参考文献
1) Chetty IJ, Rosu-Bubulac M. Deformable registration for dose accumulation. Semin Radiat Oncol. 2019 ; 29 : 198-208.
2) Rosu M, Chetty IJ, Balter JM, et al. Dose reconstruction in deforming lung anatomy : dose grid size effects and clinical implications. Med Phys. 2005 ; 32 : 2487-95.
3) Heath E, Seuntjens J. A direct voxel tracking method for four-dimensional Monte Carlo dose calculations in deforming anatomy. Med Phys. 2006 ; 33 : 434-45.
4) Siebers JV, Zhong H. An energy transfer method for 4 D Monte Carlo dose calculation. Med Phys. 2008 ; 35 : 4096-105.
5) Li HS, Zhong H, Kim J, et al. Direct dose mapping versus energy/mass transfer mapping for 4 D dose accumulation : fundamental differences and dosimetric consequences. Phys Med Biol. 2014 ; 59 : 173-88.
P.179 掲載の参考文献
1) Heath E, Seuntjens J. A direct voxel tracking method for four-dimensional Monte Carlo dose calculations in deforming anatomy. Med Phys. 2006 ; 33 : 434-45.
2) Saleh-Sayah NK, Weiss E, Salguero FJ, et al. A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field. Med Phys. 2011 ; 38 : 2318-23.
3) Moriya S, Tachibana H, Kitamura N, et al. Dose warping performance in deformable image registration in lung. Phys Med. 2017 ; 37 : 16-23.
4) Yan C, Hugo G, Salguero FJ, et al. A method to evaluate dose errors introduced by dose mapping processes for mass conserving deformations. Med Phys. 2012 ; 39 : 2119-28.
P.181 掲載の参考文献
1) Nie K, Puliot J, Smith E, et al. Performance variations among clinically available deformable image registration tools in adaptive radiotherapy-how should we evaluate and interpret the result? J Appl Clin Med Phys. 2016 ; 17 : 328-40.
2) Kirby N, Chuang C, Ueda U, et al. The need for application-based adaptation of deformable image registration. Med Phys. 2013 ; 40 : 011702.
3) Veiga C, Lourenco AM, Mouinuddin S, et al. Toward adaptive radiotherapy for head and neck patients : uncertainties in dose warping due to the choice of deformable registration algorithm. Med Phys. 2015 ; 42 : 760-9.
4) Qin A, Liang J, Han X, et al. Technical Note : the impact of deformable image registration methods on dose warping. Med Phys. 2018 ; 45 : 1287-94.
5) Janssens G, de Xivry JO, Fekkes S, et al. Evaluation of nonrigid registration models for interfraction dose accumulation in radiotherapy. Med Phys. 2009 ; 36 : 4268-76.
6) Velec M, Juang T, Moseley JL, et al. Utility and validation of biomechanical deformable image registration in low-contrast images. Pract Radiat Oncol. 2015 ; 5 : 401-8.
7) Velec M, Moseley JL, Svensson S, et al. Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system. Med Phys. 2017 ; 44 : 3407-17.
8) Kubota Y, Okamoto M, Li Y, et al. Evaluation of intensity- and contour-based deformable image registration accuracy in pancreatic cancer patients. Cancers (Basel). 2019 ; 11 : 1447.
P.183 掲載の参考文献
1) Kashani R, Hub M, Balter JM, et al. Objective assessment of deformable image registration in radiotherapy : a multi-institution study. Med Phys. 2008 ; 35 : 5944-53.
2) Brock KK. Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys. 2010 ; 76 : 583-96.
3) Kadoya N, Nakajima Y, Saito M, et al. Multi-institutional validation study of commercially available deformable image registration software for thoracic images. Int J Radiat Oncol Biol Phys. 2016 ; 96 : 422-31.
P.185 掲載の参考文献
1) Salguero FJ, Saleh-Sayah NK, Yan C, et al. Estimation of three-dimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping. Med Phys. 2011 ; 38 : 343-53.
2) Thieke C, Kessler ML, Karger CP. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration. 2012 ; 39 : 2186-92.
3) Cunliffe AR, Contee C, Armato SG, et al. Effect of deformable registration on the dose calculated in radiation therapy planning CT scans of lung cancer patients. Med Phys. 2015 ; 42 : 391-9.
4) Saleh-Sayah NK, Weiss E, Salguero FJ, et al. A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field. Med Phys. 2011 ; 38 : 2318-23.
P.187 掲載の参考文献
1) Samavati N, Velec M, Brock KK. Effect of deformable registration uncertainty on lung SBRT dose accumulation. Med Phys. 2016 ; 43 : 233-40.
2) Kadoya N, Miyasaka Y, Yamamoto T, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. J Radiat Res. 2017 ; 1-9.
3) Poder J, Yuen J, Howie A, et al. Dose accumulation of multiple high dose rate prostate brachytherapy treatments in two commercially available image registration systems. Phys Medica. 2017 ; 43 : 43-8.
4) Yonehara M, Wakana R, Sakakibara K, et al. Evaluation of Radiochromic Gel Dosimeter and Optical CT. 医学物理. 2017 ; 37 : 117-21.
5) Hayashi S. Polymer Gel Dosimeter. 医学物理. 2017 ; 37 : 89-94.
6) De Deene Y, Skyt PS, Hil R, et al. FlexyDos3D : a deformable anthropomorphic 3D radiation dosimeter : radiation properties. Phys Med Biol. 2015 ; 60 : 1543-63.
7) Niu CJ, Foltz WD, Velec M, et al. A novel technique to enable experimental validation of deformable dose accumulation. Med Phys. 2012 ; 39 : 765-76.
8) Yeo UJ, Taylor ML, Dunn L, et al. A novel methodology for 3D deformable dosimetry. Med Phys. 2012 ; 39 : 2203-13.
9) Yeo UJ, Taylor ML, Supple JR, et al. Is it sensible to "deform" dose? 3D experimental validation of dose-warping. Med Phys. 2012 ; 39 : 5065-72.
10) Vinogradskiy YY, Balter P, Followill DS, et al. Comparing the accuracy of four-dimensional photon dose calculations with three-dimensional calculations using moving and deforming phantoms. Med Phys. 2009 ; 36 : 5000-6.
P.190 掲載の参考文献
1) Salguero FJ, Saleh-Sayah NK, Yan C, et al. Estimation of three-dimensional intrinsic dosimetric uncertainties resulting from using deformable image registration for dose mapping. Med Phys. 2011 ; 38 : 343-53.
P.192 掲載の参考文献
1) Bender ET, Hardcastle N, Tome WA. On the dosimetric effect and reduction of inverse consistency and transitivity errors in deformable image registration for dose accumulation. Med Phys. 2012 ; 39 : 272-80.
2) Schultheiss TE, Tome WA, Orton CG. Point/counterpoint : it is not appropriate to "deform" dose along with deformable image registration in adaptive radiotherapy. Med Phys. 2012 ; 39 : 6531-3.
3) Chetty IJ, Rosu-Bubulac M. Deformable registration for dose accumulation. Semin Radiat Oncol. 2019 ; 29 : 198-208.
P.194 掲載の参考文献
1) Zhang L, Wang Z, Shi C, et al. The impact of robustness of deformable image registration on contour propagation and dose accumulation for head and neck adaptive radiotherapy. J Appl Clin Med Phys. 2018 ; 19 : 185-94.
2) Saleh-Sayah NK, Weiss E, Salguero FJ, et al. A distance to dose difference tool for estimating the required spatial accuracy of a displacement vector field. Med Phys. 2011 ; 38 : 2318-23.
P.197 掲載の参考文献
1) Hatton J, McCurdy B, Greer PB. Cone beam computerized tomography : the effect of calibration of the Hounsfield unit number to electron density on dose calculation accuracy for adaptive radiation therapy. Phys Med Biol. 2009 ; 54 : N329-46.
2) Richter A, Hu Q, Steglich D, et al. Investigation of the usability of conebeam CT data sets for dose calculation. Radiat Oncol. 2008 ; 3 : 42.
3) Fotina I, Hopfgartner J, Stock M, et al. Feasibility of CBCT-based dose calculation : comparative analysis of HU adjustment techniques. Radiother Oncol. 2012 ; 104 : 249-56.
4) Onozato Y, Kadoya N, Fujita Y, et al. Evaluation of on-board kV cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications. Int J Radiat Oncol Biol Phys. 2014 ; 89 : 416-23.
5) Giacometti V, King RB, Agnew CE, et al. An evaluation of techniques for dose calculation on cone beam computed tomography. Br J Radiol. 2019 ; 92 : 20180383.
6) Veiga C, McClelland J, Moinuddin S, et al. Toward adaptive radiotherapy for head and neck patients : feasibility study in using CT-to-CBCT deformable registration for "dose of the day" calculations. Med Phys. 2014 ; 41 : 031703.
7) Zhen X, Yan H, Zhou L, et al. Deformable image registration of CT and truncated cone-beam CT for adaptive radiation therapy. Phys Med Biol. 2013 ; 58 : 7979-93.
8) Ziegler M, Nakamura M, Hirashima H, et al. Accumulation of the delivered treatment dose in VMAT with breath-hold for pancreatic cancer patients based on daily CBCT images with limited field-of-view. Med Phys. 2019 ; 46 : 2969-77.
P.200 掲載の参考文献
1) Schwartz DL, Garden AS, Shah SJ, et al. Adaptive radiotherapy for head and neck cancer-dosimetric results from a prospective clinical trial. Radiother Oncol. 2013 ; 106 : 80-4.
2) Guckenberger M, Wilbert J, Richter A, et al. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2011 ; 79 : 901-8.
3) Glide-Hurst CK, Hugo GD, Liang J, et al. A simplified method of four-dimensional dose accumulation using the mean patient density representation. Med Phys. 2008 ; 35 : 5269-77.
4) Zou W, Yin L, Shen J, et al. Dynamic simulation of motion effects in IMAT lung SBRT. Radiat Oncol. 2014 ; 9 : 225.
5) McCann C, Purdie T, Hope A, et al. Lung sparing and dose escalation in a robust-inspired IMRT planning method for lung radiotherapy that accounts for intrafraction motion. Med Phys. 2013 ; 40 : 061705.
6) Keall PJ, Joshi S, Vedam SS, et al. Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking. Med Phys. 2005 ; 32 : 942-51.
7) van Mourik A, van Kranen S, den Hollander S, et al. Effects of setup errors and shape changes on breast radiotherapy. Int J Radiat Oncol Biol Phys. 2011 ; 79 : 1557-64.
8) Wu QJ, Thongphiew D, Wang Z, et al. The impact of respiratory motion and treatment technique on stereotactic body radiation therapy for liver cancer. Med Phys. 2008 ; 35 : 1440-51.
9) Meijer GJ, De Klerk J, Bzdusek K, et al. What CTV-to-PTV margins should be applied for prostate irradiation? Four-dimensional quantitative assessment using model-based deformable image registration techniques. Int J Radiat Oncol Biol Phys. 2008 ; 72 : 1416-25.
10) Qin A, Sun Y, Liang J, et al. Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015 ; 91 : 1026-33.
11) Akino Y, Yoshioka Y, Fukuda S, et al. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2013 ; 87 : 602-8.
12) Li X, Quan EM, Li Y, et al. A fully automated method for CT-on-rails-guided online adaptive planning for prostate cancer intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 835-41.
13) Lim K, Stewart J, Kelly V, et al. Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2014 ; 90 : 147-54.
14) Vestergaard A, Muren LP, Sondergaard J, et al. Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer : a dose accumulation comparison. Radiother Oncol. 2013 ; 109 : 457-62.
P.202 掲載の参考文献
1) Swaminath A, Massey C, Brierley JD, et al. Accumulated delivered dose response of stereotactic body radiation therapy for liver metastases. Int J Radiat Oncol Biol Phys. 2015 ; 93 : 639-48.
2) Lee DS, Woo JY, Kim JW, et al. Re-irradiation of hepatocellular carcinoma : clinical applicability of deformable image registration. Yonsei Med J. 2016 ; 57 : 41-9.
3) McAvoy S, Ciura K, Wei C, et al. Definitive reirradiation for locoregionally recurrent non-small cell lung cancer with proton beam therapy or intensity modulated radiation therapy : predictors of high-grade toxicity and survival outcomes. Int J Radiat Oncol Biol Phys. 2014 ; 90 : 819-27.
4) Kobayashi K, Murakami N, Inaba K, et al. Dose reconstruction technique using non-rigid registration to evaluate spatial correspondence between high-dose region and late radiation toxicity : a case of tracheobronchial stenosis after external beam radiotherapy combined with endotracheal brachytherapy for tracheal cancer. J Contemp Brachytherapy. 2016 ; 8 : 156-63.
5) Zakariaee R, Hamarneh G, Brown CJ, et al. Bladder accumulated dose in image-guided high-dose-rate brachytherapy for locally advanced cervical cancer and its relation to urinary toxicity. Phys Med Biol. 2016 ; 61 : 8408-24.
P.204 掲載の参考文献
1) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018年版 1版 [Internet]. 日本放射線腫瘍学会. 2018 [cited 2020.10.01]. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Nishimura Y, Nakamatsu K, Shibata T, et al. Importance of the initial volume of parotid glands in xerostomia for patients with head and neck cancers treated with IMRT. Jpn J Clin Oncol. 2005 ; 35 : 375-9.
3) Schwartz DL, Garden AS, Thomas J, et al. Adaptive radiotherapy for head-and-neck cancer : Initial clinical outcomes from a prospective trial. Int J Radiat Oncol Biol Phys. 2012 ; 83 : 986-93.
4) Berwouts D, Olteanu LA, Duprez F, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer : initial results of the phase I clinical trial. Radiother Oncol. 2013 ; 107 : 310-6.
5) Chen AM, Daly ME, Cui J, et al. Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning. Head Neck. 2014 ; 36 : 1541-6.
6) RTOG 1106/ACRIN 6697, Randomized Phase II Trial of Individualized Adaptive Radiotherapy Using During-Treatment FDG-PET/CT and Modern Technology in Locally Advanced Non-Small Cell Lung Cancer (NSCLC). Available from : https://www.nrgoncology.org/Clinical-Trials/Protocol/rtog-1106?filter=rtog-1106
7) Bahig H, Yuan Y, Mohamed ASR, et al. Magnetic resonance-based response assessment and dose adaptation in human papilloma virus positive tumors of the oropharynx treated with radiotherapy (MR-ADAPTOR) : An R-IDEAL stage 2a-2b/Bayesian phase II trial. Clin Transl Radiat Oncol. 2018 ; 13 : 19-23.
8) Hoskin P, Huang F, Nomden C, et al. The EMBRACE II study : The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies. Clin Transl Radiat Oncol. 2018 ; 9 : 48-60.
9) Bruynzeel AME, Tetar SU, Oei SS, et al. A prospective single-arm phase 2 study of stereotactic magnetic resonance guided adaptive radiation therapy for prostate cancer : Early toxicity results. Int J Radiat Oncol Biol Phys. 2019 ; 105 : 1086-94.
10) Heukelom J, Fuller CD. Head and neck cancer adaptive radiation therapy (ART) : conceptual considerations for the informed clinician. Semin Radiat Oncol. 2019 ; 29 : 258-73.
11) Chetty IJ, Rosu-Bubulac M. Deformable registration for dose accumulation. Semin Radiat Oncol. 2019 ; 29 : 198-208.
P.206 掲載の参考文献
1) Zhang G, Huang TC, Feygelman V, et al. Generation of composite dose and biological effective dose (BED) over multiple treatment modalities and multistage planning using deformable image registration. Med Dosim. 2010 ; 35 : 143-50.
2) Moulton CR, House MJ, Lye V, et al. Registering prostate external beam radiotherapy with a boost from high-dose-rate brachytherapy : a comparative evaluation of deformable registration algorithms. Radiat Oncol. 2015 ; 10 : 254.
3) Abe T, Tamaki T, Makino S, et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat Oncol. 2014 ; 9 : 293.
4) Haie-Meder C, Potter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I) : concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005 ; 74 : 235-45.
5) Ohno T, Toita T, Tsujino K, et al. A questionnaire-based survey on 3D image-guided brachytherapy for cervical cancer in Japan : advances and obstacles. J Radiat Res. 2015 ; 56 : 897-903.
6) Tait LM, Hoffman D, Benedict S, et al. The use of MRI deformable image registration for CT-based brachytherapy in locally advanced cervical cancer. Brachytherapy. 2016 ; 15 : 333-40.
7) Lee DS, Woo JY, Kim JW, et al. Re-irradiation of hepatocellular carcinoma : clinical applicability of deformable image registration. Yonsei Med J. 2016 ; 57 : 41-9.
8) Senthi S, Griffioen GH, van Sornsen de Koste JR, et al. Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol. 2013 ; 106 : 323-6.
P.210 掲載の参考文献
1) Arai K, Kadoya N, Kato T, et al. Feasibility of CBCT-based proton dose calculation using a histogram-matching algorithm in proton beam therapy. Physica Med. 2017 ; 33 : 68-76.
2) Veiga C, Janssens G, Teng C, et al. First clinical investigation of cone beam computed tomography and deformable registration for adaptive proton therapy for lung cancer. Int J Radiat Oncol Biol Phys. 2016 ; 95 : 549-59.
3) Kubota Y, Katoh H, Shibuya K, et al. Comparison between bone matching and marker matching for evaluation of intra- and inter-fractional changes in accumulated dose of carbon ion radiotherapy for hepatocellular carcinoma. Radiother Oncol. 2019 ; 137 : 77-82.
4) 阿部良知. 東北大学博士論文. 前立腺癌の放射線治療における非剛体位置合わせの不確かさが合算線量評価へ及ぼす影響に関する研究. 2018.
5) Veiga C, Alshaikhi J, Amos R, et al. Cone-beam computed tomography and deformable registration-based "dose of the day" calculations for adaptive proton therapy. Int J Particle Ther. 2015 ; 2 : 404-14.
P.213 掲載の参考文献
1) Admiraal MA, Schuring D, Hurkmans CW. Dose calculations accounting for breathing motion in stereotactic lung radiotherapy based on 4D-CT and the internal target volume. Radiother Oncol. 2008 ; 86 : 55-60.
2) Guckenberger M, Wilbert J, Krieger T, et al. Four-dimensional treatment planning for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2007 ; 69 : 276-85.
3) Jung SH, Yoon SM, Park SH, et al. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer. Med Phys. 2013 ; 40 : 011706.
4) Yeo UA, Taylor ML, Supple JR, et al. Evaluation of dosimetric misrepresentations from 3D conventional planning of liver SBRT using 4D deformable dose integration. J Appl Clin Med Phys. 2014 ; 15 : 188-203.
P.215 掲載の参考文献
1) Rao M, Wu J, Cao D, et al. Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy [corrected]. Int J Radiat Oncol Biol Phys. 2012 ; 83 : e251-6.
2) Edvardsson A, Scherman J, Nilsson M, et al. Breathing-motion induced interplay effects for stereotactic body radiotherapy of liver tumours using flattening-filter free volumetric modulated arc therapy. Phys Med Biol. 2019 ; 64 : 025006.
P.216 掲載の参考文献
1) O'Daniel JC, Garden AS, Schwartz DL, et al. Parotid gland dose in intensity-modulated radiotherapy for head and neck cancer : is what you plan what you get? Int J Radiat Oncol Biol Phys. 2007 ; 69 : 1290-6.
2) Zeidan OA, Huddleston AJ, Lee C, et al. A comparison of soft-tissue implanted markers and bony anatomy alignments for image-guided treatments of head-and-neck cancers. Int J Radiat Oncol Biol Phys. 2010 ; 76 : 767-74.
3) Schwartz DL, Garden AS, Shah SJ, et al. Adaptive radiotherapy for head and neck cancer--dosimetric results from a prospective clinical trial. Radiother Oncol. 2013 ; 106 : 80-4.
4) Castadot P, Lee JA, Geets X, et al. Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol. 2010 ; 20 : 84-93.
5) Yang C, Liu F, Ahunbay E, et al. Combined online and offline adaptive radiation therapy : a dosimetric feasibility study. Pract Radiat Oncol. 2014 ; 4 : e75-83.
6) Duprez F, De Neve W, De Gersem W, et al. Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2011 ; 80 : 1045-55.
7) Berwouts D, Olteanu LA, Duprez F, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer : initial results of the phase I clinical trial. Radiother Oncol. 2013 ; 107 : 310-6.
8) Olteanu LA, Berwouts D, Madani I, et al. Comparative dosimetry of three-phase adaptive and non-adaptive dose-painting IMRT for head-and-neck cancer. Radiother Oncol. 2014 ; 111 : 348-53.
P.219 掲載の参考文献
1) Guckenberger M, Wilbert J, Richter A, et al. Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2011 ; 79 : 901-8.
2) Senthi S, Griffioen GH, van Sornsen de Koste JR, et al. Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol. 2013 ; 106 : 323-6.
3) Ren C, Ji T, Liu T, et al. The risk and predictors for severe radiation pneumonitis in lung cancer patients treated with thoracic reirradiation. Radiat Oncol. 2018 ; 13 : 69.
4) Starkschall G, Britton K, McAleer MF, et al. Potential dosimetric benefits of fourdimensional radiation treatment planning. Int J Radiat Oncol Biol Phys. 2009 ; 73 : 1560-5.
5) Zou W, Yin L, Shen J, et al. Dynamic simulation of motion effects in IMAT lung SBRT. Radiat Oncol. 2014 ; 9 : 225.
6) Rao M, Wu J, Cao D, et al. Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy [corrected]. Int J Radiat Oncol Biol Phys. 2012 ; 83 : e251-6.
7) Wu J, Li H, Shekhar R, et al. An evaluation of planning techniques for stereotactic body radiation therapy in lung tumors. Radiother Oncol. 2008 ; 87 : 35-43.
8) Matsuo Y, Ueki N, Takayama K, et al. Evaluation of dynamic tumour tracking radiotherapy with real-time monitoring for lung tumours using a gimbal mounted linac. Radiother Oncol. 2014 ; 112 : 360-4.
9) Pace DF, Aylward SR, Niethammer M. A locally adaptive regularization based on anisotropic diffusion for deformable image registration of sliding organs. IEEE Trans Med Imaging. 2013 ; 32 : 2114-26.
10) Yamamoto T, Langner U, Loo BW Jr, et al. Retrospective analysis of artifacts in four-dimensional CT images of 50 abdominal and thoracic radiotherapy patients. Int J Radiat Oncol Biol Phys. 2008 ; 72 : 1250-8.
P.221 掲載の参考文献
1) Li Y, Hoisak JD, Li N, et al. Dosimetric benefit of adaptive re-planning in pancreatic cancer stereotactic body radiotherapy. Med Dosim. 2015 ; 40 : 318-24.
2) Lee S, Kim H, Ji Y, et al. Evaluation of hepatic toxicity after repeated stereotactic body radiation therapy for recurrent hepatocellular carcinoma using deformable image registration. Sci Rep. 2018 ; 8 : 16224.
3) Yeo UA, Taylor ML, Supple JR, et al. Evaluation of dosimetric misrepresentations from 3D conventional planning of liver SBRT using 4D deformable dose integration. J Appl Clin Med Phys. 2014 ; 15 : 4978.
4) Velec M, Moseley JL, Eccles CL, et al. Effect of breathing motion on radiotherapy dose accumulation in the abdomen using deformable registration. Int J Radiat Oncol Biol Phys. 2011 ; 80 : 265-72.
5) Jung SH, Yoon SM, Park SH, et al. Four-dimensional dose evaluation using deformable image registration in radiotherapy for liver cancer. Med Phys. 2013 ; 40 : 011706.
6) Schreibmann E, Pantalone P, Waller A, et al. A measure to evaluate deformable registration fields in clinical settings. J Appl Clin Med Phys. 2012 ; 13 : 3829.
7) Fu Y, Liu S, Li HH, et al. An adaptive motion regularization technique to support sliding motion in deformable image registration. Med Phys. 2018 ; 45 : 735-47.
8) Mogadas N, Sothmann T, Knopp T, et al. Influence of deformable image registration on 4D dose simulation for extracranial SBRT : a multi-registration framework study. Radiother Oncol. 2018 ; 127 : 225-32.
9) Velec M, Moseley JL, Craig T, et al. Accumulated dose in liver stereotactic body radiotherapy : positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys. 2012 ; 83 : 1132-40.
P.222 掲載の参考文献
1) Meijer GJ, de Klerk J, Bzdusek K, et al. What CTV-to-PTV margins should be applied for prostate irradiation? Four-dimensional quantitative assessment using model-based deformable image registration techniques. Int J Radiat Oncol Biol Phys. 2008 ; 72 : 1416-25.
2) Wen N, Glide-Hurst C, Nurushev T, et al. Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment. Phys Med Biol. 2012 ; 57 : 5361-79.
3) Wen N, Kumarasiri A, Nurushev T, et al. An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy. Phys Med Biol. 2013 ; 58 : 7733-44.
4) Qin A, Sun Y, Liang J, et al. Evaluation of online/offline image guidance/adaptation approaches for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys. 2015 ; 91 : 1026-33.
5) Akino Y, Yoshioka Y, Fukuda S, et al. Estimation of rectal dose using daily megavoltage cone-beam computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2013 ; 87 : 602-8.
6) Li X, Quan EM, Li Y, et al. A fully automated method for CT-on-rails-guided online adaptive planning for prostate cancer intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 835-41.
7) Lim K, Stewart J, Kelly V, et al. Dosimetrically triggered adaptive intensity modulated radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2014 ; 90 : 147-54.
8) Vestergaard A, Muren LP, Sondergaard J, et al. Adaptive plan selection vs. re-optimisation in radiotherapy for bladder cancer : a dose accumulation comparison. Radiother Oncol. 2013 ; 109 : 457-62.
9) Jamema SV, Mahantshetty U, Andersen E, et al. Uncertainties of deformable image registration for dose accumulation of high-dose regions in bladder and rectum in locally advanced cervical cancer. Brachytherapy. 2015 ; 14 : 953-62.
10) Andersen ES, Noe KO, Sorensen TS, et al. Simple DVH parameter addition as compared to deformable registration for bladder dose accumulation in cervix cancer brachytherapy. Radiother Oncol. 2013 ; 107 : 52-7.
11) Jamema SV, Mahantshetty U, Tanderup K, et al. Inter-application variation of dose and spatial location of D (2 cm (3)) volumes of OARs during MR image based cervix brachytherapy. Radiother Oncol. 2013 ; 107 : 58-62.
12) Teo BK, Bonner Millar LP, Ding X, et al. Assessment of cumulative external beam and intracavitary brachytherapy organ doses in gynecologic cancers using deformable dose summation. Radiother Oncol. 2015 ; 115 : 195-202.
13) Flower E, Do V, Sykes J, et al. Deformable image registration for cervical cancer brachytherapy dose accumulation : Organ at risk dose-volume histogram parameter reproducibility and anatomic position stability. Brachytherapy. 2017 ; 16 : 387-92.
14) Abe T, Tamaki T, Makino S, et al. Assessing cumulative dose distributions in combined radiotherapy for cervical cancer using deformable image registration with pre-imaging preparations. Radiat Oncol. 2014 ; 9 : 293.
P.224 掲載の参考文献
1) Zhang G, Huang TC, Feygelman V, et al. Generation of composite dose and biological effective dose (BED) over multiple treatment modalities and multistage planning using deformable image registration. Med Dosim. 2010 ; 35 : 143-50.
2) Polo A, Cattani F, Vavassori A, et al. MR and CT image fusion for postimplant analysis in permanent prostate seed implants. Int J Radiat Oncol Biol Phys. 2004 ; 60 : 1572-9.
3) Hrinivich WT, Park S, Le Y, et al. Deformable registration of X ray and MRI for postimplant dosimetry in low dose rate prostate brachytherapy. Med Phys. 2019 ; 46 : 3961-73.
4) Nosrati R, Wronski M, Tseng CL, et al. Postimplant dosimetry of permanent prostate brachytherapy : comparison of MRI-only and CT-MRI fusion-based workflows. Int J Radiat Oncol Biol Phys. 2020 ; 106 : 206-15.
P.226 掲載の参考文献
1) Haie-Meder C, Potter R, van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I) : concepts and terms in 3D image based 3D treatment planning in cervical cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005 ; 74 : 235-45.
2) Viswanathan AN, Dimopoulos J, Kirisits C, et al. Computed tomography versus magnetic resonance imaging-based contouring in cervical cancer brachytherapy : Results of a prospective trial and preliminary guidelines for standardized contours. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 491-8.
3) Dubois DF, Prestidge BR, Hotchkiss LA, et al. Intraobserver and interobserver variability of MR imaging- and CT-derived prostate volumes after transperineal interstitial permanent prostate brachytherapy. Radiology. 1998 ; 207 : 785-9.
4) Zhang G, Huang TC, Feygelman V, et al. Generation of composite dose and biological effective dose (BED) over multiple treatment modalities and multistage planning using deformable image registration. Med Dosim. 2010 ; 35 : 143-50.
P.228 掲載の参考文献
1) Kadoya N, Miyasaka Y, Nakajima Y, et al. Evaluation of deformable image registration between external beam radiotherapy and HDR brachytherapy for cervical cancer with a 3D-printed deformable pelvis phantom. Med Phys. 2017 ; 44 : 1445-55.
2) Kadoya N, Miyasaka Y, Yamamoto T, et al. Evaluation of rectum and bladder dose accumulation from external beam radiotherapy and brachytherapy for cervical cancer using two different deformable image registration techniques. J Radiat Res. 2017 ; 58 : 720-8.
3) Rigaud B, Klopp A, Vedam S, et al. Deformable image registration for dose mapping between external beam radiotherapy and brachytherapy images of cervical cancer. Phys Med Biol. 2019 ; 64 : 115023.
4) Reniers B, Janssens G, Orban de Xivry J, et al. Dose distribution for gynecological brachytherapy with dose accumulation between insertions : Feasibility study. Brachytherapy. 2016 ; 15 : 504-13.
P.230 掲載の参考文献
1) Taylor A, Powell MEB. An assessment of interfractional uterine and cervical motion : Implications for radiotherapy target volume definition in gynaecological cancer. Radiother Oncol. 2008 ; 88 : 250-7.
2) Lim K, Small W, Portelance L, et al. Consensus guidlines for delinieation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Onco Biol Phys. 2011 ; 79 : 348-55.
3) Mayr NA, Yuh WTC, Taoka T, et al. Serial therapy-induced changes in tumor shape in cervical cancer and their impact on assessing tumor volume and treatment response. Am J Rentogen. 2006 ; 187 : 65-72.
4) Van de Bunt L, Van de Heide UA, Ketelaars M, et al. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer : The impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006 ; 64 : 189-96.
P.232 掲載の参考文献
1) Ohno T, Toita T, Tsujino K, et al. A questionnaire-based survey on 3D image-guided brachytherapy for cervical cancer in Japan : advances and obstacles. J Radiat Res. 2015 ; 56 : 897-903.
2) Brock KK, Mutic S, McNutt TR, et al. Use of image registration and fusion algorithms and techniques in radiotherapy : Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys. 2017 ; 44 : 43-76.

VI 適応放射線治療と再照射

P.235 掲載の参考文献
1) Deurloo KE, Steenbakkers KE, Zijp LJ, et al. Quantification of shape variation of prostate and seminal vesicle during external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2005 ; 61 : 228-38.
2) Zelefsky MJ, Kollmeier M, Cox B, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012 ; 84 : 125-9.
3) Motegi K, Tachibana H, Motegi A, et al. Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy. J Appl Clin Med Phys. 2019 ; 20 : 229-36.
4) Kim J, Kumar S, Liu C, et al. A novel approach for establishing CBCT/CT deformable image registration in prostate cancer radiotherapy. Phys Med Biol. 2013 ; 58 : 8077-97.
P.237 掲載の参考文献
1) Fortunati V, Verhaart RF, Verduijn GM, et al. MRI integration into treatment planning of head and neck tumors : Can patient immobilization be avoided? Radiother Oncol. 2015 ; 115 : 191-4.
2) Sabater S, Pastor-Juan MDR, Berenguer R, et al. Analysing the integration of MR images acquired in a non-radiotherapy treatment position into the radiotherapy workflow using deformable and rigid registration. Radiother Oncol. 2016 ; 119 : 179-84.
P.239 掲載の参考文献
1) Sen A, Anderson BM, Cazoulat G, et al. Accuracy of deformable image registration techniques for alignment of longitudinal cholangiocarcinoma CT images. Med Phys. 2020 ; 47 : 1670-9.
2) Fukumitsu N, Nitta K, Terunuma T, et al. Registration error of the liver CT using deformable image registration of MIM Maestro and Velocity AI. BMC Med Imaging. 2017 ; 17 : 30.
3) Senthi S, Griffioen GH, van Sornsen de Koste JR, et al. Comparing rigid and deformable dose registration for high dose thoracic re-irradiation. Radiother Oncol. 2013 ; 106 : 323-6.
4) Lee DS, Woo JY, Kim JW, et al. Re-irradiation of hepatocellular carcinoma : clinical applicability of deformable image registration. Yonsei Med J. 2016 ; 57 : 41-9.
5) Lee S, Kim H, Ji Y, et al. Evaluation of hepatic toxicity after repeated stereotactic body radiation therapy for recurrent hepatocellular carcinoma using deformable image registration. Sci Rep. 2018 ; 8 : 16224.
6) Boman E, Kapanen M, Pickup L, et al. Importance of deformable image registration and biological dose summation in planning of radiotherapy retreatments. Med Dosim. 2017 ; 42 : 296-303.
7) Chen AM, Yoshizaki T, Velez MA, et al. Tolerance of the brachial plexus to high-dose reirradiation. Int J Radiat Oncol Biol Phys. 2017 ; 98 : 83-90.
P.241 掲載の参考文献
1) 日本放射線腫瘍学会QA委員会DIRガイドラインワーキンググループ. 放射線治療における非剛体レジストレーション利用のためのガイドライン 2018年版 1版 [Internet]. 日本放射線腫瘍学会. 2018 [cited 2020.10.01]. Available from : https://www.jastro.or.jp/medicalpersonnel/guideline/dir_guideline2018.pdf
2) Liu H, Zhang X, Vinogradskiy YY, et al. Predicting radiation pneumonitis after stereotactic ablative radiation therapy in patients previously treated with conventional thoracic radiation therapy. Int J Radiat Oncol Biol Phys. 2012 ; 84 : 1017-23.
3) Meijneke TR, Petit SF, Wentzler D, et al. Reirradiation and stereotactic radiotherapy for tumors in the lung : Dose summation and toxicity. Radiother Oncol. 2013 ; 107 : 423-7.
4) Evans JD, Gomez DR, Amini A, et al. Aortic dose constraints when reirradiating thoracic tumors. Radiother Oncol. 2013 ; 106 : 327-32.
5) McAvoy S, Ciura K, Wei C, et al. Definitive reirradiation for locoregionally recurrent non-small cell lung cancer with proton beam therapy or intensity modulated radiation therapy : Predictors of high-grade toxicity and survival outcomes. Int J Radiat Oncol Biol Phys. 2014 ; 90 : 819-27.
6) Chen AM, Yoshizaki T, Velez MA, et al. Tolerance of the brachial plexus to high-dose reirradiation. Int J Radiat Oncol Biol Phys. 2017 ; 98 : 83-90.
7) Lee S, Kim H, Ji Y, et al. Evaluation of hepatic toxicity after repeated stereotactic body radiation therapy for recurrent hepatocellular carcinoma using deformable image registration. Sci Rep. 2018 ; 8 : 1-9.
8) Ren C, Ji T, Liu T, et al. The risk and predictors for severe radiation pneumonitis in lung cancer patients treated with thoracic reirradiation. Radiat Oncol. 2018 ; 13 : 1-7.
9) Zhong H, Chetty IJ. Caution must be exercised when performing deformable dose accumulation for tumors undergoing mass changes during fractionated radiation therapy. Int J Radiat Oncol Biol Phys. 2017 ; 97 : 182-3.
10) Chetty IJ, Rosu-Bubulac M. Deformable registration for dose accumulation. Semin Radiat Oncol. 2019 ; 29 : 198-208.
P.243 掲載の参考文献
1) McVicar N, Thomas S, Liu M, et al. Re-irradiation volumetric modulated arc therapy optimization based on cumulative biologically effective dose objectives. J Appl Clin Med Phys. 2018 ; 19 : 341-5.
2) Jumeau R, Peguret N, Zulliger C, et al. Optimization of re-irradiation using deformable registration : a case study. BJR Case Rep. 2016 ; 2 : 20150412.

VII その他のDIR活用

P.248 掲載の参考文献
1) Simon BA. Non-invasive imaging of regional lung function using x-ray computed tomography. J Clin Monit Comput. 2000 ; 16 : 433-42.
2) Guerrero T, Sanders K, Noyola-Martinez J, et al. Quantification of regional ventilation from treatment planning CT. Int J Radiat Oncol Biol Phys. 2005 ; 62 : 630-4.
3) Kanai T, Kadoya N, Ito K, et al. Evaluation of four-dimensional computed tomography (4D-CT) -based pulmonary ventilation : The high correlation between 4D-CT ventilation and (81m) Kr-planar images was found. Radiother Oncol. 2016 ; 119 : 444-8.
4) Reinhardt JM, Ding K, Cao K, et al. Registration-based estimates of local lung tissue expansion compared to xenon CT measures of specific ventilation. Med Image Anal. 2008 ; 12 : 752-63.
5) Yamamoto T, Kabus S, Klinder T, et al. Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics. Med Phys. 2011 ; 38 : 1348-58.
P.250 掲載の参考文献
1) Hegi-Johnson F, de Ruysscher D, Keall P, et al. Imaging of regional ventilation : is CT ventilation imaging the answer? A systematic review of the validation data. Radiother Oncol. 2019 ; 137 : 175-85.
2) Zhang GG, Latifi K, Du K, et al. Evaluation of the ΔV 4D CT ventilation calculation method using in vivo xenon CT ventilation data and comparison to other methods. J Appl Clin Med Phys. 2016 ; 17 : 550-60.
3) Kanai T, Kadoya N, Ito K, et al. Evaluation of four-dimensional computed tomography (4D-CT) -based pulmonary ventilation : the high correlation between 4D-CT ventilation and (81m) Kr-planar images was found. Radiother Oncol. 2016 ; 119 : 444-8.
4) Tahir BA, Hughes PJC, Robinson SD, et al. Spatial comparison of CT-based surrogates of lung ventilation with hyperpolarized helium-3 and xenon-129 gas MRI in patients undergoing radiation therapy. Int J Radiat Oncol Biol Phys. 2018 ; 102 : 1276-86.
5) Yamamoto T, Kabus S, von Berg J, et al. Evaluation of four-dimensional (4D) computed tomography (CT) pulmonary ventilation imaging by comparison with single photon emission computed tomography (SPECT) scans for a lung cancer patient. Proceedings of the Third International Workshop on Pulmonary Image Analysis, Beijing, China : MICCAI ; 2010.
6) Kipritidis J, Tahir BA, Cazoulat G, et al. The VAMPIRE challenge : A multi-institutional validation study of CT ventilation imaging. Med Phys. 2019 ; 46 : 1198-217.
7) Yamamoto T, Kabus S, Lorenz C, et al. 4D CT lung ventilation images are affected by the 4D CT sorting method. Med Phys. 2013 ; 40 : 101907.
8) Yamamoto T, Kabus S, Klinder T, et al. Four-dimensional computed tomography pulmonary ventilation images vary with deformable image registration algorithms and metrics. Med Phys. 2011 ; 38 : 1348-58.
9) Coghe J, Votion D, Lekeux P. Comparison between radioactive aerosol, technegas and krypton for ventilation imaging in healthy calves. Vet J. 2000 ; 160 : 25-32.
10) Eslick EM, Kipritidis J, Gradinscak D, et al. CT ventilation imaging derived from breath hold CT exhibits good regional accuracy with Galligas PET. Radiother Oncol. 2018 ; 127 : 267-73.
P.253 掲載の参考文献
1) Faught AM, Miyasaka Y, Kadoya N, et al. Evaluating the toxicity reduction with computed tomographic ventilation functional avoidance radiation therapy. Int J Radiat Oncol Biol Phys. 2017 ; 99 : 325-33.
2) Kanai T, Kadoya N, Nakajima Y, et al. Evaluation of functionally weighted dose-volume parameters for thoracic stereotactic ablative radiotherapy (SABR) using CT ventilation. Phys Med. 2018 ; 49 : 47-51.
3) Yamamoto T, Kabus S, Bal M, et al. The first patient treatment of computed tomography ventilation functional image-guided radiotherapy for lung cancer. Radiother Oncol. 2016 ; 118 : 227-31.
4) Vinogradskiy Y, Rusthoven CG, Schubert L, et al. Interim analysis of a two-institution, prospective clinical trial of 4DCT-ventilation-based functional avoidance radiation therapy. Int J Radiat Oncol Biol Phys. 2018 ; 102 : 1357-65.
P.255 掲載の参考文献
1) Yaremko BP, Guerrero TM, Noyola-Martinez J, et al. Reduction of normal lung irradiation in locally advanced non-small-cell lung cancer patients, using ventilation images for functional avoidance. Int J Radiat Oncol Biol Phys. 2007 ; 68 : 562-71.
2) Vinogradskiy Y, Castillo R, Castillo E, et al. Use of 4-dimensional computed tomography-based ventilation imaging to correlate lung dose and function with clinical outcomes. Int J Radiat Oncol Biol Phys. 2013 ; 86 : 366-71.
3) Hoover DA, Reid RH, Wong E, et al. SPECT-based functional lung imaging for the prediction of radiation pneumonitis : a clinical and dosimetric correlation. J Med Imaging Radiat Oncol. 2014 ; 58 : 214-22.
4) Faught AM, Miyasaka Y, Kadoya N, et al. Evaluating the toxicity reduction with computed tomographic ventilation functional avoidance radiation therapy. Int J Radiat Oncol Biol Phys. 2017 ; 99 : 325-33.
5) Glenny RW. Determinants of regional ventilation and blood flow in the lung. Intensive Care Med. 2009 ; 35 : 1833-42.
6) Yuan ST, Frey KA, Gross MD, et al. Semiquantification and classification of local pulmonary function by V/Q single photon emission computed tomography in patients with non-small cell lung cancer : potential indication for radiotherapy planning. J Thorac Oncol. 2011 ; 6 : 71-8.
7) Nakajima Y, Kadoya N, Kimura T, et al. Variations between dose-ventilation and dose-perfusion metrics in radiotherapy planning for lung cancer. Adv Radiat Oncol. 2020 ; 5 : 459-65.
8) Vinogradskiy YY, Castillo R, Castillo E, et al. Use of weekly 4DCT-based ventilation maps to quantify changes in lung function for patients undergoing radiation therapy. Med Phys. 2012 ; 39 : 289-98.
9) Yuan ST, Frey KA, Gross MD, et al. Changes in global function and regional ventilation and perfusion on SPECT during the course of radiotherapy in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2012 ; 82 : e631-8.
10) Yamamoto T, Kabus S, Bal M, et al. Changes in regional ventilation during treatment and dosimetric advantages of CT ventilation image guided radiation therapy for locally advanced lung cancer. Int J Radiat Oncol Biol Phys. 2018 ; 102 : 1366-73.
P.257 掲載の参考文献
1) Miura H, Ozawa S, Nakao M, et al. Evaluation of interbreath-hold lung tumor position reproducibility with vector volume histogram using the breath-hold technique. Med Dosim. 2020 ; 45 : 252-5.
2) Ranjbar M, Sabouri P, Mossahebi S, et al. Development and prospective in-patient proof-of-concept validation of a surface photogrammetry+CT-based volumetric motion model for lung radiotherapy. Med Phys. 2019 ; 46 : 5407-20.
3) Chen S, Quan H, Qin A, et al. MR image-based synthetic CT for IMRT prostate treatment planning and CBCT image-guided localization. J Appl Clin Med Phys. 2016 ; 17 : 236-45.
4) Muenzing SE, van Ginneken B, Viergever MA, et al. DIRBoost-an algorithm for boosting deformable image registration : application to lung CT intra-subject registration. Med Image Anal. 2014 ; 18 : 449-59.

最近チェックした商品履歴

Loading...