EBM 血液疾患の治療 2021-2022

出版社: 中外医学社
著者:
発行日: 2021-01-10
分野: 臨床医学:内科  >  血液
ISBN: 9784498225244
電子書籍版: 2021-01-10 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

15,400 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

15,400 円(税込)

商品紹介

血液疾患の諸問題にどう対応し,解決するか,最新のエビデンスをもとに解説したレファランス.治療に必須の知見を,「序論,指針,エビデンス,根拠となった臨床研究の問題点と限界,患者に適応する際の注意点,コメント,文献」の順に紹介し,現時点における最新の治療法や考え方だけでなく,現場で判断に迷うような事柄・問題点に指針を与える.急速に進歩する血液学領域の知識をcatch-upできる,臨床医必携の書だ.

目次

  • I.造血器腫瘍のクリニカルシーケンス
       1.骨髄系腫瘍に対するクリニカルシーケンス
       2.リンパ系腫瘍に対するクリニカルシーケンス

    II.赤血球系疾患
       1.再生不良性貧血(AA)の分子病態研究の進歩
       2.未治療再生不良性貧血に対する免疫抑制療法
       3.再発・難治再生不良性貧血に対するTPO 受容体作動薬
       4.再生不良性貧血(AA)に対する移植前処置
       5.先天性骨髄不全症に対する造血幹細胞移植
       6.骨髄異形成症候群(MDS)に対する薬物療法
       7.骨髄異形成症候群(MDS)に対する同種造血幹細胞移植
       8.骨髄異形成症候群(MDS)に対する開発中の新規治療薬
       9.赤芽球癆(PRCA)の治療
       10.難治性自己免疫性溶血性貧血(AIHA)の治療
       11.寒冷凝集素症(CAD)に対する治療と開発中の新規治療薬
       12.発作性夜間ヘモグロビン尿症(PNH)に対する治療

    III.白血病
     A.急性骨髄性白血病(AML)
       1.AML の分子病態と予後解析研究の進展
       2.家族性白血病の病態
       3.初発AML の治療
       4.高齢者AML の治療
       5.小児AML の治療
       6.再発・難治AML の治療
       7.第1 寛解期AML に対する同種造血幹細胞移植
       8.AML に対する新規治療薬開発の現状

     B.急性前骨髄球性白血病(APL)
       1.初発APL の寛解導入療法
       2.再発APL の治療

     C.急性リンパ性白血病(ALL)
       1.成人Ph 陽性ALL の治療
       2.成人Ph 陰性ALL の治療
       3.再発・難治ALL の治療
       4.AYA 世代ALL の治療
       5.高齢者ALL の治療

     D.慢性骨髄性白血病(CML)
       1.初発CP-CML の治療
       2.進行期CML の治療
       3.TKI 長期投与による有害事象とその対策
       4.CML の治療目標とTKI 投与中止

     E.骨髄増殖性腫瘍(MPN)
       1.骨髄増殖性腫瘍(MPN)における分子病態研究の進歩
       2.真性多血症(PV)の治療
       3.本態性血小板増加症(ET)の治療
       4.原発性骨髄線維症(PMF)の治療
       5.好酸球増加症候群(HES)の治療
       6.慢性好中球性白血病(CNL)の病態と診断・治療

    IV.リンパ系腫瘍
     A.慢性リンパ性白血病(CLL)
       1.初発CLL の治療
       2.治療抵抗性CLL の治療
       3.CLL におけるMRD 検出方法と意義

     B.Indolent B 細胞リンパ腫
       1.進行期低腫瘍量濾胞性リンパ腫(FL)の治療方針
       2.進行期高腫瘍量濾胞性リンパ腫(FL)の治療方針
       3.再発・再燃濾胞性リンパ腫(FL)の治療方針
       4.辺縁帯リンパ腫(MZL)・リンパ形質細胞リンパ腫(LPL)の治療方針

     C.マントル細胞リンパ腫(MCL)
       1.若年者マントル細胞リンパ腫(MCL)の治療方針
       2.高齢者マントル細胞リンパ腫(MCL)の治療指針

     D.Aggressive B 細胞リンパ腫
       1.限局期びまん性大細胞型B 細胞リンパ腫(DLBCL)の初回治療方針
       2.若年進行期びまん性大細胞型B 細胞リンパ腫(DLBCL)の初回治療方針
       3.高齢者びまん性大細胞型B 細胞リンパ腫(DLBCL)の治療方針
       4.再発・再燃びまん性大細胞型B 細胞リンパ腫(DLBCL)の治療方針
       5.血管内大細胞型B 細胞リンパ腫(IVLBCL)の治療方針

     E.T/NK 細胞リンパ腫
       1.CD30 陽性T 細胞リンパ腫(PTCL)の初回治療方針
       【トピックス1】CD30 陽性の判定方法
       2.CD30 陰性T 細胞リンパ腫(PTCL)の初回治療方針
       3.節外性NK/T 細胞リンパ腫(ENKL)の治療方針
       4.T/NK 細胞リンパ腫(PTCL・ENKL)に対する免疫チェックポイント阻害薬

     F.成人T 細胞白血病/リンパ腫(ATLL)
       1.成人T 細胞白血病リンパ腫(ATLL)の治療方針
       2.成人T 細胞白血病(ATL)に対する造血幹細胞移植

     G.ホジキンリンパ腫
       1.限局期ホジキンリンパ腫(HL)の治療方針
       2.進行期ホジキンリンパ腫(HL)の治療方針
       3.再発・治療抵抗性ホジキンリンパ腫(HL)の治療方針

    V.多発性骨髄腫と関連疾患
       1.多発性骨髄腫(MM)の分子病態研究の進歩
       2.くすぶり型多発性骨髄腫(SMM)の治療
       3.移植適応初発多発性骨髄腫(MM)の治療
       4.移植非適応初発多発性骨髄腫(MM)の治療
       5.再発・難治性多発性骨髄腫(MM)の治療
       6.多発性骨髄腫(MM)に対する維持療法の意義
       7.多発性骨髄腫(MM)に対する同種移植の現状
       8.多発性骨髄腫(MM)の合併症に対する治療
       9.形質細胞性白血病(PCL)の治療
       10.原発性マクログロブリン血症(WM)の治療
       11.原発性アミロイドーシスの治療
       12.キャッスルマン症候群(CD)の治療
       13.POEMS 症候群の治療
       14.TAFRO 症候群の診断と治療

    VI.出血・血栓性疾患 457
       1.特発性血小板減少性紫斑病(ITP)に対する最新の治療戦略
       2.血栓性血小板減少性紫斑病(TTP)治療の最前線
       3.血友病診療の新たな展開
       【トピックス2】血友病保因者の健康管理
       4.後天性凝固インヒビターに対する診断・治療の最前線
       5.抗リン脂質抗体症候群(APS)の治療ストラテジー
       6.遺伝性血栓性素因の診断と管理

    VII.支持療法・輸血
       1.鉄過剰症の治療指針
       2.遷延する発熱性好中球減少症(FN)への対応
       3.クロストリディオイデス・ディフィシル感染症(CDI)の予防と治療
       4.ムーコル感染症の診断と治療
       5.同種移植後インフルエンザウイルス感染症
       6.造血器腫瘍患者の妊孕性温存対策

    VIII.造血幹細胞移植
       1.ATG によるGVHD 予防の長期予後への影響
       2.新しいGVHD 治療薬の開発
       3.機械学習によるGVHD 発症予測
       4.NIH 基準による慢性GVHD の診断の妥当性
       5.非血縁者間移植におけるHLA 不適合の影響
       6.Ph 陽性白血病に対する同種造血幹細胞移植前後のTKI の投与
       7.同種造血幹細胞移植後の骨塩量の変化
       8.臍帯血移植での全身放射線照射(TBI)の役割
       9.前処置薬の血中濃度測定の意義
       10. 腫瘍由来循環DNA による同種造血幹細胞移植後微小残存病変の評価
       11.移植後リンパ増殖性疾患(PTLD)の特徴と治療方針

    IX.血液疾患に対する遺伝子治療・細胞治療
      【トピックス3】難治性血液疾患に対するCAR-T 療法
      【トピックス4】造血幹細胞を用いた遺伝子細胞治療
      【トピックス5】血友病に対する遺伝子治療

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I. 造血器腫瘍のクリニカルシーケンス

P.6 掲載の参考文献
3) NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines(R)) acute myeloid leukemia version 3.2020-december 23, 2019. <https://www.nccn.org/professionals/physician_gls/pdf/aml.pdf>
5) Li MM, Datto M, Duncavage EJ, et al. Standards and guidelines for the interpretation and reporting of sequence variants in cancer a joint consensus recommendation of the association for molecular pathology, American Society Clinical Oncol, and College of American Pathologists. J Molecular Diagnostics. 2017 ; 19 : 4-23.
6) 一般社団法人 日本血液学会, 編. 造血器腫瘍ゲノム検査ガイドライン 2020年度版. 2020. <http://www.jshem.or.jp/genomgl/home.html>
7) Harada Y, Nagata Y, Kihara R, et al. Prognostic analysis according to the 2017 ELN risk stratification by genetics in adult acute myeloid leukemia patients treated in the Japan Adult Leukemia Study Group (JALSG) AML201 study. Leukemia Research. 2018 ; 66 (Lancet 368 9550 2006) : 20-7.
8) Richard-Carpentier G, DiNardo CD. Single-agent and combination biologics in acute myeloid leukemia. Hematology American Society of Hematology Education Program. 2019 ; 1 : 548-56.
9) Mody RJ, Wu YM, Lonigro RJ, et al. Integrative clinical sequencing in the management of refractory or relapsed cancer in youth. JAMA. 2015 ; 314 : 913-25.
10) Yasuda T, Sanada M, Nishijima D, et al. Clinical utility of target capture-based panel sequencing in hematological malignancies : a multicenter feasibility study. Cancer Sci. 2020. doi : 10.1111/cas.14552. Online ahead of print.
P.11 掲載の参考文献
1) Treon SP, Xu L, Yang G, et al. MYD88 L265P somatic mutation in Waldenstrom's macroglobulinemia. N Engl J Med. 2012 ; 367 : 826-33.
2) He J, Abdel-Wahab O, Nahas MK, et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood. 2016 ; 127 : 3004-14.
4) Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019 ; 51 : 296-307.
5) Schmitz R, Wright GW, Huang DW, et al. Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med. 2018 ; 378 : 1396-407.
6) Pastore A, Jurinovic V, Kridel R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma : a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015 ; 16 : 1111-22.

II. 赤血球系疾患

P.17 掲載の参考文献
1) Nakao S, Takamatsu H, Chuhjo T, et al. Identification of a specific HLA class II haplotype strongly associated with susceptibility to cyclosporine-dependent aplastic anemia. Blood. 1994 ; 84 : 4257-61.
2) Inaguma Y, Akatsuka Y, Hosokawa K, et al. Induction of HLA-B*40 : 02-restricted T cells possessing cytotoxic and suppressive functions against haematopoietic progenitor cells from a patient with severe aplastic anaemia. Br J Haematol. 2016 ; 172 : 131-4.
3) Espinoza JL, Elbadry MI, Chonabayashi K, et al. Hematopoiesis by iPSC-derived hematopoietic stem cells of aplastic anemia that escape cytotoxic T-cell attack. Blood Adv. 2018 ; 2 : 390-400.
4) Kordasti S, Costantini B, Seidl T, et al. Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment. Blood. 2016 ; 128 : 1193-205.
5) Hosokawa K, Muranski P, Feng X, et al. Memory stem T cells in autoimmune disease : High frequency of circulating CD8+memory stem cells in acquired aplastic anemia. J Immunol. 2016 ; 196 : 1568-78.
9) Babushok DV, Duke JL, Xie HM, et al. Somatic HLA mutations expose the role of class I-mediated autoimmunity in aplastic anemia and its clonal complications. Blood Adv. 2017 ; 1 : 1900-10.
10) Elbadry MI, Mizumaki H, Hosokawa K, et al. Escape hematopoiesis by HLA-B5401-lacking hematopoietic stem progenitor cells in men with acquired aplastic anemia. Haematologica. 2019 ; 104 : e447-50.
11) Hosokawa K, Mizumaki H, Elbadry MI, et al. Clonal hematopoiesis by SLIT1-mutated hematopoietic stem cells due to a breakdown of the autocrine loop involving Slit1 in acquired aplastic anemia. Leukemia. 2019 ; 33 : 2732-66.
12) Hosokawa K, Sugimori C, Ishiyama K, et al. Establishment of a flow cytometry assay for detecting paroxysmal nocturnal hemoglobinuria-type cells specific to patients with bone marrow failure. Ann Hematol. 2018. 97 : 2289-97.
13) Sugimori C, Chuhjo T, Feng X, et al. Minor population of CD55-CD59- blood cells predicts response to immunosuppressive therapy and prognosis in patients with aplastic anemia. Blood. 2006 ; 107 : 1308-14.
14) Kulagin A, Lisukov I, Ivanova M, et al. Prognostic value of paroxysmal nocturnal haemoglobinuria clone presence in aplastic anaemia patients treated with combined immunosuppression : results of two-centre prospective study. Br J Haematol. 2014 ; 164 : 546-54.
15) Mizumaki H, Hosomichi K, Hosokawa K, et al. A frequent nonsense mutation in exon 1 across certain HLA-A and -B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica. 2020. ~247809.
16) Yoshizato T, Dumitriu B, Hosokawa K, et al. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia. N Engl J Med. 2015 ; 373 : 35-47.
17) Kulasekararaj AG, Jiang J, Smith AE, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014 ; 124 : 2698-704.
18) Zhao X, Gao S, Wu Z, et al. Single-cell RNA-seq reveals a distinct transcriptome signature of aneuploid hematopoietic cells. Blood. 2017 ; 130 : 2762-73.
20) Hosokawa K, Katagiri T, Sugimori N, et al. Favorable outcome of patients who have 13q deletion : a suggestion for revision of the WHO 'MDS-U' designation. Haematologica. 2012 ; 97 : 1845-9.
P.23 掲載の参考文献
1) 中尾眞二, 濱麻人, 大橋春彦, 他. 再生不良性貧血の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 再生不良性貧血診療の参照ガイド 令和1年改訂版 : 厚生労働科学研究費補助金難治性疾患等政策研究事業 特発性造血障害に関する調査研究班 (研究代表者 三谷絹子). 2020. <http://zoketsushogaihan.umin.jp/file/2020/02.pdf>
2) 臼杵憲祐. 再生不良性貧血. 臨床血液. 2016 ; 57 : 1890-9.
3) Saito C, Ishiyama K, Yamazaki H, et al. Hypomegakaryocytic thrombocytopenia (HMT) : an immune- mediated bone marrow failure characterized by an increased number of PNH-phenotype cells and high plasma thrombopoietin levels. Br J Haematol. 2016 ; 175 : 246-51.
4) Yamazaki H, Sugimori C, Chuhjo T, et al. Cyclosporine therapy for acquired aplastic anemia : predictive factors for the response and long-term prognosis. Intl J Hematol. 2007 ; 85 : 186-90.
7) Desmond R, Townsley DM, Dumitriu B, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014 ; 123 : 1818-25.
8) レボレード添付文書 <https://www.info.pmda.go.jp/go/pack/3999028F1025_2_05/?view=frame&style=SGML&lang=ja>
9) Scheinberg P, Nunez O, Young N. Re-treatment with rabbit antithymocyte globulin and ciclosporin for patients with relapsed or refractory severe aplastic anaemia. Br J Haematol. 2006 ; 133 : 622-7.
10) Tichelli A, Passweg J, Nissen C, et al. Repeated treatment with horse antilymphocyte globulin for severe aplastic anaemia. Br J Haematol. 1998 ; 100 : 393-400.
11) Gupta V, Gordon-Smith E, Cook G, et al. A third course of anti-thymocyte globulin in aplastic anaemia is only beneficial in previous responders. Br J Haematol. 2005 ; 128 : 110-7.
12) Tichelli A, G Socie, M Honry-Amnr, et al. Effectiveness of immunosuppressive therapy in older patients with aplastic anemia. Ann Intern Med. 1999 ; 130 : 193-201.
13) Tichelli A, Socie G, Marsh J, et al. Outcome of pregnancy and disease outcome among women with aplastic anemia treated with immunosuppression. Ann Int Med. 2002 ; 137 : 164-72.
14) Kwon, JY, Lee Y, Shin JC, et al. Supportive management of pregnancy-associated aplastic anemia. Int J Gynaecol and Obstetrics. 2016 ; 95 : 115-20.
15) McKay DB, Josephson MA. Pregnancy in recipients of solid organs-Effects on mother and child. N Engl J Med. 2006 ; 354 : 1281-93.
16) Gupta V, Brooker C, Tooze JA, et al. Clinical relevance of cytogenetic abnormalities at diagnosis of acquired aplastic anaemia in adults. Br J Haematol. 2006 ; 134 : 95-9.
17) Mikhailova N, Sessarego M, Fugazza G, et al. Cytogenetic abnormalities in patients with severe aplastic anemia. Haematologica. 1996 ; 81 : 418-22.
18) Appelbaum FR, Barrall J, Storb R, et al. Clonal cytogenetic abnormalities in patients with otherwise typical aplastic anemia. Exp Hematol. 1987 ; 15 : 1134-9.
19) Geary CG, Harrison CJ, Philpott NJ, et al. Abnormal cytogenetic clones in patients with aplastic anaemia : response to immunosuppressive therapy. Br J Haematol. 1999 ; 104 : 271-4.
20) Ohga S, Ohara A, Hibi S, et al. Treatment responses of childhood aplastic anaemia with chromosomal aberrations at diagnosis. Br J Haematol. 2002 ; 118 : 313-9.
21) Piaggio G, Podesta M, Pitto A, et al. Coexistence of normal and clonal haemopoiesis in aplastic anaemia patients treated with immunosuppressive therapy. Br J Haematol. 1999 ; 107 : 505-11.
22) Ishiyama K, Karasawa M, Miyawaki S, et al. Aplastic anaemia with 13q- : a benign subset of bone marrow failure responsive to immunosuppressive therapy. Br J Haematol. 2002 ; 117 : 747-50.
23) Maciejewski JP, Risitano A, Sloand EM, et al. Distinct clinical outcomes for cytogenetic abnormalities evolving from aplastic anemia. Blood. 2002 ; 99 : 3129-35.
24) Sloand EM, Yong AS, Ramkissoon S, et al. Granulocyte colony-stimulating factor preferentially stimulates proliferation of monosomy 7 cells bearing the isoform IV receptor. Proc Natl Acad Sci U S A. 2006 ; 103 : 14483-8.
P.30 掲載の参考文献
1) de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by c-MPL ligand. Nature. 1994 ; 369 : 533-8.
2) Lok S, Kaushansky K, Holly RD, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994 ; 369 : 565-8.
3) Bartley TD, Bogenberger J, Hunt P, et al. Identification and cloning of a megakaryocyte growth and development factor that is a ligand for the cytokine receptor MPL. Cell. 1994 ; 77 : 1117-24.
4) Sohma Y, Akahori H, Seki N, et al. Molecular cloning and chromosomal localization of the human thrombopoietin gene. FEBS Lett. 1994 ; 353 : 57-61.
5) Kato T, Ogami K, Shimada Y, et al. Purification and characterization of thrombopoietin. J. BIochem. 1995 ; 118 : 229-36.
6) Warren S, Alexander AW, Nicos A, et al. Definicied in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietin receptor c-Mpl. Blood. 1996 ; 87 : 2162-70.
7) Qian H, Buza-Vidas N, Hyland CD, et al. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell. 2007 ; 1 : 671-84.
8) Alexander WS, Roberts AW, Nicola NA, et al. Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood. 1996 ; 87 : 2162-70.
9) Alvarado LJ, Andreoni A, Hunstman HD, et al. Heterodimerization of TPO and INF impairs human hematopoietic Stem/Progenitor cell signaling and survival in chronic inflammation. Blood. 2017 ; 130 ; 4.
10) Schifferli A, Kuhne T. Thrombopoietin receptor agonists : a new immune modulatoly strategy in immunothrombocytepenia? Semin Hematol. 2016 ; 53 : S31.
11) Kojima S, Ohara A, Tsuchida M, et al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood. 2002 ; 100 : 786-90.
12) Shin SH, Yoon JH, Yahng SA, et al. The efficacy of rabbit antithymocyte globulin with cyclosporine in comparison to horse antithymocyte globulin as a first-line treatment in adult patients with severe aplastic anemia : a single-center retrospective study. Ann Hematol. 2013 ; 92 : 817-24.
13) Desmond R, Townsley DM, Dumitriu B, et al. Eltrombopag restores trilineage hematopoiesis in refractory severe aplastic anemia that can be sustained on discontinuation of drug. Blood. 2014 ; 123 : 1818-25.
15) Winkler T, Fan X, Cooper J, et al. Treatment optimization and genomic outcomes in refractory severe aplastic anemia treated with eltrombopag. Blood. 2019 ; 133 : 2575-85.
16) Lengline E, Drenou B, Peterlin P, et al. Nationwide survey on the use of eltrombopag in patients with severe aplastic anemia : A report on behalf of the French Reference Center for Aplastic Anemia. Haematologica. 2018 ; 103 : 212-20.
17) Escade M, Lengline E, Knol-Bout C, et al. Use of eltrombopag in aplastic anemia in Europe. Ann Hematol. 2019 ; 98 : 1341-50.
18) Lee JW, Lee SE, Jung CW, et al. Romiplostim in patients with refractory aplastic anemia previously treated with immunosuppressive therapy : A dose-finding and long-term treatment phase 2 trial. Lancet Haematol. 2019 ; 6 ; e562-72.
P.35 掲載の参考文献
1) Anasetti C, Doney KC, Storb R, et al. Marrow transplantation for severe aplastic anemia. Long-term outcome in fifty "untransfused" patients. Ann Intern Med. 1986 ; 104 : 461-6.
2) Storb R, Etzioni R, Anasetti C, et al. Cyclophosphamide combined with antithymocyte globulin in preparation for allogeneic marrow transplants in patients with aplastic anemia. Blood. 1994 ; 84 : 941-9.
3) Storb R, Blume KG, O'Donnell MR, et al. Cyclophosphamide and antithymocyte globulin to condition patients with aplastic anemia for allogeneic marrow transplantations : the experience in four centers. Biol Blood Marrow Transplant. 2001 ; 7 : 39-44.
4) Kahl C, Leisenring W, Deeg HJ, et al. Cyclophosphamide and antithymocyte globulin as a conditioning regimen for allogeneic marrow transplantation in patients with aplastic anaemia : a long-term follow-up. Br J Haematol. 2005 ; 130 : 747-51.
5) Deeg HJ, Anasetti C, Petersdorf E, et al. Cyclophosphamide plus ATG conditioning is insufficient for sustained hematopoietic reconstitution in patients with severe aplastic anemia transplanted with marrow from HLA-A, B, DRB matched unrelated donors. Blood. 1994 ; 83 : 3417-8.
6) Deeg HJ, O'Donnell M, Tolar J, et al. Optimization of conditioning for marrow transplantation from unrelated donors for patients with aplastic anemia after failure of immunosuppressive therapy. Blood. 2006 ; 108 : 1485-91.
7) Gottdiener JS, Appelbaum FR, Ferrans VJ, et al. Cardiotoxicity associated with high-dose cyclophosphamide therapy. Arch Intern Med. 1981 ; 141 : 758-63.
8) Bacigalupo A, Locatelli F, Lanino E, et al. Fludarabine, cyclophosphamide and anti-thymocyte globulin for alternative donor transplants in acquired severe aplastic anemia : a report from the EBMT-SAA Working Party. Bone Marrow Transplant. 2005 ; 36 : 947-50.
9) Bacigalupo A, Socie G, Lanino E, et al. Fludarabine, cyclophosphamide, antithymocyte globulin, with or without low dose total body irradiation, for alternative donor transplants, in acquired severe aplastic anemia : a retrospective study from the EBMT-SAA Working Party. Haematologica. 2010 ; 95 : 976-82.
10) Kako S, Kanda Y, Onizuka M, et al. Allogeneic hematopoietic stem cell transplantation for aplastic anemia with pre-transplant conditioning using fludarabine, reduced-dose cyclophosphamide, and low-dose thymoglobulin : A KSGCT prospective study. Am J Hematol. 2020 ; 95 : 251-7.
11) Yamamoto H, Kato D, Uchida N, et al. Successful sustained engraftment after reduced-intensity umbilical cord blood transplantation for adult patients with severe aplastic anemia. Blood. 2011 ; 117 : 3240-2.
12) Kuwatsuka Y, Kanda J, Yamazaki H, et al. A comparison of outcomes for cord blood transplantation and unrelated bone marrow transplantation in adult aplastic anemia. Biol Blood Marrow Transplant. 2016 ; 22 : 1836-43.
14) Hill RS, Petersen FB, Storb R, et al. Mixed hematologic chimerism after allogeneic marrow transplantation for severe aplastic anemia is associated with a higher risk of graft rejection and a lessened incidence of acute graft-versus-host disease. Blood. 1986 ; 67 : 811-6.
15) Kako S, Yamazaki H, Ohashi K, et al. Mixed chimerism and secondary graft failure in allogeneic hematopoietic stem cell transplantation for aplastic anemia. Biol Blood Marrow Transplant. 2020 ; 26 : 445-50.
16) DeZern AE, Zahurak ML, Symons HJ, et al. Haploidentical BMT for severe aplastic anemia with intensive GVHD prophylaxis including posttransplant cyclophosphamide. Blood Adv. 2020 ; 4 : 1770-9.
17) Kako S, Gomyo A, Akahoshi Y, et al. Haploidentical transplantation using low-dose alemtuzumab : Comparison with haploidentical transplantation using low-dose thymoglobulin. Eur J Haematol. 2019 ; 102 : 256-64.
P.40 掲載の参考文献
1) Peffault de Latour R, Porcher R, Dalle JH, et al. Allogeneic hematopoietic stem cell transplantation in Fanconi anemia : the European Group for Blood and Marrow Transplantation experience. Blood. 2013 ; 122 : 4279-86.
2) Ayas M, Siddiqui K, Al-Jefri A, et al. Factors affecting the outcome of related allogeneic hematopoietic cell transplantation in patients with Fanconi anemia. Biol Blood Marrow Transplant. 2014 ; 20 : 1599-603.
3) Wagner JE, Eapen M, MacMillan ML, et al. Unrelated donor bone marrow transplantation for the treatment of Fanconi anemia. Blood. 2007 ; 109 : 2256-62.
4) Gluckman E, Rocha V, Ionescu I, et al. Results of unrelated cord blood transplant in Fanconi anemia patients : risk factor analysis for engraftment and survival. Biol Blood Marrow Transplant. 2007 ; 13 : 1073-82.
5) Ayas M, Saber W, Davies SM, et al. Allogeneic hematopoietic cell transplantation for Fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J Clin Oncol. 2013 ; 31 : 1669-76.
6) Yabe M, Shimizu T, Morimoto T, et al. Matched sibling donor stem cell transplantation for Fanconi anemia patients with T-cell somatic mosaicism. Pediatr Transplant. 2012 ; 16 : 340-5.
7) Yabe H, Inoue H, Matsumoto M, et al. Allogeneic haematopoietic cell transplantation from alternative donors with a conditioning regimen of low-dose irradiation, fludarabine and cyclophosphamide in Fanconi anaemia. Br J Haematol. 2006 ; 134 : 208-12.
P.46 掲載の参考文献
3) List A, Dewald G, Bennett J, et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 2006 ; 355 : 1456-65.
4) Fenaux P, Giagounidis A, Selleslag D, et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with low-/intermediate-1-risk myelodysplastic syndromes with del5q. Blood. 2011 ; 118 : 3765-76.
5) Harada H, Watanabe M, Suzuki K, et al. Lenalidomide is active in Japanese patients with symptomatic anemia in low- or intermediate-1 risk myelodysplastic syndromes with a deletion 5q abnormality. Int J Hematol. 2009 ; 90 : 353-60.
6) Shenoy N, Vallumsetla N, Rachmilewitz E, et al. Impact of iron overload and potential benefit from iron chelation in low-risk myelodysplastic syndrome. Blood. 2014 ; 124 : 873-81.
8) Della Porta MG, Jackson CH, Alessandrino EP, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised International Prognostic Scoring System. Leukemia. 2017 ; 31 : 2449-57.
10) Jang JH, Harada H, Shibayama H, et al. A randomized controlled trial comparing darbepoetin alfa doses in red blood cell transfusion-dependent patients with low- or intermediate-1 risk myelodysplastic syndromes. Int J Hematol. 2015 ; 102 : 401-12.
12) Gerds AT, Gooley TA, Estey EH, et al. Pretransplantation therapy with azacitidine vs induction chemotherapy and posttransplantation outcome in patients with MDS. Biol Blood Marrow Transplant. 2012 ; 18 : 1211-8.
13) Damaj G, Duhamel A, Robin M, et al. Impact of azacitidine before allogeneic stem-cell transplantation for myelodysplastic syndromes : a study by the Societe Francaise de Greffe de Moelle et de Therapie-Cellulaire and the Groupe-Francophone des Myelodysplasies. J Clin Oncol. 2012 ; 30 : 4533-40.
15) Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013 ; 122 : 3616-27 ; quiz 3699.
P.52 掲載の参考文献
1) 日本造血細胞移植学会. 造血細胞移植ガイドライン 2018 [第3版 : [Available from : <https://www.jshct.com/uploads/files/guideline/03_05_mds-mpn03.pdf.>
3) Gagelmann N, Eikema DJ, Stelljes M, et al. Optimized EBMT transplant-specific risk score in myelodysplastic syndromes after allogeneic stem-cell transplantation. Haematologica. 2019 ; 104 : 929-36.
4) Della Porta MG, Jackson CH, Alessandrino EP, et al. Decision analysis of allogeneic hematopoietic stem cell transplantation for patients with myelodysplastic syndrome stratified according to the revised international prognostic scoring system. Leukemia. 2017 ; 31 : 2449-57.
5) de Witte T, Bowen D, Robin M, et al. Allogeneic hematopoietic stem cell transplantation for MDS and CMML : recommendations from an international expert panel. Blood. 2017 ; 129 : 1753-62.
6) Rashidi A, Meybodi MA, Cao W, et al. Myeloablative versus reduced-intensity hematopoietic cell transplantation in myelodysplastic syndromes : Systematic review and meta-analysis. Biol Blood Marrow Transplant. 2020 ; 26 : e138-41.
7) Craddock C, Slade D, De Santo C, et al. Combination lenalidomide and azacitidine : A novel salvage therapy in patients who relapse after allogeneic stem-cell transplantation for acute myeloid leukemia. J Clin Oncol. 2019 ; 37 : 580-8.
8) Schroeder T, Rautenberg C, Kruger W, et al. Treatment of relapsed AML and MDS after allogeneic stem cell transplantation with decitabine and DLI-a retrospective multicenter analysis on behalf of the German cooperative transplant study group. Ann Hematol. 2018 ; 97 : 335-42.
9) Guillaume T, Malard F, Magro L, et al. Prospective phase II study of prophylactic low-dose azacitidine and donor lymphocyte infusions following allogeneic hematopoietic stem cell transplantation for high-risk acute myeloid leukemia and myelodysplastic syndrome. Bone Marrow Transplant. 2019 ; 54 : 1815-26.
10) Duncavage EJ, Jacoby MA, Chang GS, et al. Mutation clearance after transplantation for myelodysplastic syndrome. N Engl J Med. 2018 ; 379 : 1028-41.
12) Gooptu M, Koreth J. A post-transplant optimized transplant-specific risk score in myelodysplastic syndromes. Haematologica. 2019 ; 104 : 859-61.
P.58 掲載の参考文献
1) Fenaux P, Platzbecker U, Mufti GJ, et al. Luspatercept in patients with lower-risk myelodysplastic syndromes. N Engl J Med. 2020 ; 38 : 140-51.
2) Garcia-Manero G, Griffiths EA, Steensma DP, et al. Oral cedazuridine/decitabine : a phase 2, pharmacokinetic/pharmacodynamic, randomized, crossover study in MDS and CMML. Blood. 2020 ; 136 : 674-83.
3) Savona MR, Kolibaba K, Conkling P, et al. Extended dosing with CC-486 (oral azacitidine) in patients with myeloid malignancies. Am J Hematol. 2018 ; 93 : 1199-206.
4) Garcia-Manero G, Roboz G, Walsh K, et al. Guadecitabine (SGI-110) in patients with intermediate or high-risk myelodysplastic syndromes : phase 2 results from a multicentre, open-label, randomised, phase 1/2 trial. Lancet Haematol. 2019 ; 6 : e317-e27.
5) Navada SC, Garcia-Manero G, OdchimarReissig R, et al. Rigosertib in combination with azacitidine in patients with myelodysplastic syndromes or acute myeloid leukemia : Results of a phase 1 study. Leuk Res. 2020 ; 94 : 106369.
6) Cluzeau T, Sebert M, Rahme R, et al. APR-246 combined with azacitidine (AZA) in TP53 mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). a phase 2 study by the Groupe Francophone des Myelodysplasies (GFM). Blood. 2019 ; 134 (Suppl 1) : 677.
7) Savona MR, Odenike O, Amrein PC, et al. An oral fixed-dose combination of decitabine and cedazuridine in myelodysplastic syndromes : a multicentre, open-label, dose-escalation, phase 1 study. Lancet Haematol. 2019 ; 6 : e194-e203.
8) de Lima M, Oran B, Champlin RE, et al. CC-486 maintenance after stem cell transplantation in patients with acute myeloid leukemia or myelodysplastic syndromes. Biol Blood Marrow Transplant. 2018 ; 24 : 2017-24.
P.65 掲載の参考文献
1) Sawada K, Fujishima N, Hirokawa M. Acquired pure red cell aplasia : updated review of treatment. Br J Haematol. 2008 ; 142 : 505-14.
2) Means RT Jr. Pure red cell aplasia. Blood. 2016 ; 128 : 2504-9.
3) 赤芽球癆診療の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 赤芽球癆診療の参照ガイド. 令和1年改訂版 (第6版). 2020.
4) Sawada K, Hirokawa M, Fujishima N, et al. Long-term outcome of patients with acquired primary idiopathic pure red cell aplasia receiving cyclosporine A. A nationwide cohort study in Japan for the PRCA Collaborative Study Group. Haematologica. 2007 ; 92 : 1021-8.
5) Hirokawa M, Sawada K, Fujishima N, et al. Long-term response and outcome following immunosuppressive therapy in thymoma-associated pure red cell aplasia : a nationwide cohort study in Japan by the PRCA collaborative study group. Haematologica. 2008 ; 93 : 27-33.
6) Fujishima N, Sawada K, Hirokawa M, et al. Long-term responses and outcomes following immunosuppressive therapy in large granular lymphocyte leukemia-associated pure red cell aplasia : a Nationwide Cohort Study in Japan for the PRCA Collaborative Study Group. Haematologica. 2008 ; 93 : 1555-9.
7) Crabol Y, Terrier B, Rozenberg F, et al. Intravenous immunoglobulin therapy for pure red cell aplasia related to human parvovirus b19 infection : a retrospective study of 10 patients and review of the literature. Clin Infect Dis. 2013 ; 56 : 968-77.
8) Hirokawa M, Sawada K, Fujishima N, et al. Long-term outcome of patients with acquired chronic pure red cell aplasia (PRCA) following immunosuppressive therapy : a final report of the nationwide cohort study in 2004/2006 by the Japan PRCA collaborative study group. Br J Haematol. 2015 ; 169 : 879-86.
9) Hirokawa M, Fukuda T, Ohashi K, et al. Efficacy and long-term outcome of treatment for pure red cell aplasia after allogeneic stem cell transplantation from major ABO-incompatible donors. Biol Blood Marrow Transplant. 2013 ; 19 : 1026-32.
10) Kawakami T, Sekiguchi N, Kobayashi J, et al. Frequent STAT3 mutations in CD8+ T cells from patients with pure red cell aplasia. Blood Adv. 2018 ; 2 : 2704-12.
P.71 掲載の参考文献
1) Murphy S, LoBuglio AF. Drug therapy of autoimmune hemolytic anemia. Semin Hematol. 1976 ; 13 : 323-4.
2) Petz LD, Garratty G. Immune Hemolytic Anemias. 2nd ed. Philadelphia : Elsevier ; 2004.
3) Reynaud Q, Durieu I, Dutertre M, et al. Efficacy and safety of rituximab in auto-immune hemolytic anemia : A meta-analysis of 21 studies. Autoimmun Revs. 2015 ; 14 : 304-13.
4) Chao SH, Chang YL, Yen JC, et al. Efficacy and safety of rituximab in autoimmune and microangiopathic hemolytic anemia : a systematic review and meta-analysis. Exp Hematol Oncol. 2020 ; 9 : 6.
5) Jager U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults : Recommendations from the First International Consensus Meeting. Blood Rev. 2020 ; 41 : 100648.
6) Barcellini W, Fattizzo B, Zaninoni A, et al. Clinical heterogeneity and predictors of outcome in primary autoimmune hemolytic anemia : a GIMEMA study of 308 patients. Blood. 2014 ; 124 : 2930-6.
7) 中尾眞二, 濱麻人, 大橋春彦, 他. 再生不良性貧血の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 再生不良性貧血診療の参照ガイド 令和1年改訂版 : 厚生労働科学研究費補助金難治性疾患等政策研究事業 特発性造血障害に関する調査研究班 (研究代表者 三谷絹子). 2020. p.20. <http://zoketsushogaihan.umin.jp/file/2020/02.pdf>
8) Giudice V, Rosamilio R, Ferrara I. Efficacy and safety of splenectomy in adult autoimmune hemolytic anemia. Open Med. 2016 ; 11 : 374-80.
9) Ho G, Brunson A, Keegan THM, et al. Splenectomy and the incidence of venous thromboembolism and sepsis in patients with autoimmune hemolytic anemia. Blood Cells Mol Dis. 2020 ; 81 : 102388.
10) Garvey B. Rituximab in the treatment of autoimmune haematological disorders. Br J Haematol. 2008 ; 141 : 149-69.
11) Barcellini W, Zaja F, Zaninoni A, et al. Low-dose rituximab in adult patients with idiopathic autoimmune hemolytic anemia : clinical efficacy and biologic studies. Blood. 2012 ; 119 : 3691-7.
12) Barcellini W, Zaja F, Zaninoni A, et al. Sustained response to low-dose rituximab in idiopathic autoimmune hemolytic anemia. Eur J Haematol. 2013 ; 91 : 546-51.
13) Fattizzo B, Zaninoni A, Pettine L, et al. Low-dose rituximab in autoimmune hemolytic anemia : 10 years after. Blood. 2019 ; 133 : 996-8.
14) Go RS, Winters JL, Kay NE. How I treat autoimmune hemolytic anemia. Blood. 2017 ; 129 : 2971-9.
15) Li BJ, Yuan X, Jiang YJ, et al. Retrospective analysis of 30 severe autoimmune hemolytic anemia patients treated by whole blood exchange transfusion. Transfusion. 2015 ; 55 : 2231-7.
16) Arbach O, Funck R, Seibt F, et al. Erythropoietin may improve anemia in patients with autoimmune hemolytic anemia associated with reticulocytopenia. Transfus Med Hemother. 2012 ; 39 : 221-3.
17) Ovalle JP, Orozco EM, Pedraza LC, et al. Treatment of autoimmune hemolytic anemia with erythropoietin : A case report. Arch Case Rep. 2019 ; 3 : 43-6.
18) Moyo VM, Smith D, Brodsky I, et al. High-dose cyclophosphamide for refractory autoimmune hemolytic anemia. Blood. 2002 ; 100 : 704-6.
19) Thabet AF, Faisal M. Pulse cyclophosphamide therapy in refractory warm autoimmune hemolytic anemia : a new perspective. Indian J Hematol Blood Transfus. 2014 ; 30 : 313-8.
20) Nader K, Patel M, Ferber A. Ofatumumab in rituximab-refractory autoimmune hemolytic anemia associated with chronic lymphocytic leukemia : A case report and review of literature. Clin Lymphoma Myeloma Leuk. 2013 ; 13 : 511-3.
21) Karlsson C, Hansson L, Celsing F, et al. Treatment of severe refractory autoimmune hemolytic anemia in B cell chronic lymphocytic leukemia with alemtuzumab (humanized CD52 monoclonal antibody). Leukemia. 2007 ; 21 : 511-4.
22) Kaufman M, Limaye SA, Driscoll N, et al. A combination of rituximab, cyclophosphamide and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk Lymphoma. 2009 ; 50 : 892-9.
23) Osterborg A, Karlsson C, Lundin J. Alemtuzumab to treat refractory autoimmune hemolytic anemia or thrombocytopenia in chronic lymphocytic leukemia. Curr Hematol Malig Rep. 2009 ; 4 : 47-53.
24) Manda S, Dunbar N, Marx-Wood CR, et al. Ibrutinib is an effective treatment of autoimmune haemolytic anaemia in chronic lymphocytic leukaemia. Br J Haematol. 2015 ; 170 : 734-6.
25) Rogers KA, Ruppert AS, Bingman A, et al. Incidence and description of autoimmune cytopenias during treatment with ibrutinib for chronic lymphocytic leukemia. Leukemia. 2016 ; 30 : 346-50.
26) Lacerda MP, Guedes NR, Yamakawa PE, et al. Treatment of refractory autoimmune hemolytic anemia with venetoclax in relapsed chronic lymphocytic leukemia with del (17p). Ann Hematol. 2017 ; 96 : 1577-8.
27) Danchaivijitr P, Yared J, Rapoport AP. Successful treatment of IgG and complement-mediated autoimmune hemolytic anemia with bortezomib and low-dose cyclophosphamide. Am J Hematol. 2011 ; 86 : 331-2.
28) Hosoba S, Jaye DL, Cohen C, et al. Successful treatment of severe immune hemolytic anemia after allogeneic stem cell transplantation with bortezomib : report of a case and review of literature. Transfusion. 2015 ; 55 : 259-64.
29) Jasinski S, Weinblatt ME, Glasser CL. Sirolimus as an effective agent in the treatment of immune thrombocytopenia (ITP) and Evans syndrome (ES) : a single institution's experience. J Pediatr Hematol Oncol. 2017 ; 39 : 420-4.
30) Howard J, Hoffbrand AV, Prentice HG, et al. Mycophenolate mofetil for the treatment of refractory auto-immune haemolytic anaemia and auto-immune thrombocytopenia purpura. Br J Haematol. 2002 ; 117 : 712-5.
31) Miano M, Ramenghi U, Russo G, et al. Mycophenolate mofetil for the treatment of children with immune thrombocytopenia and Evans syndrome. A retrospective data review from the Italian association of paediatric haematology/oncology. Br J Haematol. 2016 ; 175 : 490-5.
32) Michel M, Terriou L, Roudot-Thoraval F, et al. A randomized and double-blind controlled trial evaluating the safety and efficacy of rituximab for warm auto-immune hemolytic anemia in adults (the RAIHA study). Am J Hematol. 2017 ; 92 : 23-7.
33) Deng J, Zhou F, Wong CY, et al. Efficacy of therapeutic plasma exchange for treatment of autoimmune hemolytic anemia : A systematic review and meta-analysis of randomized controlled trials. J Clin Apher. 2020 ; 35 : 294-306.
34) Kawamoto S, Kamesaki T, Masutani R, et al. Ectopic expression of band 3 anion transport protein in colorectal cancer revealed in an autoimmune hemolytic anemia patient. Hum Pathol. 2019 ; 83 : 193-8.
35) Kitao A, Kawamoto S, Kurata K, et al. Band 3 ectopic expression in colorectal cancer induces an increase in erythrocyte membrane-bound IgG and may cause immune-related anemia. Int J Hematol. 2020 ; 111 : 657-66.
P.79 掲載の参考文献
1) Hill QA, Stamps R, Massey E, et al. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017 ; 176 : 395-411.
2) Hill QA, Stamps R, Massey E, et al. Guidelines on the management of drug-induced immune and secondary autoimmune, haemolytic anaemia. Br J Haematol. 2017 ; 177 : 208-20.
3) Jager U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults : Recommendations from the First International Consensus Meeting. Blood Rev. 2019 : 100648. PubMed PMID : 31839434.
4) Berentsen S, Ulvestad E, Langholm R, et al. Primary chronic cold agglutinin disease : a population based clinical study of 86 patients. Haematologica. 2006 ; 91 : 460-6.
5) Bylsma LC, Gulbech Ording A, et al. Occurrence, thromboembolic risk, and mortality in Danish patients with cold agglutinin disease. Blood Adv. 2019 ; 3 : 2980-5.
6) 厚生労働科学研究費補助金 難治性疾患等政策研究事業 特発性造血障害に関する調査研究班 研究代表者 三谷絹子. 自己免疫性溶血性貧血診療の参照ガイド (令和1年改訂版). 2020. <http://zoketsushogaihan.umin.jp/file/2020/09.pdf>
7) Barcellini W. Immune hemolysis : diagnosis and treatment recommendations. Semin Hematol. 2015 ; 52 : 304-12.
8) Berentsen S. How I manage patients with cold agglutinin disease. Br J Haematol. 2018 ; 181 : 320-30.
9) Ulvestad E, Berentsen S, Mollnes TE. Acute phase haemolysis in chronic cold agglutinin disease. Scand J Immunol. 2001 ; 54 : 239-42.
10) Broome C, Cunningham JM, Mullins M, et al. Increased risk of thrombotic events in cold agglutinin disease : A 10-year retrospective analysis. Res Pract Thromb Haemost. 2020 ; 4 (Suppl 2) : 1-8.
11) Berentsen S. Cold agglutinin disease. Hematol Am Soc Hematol Educ Program. 2016 ; 2016 : 226-31.
12) Berentsen S, Randen U, Oksman M, et al. Bendamustine plus rituximab for chronic cold agglutinin disease : results of a Nordic prospective multicenter trial. Blood. 2017 ; 130 : 537-41.
13) Berentsen S, Ulvestad E, Gjertsen BT, et al. Rituximab for primary chronic cold agglutinin disease : a prospective study of 37 courses of therapy in 27 patients. Blood. 2004 ; 103 : 2925-8.
14) Schollkopf C, Kjeldsen L, Bjerrum OW, et al. Rituximab in chronic cold agglutinin disease : a prospective study of 20 patients. Leuk Lymphoma. 2006 ; 47 : 253-60.
15) Berentsen S, Roth A, Randen U, et al. Cold agglutinin disease : current challenges and further prospects. J Blood Med. 2019 ; 10 : 93-103.
16) Berentsen S, Randen U, Vagan AM, et al. High response rate and durable remissions following fludarabine and rituximab combination therapy for chronic cold agglutinin disease. Blood. 2010 ; 116 : 3180-4.
17) Treon SP, Branagan AR, Ioakimidis L, et al. Long-term outcomes to fludarabine and rituximab in Waldenstrom macroglobulinemia. Blood. 2009 ; 113 : 3673-8.
18) Rossi G, Gramegna D, Paoloni F, et al. Short course of bortezomib in anemic patients with relapsed cold agglutinin disease : a phase 2 prospective GIMEMA study. Blood. 2018 ; 132 : 547-50.
19) Roth A, Bommer M, Huttmann A, et al. Eculizumab in cold agglutinin disease (DECADE) : an open-label, prospective, bicentric, nonrandomized phase 2 trial. Blood Adv. 2018 ; 2 : 2543-9.
20) Roth A, Huttmann A, Rother RP, et al. Long-term efficacy of the complement inhibitor eculizumab in cold agglutinin disease. Blood. 2009 ; 113 : 3885-6.
21) Gupta N, Wang ES. Long-term response of refractory primary cold agglutinin disease to eculizumab therapy. Ann Hematol. 2014 ; 93 : 343-4.
22) Barbara DW, Mauermann WJ, Neal JR, et al. Cold agglutinins in patients undergoing cardiac surgery requiring cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2013 ; 146 : 668-80.
23) Szczepiorkowski ZM, Winters JL, Bandarenko N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher. 2010 ; 25 : 83-177.
24) Fattizzo B, Languille L, Levati G et al. Evidence based use of erythropoietin in patients with autoimmune hemolytic anemia : A multicenter international study. HemaSphere. 2019 ; 3 : 405-6.
25) Berentsen S, Tjonnfjord GE. Diagnosis and treatment of cold agglutinin mediated autoimmune hemolytic anemia. Blood Rev. 2012 ; 26 : 107-15.
26) Michel M. Classification and therapeutic approaches in autoimmune hemolytic anemia : an update. Expert Rev Hematol. 2011 ; 4 : 607-18.
27) Sanz J, Arriaga F, Montesinos P, et al. Autoimmune hemolytic anemia following allogeneic hematopoietic stem cell transplantation in adult patients. Bone Marrow Transplant. 2007 ; 39 : 555-61.
28) Jager U, D'Sa S, Schorgenhofer C, et al. Inhibition of complement C1s improves severe hemolytic anemia in cold agglutinin disease : a first-in-human trial. Blood. 2019 ; 133 : 893-901.
29) Berentsen S, Hill A, Hill QA, et al. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther Adv Hematol. 2019 ; 10 : 1-20.
30) Shi J, Rose EL, Singh A, et al. TNT003, an inhibitor of the serine protease C1s, prevents complement activation induced by cold agglutinins. Blood. 2014 ; 123 : 4015-22.
31) Wouters D, Stephan F, Strengers P, et al. C1-esterase inhibitor concentrate rescues erythrocytes from complement-mediated destruction in autoimmune hemolytic anemia. Blood. 2013 ; 121 : 1242-4.
32) Tesfaye A, Broome C. A novel approach for treatment of cold agglutinin syndromerelated severe hemolysis. J Hematol. 2016 ; 5 : 30-3.
33) Wouters D, Zeerleder S. Complement inhibitors to treat IgM-mediated autoimmune hemolysis. Haematologica. 2015 ; 100 : 1388-95.
34) Roth A, Barcellini W, D'Sa S, et al. Inhibition of complement C1s with sutimlimab in patients with cold agglutinin disease (CAD) : Results from the phase 3 cardinal study. Blood. 2019 ; 134 (Suppl 2) : LBA-2.
35) Gertz MA, Qiu H, Kendall L, et al. ANX005, An inhibitory antibody against C1q, blocks complement activation triggered by cold agglutinins in human disease. 58th Meeting of the American Society of Hematology, San Diego, CA, USA. Blood. 2016 ; 128 : 1265.
36) Grossi F, Shum MK, Gertz MA, et al. Inhibition of C3 with APL-2 results in normalisation of markers of intravascular and extravascular hemolysis in patients with autoimmune hemolytic anemia (AIHA). 60th Annual Meeting of the American Society of Hematology, San Diego, CA. Blood. 2018 ; 132 : 3623.
37) Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015 ; 372 : 1430-40.
38) Cao Y, Yang G, Hunter ZR, et al. The BCL2 antagonist ABT-199 triggers apoptosis, and augments ibrutinib and idelalisib mediated cytotoxicity in CXCR4 Wild-type and CXCR4 WHIM mutated Waldenstrom macroglobulinaemia cells. Br J Haematol. 2015 ; 170 : 134-8.
P.85 掲載の参考文献
1) Parker C, Omine M, Richards S, et al. Diagnosis and management of paroxysmal nocturnal hemoglobinuria. Blood. 2005 ; 106 : 3699-709.
2) Hochsmann B, Murakami Y, Osato M, et al. Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J Clin Invest. 2019 ; 129 : 5123-36.
3) 金倉譲, 二宮治彦, 中熊秀喜, 他. 発作性夜間ヘモグロビン尿症診療の参照ガイド 令和1年改訂版. 2019. <http://zoketsushogaihan.umin.jp/file/2020/06v2.pdf.>
4) Lee JW, Fontbrune FS, Lee LWL, et al. Ravulizumab (ALXN1210) vs Eculizumab in adult patients with PNH naive to complement inhibitors : The 301 Study. Blood. 2019 ; 133 : 530-9.
5) Kulasekararaj AG, Hill A, Rottinghaus ST, et al. Ravulizumab (ALXN1210) vs Eculizumab in C5-inhibitor-experienced adult patients with PNH : The 302 study. Blood. 2019 ; 133 : 540-9.
6) Brodsky RA, Latour RP, Rottinghaus ST, et al. Characterization of breakthrough hemolysis events observed in the phase 3 randomized studies of ravulizumab versus eculizumab in adults with paroxysmal nocturnal hemoglobinuria. Haematologica. 2020. (Haematol. 2019, 236877)
7) Roth A, Nishimura JI, Nagy Z, et al. The complement C5 inhibitor crovalimab in paroxysmal nocturnal hemoglobinuria. Blood. 2020 ; 135 : 912-20.
9) Nishimura J, Kanakura Y, Ware RE, et al. Clinical course and flow cytometric analysis of paroxysmal nocturnal hemoglobinuria in the United States and Japan. Medicine. 2004 ; 83 : 193-207.
10) Wiles JA, Galvan MD, Podos SD, et al. Discovery and development of the oral complement factor D inhibitor ACH-4471. Curr Med Chem. 2020 ; 27 : 4165-80.
11) Schubart A, Anderson K, Mainolfi N, et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc Natl Acad Sci U S A. 2019 ; 116 : 7926-31.

III. 白血病

P.92 掲載の参考文献
2) Breems DA, van Putten WL, De Greef GE, et al. Monosomal karyotype in acute myeloid leukemia : a better indicator of poor prognosis than a complex karyotype. J Clin Oncol. 2008 ; 26 : 4791-7.
3) Sakaguchi M, Yamaguchi H, Najima Y, et al. Prognostic impact of low allelic ratio FLT3-ITD and NPM1 mutation in acute myeloid leukemia. Blood Adv. 2018 ; 2 : 2744-54.
4) Dohner K, Thiede C, Jahn N, et al. Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood. 2020 ; 135 : 371-80.
6) Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016 Feb 4 ; 374 : 422-33.
8) Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-Mutated AML. N Engl J Med. 2019 ; 381 : 1728-40.
9) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
10) Wakita S, Yamaguchi H, Omori I, et al. Mutations of the epigenetics modifying gene (DNMT3a, TET2, IDH1/2) at diagnosis may Induce FLT3-ITD at relapse in de novo acute myeloid leukemia. Leukemia. 2013 ; 27 : 1044-52.
P.97 掲載の参考文献
1) Song WJ, Sullivan MG, Legare RD, et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 1999 ; 23 : 166-75.
2) Smith ML, Cavenagh JD, Lister TA, et al. Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med. 2004 ; 351 : 2403-7. doi : 10.1056/NEJMoa041331.
3) Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011 ; 43 : 1012-7.
4) Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011 ; 118 : 2653-5.
5) Zhang MY, Churpek JE, Keel SB, et al. Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet. 2015 ; 47 : 180-5. doi : 10.1038/ng.3177
6) Polprasert C, Schulze I, Sekeres MA, et al. Inherited and somatic defects in DDX41 in Myeloid Neoplasms. Cancer Cell. 2015 ; 27 : 658-70. doi : 10.1016/j.ccell.2015.03.017.
7) Cardoso SR, Ryan G, Walne AJ, et al. Germline heterozygous DDX41 variants in a subset of familial myelodysplasia and acute myeloid leukemia. Leukemia 2016 ; 30 : 2083-6. doi : 10.1038/leu.2016.124.
8) Lewinsohn M, Brown AL, Weinel LM, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016 ; 127 : 1017-23. doi : 10.1182/blood-2015-10-676098.
9) Kobayashi S, Kobayashi A, Osawa Y, et al. Donor cell leukemia arising from preleukemic clones with a novel germline DDX41 mutation after allogenic hematopoietic stem cell transplantation. Leukemia. 2017 ; 31 : 1020-2. doi : 10.1038/leu.2017.44.
10) Narumi S, Amano N, Ishii T, et al. SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet. 2016 ; 48 : 792-7.
P.106 掲載の参考文献
1) 日本血液学会, 編. 急性骨髄性白血病 : 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版. 2020 ; p8-37.
2) NCCN guidelines Version 3.2010 Acute Myeloid Leukemia.
6) Willemze R, Suciu S, Meloni G, et al. High-dose cytarabine in induction treatment improves the outcome of adult patients younger than age 46 years with acute myeloid leukemia : results of the EORTC-GIMEMA AML-12 trial. J Clin Oncol. 2014 ; 32 : 219-28.
9) Burnett AK, Russell NH, Hills RK, et al. UK NCRI AML Study Group. A randomized comparison of daunorubicin 90 mg/m2 vs 60 mg/m2 in AML induction : results from the UK NCRI AML17 trial in 1206 patients. Blood. 2015 ; 125 : 3878-85.
10) Harada K, Doki N, Hagino T, et al. Underweight status at diagnosis is associated with poorer outcomes in adult patients with acute myeloid leukemia : A retrospective study of JALSG AML 201. Ann Hematol. 2018 ; 97 : 73-81.
12) Lambert J, Pautas C, Terre C, et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia : final efficacy and safety updates from the Open-label, Phase III ALFA-0701 trial. Haematologica. 2019 ; 104 : 113-9.
13) Castaigne S, Pautas C, Terre C, et al. Acute Leukemia french association. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701) : A randomised, open-label, Phase 3 study. Lancet. 2012 ; 379 : 1508-16.
14) Winters AC, Gutman JA, Purev E, et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019 ; 3 : 2911-9.
15) Kawashima N, Ishikawa Y, Atsuta Y, et al. Japan Adult Leukemia Study Group (JALSG). Allogeneic hematopoietic stem cell transplantation at the first remission for younger adults with FLT3-internal tandem duplication AML : The JALSG AML209-FLT3-SCT study. Cancer Sci. 2020 ; 11 : 2472-81.
16) Brunner AM, Blonquist TM, DeAngelo DJ, et al. Alisertib plus induction chemotherapy in previously untreated patients with high-risk, Acute myeloid leukaemia : A Single-Arm, Phase 2 Trial. Lancet Haematol. 2020 ; 7 : e122-33.
17) DiNardo CD, Pratz K, Pullarkat V, et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood. 2019 ; 133 : 7-17.
18) DiNardo CD, Jonas BA, Pullarkat V, et al. Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020 ; 383 : 617-29.
20) Pophali P, Litzow M. What is the best daunorubicin dose and schedule for acute myeloid leukemia induction? Curr Treat Options Oncol. 2017 ; 18 : 3.
P.112 掲載の参考文献
1) Klepin HD. Elderly acute myeloid leukemia : assessing risk. Curr Hematol Malig Rep. 2015 : 10 : 118-25.
2) Wakita A, Ohtake S, Takada S, et al. Randomized comparison of fixed-schedule versus response-oriented individualized induction therapy and use of ubenimex during and after consolidation therapy for elderly patients with acute myeloid leukemia : the JALSG GML200 Study. Int J Hematol. 2012 ; 96 : 84-93.
3) Devine SM, Onzar K, Blum W, et al. Phase II study of allogeneic transplantation for older patients with acute myeloid leukemia in first complete remission using a reduced-intensity conditioning regimen : results from cancer and leukemia group B 100103 (Alliance for Clinical Trials in Oncology) /Blood and Marrow Transplant Clinical Trial Network 0502. J Clin Oncol. 2015 ; 33 : 4167-75.
4) Klepin HD, Ritchie E, Majer Elech B, et al. Geriatric Assessment Among Older Adults Receiving Intensive Therapy for Acute Myeloid Leukemia : Report of CALGB 361006 (Alliance). J Geriatric Oncol. 2020 ; 11 : 107-13.
5) Huls G, et al. Azacitidine maintenance after intensive chemotherapy improves DFS in older AML patients. Blood. 2019 ; 133 : 1457-64.
7) Berger E, Delpievre C. Are social inequalities in acute myeloid leukemia survival explained by differences in treatment utilization? Results from a French Longitudinal Observational Study Among Older Patients. BMC Cancer. 2019 ; 19 : 883.
8) Zeidan AM, Podoltsev NA, Wang X, et al. Temporal patterns and predictors of receiving no active treatment among older patients with acute myeloid leukemia in the United States : A population-level analysis. Cancer. 2019 ; 125 : 4241-51.
P.117 掲載の参考文献
1) Horibe K, Yumura-Yagi K, Kudoh T, et al. Long-term results of the risk-adapted treatment for childhood B-Cell acute lymphoblastic leukemia : Report from the Japan association of childhood leukemia study ALL-97 trial. J Pediatr Hematol Oncol. 2017 ; 39 : 81-9.
2) Taga T, Tomizawa D, Takahashi H, et al. Acute myeloid leukemia in children : Current status and future directions. Pediatr I : 2016 ; 58 : 71-80.
3) Tomizawa D, Tawa A, Watanabe T, et al. Excess treatment reduction including anthracyclines results in higher incidence of relapse in core binding factor acute myeloid leukemia in children. Leukemia. 2013 ; 27 : 2413-6.
4) Gamis AS, Alonzo TA, Meshinchi S, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk : results from the randomized phase III Children's Oncology Group trial AAML0531. J Clin Oncol. 2014 ; 32 : 3021-32.
5) Rubnitz JE, Lacayo NJ, Inaba H, et al. Clofarabine can replace anthracyclines and etoposide in remission induction therapy for childhood acute myeloid leukemia : The AML08 multicenter, randomized Phase III Trial. J Clin Oncol. 2019 ; 37 : 2072-81.
6) Inaba H, Coustan-Smith E, Cao X, et al. Comparative analysis of different approaches to measure treatment response in acute myeloid leukemia. J Clin Oncol. 2012 ; 30 : 3625-32.
7) Ehlers S, Herbst C, Zimmermann M, et al. Granulocyte colony-stimulating factor (G-CSF) treatment of childhood acute myeloid leukemias that overexpress the differentiation-defective G-CSF receptor isoform IV is associated with a higher incidence of relapse. J Clin Oncol. 2010 ; 28 : 2591-7.
8) Taub JW, Berman JN, Hitzler JK, et al. Improved outcomes for myeloid leukemia of Down syndrome : a report from the Children's Oncology Group AAML0431 trial. Blood. 2017 ; 129 : 3304-13.
9) Taga T, Watanabe T, Tomizawa D, et al. Preserved high probability of overall survival with significant reduction of chemotherapy for myeloid leukemia in down syndrome : A nationwide prospective study in Japan. Pediatr Blood Cancer. 2016 ; 63 : 248-54.
10) Getz KD, Sung L, Ky B, et al. Occurrence of treatment-related cardiotoxicity and Its impact on outcomes among children treated in the AAML0531 Clinical Trial : A report from the children's oncology group. J Clin Oncol. 2019 ; 37 : 12-21.
P.123 掲載の参考文献
1) Tallman MS. NCCN clinical practice guidelines in oncology, acute myeloid leukemia. version 3. 2020. 2019.
3) Montillo M, Mirto S, Petti MC, et al. Fludarabine, cytarabine, and G-CSF (FLAG) for the treatment of poor risk acute myeloid leukemia. Am J Hematol. 1998 ; 58 : 105-9.
4) Karanes C, Kopecky KJ, Head DR, et al. A phase III comparison of high dose ARA-C (HIDAC) versus HIDAC plus mitoxantrone in the treatment of first relapsed or refractory acute myeloid leukemia Southwest Oncology Group Study. Leuk Res. 1999 ; 23 : 787-94.
5) Aldoss I, Yang D, Aribi A, et al. Efficacy of the combination of venetoclax and hypomethylating agents in relapsed/refractory acute myeloid leukemia. Haematologica. 2018 ; 103 : e404-7
6) DiNardo CD, Rausch CR, Benton C, et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am J Hematol. 2018 ; 93 : 401-7.
7) Taksin AL, Legrand O, Raffoux E, et al. High efficacy and safety profile of fractionated doses of Mylotarg as induction therapy in patients with relapsed acute myeloblastic leukemia : a prospective study of the alfa group. Leukemia. 2007 ; 21 : 66-71.
8) Perl AE, Martinelli G, Cortes JE, et al. Gilteritinib or chemotherapy for relapsed or refractory FLT3-Mutated AML. N Engl J Med. 2019 ; 381 : 1728-40.
9) Cortes JE, Khaled S, Martinelli G, et al. Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R) : a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 984-97.
10) DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018 ; 378 : 2386-98.
P.127 掲載の参考文献
2) Kanda J, Saji H, Fukuda T, et al. Related transplantation with HLA-1 Ag mismatch in the GVH direction and HLA-8/8 allele-matched unrelated transplantation : a nationwide retrospective study. Blood. 2012 ; 119 : 2409-16.
3) Shouval R, Fein JA, Labopin M, et al. Outcomes of allogeneic haematopoietic stem cell transplantation from HLA-matched and alternative donors : a European Society for Blood and Marrow Transplantation registry retrospective analysis. Lancet Haematol. 2019 ; 6 : e573-84.
4) Ostgard LSG, Lund JL, Norgaard JM, et al. Impact of allogeneic stem cell transplantation in first complete remission in acute myeloid leukemia : A National Population-Based Cohort Study. Biol Blood Marrow Transplant. 2018 ; 24 : 314-23.
5) Versluis J, Labopin M, Ruggeri A, et al. Alternative donors for allogeneic hematopoietic stem cell transplantation in poor-risk AML in CR1. Blood Adv. 2017 ; 1 : 477-85.
6) Bashey A, Zhang X, Sizemore CA, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol. 2013 ; 31 : 1310-6.
7) Ciurea SO, Zhang MJ, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015 ; 126 : 1033-40.
8) Wang Y, Liu QF, Xu LP, et al. Haploidentical vs identical-sibling transplant for AML in remission : a multicenter, prospective study. Blood. 2015 ; 125 : 3956-62.
9) Yu S, Huang F, Wang Y, et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission : a prospective multicentre cohort study. Leukemia. 2020 ; 34 : 1433-43.
10) Devine SM, Owzar K, Blum W, et al. Phase II study of allogeneic transplantation for older patients with acute myeloid leukemia in first complete remission using a reduced-intensity conditioning regimen : Results from cancer and leukemia group b 100103 (Alliance for clinical trials in oncology)/Blood and marrow transplant clinical trial network 0502. J Clin Oncol. 2015 ; 33 : 4167-75.
11) Shimoni A, Labopin M, Savani B, et al. Comparable long-term outcome after allogeneic stem cell transplantation from sibling and matched unrelated donors in patients with acute myeloid leukemia older than 50 years : A report on behalf of the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2019 ; 25 : 2251-60.
12) Ciurea SO, Shah MV, Saliba RM, et al. Haploidentical transplantation for older patients with acute myeloid leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2018 ; 24 : 1232-6.
13) Morita K, Kantarjian HM, Wang F, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018 ; 36 : 1788-97.
14) Hourigan CS, Dillon LW, Gui G, et al. Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol. 2020 ; 38 : 1273-83.
16) Milano F, Gooley T, Wood B, et al. Cord-blood transplantation in patients with minimal residual disease. N Engl J Med. 2016 ; 375 : 944-53.
17) Gilleece MH, Labopin M, Yakoub-Agha I, et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission : A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am J Hematol. 2018 ; 93 : 1142-52.
P.134 掲載の参考文献
2) DiNardo CD, Jonas B, Pullarkat V, et al. A randomized, double-blind, placebo-controlled study of venetoclax with azacitidine vs azacitidine in treatment-naive patients with acute myeloid leukemia ineligible for intensive therapy-VIAKE-A. EHA. 2020 ; LB2601.
3) Cortes JE, Heidel FH, Hellmann A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia. 2019 ; 33 : 379-89.
4) Lancet JE, Uy GL, Cortes JE, et al. CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 2018 ; 36 : 2684-92.
5) DiNardo CD, Stein EM, de Botton S, et al. Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML. N Engl J Med. 2018 ; 378 : 2386-98.
7) Wei AH, Montesinos P, Ivanov V, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy : a phase 3 randomized placebo-controlled trial. Blood. 2020 ; 135 : 2137-45.
P.138 掲載の参考文献
1) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : Final results of the randomized Italian-German APL0406 Trial. J Clin Oncol. 2017 ; 35 : 605-12.
2) Lo-Coco F, Avvisati G, Vignetti M, et al. Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years : results of the AIDA-2000 trial of the GIMEMA Group. Blood. 2010 ; 116 : 3171-9.
P.143 掲載の参考文献
1) Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high-risk acute promyelocytic leukemia : Final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017 ; 35 : 605-12.
2) Russell N, Burnett A, Hills R, et al. Attenuated arsenic trioxide plus ATRA therapy for newly diagnosed and relapsed APL : long-term follow-up of the AML17 trial. Blood. 2018 ; 132 : 1452-4.
3) Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy : the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007 ; 110 : 59-66.
4) Zhu HH, Qin YZ, Huang XJ. Resistance to arsenic therapy in acute promyelocytic leukemia. N Engl J Med. 2014 ; 370 : 1864-6.
5) Goto E, Tomita A, Hayakawa F, et al. Missense mutations in PML-RARA are critical for the lack of responsiveness to arsenic trioxide treatment. Blood. 2011 ; 118 : 1600-9.
6) Esteve J, Escoda L, Martin G, et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99) : benefit of an early intervention. Leukemia. 2007 ; 21 : 446-52.
7) Sanford D, Lo-Coco F, Sanz MA, et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br J Haematol. 2015 ; 171 : 471-7.
10) Lengfelder E, Lo-Coco F, Ades L, et al. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia : registry results from the European LeukemiaNet. Leukemia. 2015 ; 29 : 1084-91.
11) Holter Chakrabarty JL, Rubinger M, Le-Rademacher J, et al. Autologous is superior to allogeneic hematopoietic cell transplantation for acute promyelocytic leukemia in second complete remission. Biol Blood Marrow Transplant. 2014 ; 20 : 1021-5.
13) Aribi A, Kantarjian HM, Estey EH, et al. Combination therapy with arsenic trioxide, all-trans retinoic acid, and gemtuzumab ozogamicin in recurrent acute promyelocytic leukemia. Cancer. 2007 ; 109 : 1355-9.
P.147 掲載の参考文献
1) Chiaretti S, Vitale A, Vignetti M, et al. A sequential approach with imatinib, chemotherapy and transplant for adult Ph+acute lymphoblastic leukemia : final results of the GIMEMA LAL 0904 study. Haematologica. 2016 ; 101 : 1544-52.
3) Rousselot P, Coude MM, Gokbuget N, et al. Dasatinib and low-intensity chemotherapy in elderly patients with Philadelphia chromosome-positive ALL. Blood. 2016 ; 128 : 774-82.
4) Fielding AK. Curing Ph+ALL : assessing the relative contributions of chemotherapy, TKIs, and allogeneic stem cell transplant. Hematol Am Soc Hematol Educ Program. 2019 ; 2019 : 24-29.
5) Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : long-term follow-up of a single-centre, phase 2 study. Lancet Haematol. 2018 ; 5 : e618-27.
6) Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016 ; 128 : 504-7.
7) Chalandon Y, Thomas X, Hayette S, et al. Randomized study of reduced-intensity chemotherapy combined with imatinib in adults with Ph-positive acute lymphoblastic leukemia. Blood. 2015 ; 125 : 3711-19.
8) Pfeifer H, Cazzaniga G, van der Velden VHJ, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 2019 ; 33 : 1910-22.
9) Thomas DA, Faderl S, Cortes J, et al. Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 2004 ; 103 : 4396-407.
10) Hatta Y, Mizuta S, Matsuo K, et al. Final analysis of the JALSG Ph+ALL202 study : tyrosine kinase inhibitor-combined chemotherapy for Ph+ALL. Ann Hematol. 2018 ; 97 : 1535-45.
11) Bassan R, Rossi G, Pogliani EM, et al. Chemotherapy-phased imatinib pulses improve long-term outcome of adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia : Northern Italy Leukemia Group protocol 09/00. J Clin Oncol. 2010 ; 28 : 3644-52.
12) Ravandi F, Othus M, O'Brien SM, et al. US Intergroup Study of chemotherapy plus dasatinib and allogeneic stem cell transplant in Philadelphia chromosome positive ALL. Blood Adv. 2016 ; 1 : 250-9.
13) Kim DY, Joo YD, Lim SN, et al. Nilotinib combined with multiagent chemotherapy for newly diagnosed Philadelphia-positive acute lymphoblastic leukemia. Blood. 2015 ; 126 : 746-56.
P.154 掲載の参考文献
2) Ram R, Wolach O, Vidal L, et al. Adolescents and young adults with acute lymphoblastic leukemia have a better outcome when treated with pediatric-inspired regimens : systematic review and meta-analysis. Am J Hematol. 2012 ; 87 : 472-8.
3) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版 ; 2020.
4) 日本造血細胞移植学会, 編. 造血細胞移植ガイドライン 急性リンパ性白血病 (成人) 第3版. 東京 : 2020.
5) Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia : results of CALGB 10403. Blood. 2019 ; 133 : 1548-59.
6) Berry DA, Zhou S, Higley H, et al. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia : A meta-analysis. JAMA Oncol. 2017 ; 3 : e170580.
10) Atsuta Y. Introduction of transplant registry unified management program 2 (TRUMP2) : scripts for TRUMP data analyses, part I (variables other than HLA-related data). Int J Hematol. 2016 ; 103 : 3-10.
12) Huguet F, Leguay T, Raffoux E, et al. Pediatric-inspired therapy in adults with Philadelphia chromosome-negative acute lymphoblastic leukemia : The GRAALL-2003 study. J Clin Oncol. 2009 ; 27 : 911-8.
13) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : A phase II study by the Japan adult leukemia study group. Blood Cancer J. 2014 ; 4 : e252.
14) Nagafuji K, Miyamoto T, Eto T, et al. Prospective evaluation of minimal residual disease monitoring to predict prognosis of adult patients with Ph-negative acute lymphoblastic leukemia. Eur J Haematol. 2019 ; 103 : 164-71.
P.160 掲載の参考文献
1) Pui CH, Mullighan CG, Evans WE, et al. Pediatric acute lymphoblastic leukemia : Where are we going and how do we get there? Blood. 2012 ; 120 : 1165-74.
2) Bassan R, Hoelzer D. Modern therapy of acute lymphoblastic leukemia. J Clin Oncol. 2011 ; 29 : 532-43.
3) National Comprehensive Cancer Network. NCCNClinical Practice Guidelines in acute lymphoblastic leukemia. version 1. 2020. <https://www.nccn.org/professionals/physician_gls/pdf/all.pdf>.
4) Jeha S, Gandhi V, Chan KW, et al. Clofarabine, a novel nucleoside analog, is active in pediatric patients with advanced leukemia. Blood. 2004 ; 103 : 784-9.
5) Jeha S, Gaynon PS, Razzouk BI, et al. Phase II study of clofarabine in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. J Clin Oncol. 2006 ; 24 : 1917-23.
6) Hijiya N, Gaynon P, Barry E, et al. A multi-center phase i study of clofarabine, etoposide and cyclophosphamide in combination in pediatric patients with refractory or relapsed acute leukemia. Leukemia. 2009 ; 23 : 2259-64.
7) Hijiya N, Paul JA, Borowitz MJ, et al. Phase 2 results of clofarabine in combination with etoposide and cyclophosphamide in pediatric patients with refractory or relapsed acute lymphoblastic leukemia. Blood. 2010 ; 116 : 866.
8) DeAngelo DJ, Yu D, Johnson JL, et al. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma : Cancer and Leukemia Group B study 19801. Blood. 2007 ; 109 : 5136-42.
9) Basara N, Baurmann H, Beck J, et al. High single-drug activity of nelarabine in relapsed T-lymphoblastic leukemia/lymphoma offers curative option with subsequent stem cell transplantation. Blood. 2011 ; 118 : 3504-11.
10) Faderl S, Thomas DA, O'Brien S, et al. Augmented hyper-CVAD based on dose-intensified vincristine, dexamethasone, and asparaginase in adult acute lymphoblastic leukemia salvage therapy. Clin Lymphoma, Myeloma Leuk. 2011 ; 11 : 54-9.
11) Rosen PJ, Rankin C, Head DR, et al. A phase II study of high dose ARA-C and mitoxantrone for treatment of relapsed or refractory adult acute lymphoblastic leukemia. Leuk Res. 2000 ; 24 : 183-7.
12) Camera A, Annino L, Chiurazzi F, et al. GIMEMA ALL- Rescue 97 : a salvage strategy for primary refractory or relapsed adult acute lymphoblastic leukemia. Haematologica. 2004 ; 89 : 145-53.
13) Weiss MA, Aliff TB, Tallman MS, et al. A single, high dose of idarubicin combined with cytarabine as induction therapy for adult patients with recurrent or refractory acute lymphoblastic leukemia. Cancer. 2002 ; 95 : 581-7.
14) Wiernik PH, Dutcher JP, Paietta E, et al. Long-term follow-up of treatment and potential cure of adult acute lymphocytic leukemia with MOAD : A non-anthracycline containing regimen. Leukemia. 1993 ; 7 : 1236-41.
15) Wetzler M, Sanford BL, Kurtzberg J, et al. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia : Cancer and Leukemia Group B Study 9511. Blood. 2007 ; 109 : 8-11.
16) Kadia TM, Kantarjian HM, Thomas DA, et al. Phase II study of methotrexate, vincristine, pegylated- asparaginase, and dexamethasone (MOpAD) in patients with relapsed/refractory acute lymphoblastic leukemia. Am J Hematol. 2015 ; 90 : 120-4.
17) Soverini S, Hochhaus A, Nicolini FE, et al. BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors : Recommendations from an expert panel on behalf of European LeukemiaNet. Blood. 2011 ; 118 : 1208-15.
18) Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J. Med. 2013 ; 369 : 1783-96.
19) Benjamini O, Dumlao TL, Kantarjian H, et al. Phase II trial of HyperCVAD and Dasatinib in patients with relapsed Philadelphia chromosome positive acute lymphoblastic leukemia or blast phase chronic myeloid leukemia. Am J Hematol. 2014 ; 89 : 282-7.
20) Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N Engl J. Med. 2017 ; 376 : 836-47.
22) Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl J Med. 2018 ; 378 : 439-48.
23) Gokbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood. 2018 ; 131 : 1522-31.
24) Topp MS, Kufer P, Gokbuget N, et al. Targeted therapy with the T-cell-Engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011 ; 29 : 2493-8.
25) Jabbour E, Ravandi F, Kebriaei P, et al. Salvage chemoimmunotherapy with inotuzumab ozogamicin combined with mini-hyper-CVD for patients with relapsed or refractory Philadelphia chromosome-negative acute lymphoblastic leukemia : A Phase 2 Clinical Trial. JAMA Oncol. 2018 ; 4 : 230-34.
26) Assi R, Kantarjian H, Short NJ, et al. Safety and efficacy of blinatumomab in combination with a tyrosine kinase inhibitor for the treatment of relapsed Philadelphia chromosome-positive Leukemia. Clin Lymphoma Myeloma Leuk. 2017 ; 17 : 897-901.
27) Jain N, Cortes JE, Ravandi F, et al. Inotuzumab ozogamicin in combination with bosutinib for patients with relapsed or refractory Ph+ALL or CML in lymphoid blast phase. Blood. 2017 ; 130 (Suppl 1) : 143.
28) Webster J, Luskin MR, Prince GT, et al. Blinatumomab in combination with Immune checkpoint inhibitors of PD-1 and CTLA-4 in adult patients with relapsed/refractory (R/R) CD19 positive B-cell acute lymphoblastic leukemia (ALL) : Preliminary results of a phase I study. Blood. 2018 ; 132 (Suppl 1) : 557.
29) Durer S, Durer C, Shafqat M, et al. Concomitant use of blinatumomab and donor lymphocyte infusion for mixed-phenotype acute leukemia : A case report with literature review. Immunotherapy. 2019 ; 11 : 373-8.
30) Sasaki K, Kantarjian HM, Ravandi F, et al. Sequential combination of low-intensity chemotherapy (mini-hyper-CVD) plus inotuzumab ozogamicin with or without blinatumomab in patients with relapsed/refractory Philadelphia chromosome-negative acute lymphoblastic leukemia (ALL) : A Phase 2 Trial. Blood. 2018 ; 132 (Suppl 1) : 553.
32) Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med. 2018 ; 24 : 20-8.
33) Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 2019 ; 25 : 625-38.
34) Lacayo NJ, Pullarkat VA, Stock W, et al. Safety and efficacy of venetoclax in combination with navitoclax in adult and pediatric relapsed/refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Blood. 2019 ; 134 (Suppl 1) : 285.
35) Guerra VA, Jabbour EJ, Ravandi F, et al. Novel monoclonal antibody-based treatment strategies in adults with acute lymphoblastic leukemia. Ther Adv Hematol. 2019 ; 10 : 1-17.
P.166 掲載の参考文献
1) Boissel N, Baruchel A. Acute lymphoblastic leukemia in adolescent and young adults : treat as adults or as children. Blood. 2018 ; 132 : 351-61.
2) 康勝好. AYA世代の急性リンパ性白血病-小児科の立場から-. 臨床血液. 2017 ; 58 : 1024-30.
3) Siegel SE, Stock W, Johnson RH, et al. Pediatric inspired treatment regimens for adolescent and young adults with Philadelphia chromosome-negative acute lymphoblastic leukemia. A Review. JAMA Oncol. 2018 ; 4 : 725-34.
4) Dhedin N, Huynh A, Maury S, et al. Role of allogeneic stem cell transplantation in adult patients with Ph-negative acute lymphoblastic leukemia. Blood. 2015 ; 125 : 2486-96.
5) Gokbuget N, Domblet H, Giebel S, et al. Minimal residual disease level predicts outcome in adults with Ph-negative B-precursor acute lymphoblastic leukemia. Hematol. 2019 ; 24 : 337-48.
6) Stock W, Luger SM, Advani AS, et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia : results of CALGB 10403. Blood. 2019 ; 133 : 1548-9.
7) Sakura T, Hayakawa F, Sugiura I, et al. High-dose methotrexate therapy significantly improved survival of adult acute lymphoblastic leukemia : A phase III study by JALSG. Leukemia. 2018 ; 32 : 626-32.
8) Jabbour EJ, Sasaki K, Ravandi F, et al. Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-HCVD) with or without blinatumomab versus standard intensive chemotherapy (HCVAD) as frontline therapy for older patients with Philadelphia chromosome-negative acute lymphoblastic leukemia : A propensity score analysis. Cancer. 2019 ; 125 : 2578-86.
9) Larsen EC, Devidas M, Chen S, et al. Dexamethasone and high-dose methotrexate improve outcome for children and young adults with acute lymphoblastic leukemia : A report from Children's Oncology Group study AALL0232. J Clin Oncol. 2016 ; 34 : 2380-8.
10) Winter SS, Dunsmore KP, Devidas M, et al. Improved survival for children and young adults with T-lineage acute lymphoblastic leukemia : Results from the children's oncology group AALL0434 methotrexate randomization. J Clin Oncol. 2018 ; 10 : 2926-34.
11) Dalle IA, Jabbour E, Short NJ, et al. Evaluation and management of measurable residual disease in acute lymphoblastic leukemia. Ther Adv Hematol. 2020 ; 11 : 2040620720910023.
P.173 掲載の参考文献
1) Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet. 2020 ; 395 : 1146-62.
2) Hayakawa F, Sakura T, Yujiri T, et al. Markedly improved outcomes and acceptable toxicity in adolescents and young adults with acute lymphoblastic leukemia following treatment with a pediatric protocol : a phase II study by the Japan Adult Leukemia Study Group. Blood Cancer Journal. 2014 ; 4 : e252.
3) Moorman AV, Chilton L, Wilkinson J, et al. A population-based cytogenetic study of adults with acute lymphoblastic leukemia. Blood. 2010 ; 115 : 206-14.
4) Chiaretti S, Vitale A, Cazzaniga G, et al. Clinico-biological features of 5202 patients with acute lymphoblastic leukemia enrolled in the Italian AIEOP and GIMEMA protocols and stratified in age cohorts. Haematologica. 2013 ; 98 : 1702-10.
5) Legrand O, Marie JP, Marjanovic Z, et al. Prognostic factors in elderly acute lymphoblastic leukaemia. Br J Haematol. 1997 ; 97 : 596-602.
6) Thomas X, Olteanu N, Charrin C, et al. Acute lymphoblastic leukemia in the elderly : The Edouard Herriot Hospital experience. Am J Hematol. 2001 ; 67 : 73-83.
7) Goekbuget N, Beck J, Brueggemann M, et al. Moderate intensive chemotherapy including CNS-Prophylaxis with liposomal cytarabine is feasible and effective in older patients with Ph-negative acute lymphoblastic leukemia (ALL) : Results of a prospective trial from The German multicenter study group for adult all (GMALL). Blood. 2012 ; 120 : 1493.
8) Goekbuget N. How I treat older patients with ALL. Blood. 2013 ; 122 : 1366-75.
9) Mohile SG, Dale W, Somerfield MR, et al. Practical assessment and management of vulnerabilities in older patients receiving chemotherapy : ASCO Guideline for Geriatric Oncology. J Clin Oncol. 2018 ; 36 : 2326-47.
10) Klepin HD. Ready for prime time : role for geriatric assessment to improve quality of care in hematology practice. Blood. 2019 ; 134 : 2005-12.
11) Liu MA, DuMontier C, Murillo A, et al. Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies. Blood. 2019 ; 134 : 374-82.
12) Hurria A, Togawa K, Mohile SG, et al. Predicting chemotherapy toxicity in older adults with cancer : a prospective multicenter study. J Clin Oncol. 2011 ; 29 : 3457-65.
13) Lees J, Chan A. Polypharmacy in elderly patients with cancer : clinical implications and management. The Lancet Oncol. 2011 ; 12 : 1249-57.
14) Sharma M, Loh KP, Nightingale G, et al. Polypharmacy and potentially inappropriate medication use in geriatric oncology. Journal of Geriatric Oncology. 2016 ; 7 : 346-53.
15) Sancho JM, Ribera JM, Xicoy B, et al. Results of the PETHEMA ALL-96 trial in elderly patients with Philadelphia chromosome-negative acute lymphoblastic leukemia. Eur J Haematol. 2007 ; 78 : 102-10.
16) Fathi AT, DeAngelo DJ, Stevenson KE, et al. Phase 2 study of intensified chemotherapy and allogeneic hematopoietic stem cell transplantation for older patients with acute lymphoblastic leukemia. Cancer. 2016 ; 122 : 2379-88.
17) Gokbuget N. Treatment of older patients with acute lymphoblastic leukaemia. Drugs & Aging. 2018 ; 35 : 11-26.
18) Larson RA, Dodge RK, Burns CP, et al. A five-drug remission induction regimen with intensive consolidation for adults with acute lymphoblastic leukemia : cancer and leukemia group B study 8811. Blood. 1995 ; 85 : 2025-37.
19) Harnicar S, Adel N, Jurcic J. Modification of vincristine dosing during concomitant azole therapy in adult acute lymphoblastic leukemia patients. J Oncol Pharm Practice : official publication of the International Society of Oncology Pharmacy Practitioners. 2009 ; 15 : 175-82.
20) van Schie RM, Bruggemann RJ, Hoogerbrugge PM, et al. Effect of azole antifungal therapy on vincristine toxicity in childhood acute lymphoblastic leukaemia. J Antimicrob Chemother. 2011 ; 66 : 1853-6.
21) Goekbuget N, Leguay T, Hunault M, et al. First european chemotherapy schedule for elderly patients with acute lymphoblastic leukemia : Promising remission rate and feasible moderate dose intensity consolidation. Blood. 2008 ; 112 : 304.
22) Landsburg DJ, Stadtmauer E, Loren A, et al. Receipt of maintenance therapy is most predictive of survival in older acute lymphoblastic leukemia patients treated with intensive induction chemotherapy regimens. Am J Hematol. 2013 ; 88 : 657-60.
23) van Dongen JJ, van der Velden VH, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia : need for sensitive, fast, and standardized technologies. Blood. 2015 ; 125 : 3996-4009.
24) Bergfelt E, Kozlowski P, Ahlberg L, et al. Satisfactory outcome after intensive chemotherapy with pragmatic use of minimal residual disease (MRD) monitoring in older patients with Philadelphia-negative B cell precursor acute lymphoblastic leukaemia : a Swedish registry-based study. Med Oncol. 2015 ; 32 : 135.
25) Wolach O, Stevenson KE, Wadleigh M, et al. Allogeneic transplantation is not superior to chemotherapy in most patients over 40 years of age with Philadelphia-negative acute lymphoblastic leukemia in first remission. Am J Hematol. 2016 ; 91 : 793-9.
26) Roth-Guepin G, Canaani J, Ruggeri A, et al. Allogeneic stem cell transplantation in acute lymphoblastic leukemia patients older than 60 years : a survey from the acute leukemia working party of EBMT. Oncotarget. 2017 ; 8 : 112972-9.
27) Kozlowski P, Lennmyr E, Ahlberg L, et al. Age but not Philadelphia positivity impairs outcome in older/elderly patients with acute lymphoblastic leukemia in Sweden. Eur J Haematol. 2017 ; 99 : 141-9.
28) Dinmohamed AG, Szabo A, van der Mark M, et al. Improved survival in adult patients with acute lymphoblastic leukemia in the Netherlands : a population-based study on treatment, trial participation and survival. Leukemia. 2016 ; 30 : 310-7.
29) Stock W, Douer D, DeAngelo DJ, et al. Prevention and management of asparaginase/pegasparaginase-associated toxicities in adults and older adolescents : recommendations of an expert panel. Leuk Lymphoma. 2011 ; 52 : 2237-53.
P.182 掲載の参考文献
4) Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia : Results from the randomized BFORE Trial. J Clin Oncol. 2018 ; 36 : 231-7.
5) Sokal JE, Cox EB, Baccarani M, et al. Prognostic discrimination in "good-risk" chronic granulocytic leukemia. Blood. 1984 ; 63 : 789-99.
6) Geelen IGP, Sandin F, Thielen N, et al. Validation of the EUTOS long-term survival score in a recent independent cohort of "real world" CML patients. Leukemia. 2018 ; 32 : 2299-303.
7) Pfirrmann M, Baccarani M, Saussele S, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016 ; 30 : 48-56.
8) Sato E, Iriyama N, Tokuhira M, et al. Introduction of second-generation tyrosine kinase inhibitors may reduce the prognostic impact of high-risk patients, according to the European treatment and outcome study (EUTOS) score. Leuk Lymphoma. 2018 ; 59 : 1105-12.
9) Baccarani M, Abruzzese E, Accurso V, et al. Managing chronic myeloid leukemia for treatment-free remission : a proposal from the GIMEMA CML WP. Blood Adv. 2019 ; 3 : 4280-90.
10) Wang W, Cortes JE, Tang G, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016 ; 127 : 2742-50.
11) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
12) Miura M, Takahashi N. Management using the plasma concentration of tyrosine kinase inhibitors for the treatment of chronic myelogenous leukemia : an update. Rinsho Ketsueki. 2019 ; 60 : 1140-7.
P.188 掲載の参考文献
1) Bonifacio M, Stagno F, Scaffidi L, et al. Management of chronic myeloid leukemia in advanced phase. Front Oncol. 2019 ; 9 : 1132.
2) Craddock CF. We do still transplant CML, don't we? Hematology Am Soc Hematol Educ Program. 2018 ; 2018 : 177-84.
3) CQ5 進行期CML (APおよびBP) の治療はTKIが勧められるか. 4 慢性骨髄性白血病/骨髄増殖性腫瘍 (chronic myeloid leukemia/myeloproliferative neoplasms : CML/MPN). 日本血液学会. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版, 2020 ; p.111-2.
4) 北中明. CML進行期の対応. 臨床血液. 2016 ; 57 : p.1962-71.
5) Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era : Cohort study of 477 patients. Cancer. 2017 ; 123 : 4391-402.
6) Lubking A, Dreimane A, Sandin F, et al. Allogeneic stem cell transplantation for chronic myeloid leukemia in the TKI era : population-based data from the Swedish CML registry. Bone Marrow Transpl. 2019 ; 54 : 1764-74.
7) Milojkovic D, Ibrahim A, Reid A, et al. Efficacy of combining dasatinib and FLAG-IDA for patients with chronic myeloid leukemia in blastic transformation. Haematologica. 2012 ; 97 : 473-4.
8) Strati P, Kantarjian H, Thomas D, et al. HCVAD plus imatinib or dasatinib in lymphoid blastic phase chronic myeloid leukemia. Cancer. 2014 ; 120 : 373-80.
9) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
10) Kantarjian H, Cortes J, Kim DW, et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib : 15-month median follow-up. Blood. 2009 ; 113 : 6322-9.
11) Cortes JE, Kim DW, Pinilla-Ibarz J, et al. PACE Investigators.. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias.. N Engl J Med. 2013 ; 369 : 1783-96. doi : 10.1056/NEJMoa1306494. Epub 2013.
12) Ohanian M, Kantarjian HM, Quintas-Cardama A, et al. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin Lymphoma Myeloma Leuk. 2014 ; 14 : 155-62.e1.
13) Jain P, Kantarjian HM, Ghorab A, et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era : Cohort study of 477 patients. Cancer. 2017 ; 123 : 4391-402.
14) Khoury HJ, Kukreja M, Goldman JM, et al. Prognostic factors for outcomes in allogeneic transplantation for CML in the imatinib era : a CIBMTR analysis. Bone Marrow Transplant. 2012 ; 47 : 810-6.
15) Chhabra S, Ahn KW, Hu ZH, et al. Myeloablative vs reduced-intensity conditioning allogeneic hematopoietic cell transplantation for chronic myeloid leukemia. Blood Adv. 2018 ; 2 : 2922-36.
16) DeFilipp Z, Ancheta R, Liu Y, et al. Maintenance tyrosine kinase inhibitors following allogeneic hematopoietic stem cell transplantation for chronic myelogenous leukemia : A center for international blood and marrow transplant research study. Biol Blood Marrow Transplant. 2020 ; 26 : 472-9.
P.198 掲載の参考文献
1) Bower H, Bjorkholm M, Dickman PW, et al. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol. 2016 ; 34 : 2851-7.
2) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : Results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
3) Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years : the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010. ; 11 : 1029-35.
5) Takahashi N, Kyo T, Maeda Y, et al. Discontinuation of imatinib in Japanese patients with chronic myeloid leukemia. Haematologica. 2012 ; 97 : 903-6.
6) Takahashi N, Nishiwaki K, Nakaseko C, et al. Treatment-free remission after two-year consolidation therapy with nilotinib in patients with chronic myeloid leukemia : STAT2 trial in Japan. Haematologica. 2018 ; 103 : 1835-42.
7) Hochhaus A, Masszi T, Giles FJ, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase : results from the ENESTfreedom study. Leukemia. 2017 ; 31 : 1525-31.
8) Okada M, Imagawa J, Tanaka H, et al. Final 3-year results of the dasatinib discontinuation trial in patients with chronic myeloid leukemia who received dasatinib as a second-line treatment. Clin Lymphoma Myeloma Leuk. 2018 ; 18 : 353-60.
9) Kimura S, Imagawa J, Murai K, et al. Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial) : a single-arm, multicentre, phase 2 trial. Lancet Haematol. 2020 ; 7 : e218-25.
10) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
11) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版. 2020.
12) Steegmann JL, Baccarani M, Breccia M, et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016 ; 30 : 1648-71.
14) Yilmaz M, Lahoti A, O'Brien S, et al. Estimated glomerular filtration rate changes in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. Cancer. 2015 ; 121 : 3894-904.
15) Sakurai M, Kikuchi T, Karigane D, et al. Renal dysfunction and anemia associated with long-term imatinib treatment in patients with chronic myelogenous leukemia. Int J Hematol. 2019 ; 109 : 292-8.
18) Porkka K, Khoury HJ, Paquette RL, et al. Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer. 2010 ; 116 : 377-86.
19) Latagliata R, Breccia M, Fava C, et al. Incidence, risk factors and management of pleural effusions during dasatinib treatment in unselected elderly patients with chronic myelogenous leukaemia. Hematol Oncol. 2013 ; 31 : 103-9.
20) Hughes TP, Laneuville P, Rousselot P, et al. Incidence, outcomes, and risk factors of pleural effusion in patients receiving dasatinib therapy for Philadelphia chromosome-positive leukemia. Haematologica. 2019 ; 104 : 93-101.
21) Radich JP, Deininger M, Abboud CN, et al. Chronic myeloid leukemia, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2018 ; 16 : 1108-35.
22) Weatherald J, Chaumais MC, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension : a population-based study. Eur Respir J. 2017 ; 50 : 1700217.
25) Hughes TP, Saglio G, Larson R, et al. Long-term outcomes in patients with chronic myeloid leukemia in chronic phase receiving frontline nilotinib versus imatinib : ENESTnd 10-Year Analysis. Blood. 2019 ; 134 : 2924.
28) Haouala A, Widmer N, Duchosal MA, et al. Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood. 2011 ; 117 : e75-87.
29) Medeiros BC, Possick J, Fradley M. Cardiovascular, pulmonary, and metabolic toxicities complicating tyrosine kinase inhibitor therapy in chronic myeloid leukemia : Strategies for monitoring, detecting, and managing. Blood Rev. 2018 ; 32 : 289-99.
30) Minson AG, Cummins K, Fox L, et al. The natural history of vascular and other complications in patients treated with nilotinib for chronic myeloid leukemia. Blood Adv. 2019 ; 3 : 1084-91.
31) Cortes JE, Apperley JF, DeAngelo DJ, et al. Management of adverse events associated with bosutinib treatment of chronic-phase chronic myeloid leukemia : expert panel review. J Hematol Oncol. 2018 ; 11 : 143.
32) Brummendorf TH, Cortes JE, de Souza CA, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia : results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015 ; 168 : 69-81.
33) Cortes JE, Gambacorti-Passerini C, Kim DW, et al. Effects of bosutinib treatment on renal function in patients with philadelphia chromosome-positive leukemias. Clin Lymphoma Myeloma Leuk. 2017 ; 17 : 684-95 e6.
34) Cortes JE, Gambacorti-Passerini C, Deininger MW, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia : Results from the randomized BFORE Trial. J Clin Oncol. 2018 ; 36 : 231-7.
36) Seegobin K, Babbar A, Ferreira J, et al. A case of worsening pulmonary arterial hypertension and pleural effusions by bosutinib after prior treatment with dasatinib. Pulm Circ. 2017 ; 7 : 808-12.
38) Lipton JH, Chuah C, Guerci-Bresler A, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia : an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016 ; 17 : 612-21.
40) Aghel N, Delgado DH, Lipton JH. Cardiovascular events in chronic myeloid leukemia clinical trials. Is it time to reassess and report the events according to cardiology guidelines? Leukemia. 2018 ; 32 : 2095-104.
41) Group NDR. Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population. Circ J. 2006 ; 70 : 1249-55.
42) Latagliata R, Carmosino I, Vozella F, et al. Impact of exclusion criteria for the DASISION and ENESTnd trials in the front-line treatment of a'real-life'patient population with chronic myeloid leukaemia. Hematol Oncol. 2017 ; 35 : 232-6.
43) Saussele S, Krauss MP, Hehlmann R, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia : results of the randomized CML study IV. Blood. 2015 ; 126 : 42-9.
45) Clark RE, Polydoros F, Apperley JF, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY) : a non-randomised, phase 2 trial. Lancet Haematol. 2019 ; 6 : e375-e83.
46) Naqvi K, Jabbour E, Skinner J, et al. Early results of lower dose dasatinib (50 mg daily) as frontline therapy for newly diagnosed chronic-phase chronic myeloid leukemia. Cancer. 2018 ; 124 : 2740-7.
P.204 掲載の参考文献
1) Hehlmann R. Innovatioin in hematology. Perspectives. CML 2016. Hematologica. 2016 ; 101 : 657-9.
2) Kizaki M, Takahashi N, Iriyama N, et al. Efficacy and safety of tyrosine kinase inhibitors for newly diagnosed chronic-phase chronic myeloid leukemia over a 5-year period : results from the Japanese registry obtained by the New TARGET system. Int J Hematol. 2019 ; 109 : 426-39.
3) Graham SM, Jorgensen HG, Allan E, et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood. 2002 ; 99 : 319-25.
4) Hochhaus A, Saussele S, Rosti G, et al. Chronic myeloid leukaemia : ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017 ; 28 (suppl 4) : iv41-51.
5) NCCN. NCCN Clinical Practice Guidelines in Oncology. Chronic Myeloid Leukemia ; version 4. 2018 (CML-E).
6) Hochhaus A, Baccarani M, Silver RT, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020 ; 34 : 966-84.
7) Etienne G, Guilhot J, Rea D, et al. Long-term follow-up of the French Stop Imatinib (STIM1) Study in patients with chronic myeloid leukemia. J Clin Oncol. 2017 ; 35 : 298-305.
9) Saussele S, Richter J, Guilhot J, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI) : a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018 ; 19 : 747-57.
10) JSH. Clinical Practice Guidelines in Hematology Malignancy. In : Kizaki M, Shimoda K, Takahashi N, eds. CML/MPN. Tokyo : Kanehara Shuppan. 2018.
P.210 掲載の参考文献
1) Holmstrom MO, Riley CH, Svane IM, et al. The CALR exon 9 mutations are shared neoantigens in patients with CALR mutant chronic myeloproliferative neoplasms. Leukemia. 2016 ; 30 : 2413-6.
2) Bozkus CC, Roudko V, Finnigan JP, et al. Immune checkpoint blockade enhances shared neoantigen-induced T-cell immunity directed against mutated calreticulin in myeloproliferative neoplasms. Cancer Discov. 2019 ; 9 : 1192-207.
3) Holmstrom MO, Martinenaite E, Ahmad SM, et al. The calreticulin (CALR) exon 9 mutations are promising targets for cancer immune therapy. Leukemia. 2018 ; 32 : 429-37.
4) Prestipino A, Emhardt AJ, Aumann K, et al. Oncogenic JAK2 (V617F) causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Sci Transl Med. 2018 ; 10. eaam 7729.
5) Holmstrom MO, Ahmad SM, Klausen U, et al. High frequencies of circulating memory T cells specific for calreticulin exon 9 mutations in healthy individuals. Blood Cancer J. 2019 ; 9 : 8.
6) Tubb VM, Schrikkema DS, Croft NP, et al. Isolation of T cell receptors targeting recurrent neoantigens in hematological malignancies. J Immunother Cancer. 2018 ; 6 : 70.
7) Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine & growth factor reviews. 2013 ; 24 : 133-45.
8) Kiladjian JJ, Cassinat B, Chevret S, et al. Pegylated interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 2008 ; 112 : 3065-72.
9) Liu P, Zhao L, Loos F, et al. Immunosuppression by mutated calreticulin released from malignant cells. Mol Cell. 2020 ; 77 : 748-60 e9.
P.215 掲載の参考文献
2) Dan K, Yamada T, Kimura Y, et al. Clinical features of polycythemia vera and essential thrombocythemia in Japan : retrospective analysis of a nationwide survey by the Japanese Elderly Leukemia and Lymphoma Study Group. Int J Hematol. 2006 ; 83 : 443-9.
3) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 ; 金原出版. 2020.
5) Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms : critical concepts and management recommendations from European Leukemia Net. J Clin Oncol. 2011 ; 29 : 761-70.
6) Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia : an ELN and IWG-MRT consensus project. Blood. 2013 ; 121 : 4778-81.
7) Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score : prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol. 2012 ; 30 : 4098-103.
8) Ferrari A, Carobbio A, Masciulli A, et al. Clinical outcomes under hydroxyurea treatment in polycythemia vera : a systematic review and meta-analysis. Haematologica. 2019 ; 104 : 2391-9.
9) Kiladjian JJ, Zachee P, Hino M, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE) : 5-year follow up of a phase 3 study. Lancet Haematol. 2020 ; 7 : e226-37.
10) Yacoub A, Mascarenhas J, Kosiorek H, et al. Pegylated interferon alfa-2a for polycythemia vera or essential thrombocythemia resistant or intolerant to hydroxyurea. Blood. 2019 ; 134 : 1498-509.
11) Gisslinger H, Klade C, Georgiev P, et al. Ropeginterferon alfa-2b versus standard therapy for polycythaemia vera (PROUD-PV and CONTINUATION-PV) : a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 2020 ; 7 : e196-208.
P.222 掲載の参考文献
1) Tefferi A, Pardanani A. Essential thrombocythemia. N Engl J Med. 2019 ; 381 : 2135-44.
2) Cortelazzo S, Viero P, Finazzi G, et al. Incidence and risk factors for thrombotic complications in a historical cohort of 100 patients with essential thrombocythemia. J Clin Oncol. 1990 ; 8 : 556-62.
4) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版 (WEB版) 慢性骨髄性白血病/骨髄増殖性腫瘍 : アルゴリズム, 2020. <http://www.jshem.or.jp/gui-hemali/1_4.html#algo> Accessed 2020 Nov 30.
6) National comprehensive cancer network. NCCN clinical practice guidelines in oncology myeloproliferative neoplasms. Version 3. 2019. <https://www.nccn.org/professionals/physician_gls/pdf/mpn.pdf>. Accessed 2020 April 30.
7) Barbui T, Vannucchi A, Buxhofer-Ausch, V. et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer Journal. 2015 ; 5 : e369.
8) Budde U, Schaefer G, Mueller N, et al. Acquired von Willebrand's disease in the myeloproliferative syndrome. Blood. 1984 ; 64 : 981-4.
9) Alvarez-Larran A, Cervantes F, Pereira A, et al. Observation versus antiplatelet therapy as primary prophylaxis for thrombosis in low-risk essential thrombocythemia. Blood. 2010 ; 116 : 1205-10.
10) Alvarez-Larran A, Pereira A, Guglielmelli P, et al. Antiplatelet therapy versus observation in low-risk essential thrombocythemia with a CALR mutation. Haematologica. 2016 ; 101 : 926-31.
11) Godfrey AL, Campbell PJ, MacLean C, et al. Hydroxycarbamide plus aspirin versus aspirin alone in patients with essential thrombocythemia age 40 to 59 years without high-risk features. J Clin Oncol. 2018 ; 36 : 3361-69.
12) Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med. 1995 ; 332 : 1132-7.
13) Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med. 2005 ; 353 : 33-45.
14) Gisslinger H, Gotic M, Holowiecki J, et al. Anagrelide compared with hydroxyurea in WHO-classified essential thrombocythemia : the ANAHYDRET Study, a randomized controlled trial. Blood. 2013 ; 121 : 1720-8.
15) Alvarez-Larran A, Pereira A, Arellano-Rodrigo E, et al. Cytoreduction plus low-dose aspirin versus cytoreduction alone as primary prophylaxis of thrombosis in patients with high-risk essential thrombocythaemia : an observational study. Br J Haematol. 2013 ; 161 : 865-71.
16) Tefferi A, Barbui T. Polycythemia vera and essential thrombocythemia : 2021 update on diagnosis, risk-stratification and management. Am J Hematol. Accepted artiales, doi 10,10021aih.26008.
P.228 掲載の参考文献
1) Guglielmelli P, Pacilli A, Rotunno G, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017 ; 129 : 3227-36.
2) Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the international working group for myelofibrosis research and treatment. Blood. 2009 ; 113 : 2895-901.
4) Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus : a refined dynamic international prognostic scoring system for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011 ; 29 : 392-7.
5) Guglielmelli P, Lasho TL, Rotunno G, et al. MIPSS70 : Mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018 ; 36 : 310-8.
6) Takenaka K, Shimoda K, Uchida N, et al. Clinical features and outcomes of patients with primary myelofibrosis in Japan : report of a 17-year nationwide survey by the idiopathic disorders of hematopoietic organs research committee of Japan. Int J Hematol. 2017 ; 105 : 59-69.
7) Kroger N, Giorgino T, Scott BL, et al. Impact of allogeneic stem cell transplantation on survival of patients less than 65 years of age with primary myelofibrosis. Blood. 2015 ; 125 : 3347-3350 ; quiz 3364.
8) Gagelmann N, Ditschkowski M, Bogdanov R, et al. Comprehensive clinical-molecular transplant scoring system for myelofibrosis undergoing stem cell transplantation. Blood. 2019 ; 133 : 2233-42.
11) Verstovsek S, Gotlib J, Mesa RA, et al. Long-term survival in patients treated with ruxolitinib for myelofibrosis : COMFORT-I and -II pooled analyses. J Hematol Oncol. 2017 ; 10 : 156.
12) Al-Ali HK, Griesshammer M, le Coutre P, et al. Safety and efficacy of ruxolitinib in an open-label, multicenter, single-arm phase 3b expanded-access study in patients with myelofibrosis : a snapshot of 1144 patients in the JUMP trial. Haematologica. 2016 ; 101 : 1065-73.
14) Kirito K, Okamoto S, Ohishi K, et al. Evaluation of the dose and efficacy of ruxolitinib in Japanese patients with myelofibrosis. Int J Hematol. 2018 ; 107 : 92-7.
P.234 掲載の参考文献
1) Shomali W, Gotlib J. World Health Organization?defined eosinophilic disorders : 2019 update on diagnosis, risk stratification, and management. Am J Hematol. 2019 ; 94 : 1149-67.
2) Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016 ; 27 : 2391-405.
3) Kirito K, The 8p11 myeloproliferative syndrome : A review of recent literature. Rinsho Ketsueki. 2019 ; 60 : 1157-65.
4) Gleich GJ, Leiferman KM, Pardanani A, et al. Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet. 2002 ; 359 : 1577-8.
5) Pardanani A, D'Souza A, Knudson RA, et al. Long-term follow-up of FIP1L1-PDGFRA-mutated patients with eosinophilia : survival and clinical outcome. Leukemia. 2012 ; 26 : 2439-41.
6) Helbig G, Kyrcz-Krzemien S. Cessation of imatinib mesylate may lead to sustained hematologic and molecular remission in FIP1L1-PDGFRA mutated hypereosinophilic syndrome. Am J Hematol. 2014 ; 89 : 115.
7) Cheah CY, Burbury K, Apperley JF, et al. Patients with myeloid malignancies bearing PDGFRB fusion genes achieve durable long-term remissions with imatinib. Blood. 2014 ; 123 : 3574-7.
9) Schwaab J, Knut M, Haferlach C, et al. Limited duration of complete remission on ruxolitinib in myeloid neoplasms with PCM1-JAK2 and BCR-JAK2 fusion genes. Ann Hematol. 2015 ; 94 : 233-8.
10) Helbig G, Hus M, Halasz M, et al. Imatinib mesylate may induce long-term clinical response in FIP1L1-PDGFRa-negative hypereosinophilic syndrome. Med Oncol. 2012 ; 29 : 1073-6.
12) Roufosse F, Kahn JE, Gleich GJ, et al. Long-term safety of mepolizumab for the treatment of hypereosinophilic syndromes. J Allergy Clin Immunol. 2013 ; 131 : 461-7.
13) Walsh GM. Reslizumab, a humanized anti-IL-5 mAb for the treatment of eosinophil-mediated inflammatory conditions. Curr Opin Mol Ther. 2009 ; 11 : 329-36.
14) Kuang FL, Legrand F, Makiya M, et al. Benralizumab for PDGFRAnegative hypereosinophilic syndrome. N Engl J Med. 2019 ; 380 : 1336-46.
15) Verstovsek S, Tefferi A, Kantarjian H, et al. Alemtuzumab therapy for hypereosinophilic syndrome and chronic eosinophilic leukemia. Clin Cancer Res. 2009 ; 15 : 368-73.
16) Strati P, Cortes J, Faderl S, et al. Long-term follow-up of patients with hypereosinophilic syndrome treated with alemtuzumab, an anti-CD52 antibody. Clin Lymphoma Myeloma Leuk. 2013 ; 13 : 287-91.
17) DeLavareille A, Roufosse F, Schmid-Grendelmeier P, et al. High serum thymus and activation-regulated chemokine levels in the lymphocytic variant of the hypereosinophilic syndrome. J Allergy Clin Immunol. 2002 ; 110 : 476-9.
18) Pardanani A, Lashi T, Wassie E, et al. Predictors of survival in WHOdefined hypereosinophilic syndrome and idiopathic hypereosinophilia and the role of next-generation sequencing. Leukemia. 2016 ; 30 : 1924-6.
19) Verstovsek S, Vannucchi AM, Rambaldi A, et al. Interim results from Fight-203, a phase 2, open-label, multicenter study evaluating the efficacy and safety of pemigatinib (INCB054828) in patients with myeloid/lymphoid neoplasms with rearrangement of fibroblast growth factor receptor 1 (FGFR1). Blood. 2018 ; 132 Suppl 1 : 690.
20) Panch SR, Bozik ME, Brown T, et al. Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood. 2018 ; 132 : 501-9.
21) Pardanani A, Reeder T, Porrata L, et al. Imatinib therapy for hypereosinophilic syndrome and other eosinophilic disorders. Blood. 2003 ; 101 : 3391-7.
22) Pitini V, Arrigo C, Azzarello D, et al. Serum concentration of cardiac troponin T in patients with hypereosinophilic syndrome treated with imatinib is predictive of adverse outcomes. Blood. 2003 ; 102 : 3456-7.
23) Bradeen HA, Eide CA, O'Hare T, et al. Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an Nethyl-N-nitrosourea (ENU) -based mutagenesis screen : high efficacy of drug combinations. Blood. 2006 ; 108 : 2332-8.
24) Lierman E, Michaux L, Beullens E, et al. FIP1L1-PDGFRalpha D842V, a novel pan resistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia. 2009 ; 23 : 845-51.
25) Roufosse F, De Lavareille A, Schandene L, et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J Allergy Clin Immunol. 2010 ; 126 : 828-35.
P.239 掲載の参考文献
2) Stahl M, Xu ML, Steensma DP, et al. Clinical response to ruxolitinib in CSF3R T618-mutated chronic neutrophilic leukemia. Ann Hematol. 2016 ; 95 : 1197-200.
3) Uppal G. Gong, J. Chronic neutrophilic leukaemia. J Clin Pathol. 2015 ; 68 : 680-4.
5) Bain BJ, Ahmad S. Chronic neutrophilic leukaemia and plasma cell-related neutrophilic leukaemoid reactions : Br J Haematol. 2015 ; 171 : 400-10.
6) Elliott MA, Hanson CA, Dewald GW, et al. WHO-defined chronic neutrophilic leukemia : a long-termanalysis of 12 cases and a critical review of the literature. Leukemia. 2005 ; 19 : 313-7.
7) Lee SE, Jo I, Jang W, et al. T618I-mutated colony stimulating factor 3 receptor in chronic neutrophilic leukemia and chronic myelomonocytic leukemia patients who underwent allogeneic stem cell transplantation. Ann Lab Med. 2015 ; 35 : 376-8.

IV. リンパ系腫瘍

P.247 掲載の参考文献
1) Hallek M, Fischer K, Fingerle-Rowson G, et al : German Chronic Lymphocytic Leukaemia Study Group. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia : A randomised, open-label, phase 3 trial. Lancet. 2010 ; 376 : 1164-74.
2) Jain N. Selecting frontline therapy for CLL in 2018. Am Soc Hematol Educ Program. 2018 ; 2018 : 242-7.
3) Thompson PA, Tam CS, O'Brien SM, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016 ; 127 : 303-9.
4) O'Brien S, Jones JA, Coutre SE, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17) : A phase 2, open-label, multi-centre study. Lancet Oncol. 2016 ; 17 : 1409-18.
5) Eichhorst B, Fink AM, Bahlo J, et al. German CLL Study Group (GCLLSG). First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10) : an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016 ; 17 : 928-42.
6) O'Brien S, Furman RR, Coutre S, et al. Single-agent ibrutinib in treatment-naive and relapsed/refractory chronic lymphocytic leukemia : a 5-year experience. Blood. 2018 ; 131 : 1910-19.
7) Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL : 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020 ; 34 : 787-98.
8) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
9) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
10) Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019 ; 380 : 2095-103.
11) Eichhorst BF, Busch R, Stilgenbauer S, et al. First-line therapy with fludarabine compared with chlorambucil does not result in a major benefit for elderly patients with advanced chronic lymphocytic leukemia. Blood. 2009 ; 114 : 3382-91.
12) Byrd JC, Furman RR, Coutre SE, et al. Ibrutinib treatment for first-line and relapsed/Refractory chronic lymphocytic leukemia : Final analysis of the pivotal phase 1b/2 PCYC-1102 Study. Clin Cancer Res. 2020 Mar 24. doi : 10.1158/1078-0432.
13) Nabhan C, Mato A, Flowers CR et al. Characterizing and prognosticating chronic lymphocytic leukemia in the elderly : Prospective evaluation on 455 patients treated in the United States. BMC Cancer. 2017 ; 17 : 198.
14) Davids MS, Kim HT, Brander DM, et al. A multicenter, phase II study of ibrutinib plus FCR (iFCR) as frontline therapy for younger CLL patients [abstract]. Blood. 2017 ; 130 : 496.
15) Michallet AS, Dilhuydy MS, Subtil F, et al. High rate of complete response but minimal residual disease still detectable after first-line treatment combining obinutuzumab and ibrutinib in chronic lymphocytic leukemia (CLL) : ICLL07 FILO trial [abstract]. Proceedings of the European Hematology Association Annual Meeting. 2018 ; S804.
16) Jain N, Thompson PA, Burger JA, et al. Ibrutinib, fludarabine, cyclophosphamide, and obinutuzumab (GA101) (iFCG) for first-line treatment of patients with CLL with mutated IGHV and without TP53 aberrations [abstract]. Blood. 2017 ; 130 : 495.
17) Flinn IW, Gribben JG, Dyer MJS, et al. Safety, efficacy and MRD negativity of a combination of venetoclax and obinutuzumab in patients with previously untreated chronic lymphocytic leukemia- results from a phase 1b study (GP28331) [abstract]. Blood. 2017 ; 130 : 430.
P.253 掲載の参考文献
1) Hallek M, Bruce D, Cheson BD, et al. IwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood. 2018 ; 131 : 2745-60
2) Suzumiya J, Takizawa J. Evolution in the management of chronic lymphocytic leukemia in Japan : Should MRD negativity be the goal? Int J Hematol. 2020 ; 111 : 642-56.
3) Hallek M. Chronic lymphocytic leukemia : 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019 ; 94 : 1266-87.
5) Ghia P, Rawstron A. Minimal residual disease analysis in chronic lymphocytic leukemia : a way for achieving more personalized treatments. Leukemia. 2018 ; 32 : 1307-16.
6) 鈴宮淳司, 高松泰 ; 慢性リンパ性白血病/小リンパ球性リンパ腫・日本血液学会, 編. 造血器腫瘍診療ガイドライン 2018年版補訂版. 東京 : 金原出版. 2020. p.121-43.
7) Gribben JG. How and when I do allogeneic transplant in CLL. Blood. 2018 ; 132 : 31-9.
8) Byrd JC, Brown JR, O'Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014 ; 371 : 213-23.
9) Byrd JC, Hillmen P, O'Brien S, et al. Long-term follow-up of the RESONATE phase 3 trial of ibrutinib vs ofatumumab. Blood. 2019 ; 133 : 2031-42.
10) Munir T, Brown JR, O'Brien S, et al. Final analysis from RESONATE : Up to six years of follow-up on ibrutinib in patients with previously treated chronic lymphocytic leukemia or small lymphocytic lymphoma. Am J Hematol. 2019 ; 94 : 1353-63.
12) Kater AP, Seymour JF, Hillmen P, et al. Fixed duration of venetoclax-rituximab in relapsed/refractory chronic lymphocytic leukemia eradicates minimal residual disease and prolongs survival : Post-treatment follow-up of the MURANO Phase III study. J Clin Oncol. 2018 ; 37 : 269-77.
13) Ghia P, Pluta A, Wach M, et al. ASCEND : Phase III, randomized trial of acalabrutinib Versus Idelalisib Plus Rituximab or bendamustine plus rituximab in relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol. 2020 (DOI https://doi.org/10.1200/JCO.19.03355).
14) Tam CS, O'Brien S, Plunkett W, et al. Long-term results of first salvage treatment in CLL patients treated initially with FCR (fludarabine, cyclophosphamide, rituximab). Blood. 2014 ; 124 : 3059-64.
15) Fraietta JA, Lacey SF, Orlando EJ, et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018 ; 24 : 563-71.
16) Hillmen P, Rawstron AC, Kristian Brock K, et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia : The CLARITY study. J Clin Oncol. 2019 ; 37 : 2722-9.
17) Fischer K, Al-Sawaf O, Bahlo J, et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N Engl J Med. 2019 ; 380 : 2225-36.
19) Flinn IW, Hillmen P, Montillo M, et al. The phase 3 DUO trial : duvelisib vs ofatumumab in relapsed and refractory CLL/SLL. Blood. 2018 ; 132 : 2446-55.
20) Fink AM, Bahlo J, Robrecht S, et al. Lenalidomide maintenance after first-line therapy for high-risk chronic lymphocytic leukaemia (CLLM1) : final results from a randomised, double-blind, phase 3 study. Lancet Haematol. 2017 ; 4 : e475-e86.
P.259 掲載の参考文献
3) Hallek M. Chronic lymphocytic leukemia : 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019 ; 94 : 1266-87.
4) Milne K, Sturrock B, Chevassut T. Chronic lymphocytic leukaemia in 2020 : The Future has arrived. Curr Oncol. 2020 ; 22 : 36.
5) Thompson M, Brander D, Nabhan C, et al. Minimal residual disease in chronic lymphocytic leukemia in the era of novel agents : A Review. JAMA Oncol. 2018 ; 4 : 394-400.
6) Rawstron AC, Bottcher S, Letestu R, et al. Improving efficiency and sensitivity : European Research Initiative in CLL (ERIC) update on the international harmonised approach for flow cytometric residual disease monitoring in CLL. Leukemia. 2013 ; 27 : 142-9.
7) Rawstron AC, Fazi C, Agathangelidis A, et al. A complementary role of multiparameter flow cytometry and high-throughput sequencing for minimal residual disease detection in chronic lymphocytic leukemia : an European Research Initiative on CLL study. Leukemia. 2016 ; 30 : 929-36.
8) Furstenau M, De Silva N, Eichhorst B, et al. Minimal residual disease assessment in CLL : Ready for use in clinical routine? Hemasphere. 2019 ; 3 : e287.
9) Del Giudice I, Raponi S, Della Starza I, et al. Minimal residual disease in chronic lymphocytic leukemia : A new goal? Front Oncol. 2019 ; 9 : 68.
11) Thompson PA, Srivastava J, Peterson C, et al. Minimal residual disease undetectable by next-generation sequencing predicts improved outcome in CLL after chemoimmunotherapy. Blood. 2019 ; 134 : 1951-9.
12) Hillmen P, Rawstron AC, Brock K, et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia : The CLARITY Study. J Clin Oncol. 2019 ; 37 : 2722-9.
13) Jain N, Keating M, Thompson P, et al. Ibrutinib and venetoclax for first-line treatment of CLL. N Engl J Med. 2019 ; 380 : 2095-103.
14) Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10) : an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016 ; 17 : 928-42.
16) Woyach JA, Ruppert AS, Heerema NA, et al. Ibrutinib regimens versus chemoimmunotherapy in older patients with untreated CLL. N Engl J Med. 2018 ; 379 : 2517-28.
17) Shanafelt TD, Wang XV, Kay NE, et al. Ibrutinib-rituximab or chemoimmunotherapy for chronic lymphocytic leukemia. N Engl J Med. 2019 ; 381 : 432-43.
18) Mureno C, Greil R, Demirkan F, et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (iLLUMINATE) : a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 43-56.
P.264 掲載の参考文献
1) Sarkozy C, Maurer MJ, Link BK, et al. Cause of death in follicular lymphoma in the first decade of the rituximab era : A pooled analysis of french and US Cohorts. J Clin Oncol. 2019 ; 37 : 144-52.
5) Horning SJ, Rosenberg SA. The natural history of initially untreated low-grade non-Hodgkin's lymphomas. N Engl J Med. 1984 ; 311 : 1471-5.
6) Ardeshna KM, Smith P, Norton A, et al. Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma : A randomised controlled trial. Lancet. 2003 ; 362 : 516-22.
7) Ardeshna KM, Qian W, Smith P, et al. Rituximab versus a watch-and-wait approach in patients with advanced-stage, asymptomatic, non-bulky follicular lymphoma : An open-label randomised phase 3 trial. Lancet Oncol. 2014 ; 15 : 424-35.
8) Kahl BS, Hong F, Williams ME, et al. Rituximab extended schedule or re-treatment trial for low-tumor burden follicular lymphoma : Eastern cooperative oncology group protocol E4402. J Clin Oncol. 2014 ; 32 : 3096-102.
9) Gyan E, Sonet A, Brice P, et al. Bendamustine and rituximab in elderly patients with low-tumour burden follicular lymphoma. Results of the LYSA phase II BRIEF study. Br J Haematol. 2018 ; 183 : 76-86.
10) Martinelli G, Schmitz SF, Utiger U, et al. Long-term follow-up of patients with follicular lymphoma receiving single-agent rituximab at two different schedules in trial SAKK 35/98. J Clin Oncol. 2010 ; 28 : 4480-4.
P.270 掲載の参考文献
2) Schulz H, Bohlius JF, Trelle S, et al. Immunochemotherapy with rituximab and overall survival in patients with indolent or mantle cell lymphoma : A systematic review and meta-analysis. J Natl Cancer Inst. 2007 ; 99 : 706-14.
4) Luminari S, Ferrari A, Manni M, et al. Long-term results of the FOLL05 trial comparing R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage symptomatic follicular lymphoma. J Clin Oncol. 2018 ; 36 : 689-96.
7) Bachy E, Seymour JF, Feugier P, et al. Sustained progression-free survival benefit of rituximab maintenance in patients with follicular lymphoma : Long-Term Results of the PRIMA Study. J Clin Oncol. 2019 ; 37 : 2815-24.
8) Marcus R, Davies A, Ando K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017 ; 377 : 1331-44.
9) Morschhauser F, Fowler NH, Feugier P, et al. Rituximab plus lenalidomide in advanced untreated follicular lymphoma. N Engl J Med. 2018 ; 379 : 934-47.
10) Ohmachi K, Tobinai K, Kinoshita T, et al. Efficacy and safety of obinutuzumab in patients with previously untreated follicular lymphoma : a subgroup analysis of patients enrolled in Japan in the randomized phase III GALLIUM trial. Int J Hematol. 2018 ; 108 : 499-509.
P.276 掲載の参考文献
1) Sarkozy C, Maurer MJ, Link BK, et al. Cause of death in follicular lymphoma in the first decade of the rituximab era : A pooled analysis of French and UK cohorts. J Clin Oncol. 2018 ; 37 : 144-52.
2) Al-Tourah AJ, Gill KK, Chhanabhai M, et al. Population-based analysis of incidence and outcome of transformed non-Hodgkin's lymphoma. J Clin Oncol. 2008 ; 26 : 5165-9.
3) Casulo C, Friedberg JW, Ahn KW, et al. Autologous transplantation in follicular lymphoma with early therapy failure : A national lymphocare study and center for international blood and marrow transplant research analysis. Biol Blood Marrow Transplant. 2018 ; 24 : 1163-71.
4) Sehn LH, Chua N, Jiri Mayer J, et al. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN) : a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016 ; 17 : 1081-93.
6) LeonardJP, Trneny T, Izutsu K, et al. AUGMENT : A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol. 2019 ; 37 : 1188-99.
7) Seymour JF, Marcus R, Davies A, et al. Association of early disease progression and very puur survival in the GALLIUM study in follicular lymphoma : Benefit of obinutuzumab in reducing the rate of early progression. Haematologica. 2019 ; 104 : 1202-8.
P.280 掲載の参考文献
1) Swerdlow SH, Campo E, Harris NL, et al. WHO classification of tumours of haematopoietic and lymphoid tissues, Revised 4th edition. IARC Press, 2017.
2) Wundisch T, Thiede C, Morgner A, et al : Long-term follow-up of gastric MALT lymphoma after Helicobacter pylori eradication. J Clin Oncol. 2005 ; 23 : 8018-24.
5) Salar A, Domingo-Domenech E, Panizo C, et al. First-line response-adapted treatment with the combination of bendamustine and rituximab in patients with mucosa-associated lymphoid tissue lymphoma (MALT2008-01) : A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2014 ; 1 : e104-11.
6) Laribi K, Tempescul A, Ghnaya H, et al. The bendamustine plus rituximab regimen is active against primary nodal marginal zone B-cell lymphoma. Hematol Oncol 2017 ; 35 : 536-41.
7) Walewski J, Paszkiewicz-Kozik E, Michalski W, et al. First-line R-CVP versus R-CHOP induction immunochemotherapy for indolent lymphoma with rituximab maintenance. A multicentre, phase III randomized study by the Polish Lymphoma Research Group PLRG4. Br J Haematol. 2020 ; 188 : 898-906.
8) Leonard JP, Trneny M, Izutsu K, et al. AUGMENT : A phase III study of lenalidomide plus rituximab versus placebo plus rituximab in relapsed or refractory indolent lymphoma. J Clin Oncol. 2019 ; 37 : 1188-99.
9) Noy A, de Vos S, Thieblemont C, et al. Targeting bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma. Blood. 2017 ; 129 : 2224-32.
10) Laribi K, Poulain S, Willems L, et al. Bendamustine plus rituximab in newly-diagnosed Waldenstrom macroglobulinaemia patients. A study on behalf of the French Innovative Leukaemia Organization (FILO). Br J Haematol. 2019 ; 186 : 146-9.
11) Treon SP, Ioakimidis L, Soumerai JD, et al. Primary therapy of Waldenstrom macroglobulinemia with bortezomib, dexamethasone, and rituximab : WMCTG clinical trial 05-180. J Clin Oncol. 2009 ; 27 : 3830-5.
13) Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenstrom's macroglobulinemia. N Engl J Med. 2015 ; 372 : 1430-40.
P.287 掲載の参考文献
1) Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In : Swerdlow, SH, et al. editor., WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC press ; 2017. p.285-90.
3) 岡本昌隆, 山本一仁. マントル細胞リンパ腫. In ; 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版. 2020 ; p.215-29.
4) Martin P, Chadburn A, Christos P, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol. 2009 ; 27 : 1209-13.
5) Gerson JN, Handorf E, Villa D, et al. Survival outcomes of younger patients with mantle cell lymphoma treated in the rituximab era. J Clin Oncol. 2019 ; 37 : 471-80.
7) Ogura M, Yamamoto K, Morishima, Y et al. R-High-CHOP/CHASER/LEED with autologous stem cell transplantation in newly diagnosed mantle cell lymphoma : JCOG0406 STUDY. Cancer Sci. 2018 ; 109 : 2830-40.
9) Chen RW, Li H, Bernstein SH, et al. RB but not R-HCVAD is a feasible induction regimen prior to auto-HCT in frontline MCL : results of SWOG Study S1106. Br J Haematol. 2017 ; 176 : 759-69.
12) Wang ML, Lee H, Chuang H, et al. Ibrutinib in combination with rituximab in relapsed or refractory mantle cell lymphoma : a single-centre, open-label, phase 2 trial. Lancet Oncol. 2016 ; 17 : 48-56.
13) Rule S, Dreyling M, Goy A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib : a pooled analysis from three open-label studies. Br J Haematol. 2017 ; 179 : 430-8.
14) Wang M, Rule S, Zinzani PL, et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004) : a single-arm, multicentre, phase 2 trial. Lancet. 2018 ; 391 : 659-67.
15) Song Y, Zhou K, Zou D, et al. Treatment of patients with relapsed or refractory mantle-cell lymphoma with zanubrutinib, a selective Inhibitor of Bruton's tyrosine kinase. Clin Cancer Res. 2020 ; 26 : 4216-24.
17) Robak T, Jin J, Pylypenko H et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma : final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018.
18) Wang M, Fayad L, Wagner-Bartak N, et al. Lenalidomide in combination with rituximab for patients with relapsed or refractory mantle-cell lymphoma : A phase 1/2 clinical trial. Lancet Oncol. 2012 ; 13 : 716-23.
21) Trneny M, Lamy T, Walewski J, et al. Lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma (MCL-002 ; SPRINT) : a phase 2, randomised, multicentre trial. Lancet Oncol. 2016 ; 17 : 319-31.
22) Ruan J, Martin P, Christos P, et al. Five-year follow-up of lenalidomide plus rituximab as initial treatment of mantle cell lymphoma. Blood. 2018 ; 132 : 2016-25.
23) Davids MS, Roberts AW, Seymour JF, et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J Clin Oncol. 2017 ; 35 : 826-33.
25) Wang M, Munoz J, Goy A, et al. KTE-X19 CAR T-Cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020 ; 382 : 1331-42.
P.292 掲載の参考文献
1) Swerdlow SH, Campo E, Seto M, et al. Mantle cell lymphoma. In : Swerdlow SH, et al. Editors. WHO Classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC Press ; 2017. p.285-90.
2) Chihara D, Asano N, Ohmachi K, et al. Prognostic model for mantle cell lymphoma in the rituximab era : a nationwide study in Japan. Br J Haematol. 2015 ; 170 : 657-68.
5) Rodak T, Huang H, Jin J, et al. Bortezomib-Based therapy for newly diagnosed mantle-cell lymphoma. N Engl J Med. 2015 ; 372 : 944-53.
6) Rule S, Dreyling M, Goy A, et al. Outcomes in 370 patients with mantle cell lymphoma treated with ibrutinib : a pooled analysis from three open-label studies. Br J Haematol. 2017 ; 179 : 430-8.
8) Wang M, Goy A, Martin P, et al. Efficacy and safety of single-agent ibrutinib in patients with mantle cell lymphoma who progressed after bortezomib therapy. Blood. 2014 ; 124 : 4471.
11) Rummel MJ, Knauf W, Goerner M, et al. Two years rituximab maintenance vs. observation after first-line treatment with bendamustine plus rituximab (B-R) in patients with mantle cell lymphoma : First results of a prospective, randomized, multicenter phase II study (a subgroup study of the StiL NHL7-2008 MAINTAIN trial) [abstract]. J Clin Oncol. 2016 ; 34 : Abstract. 7503.
12) Robak T, Jin J, Pylypenko H, et al. Frontline bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) versus rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) in transplantation-ineligible patients with newly diagnosed mantle cell lymphoma : final overall survival results of a randomised, open-label, phase 3 study. Lancet Oncol. 2018 ; 19 : 1449-58.
13) Rule S, Dreyling M, Goy A, et al. Ibrutinib for the treatment of relapsed/refractory Mantle Cell Lymphoma : Extended 3.5-year follow up from a pooled analysis. Haematologica. 2019 ; 104 : e211-4.
14) Extermann M, Hurria A. Comprehensive geriatric assessment for older patients with Cancer. J Clin Oncol. 2007 ; 25 : 1824-31.
15) Ye H, Desai A, Zeng D, et al. Frontline treatment for older patients with mantle cell lymphoma. The Oncologist. 2018 ; 23 : 1337-48.
16) Pease D, Morrison VA. Treatment of mantle cell lymphoma in older adults J Geriatr Oncol. 2018 ; 9 : 308-14.
17) Visco C, Chiappella A, Nassi L, et al. Rituximab, bendamustine, and low-dose cytarabine as induction therapy in elderly patients with mantle cell lymphoma : a multicentre, phase 2 trial from Fondazione Italiana Linfomi. Lancet Haematol. 2017 ; 4 : e15-23.
18) Maddocks K. Update on mantle cell lymphoma Blood. 2018 ; 132 : 1647-56.
P.298 掲載の参考文献
1) Poeschel V, Held G, Ziepert M, et al. Four versus six cycles of CHOP chemotherapy in combination with six applications of rituximab in patients with aggressive B-cell lymphoma with favourable prognosis (FLYER) : a randomised, phase 3, non-inferiority trial. Lancet. 2019 ; 394 : 2271-81.
2) Lamy T, Damaj G, Soubeyran P, et al. R-CHOP 14 with or without radiotherapy in nonbulky limited-stage diffuse large B-cell lymphoma. Blood. 2018 ; 131 : 174-81.
3) Persky DO, Li H, Stephens DM, et al. PET-directed therapy for patients with limited-stage diffuse large B-Cell lymphoma-results of intergroup nctn study S1001. Blood. 2019 ; 134 (Suppl 1) : 349.
4) Miller TP, Dahlberg S, Cassady JR, et al. Chemotherapy alone compared with chemotherapy plus radiotherapy for localized intermediate- and high-grade Non-Hodgkin's lymphoma. N Engl J Med. 1998 ; 339 : 21-6.
5) Stephens DM, Li H, LeBlanc ML, et al. Continued Risk of relapse independent of treatment modality in limited-stage diffuse large B-cell lymphoma : Final and long-term analysis of southwest oncology group study S8736. J Clin Oncol. 2016 ; 34 : 2997-3004.
P.302 掲載の参考文献
2) Stiff PJ, Unger JM, Cook JR, et al. Autologous transplantation as consolidation for aggressive non-Hodgkin's lymphoma. N Engl J Med. 2013 ; 369 : 1681-90.
3) Bartlett NL, Wilson WH, Jung SH, et al. Dose-Adjusted EPOCH-R compared with R-CHOP as frontline therapy for diffuse large B-Cell Lymphoma : Clinical Outcomes of the Phase III Intergroup Trial Alliance/CALGB 50303. J Clin Oncol. 2019 ; 37 : 1790-9.
4) Davies A, Cummin TE, Barrans S, et al. Gene-expression profiling of bortezomib added to standard chemoimmunotherapy for diffuse large B-cell lymphoma (REMoDL-B) : an open-label, randomised, phase 3 trial. Lancet Oncol. 2019 ; 20 : 649-62.
5) Younes A, Sehn LH, Johnson P, et al. Randomized Phase III Trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell Lymphoma. J Clin Oncol. 2019 ; 37 : 1285-95.
P.307 掲載の参考文献
1) 日本老年学会・日本老年医学会. 高齢者の定義と区分に関する, 日本老年学会・日本老年医学会 高齢者に関する定義検討ワーキンググループからの提言. 日本老年医学会ホームページ.
2) Chihara D, Westin JR, Oki Y, et al. Management strategies and outcomes for very elderly patients with diffuse large B-cell lymphoma. Cancer. 2016 ; 122 : 3145-51.
3) Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med. 2002 ; 346 : 235-42.
8) Pfreundschuh M. CHOP intensification : not yet state of the art. Lancet Oncol. 2013 ; 14 : 445-7.
9) Kuhnl A, Cunningham D, Counsell N, et al. Outcome of elderly patients with diffuse large B-cell lymphoma treated with R-CHOP : results from the UK NCRI R-CHOP14v21 trial with combined analysis of molecular characteristics with the DSHNHL RICOVER-60 trial. Ann Oncol. 2017 ; 28 : 1540-6.
10) Limat S, Demesmay K, Voillat L, et al. Early cardiotoxicity of the CHOP regimen in aggressive non-Hodgkin's lymphoma. Ann Oncol. 2003 ; 14 : 277-81.
13) Bohlius J, Herbst C, Reiser M, et al. Granulopoiesis-stimulating factors to prevent adverse effects in the treatment of malignant lymphoma. Cochrane Database Syst Rev. 2008 : CD003189.
14) Miyata Y, Saito AM, Yoshida I, et al. R-mini CHP in>/=80-year-old patients with diffuse large B-cell lymphoma : A multicenter, Open-label, single-arm phase II trial protocol. Acta Med Okayama. 2018 ; 72 : 315-8.
15) Yoshida I, Suehiro Y, Miyata Y, et al. Reduced-intensity immunochemotherapy without vincristine in elderly patients older than 80 years old with diffuse large B-cell lymphoma : A multicentre, open-label, single-arm, phase II Trial. 24th EHA Congress. 2019.
P.312 掲載の参考文献
1) Coiffier B, Sarkozy C. Diffuse large B-cell lymphoma : R-CHOP failure-what to do?. Hematology Am Soc Hematol Educ Program. 2016 : 366-78.
2) Gisselbrecht C, Neste EVD. How I manage patients with relapsed/refractory diffuse large B cell lymphoma. Br J Haematol. 2018 ; 182, 633-43.
3) Philip T, Guglielmi C, Hagenbeek A, et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin's lymphoma. N Engl J Med. 1995 ; 333 : 1540-5.
7) van Imhoff GW, McMillan A, Matasar MJ, et al. Ofatumumab versus rituximab salvage chemoimmunotherapy in relapsed or refractory diffuse large B-cell lymphoma : the ORCHA-RRD study. J Clin Oncol. 2017 ; 35 : 544-51.
8) Martin A, Conde E, Arnan M, et al. R-ESHAP as salvage therapy for patients with relapsed or refractory diffuse large B-cell lymphoma : the influence of prior exposure to rituximab on outcome. A GEL/TAMO Study. Haematologica. 2008 ; 93 : 1829-36.
9) Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019 ; 380 : 45-56.
10) Schuster SJ, Svoboda J, Chong EA, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017 ; 377 : 2545-54.
11) Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017 ; 377 : 2531-44.
12) Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1) : a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019 ; 20 : 31-42.
13) Locke FL, Neelapu SS, Bartlett NL, et al. Phase 1 results of ZUMA-1 : a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol Ther. 2017 ; 25 : 285-95.
14) Crump M, Neelapu SS, Farooq U, et al. Outcomes in refractory diffuse large B-cell lymphoma : results from the international SCHOLAR-1 study. Blood. 2017 ; 130 : 1800-8.
15) Sehn LH, Herrera AF, Flowers CR, et al. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2020 ; 38 : 155-65.
16) Ohmachi K, Niitsu N, Uchida T, et al. Multicenter phase II study of bendamustine plus rituximab in patients with relapsed or refractory diffuse large B-cell lymphoma. J Clin Oncol. 2013 ; 31 : 2103-9.
P.317 掲載の参考文献
1) Nakamura S, Ponzoni M, Campo E. Intravascular large B-cell lymphoma, In ; Swerdlow SH, Campo E, Harris NL, et al, editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC Press ; 2017. p.317-20.
2) Shimada K, Shimada S, Sugimoto K, et al. Development and analysis of patient-derived xenograft mouse models in intravascular large B-cell lymphoma. Leukemia. 2016 ; 30 : 1568-79.
3) Suehara H, Sakata-Yanagimoto M, Hattori K, et al. Liquid biopsy for the identification of intravascular large B-cell lymphoma [abstract]. Blood. 2017 ; 130 : 378.
5) Ferreri AJ, Dognini GP, Bairey O, et al. The addition of rituximab to anthracycline-based chemotherapy significantly improves outcome in'Western'patients with intravascular large B-cell lymphoma. Br J Haematol. 2008 ; 143 : 253-7.
7) Shimada K, Yamaguchi M, Atsuta Y, et al. Rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone combined with high-dose methotrexate plus intrathecal chemotherapy for newly diagnosed intravascular large B-cell lymphoma (PRIMEUR-IVL) : a multicentre, single-arm, phase 2 trial. Lancet Oncol. 2020 ; 21 : 593-602.
8) Kato K, Mori T, Kim SW, et al. Outcome of patients receiving consolidative autologous peripheral blood stem cell transplantation in the frontline treatment of intravascular large B-cell lymphoma : Adult lymphoma working group of the Japan society for Hematopoietic Cell Transplantation. Bone Marrow Transplant. 2019 ; 54 : 1515-7.
P.321 掲載の参考文献
1) Gisselbrecht C, Gaulard P, Lepage E, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin's lymphomas. Groupe d'Etudes des Lymphomes de l'Adulte (GELA). Blood. 1998 ; 92 : 76-82.
2) Yamaguchi M, Suzuki R. JSH practical guidelines for hematological malignancies, 2018 : 7. Peripheral T-cell lymphoma (PTCL). Int J Hematol. 2019 ; 109 : 137-40.
3) Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature. 1982 ; 299 : 65-7.
4) Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue : evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985 ; 66 : 848-58.
5) Durkop H, Latza U, Hummel M, et al. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease. Cell. 1992 ; 68 : 421-7.
6) Horwitz S, O'Connor OA, Pro B, et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2) : a global, double-blind, randomised, phase 3 trial. Lancet. 2019 ; 393 : 229-40.
7) Pro B, Advani R, Brice P, et al. Five-year results of brentuximab vedotin in patients with relapsed or refractory systemic anaplastic large cell lymphoma. Blood. 2017 ; 130 : 2709-17.
8) Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014 ; 123 : 3095-100.
9) Fukuhara N, Yamamoto G, Tsujimura H, et al. Retreatment with brentuximab vedotin in patients with relapsed/refractory classical Hodgkin lymphoma or systemic anaplastic large-cell lymphoma : a multicenter retrospective study. Leuk Lymphoma. 2020 ; 61 : 176-80.
10) Pro B, Advani R, Brice P, et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma : results of a phase II study. J Clin Oncol. 2012 ; 30 : 2190-6.
P.324 掲載の参考文献
1) Stein H, Mason DY, Gerdes J, et al. The expression of the Hodgkin's disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue : evidence that Reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood. 1985 ; 66 : 848-58.
2) Suzuki R, Kagami Y, Takeuchi K, et al. Prognostic significance of CD56 expression for ALK-positive and ALK-negative anaplastic large-cell lymphoma of T/null cell phenotype. Blood. 2000 ; 96 : 2993-3000.
3) Asano N, Suzuki R, Kagami Y, et al. Clinicopathologic and prognostic significance of cytotoxic molecule expression in nodal peripheral T-cell lymphoma, unspecified. Am J Surg Pathol. 2005 ; 29 : 1284-93.
5) Schwab U, Stein H, Gerdes J, et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature. 1982 ; 299 : 65-7.
6) Horwitz SM, Advani RH, Bartlett NL, et al. Objective responses in relapsed T-cell lymphomas with single-agent brentuximab vedotin. Blood. 2014 ; 123 : 3095-100.
7) Bossard C, Dobay MP, Parrens M, et al. Immunohistochemistry as a valuable tool to assess CD30 expression in peripheral T-cell lymphomas : high correlation with mRNA levels. Blood. 2014 ; 124 : 2983-6.
P.330 掲載の参考文献
1) Swerdlow SH, Campo E, Harris NL, et al. editor. Mature T- and NK-cell neoplasms. WHO classification of tumours of haematopoietic and lymphoid tissues. Lyon : IARC ; 2017. p.345-422.
2) International T-Cell Lymphoma Project. International peripheral T-cell and natural killer/T-cell lymphoma study : Pathology findings and clinical outcomes. J Clin Oncol. 2008 ; 26 : 4124-30.
3) Bisig B, de Reynies A, Bonnet C, et al. CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features. Haematologica 2013 ; 98 : 1250-8.
4) Gallamini A, Stelitano C, Calvi R, et al. Peripheral T-cell lymphoma unspecified (PTCL-U) : a new prognostic model from a retrospective multicentric clinical study. Blood. 2004 ; 103 : 2474-79.
5) Fisher RI, Gaynor ER, Dahlberg S, et al. Comparison of a standard regimen (CHOP) with three intensive chemotherapy regimens for advanced non-Hodgkin's lymphoma. N Engl J Med. 1993 ; 328 : 1002-6.
6) The Non-Hodgkin's Lymphoma Classification Project. A clinical evaluation of the International lymphoma study group classification of non-Hodgkin's lymphoma. Blood. 1997 ; 89 : 3909-18.
7) Gisselbrecht C, Gaulard P, Lepage E, et al. Prognostic significance of T-cell phenotype in aggressive non-Hodgkin's lymphomas. Blood. 1998 ; 92 : 76-82.
8) Watanabe T, Kinoshita T, Itoh K, et al. Pretreatment total serum protein is a significant prognostic for the outcome of patients with peripheral T/naturel killer-cell lymphomas. Leuk Lymphoma. 2010 ; 51 : 813-21.
9) Maeda Y, Nishimori H, Yoshida I, et al. Dose-adjusted EPOCH chemotherapy for untreated T-cell lymphoma : a multicenter phase II trial of West-JHOC PTCL0707. Haematologica. 2017 ; 102 : 2097-103.
10) Rodriguez J, Conde E, Gutierrez A, et al. Frontline autologous stem cell transplantation in high-risk peripheral T-cell lymphoma : a prospective study from The Gel-Tamo Study Group. Eur J Haematology. 2007 ; 79 : 32-8.
11) Reimer P, Rudiger T, Geissinger E, et al. Autologous stem-cell transplantation as first-line therapy in peripheral T-cell lymphoma : results of a prospective multicenter study. J Clin Oncol. 2009 ; 27 : 106-13.
P.335 掲載の参考文献
1) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版. 2020.
2) Yamaguchi M, Tobinai K, Oguchi M, et al. Phase I/II study of concurrent chemoradiotherapy for localized nasal NK/T-cell lymphoma : Japan Clinical Oncology Group Study JCOG 0211. J Clin Oncol. 2009 ; 27 : 5594-600.
3) Yamaguchi M, Tobinai K, Oguchi M, et al. Concurrent chemoradiotherapy for localized nasal natural killer/T-cell lymphoma : an updated analysis of the Japan Clinical Oncology Group Study JCOG0211. J Clin Oncol. 2012 ; 30 : 4044-6. (Correspondence)
4) Yamaguchi M, Kwong Y-L, Kim WS, et al. Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK) /T-cell lymphoma, nasal type : the NK-Cell Tumor Study Group study. J Clin Oncol. 2011 ; 29 : 4410-6.
5) Wang JJ, Dong M, He XH, et al. GDP (Gemcitabine, Dexamethasone, and Cisplatin) Is highly effective and well-tolerated for newly diagnosed Stage IV and relapsed/Refractory extranodal natural killer/T-cell lymphoma, nasal type. Medicine (Baltimore). 2016 ; 95 : e2787.
6) Kim SJ, Hyeon J, Cho I, et al. Comparison of efficacy of pembrolizumab between epstein-barr virus positive and negative relapsed or refractory non-hodgkin lymphomas. Cancer Res Treat. 2018 ; 51 : 611-22.
7) Yamaguchi M, Suzuki R, Oguchi M, et al. Treatments and outcomes of patients with extranodal natural killer/T-cell lymphoma diagnosed between 2000 and 2013 : A Cooperative Study in Japan. J Clin Oncol. 2017 ; 35 : 32-9.
8) Kim SJ, Yang DH, Kim JS, et al. Concurrent chemoradiotherapy followed by L-asparaginase-containing chemotherapy, VIDL, for localized nasal extranodal NK/T cell lymphoma : CISL08-01 phase II study. Ann Hematol. 2014 ; 93 : 1895-901.
9) Qi S, Yahalom J, Hsu M, et al. Encouraging experience in the treatment of nasal type extra-nodal NK/T-cell lymphoma in a non-Asian population. Leuk Lymphoma. 2016 ; 57 : 2575-83.
10) Yamaguchi M, Suzuki R, Oguchi M. Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood. 2018 ; 131 : 2528-40.
11) 山口素子, 小口正彦. RT-2/3DeVIC療法. In : 永井宏和, 他, 編. 悪性リンパ腫治療マニュアル. 改訂第5版. 東京 : 南江堂. 2020 ; (in press).
P.341 掲載の参考文献
1) Mak V, Hamm J, Chhanabhai M, et al. Survival of patients with peripheral T-cell lymphoma after first relapse or progression : spectrum of disease and rare long-term survivors. J Clin Oncol. 2013 ; 31 : 1970-76.
2) Chihara D, Fanale MA, Miranda RN, et al. The survival outcome of patients with relapsed/refractory peripheral T-cell lymphoma-not otherwise specified and angioimmunoblastic T-cell lymphoma. Br J Haematol. 2017 ; 176 : 750-8.
3) Yamaguchi M, Suzuki R, Oguchi M. Advances in the treatment of extranodal NK/T-cell lymphoma, nasal type. Blood. 2018 ; 131 : 2528-40.
4) Heavican TB, Bouska A, Yu J, et al. SGenetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood. 2019 ; 133 : 1664-76.
5) Watatani Y, Sato Y, Miyoshi H, et al. Molecular heterogeneity in peripheral T-cell lymphoma, not otherwise specified revealed by comprehensive genetic profiling. Leukemia. 2019 ; 33 : 2867-83.
6) Sugio T, Miyawaki K, Kato K, et al. Microenvironmental immune cell signatures dictate clinical outcomes for PTCL-NOS. Blood Adv. 2018 ; 2 : 2242-52.
8) Khodadoust MS, Rook AH, Porcu P, et al. Pembrolizumab in relapsed and refractory mycosis fungoides and Sezary syndrome : A multicenter phase II study. J Clin Oncol. 2020 ; 38 : 20-8.
9) Barta SK, Zain J, MacFarlane AW 4th, et al. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory mature T-cell lymphoma. Clin lymphoma myeloma leuk. 2019 ; 19 : 356-64.
10) Li X, Cheng Y, Zhang M, et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J Hematol Oncol. 2018 ; 11 : 15.
11) Chan TSY, Li J, Loong F, et al. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing L-asparaginase : efficacy and safety. Ann Hematol. 2018 ; 97 : 193-6.
12) Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy : Preliminary results of a phase Ib study. J Clin Oncol. 2016 ; 34 : 2698-704.
13) Herbaux C, Merryman R, Devine S, et al. Recommendations for managing PD-1 blockade in the context of allogeneic HCT in Hodgkin lymphoma : taming a necessary evil. Blood. 2018 ; 132 : 9-16.
14) Jain S, Van Scoyk A, Morgan EA, et al. Targeted inhibition of CD47-SIRPα requires Fc-FcγR interactions to maximize activity in T-cell lymphomas. Blood. 2019 ; 134 : 1430-40.
15) Ratner L, Waldmann TA, Janakiram M, et al. Rapid progression of adult T-cell leukemia-lymphoma after PD-1 inhibitor therapy. N Engl J Med. 2018 ; 378 : 1947-8.
16) Wartewig T, Kurgyis Z, Keppler S, et al. PD-1 is a haploinsufficient suppressor of T cell lymphomagenesis. Nature. 2017 ; 552 : 121-5.
17) Rauch DA, Conlon KC, Janakiram M, et al. Rapid progression of adult T-cell leukemia/lymphoma as tumor-infiltrating Tregs after PD-1 blockade. Blood. 2019 ; 134 : 1406-14.
P.348 掲載の参考文献
1) Cook LB, Fuji S, Hermine O, et al. Revised adult T-cell leukemia-lymphoma international consensus meeting report. J Clin Oncol. 2019 ; 37 : 677-87.
2) Ishitsuka K, Tamura K. Human T-cell leukaemia virus type I and adult T-cell leukaemia-lymphoma. Lancet Oncol. 2014 ; 15 : e517-26.
6) Takasaki Y, Iwanaga M, Imaizumi Y, et al. Long-term study of indolent adult T-cell leukemia-lymphoma. Blood. 2010 ; 115 : 4337-43.
7) Bazarbachi A, Plumelle Y, Carlos Ramos J, et al. Meta-analysis on the use of zidovudine and interferon-alfa in adult T-cell leukemia/lymphoma showing improved survival in the leukemic subtypes. J Clin Oncol. 2010 ; 28 : 4177-83.
8) Fuji S, Inoue Y, Utsunomiya A, et al. Pretransplantation Anti-CCR4 antibody mogamulizumab against adult T-cell leukemia/lymphoma Is associated with significantly increased risks of severe and corticosteroid-refractory graft-versus-host disease, Nonrelapse mortality, and Overall mortality. J Clin Oncol. 2016 ; 34 : 3426-33.
10) Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma : a multicenter phase II study. J Clin Oncol. 2012 ; 30 : 837-42.
13) Ishida T, Jo T, Takemoto S, et al. Dose-intensified chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma : a randomized phase II study. Br J Haematol. 2015 ; 169 : 672-82.
14) Ishida T, Jo T, Takemoto S, et al. Follow-up of a randomised phase II study of chemotherapy alone or in combination with mogamulizumab in newly diagnosed aggressive adult T-cell leukaemia-lymphoma : impact on allogeneic haematopoietic stem cell transplantation. Br J Haematol. 2019 ; 184 : 479-83.
16) Ureshino H, Shindo T, Nishikawa H, et al. Effector regulatory T cells reflect the equilibrium between antitumor immunity and autoimmunity in adult T-cell leukemia. Cancer Immunol Res. 2016 ; 4 : 644-9.
18) Kataoka K, Iwanaga M, Yasunaga JI, et al. Prognostic relevance of integrated genetic profiling in adult T-cell leukemia/lymphoma. Blood. 2018 ; 131 : 215-25.
20) Tsukasaki K, Ikeda S, Murata K, et al. Characteristics of chemotherapy-induced clinical remission in long survivors with aggressive adult T-cell leukemia/lymphoma. Leuk Res. 1993 ; 17 : 157-66.
P.353 掲載の参考文献
1) Uchiyama T, Yodoi J, Sagawa K, et al. Adult T-cell leukemia : Clinical and hematologic features of 16 cases. Blood. 1977 ; 50 : 481-92.
2) Cook LB, Fuji S, Hermine O, et al. Revised adult T-cell leukemia-lymphoma international consensus meeting report. J Clin Oncol. 2019 ; 37 : 677-87.
3) Utsunomiya A, Miyazaki Y, Takatsuka Y, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001 ; 27, 15-20.
4) Hematopoietic Cell Transplantation in Japan. Annual report of nationwide survey 2019. The Japanese data center for hematopoietic cell transplantation/The Japan Society for Hematopoietic Cell Transplantation. 2019. JDCHCTホームページ.
5) Tamaki H, and Matsuoka M. Donor-derived T-cell leukemia after bone marrow transplantation. N Engl J Med. 2006 ; 354 : 1758-59.
6) Ishida T, Joh T, Uike N, et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma : a multicenter phase II study. J Clin Oncol. 2012 ; 30 : 837-42.
7) Hishizawa M, Kanda J, Utsunomiya A, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia : A nationwide retrospective study. Blood. 2010 ; 116 : 1369-76.
8) Hishizawa M, Kanda J, Utsunomiya A, et al. Impact of graft-versus-host disease on outcomes after allogeneic hematopoietic cell transplantation for adult T-cell leukemia : A retrospective cohort study. Blood. 2012 ; 119 : 2141-8.
10) Fuji S, Fujiwara H, Nakano N, et al. Early application of related SCT might improve clinical outcome in adult T-cell leukemia/lymphoma. Bone Marrow Transplant. 2016 ; 51 : 205-11.
11) Fuji S, Yamaguchi T, Inoue Y, et al. Development of a modified prognostic index for patients with aggressive adult T-cell leukemia-lymphoma aged 70 years or younger : Possible risk-adapted management strategies including allogeneic transplantation. Haematologica. 2017 ; 102 : 1258-65.
12) Yoshimitsu M, Fuji S, Utsunomiya A, et al. Outcomes of allogeneic hematopoietic stem cell transplantation for ATL with HTLV-1 antibody-positive donors. Biol Blood Marrow Transplant. 2020 ; 26 : 718-22.
13) 加藤光次, 中野伸亮, 崔日承, 他. 成人T細胞白血病・リンパ腫. In ; 日本造血細胞移植学会ガイドライン委員会. 日本造血細胞移植学会ガイドライン. 2018.
14) Yonekura K, Utsunomiya A, Takatsuka Y, et al. Graft-versus-adult T-cell leukemia/lymphoma effect following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2008 ; 41 : 1029-35.
15) Itonaga H, Tsushima H, Taguchi J, et al. Treatment of relapsed adult T-cell leukemia/lymphoma after allogeneic hematopoietic stem cell transplantation : the Nagasaki Transplant Group experience. Blood. 2013 ; 121, 219-25.
P.361 掲載の参考文献
1) 日本血液学会, 編. 造血器腫瘍診療ガイドライン2018年版補訂版. 東京 : 金原出版. 2020.
2) Barrington SF, Qian W, Somer EJ, et al. Concordance between four European centres of PET reporting criteria designed for use in multicentre trials in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010, 37 : 1824-33.
3) Coyle M, Kostakoglu L, Evens AM. The evolving role of response-adapted PET imaging in Hodgkin lymphoma. Ther Adv Hematol. 2016, 7 : 108-25.
4) Engert A, Plutschow A, Eich HT, et al. Reduced treatment intensity in patients with early-stage Hodgkin's lymphoma. N Engl J Med. 2010, 363 : 640-52.
5) Sasse S, Brockelmann PJ, Goergen H, et al. Long-term follow-up of contemporary Treatment in early-stage Hodgkin lymphoma : updated analyses of the german hodgkin study group HD7, HD8, HD10, and HD11 Trials. J Clin Oncol. 2017, 35 : 1999-2007.
6) J. R : Early FDG-PET Adapted treatment improves the outcome of early FDG-PET positive patients with stages I/II Hodgkin lymphoma (HL) : Final results of the randomized inter-group EORTC/LYSA/FIL H10 Trial.. Clin Ad Hematol and Oncol. 2015, 13 : Supplement 9.
7) Behringer K, Goergen H, Hitz F, et al. Omission of dacarbazine or bleomycin, or both, from the ABVD regimen in treatment of early-stage favourable Hodgkin's lymphoma (GHSG HD13) : an open-label, randomised, non-inferiority trial. Lancet. 2015, 385 : 1418-27.
8) von Tresckow B, Plutschow A, Fuchs M, et al. Dose-intensification in early unfavorable Hodgkin's lymphoma : final analysis of the German Hodgkin Study Group HD14 trial. J Clin Oncol. 2012 ; 30 : 907-13.
9) Gillessen S, Pluetschow A, Fuchs M, et al. Dose-intensification in early unfavorable Hodgkin lymphoma : Long-term follow up of the german hodgkin study group (GHSG) HD14 Trial. Blood. 2019, 134 : 129.
10) Raemaekers JM, Andre MP, Federico M, et al. Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse : Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol. 2014, 32 : 1188-94.
11) Andre MPE, Girinsky T, Federico M, et al. Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma : Final results of the randomized EORTC/LYSA/FIL H10 Trial. J Clin Oncol. 2017 ; 35 : 1786-94.
12) Radford J, Illidge T, Counsell N, et al. Results of a trial of PET-directed therapy for early-stage Hodgkin's lymphoma. N Engl J Med. 2015, 372 : 1598-607.
13) Fuchs M, Goergen H, Kobe C, et al. Positron emission tomography-guided treatment in early-stage favorable Hodgkin lymphoma : Final results of the international, randomized phase III HD16 Trial by the German Hodgkin Study Group. J Clin Oncol. 2019, 37 : 2835-45.
14) Borchmann P, Plutschow A, Kobe C, et al. PET guided omission of radiotherapy in intermediat-stage Hodgkin lymphoma : Final results of the GHSG HD17 study. EHA 2020, abstract S101.
15) Engert A, Ballova V, Haverkamp H, et al. Hodgkin's lymphoma in elderly patients : a comprehensive retrospective analysis from the German Hodgkin's Study Group. J Clin Oncol. 2005, 23 : 5052-60.
16) Boll B, Gorgen H, Fuchs M, et al. ABVD in older patients with early-stage Hodgkin lymphoma treated within the German Hodgkin Study Group HD10 and HD11 trials. J Clin Oncol. 2013 ; 31 : 1522-9.
P.367 掲載の参考文献
1) Makita S, Maruyama D, Maeshima AM, et al. Clinical features and outcomes of 139 Japanese patients with Hodgkin lymphoma. Int J Hematol. 2016 ; 104 : 236-44.
2) Younes A, Connors JM, Park SI, et al. Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin's lymphoma : a phase 1, open-label, dose-escalation study. Lancet Oncol. 2013 ; 14 : 1348-56.
3) Connors JM, Jurczak W, Straus DJ, et al. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin's Lymphoma. N Engl J Med. 2018 ; 378 : 331-44.
4) Press OW, Li H, Schoder H, et al. US Intergroup trial of PET-response-adapted therapy for stage III to IV Hodgkin lymphoma using early interim fluoredeoxyglucose-positron emission tomography imaging : Southwest Oncology Group S0816. J Clin Oncol. 2016 ; 34 : 2020-7.
5) Johnson P, Federico M, Kirkwood A, et al. Adapted treatment guided by interim PET-CT scan in advanced Hodgkin's lymphoma. N Engl J Med. 2016 ; 374 : 2419-29.
6) Straus DJ, Dlugosz-Danecka M, Alekseev S, et al. Brentuximab vedotin with chemotherapy for stage III/IV classical Hodgkin lymphoma : 3-year update of the ECHELON-1 study. Blood. 2020 ; 135 : 735-42.
7) Stephens DM, Li H, Schoder H, et al. Five-year follow-up of SWOG S0816 : limitations and values of a PET-adapted approach with stage III/IV Hodgkin lymphoma. Blood. 2019 ; 134 : 1238-46.
8) Evens AM, Advani RH, Helenowski IB, et al. Multicenter phase II study of sequential brentuximab vedotin and doxorubicin, vinblastine, and dacarbazine chemotherapy for older patients with untreated classical Hodgkin lymphoma. J Clin Oncol. 2018 ; 36 : 3015-22.
9) Ramchandren R, Domingo-Domenech E, Rueda A, et al. Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma : safety and efficacy in the phase II CheckMate 205 study. J Clin Oncol. 2019 ; 37 : 1997-2007.
P.375 掲載の参考文献
1) Schmitz N, Pfistner B, Sextro M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease : a randomised trial. Lancet. 2002 ; 359 : 2065-71.
2) Younes A, Gopal AK, Smith SE, et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J Clin Oncol. 2012 ; 30 : 2183-89.
3) Chen R, Gopal AK, Smith SE, et al. Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2016 ; 128 : 1562-6.
4) Makita S, Maruyama D, Tobinai K. Safety and efficacy of brentuximab vedotin in the treatment of classic Hodgkin lymphoma. Onco Targets Ther. 2020 ; 13 : 5993-6009.
5) Moskowitz CH, Nademanee A, Masszi T, et al : AETHERA Study Group. Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin's lymphoma at risk of relapse or progression (AETHERA) : a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015 ; 385 : 1853-62.
6) Moskowitz CH, Walewski J, Nademanee A, et al. Five-year PFS from the AETHERA trial of brentuximab vedotin for Hodgkin lymphoma at high risk of progression or relapse. Blood. 2018 ; 132 : 2639-42.
8) Armand P, Engert A, Younes A, et al. Nivolumab for relapsed/refractory classic Hodgkin lymphoma after failure of autologous hematopoietic cell transplantation : extended follow-up of the multicohort single-arm phase II CheckMate 205 trial. J Clin Oncol. 2018 ; 36 : 1428-39.
10) Chen R, Zinzani PL, Lee HJ, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma : 2-year follow-up of KEYNOTE-087. Blood. 2019 ; 134 : 1144-53.
11) Kuruvilla J, Ramchandren R, Santoro A, et al. KEYNOTE-204 : Randomized, open-label, phase III study of pembrolizumab (pembro) versus brentuximab vedotin (BV) in relapsed or refractory classic Hodgkin lymphoma (R/R cHL). Presented at the 2020 American Society of Clinical Oncology (ASCO) Virtual Scientific Program. 2020. Abstract 8005. Available at https://ascopubs.org/doi/abs/10.1200/JCO.2020.38.15_suppl.8005.
13) Bartlett NL, Chen R, Fanale MA, et al. Retreatment with brentuximab vedotin in patients with CD30-positive hematologic malignancies. J Hematol Oncol. 2014 ; 7 : 24.
14) Fukuhara N, Yamamoto G, Tsujimura H, et al. Retreatment with brentuximab vedotin in patients with relapsed/refractory classical Hodgkin lymphoma or systemic anaplastic large-cell lymphoma : a multicenter retrospective study. Leuk Lymphoma. 2019 : 1-5.
15) Munakata W, Ohashi K, Yamauchi N, Tobinai K. Fulminant type I diabetes mellitus associated with nivolumab in a patient with relapsed classical Hodgkin lymphoma. Int J Hematol. 2017 ; 105 : 383-6.
16) Ramchandren R, Domingo-Domenech E, Rueda A, et al. Nivolumab for newly diagnosed advanced-stage classic Hodgkin lymphoma : Safety and efficacy in the Phase II checkmate 205 study. J Clin Oncol. 2019 ; 37 : 1997-2007.
17) Herrera AF, Moskowitz AJ, Bartlett NL, et al. Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2018 ; 131 : 1183-94. doi : 10.1182/blood-2017-10-811224
18) Moskowitz AJ, Advani R, Bartlett NL, et al. Brentuximab vedotin and nivolumab for relapsed or refractory classic Hodgkin lymphoma : long-term follow-up results from the single-arm phase I/II study. Blood. 2019 ; 134 (Suppl. 1) : 238. doi : 10.1182/blood-2019-122576
19) Diefenbach CS, Hong F, Ambinder R, et al. Extended follow-up of a phase I trial of ipilimumab, nivolumab and brentuximab vedotin in relapsed Hodgkin lymphoma : a trial of the ECOG-ACRIN research group (E4412). Hematol Oncol. 2019 ; 37 (Suppl 2) : 123-4. doi : 10.1002/hon.83_2629

V. 多発性骨髄腫と関連疾患

P.384 掲載の参考文献
1) Furukawa Y, Kikuchi J. Molecular basis of clonal evolution in multiple myeloma. Int J Hematol. 2020 ; 111 : 496-511.
2) Chapman MA, Lawrence MS, Keats JJ, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011 ; 471 : 467-72.
3) Egan JB, Shi C-X, Tembe W, et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012 ; 120 : 1060-6.
4) Keats JJ, Chesi M, Egan JB, et al. Clonal competition with alternating dominance in multiple myeloma. Blood. 2012 ; 120 : 1067-76.
5) Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t (4 ; 14) and t (11 ; 14) myeloma. Blood. 2012 ; 120 : 1077-86.
6) Weston-Bell N, Gibson J, John M, et al. Exome sequencing in tracking clonal evolution in multiple myeloma following therapy. Leukemia. 2013 ; 27 : 1188-91.
7) Magrangeas F, Avet-Loiseau H, Gouraud W, et al. Minor clone provides a reservoir for relapse in multiple myeloma. Leukemia. 2013 ; 27 : 473-81.
8) Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014 ; 28 : 384-90.
9) Bolli N, Avet-Loiseau H, Wedge DC, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014 ; 5 : 2997.
10) Lohr JG, Stojanov P, Carter LS, et al. Widespread genetic heterogeneity in multiple myeloma : implications for targeted therapy. Cancer Cell. 2014 ; 25 : 91-101.
11) Melchor L, Brioli A, Wardell CP, et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia. 2014 ; 28 : 1705-15.
12) Walker BA, Boyle EM, Wardell CP, et al. Mutational spectrum, copy number changes, and outcome : Results of a sequencing study of patients with newly diagnosed myeloma. J Clin. Oncol. 2015 ; 33 : 3911-20.
13) Weinhold N, Ashby C, Rasche L, et al. Clonal selection and double-hit events involving tumor suppressor genes underlie relapse in myeloma. Blood. 2016 ; 128 : 1735-44.
14) Lagana A, Perumal D, Melnekoff D, et al. Integrative network analysis identifies novel drivers of pathogenesis and progression in newly diagnosed multiple myeloma. Leukemia. 2018 ; 32 : 120-30.
15) Walker BA, Mavrommatis K, Wardell CP, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018 ; 132 : 587-97.
16) Bolli N, Biancon G, Moarii M, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018 ; 32 : 2604-16.
17) Jones JR, Weinhold N, Ashby C, et al. Clonal evolution in myeloma : the impact of maintenance lenalidomide and depth of response on the genetics and sub-clonal structure of relapsed disease in uniformly treated newly diagnosed patients. Haematologica. 2019 ; 104 : 1440-50.
18) Kikuchi J, Kuroda Y, Koyama D, et al. Myeloma cells are activated in bone marrow microenvironment by the CD180/MD-1 complex, which senses lipopolysaccharide. Cancer Res. 2018 ; 78 : 1766-78.
19) Kikuchi J, Hori M, Iha H, et al. Soluble SLAMF7 promotes the growth of myeloma cells via homophilic interaction with surface SLAMF7. Leukemia. 2020 ; 34 : 180-95.
20) Bolli N, Maura F, Minvielle S, et al. Genomic patterns of progression in smoldering multiple myeloma. Nat Commun. 2018 ; 9 : 3363.
21) Johnson DC, Lenive O, Michell J, et al. Neutral tumor evolution in myeloma is associated with poor prognosis. Blood. 2017 ; 130 : 1639-43.
22) Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017 ; 8 : 268.
23) Kapoor P, Rajkumar SV. Smoldering multiple myeloma : to treat or not to treat. Cancer J. 2019 ; 25 : 65-71.
24) Zhao AL, Shen KN, Wang JN, et al. Early or deferred treatment of smoldering multiple myeloma : a meta-analysis on randomized controlled studies. Cancer Manag. Res. 2019 ; 11 : 5599-611.
P.390 掲載の参考文献
1) Rajkumar SV, Dimopoulos MA, Palumbo A, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014 ; 15 : e538.
2) Kyle RA, Remstein ED, Therneau TM, et al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma. N Engl J Med. 2007 ; 356 : 2582.
3) Lakshman A, Rajkumar SV, Buadi FK, et al. Risk stratification of smoldering multiple myeloma incorporating revised IMWG diagnostic criteria. Blood Cancer J. 2018 ; 8 : 59.
4) Miguel JS, Mateos MV, Gonzales V, et al. Updated risk stratification model for smoldering multiple myeloma (SMM) incorporating the revised IMWG diagnostic criteria. J Clin Oncol. 2019 ; 37 : suppl ; abstr 8000.
6) Mateos MV, Hernandez MT, Giraldo P, et al. Lenalidomide plus dexamethasone versus observation in patients with high-risk smouldering multiple myeloma (QuiRedex) : long-term follow-up of a randomised, controlled, phase 3 trial. Lancet Oncol. 2016 ; 17 : 1127-36.
7) Lonial S, Jacobus S, Fonseca R, et al. Randomized trial of lenalidomide versus observation in smoldering multiple myeloma. J Clin Oncol. 2019 ; 38 ; 1126-37.
8) Perez-Persona E, Vidriales MB, Mateo G, et al. New criteria to identify risk of progression in monoclonal gammopathy of uncertain significance and smoldering multiple myeloma based on multiparameter flow cytometry analysis of bone marrow plasma cells. Blood. 2007 ; 110 : 2586-92.
9) Dispenzieri A, Kyle RA, Katzmann JA, et al. Immunoglobulin free light chain ratio is an independent risk factor for progression of smoldering (Asymptomatic) multiple myeloma. Blood. 2008 ; 111 : 785-9.
10) Rajkumar SV, Gupta V, Fonseca R, et al. Impact of primary molecular cytogenetic abnormalities and risk of progression in smoldering multiple myeloma. Leukemia. 2013 ; 27 : 1738-44.
11) Neben K, Jauch A, Hielscher T, et al. Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del (17p), t (4 ; 14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol. 2013 ; 31 : 4325.
P.396 掲載の参考文献
1) Attal M, Lauwers-Cances V, Hulin C, et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N Engl J Med. 2017 ; 376 : 1311-20.
2) Cavo M, Gay F, Beksac M, et al. Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95) : a multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020 ; 7 : e456-e68.
3) Moreau P, Hulin C, Macro M, et al. VTD is superior to VCD prior to intensive therapy in multiple myeloma : results of the prospective IFM2013-04 trial. Blood. 2016 ; 127 : 2569-74.
4) Moreau P, Attal M, Hulin C, et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA) : a randomised, open-label, phase 3 study. Lancet. 2019 ; 394 : 29-38.
5) Voorhees PM, Kaufman JL, Laubach JP, et al. Daratumumab, lenalidomide, bortezomib, & dexamethasone for transplant-eligible newly diagnosed multiple myeloma : GRIFFIN [published online ahead of print, 2020 Apr 23]. Blood. 2020 ; blood. 2020005288. doi : 10.1182/blood.2020005288.
6) Bashir Q, Thall PF, Milton DR, et al. Conditioning with busulfan plus melphalan versus melphalan alone before autologous haemopoietic cell transplantation for multiple myeloma : an open-label, randomised, phase 3 trial. Lancet Haematol. 2019 ; 6 : e266-e75.
7) Stadtmauer EA, Pasquini MC, Blackwell B, et al. Autologous transplantation, consolidation, and maintenance therapy in multiple myeloma : Results of the BMT CTN 0702 Trial. J Clin Oncol. 2019 ; 37 : 589-97.
8) McCarthy PL, Holstein SA, Petrucci MT, et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma : A meta-analysis. J Clin Oncol. 2017 ; 35 : 3279-89.
9) Dimopoulos MA, Gay F, Schjesvold F, et al. Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3) : a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2019 ; 393 : 253-64.
P.400 掲載の参考文献
1) 日本血液学会, 編. 造血器腫瘍診療ガイドライン. 2018年版補訂版. 2018.
2) Moreau P, San Miguel J, Sonneveld P, et al. Multiple myeloma : ESMO Clinical practice guide-lines for diagnosis, treatment and follow-up. Ann Oncol. 2017 ; 28 : iv52-61.
3) NCCN Clinical Practice Guidelines in Oncology, Multilpe Myeloma Version 4. 2020.
5) Mateos MV, Cavo M, Blade J, et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE) : a randomised, open-label, phase 3 trial. Lancet. 2019 ; 395 : 132-41.
6) Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019 ; 380 : 2104-15.
7) O'Donnell EK, Laubach JP, Yee AJ, et al. A phase 2 study of modified lenalidomide, bortezomib and dexamethasone in transplant-ineligible multiple myeloma. Br J Haematol. 2018 ; 182 : 222-30.
8) Larocca A, Mina R, Offidani M, et al. First-line therapy with either bortezomib-melphalan-prednisone or lenalidomide-dexamethasone followed by lenalidomide for transplant-ineligible multiple myeloma patients : a pooled analysis of two randomized trials. Haematologica. 2020 ; 105 : 1074-80.
9) Palumbo A, Bringhen S, Larocca A, et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma : updated follow-up and improved survival. J Clin Oncol. 2014 ; 32 : 634-40.
10) Magarotto V, Bringhen S, Offidani M, et al. Triplet vs doublet lenalidomide-containing regimens for the treatment of elderly patients with newly diagnosed multiple myeloma. Blood. 2016 ; 127 : 1102-8.
14) Sonneveld P, Avet-Loiseau H, Lonial S, et al. Treatment of multiple myeloma with high-risk cytogenetics : a consensus of the International Myeloma Working Group. Blood. 2016 ; 127 : 2955-62.
P.406 掲載の参考文献
1) Stewart AK, Rajkumar SV, Dimopoulos MA, et al. ASPIRE Investigators. Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med. 2015 ; 372 : 142-52.
2) Moreau P, Mateos MV, Berenson JR, et al. Once weekly versus twice weekly carfilzomib dosing in patients with relapsed and refractory multiple myeloma (A. R. R. O. W.) : interim analysis results of a randomised, phase 3 study. Lancet Oncol. 2018 ; 19 : 953-64.
3) Moreau P, Masszi T, Grzasko N, et al. Oral Ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016 ; 374 : 1621-34.
4) Dimopoulos MA, Dytfeld D, Grosicki S, et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med. 2018 ; 379 : 1811-22.
5) Richardson PG, Oriol A, Beksac M, et al. Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM) : a randomised, open-label, phase 3 trial. Lancet Oncol. 2019 ; 20 : 781-94.
6) Dimopoulos MA, Oriol A, Moreau P : POLLUX Investigators, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016 ; 375 : 1319-31.
P.411 掲載の参考文献
1) Richardson PG, Laubach J, Gandolfi S, et al. Maintenance and continuous therapy for multiple myeloma. Exp Rev Anticancer Ther. 2018 ; 18 : 751-64.
2) Dimopoulos MA, Jakubowiak AJ, McCarthy PL, et al. Developments in continuous therapy and maintenance treatment approaches for patients with newly diagnosed multiple myeloma. Blood Cancer J. 2020 ; 10 : 17-35.
7) Benboubker L, Dimopoulos MA, Dispenzieri A, et al ; FIRST Trial Team. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med. 2014 ; 371 : 906-17.
8) Facon T, Dimopoulos MA, Dispenzieri A, et al. Final analysis of survival outcomes in the phase 3 FIRST trial of up-front treatment for multiple myeloma. Blood. 2018 ; 131 : 301-10.
10) Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N Engl J Med. 2019 ; 380 : 2104-15.
11) Dimopoulos MA, Gay F, Schjesvold F, et al. Oral ixazomib maintenance following autologous stem cell transplantation (TOURMALINE-MM3) : a double-blind, randomised, placebo-controlled phase 3 trial. Lancet. 2019 ; 393 : 253-64.
12) Mateos MV, Cavo M, Blade J, et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE) : a randomised, open-label, phase 3 trial. Lancet. 2020 ; 395 : 132-41.
P.417 掲載の参考文献
1) Sobh M, Michallet M, Gahrton G, et al. Allogeneic hematopoietic cell transplantation for multiple myeloma in Europe : Trends and outcomes over 25 years. A study by the EBMT chronic malignancies working party. Leukemia. 2016 ; 30 : 2047-54.
2) Armeson KE, Hill EG, Costa LJ. Tandem autologous vs autologous plus reduced intensity allogeneic transplantation in the upfront management of multiple myeloma : meta-analysis of trials with biological assignment. Bone Marrow Transplant. 2013 ; 48 : 562-7.
3) Bruno B, Rotta M, Patriarca F, et al. A comparison of allografting with autografting for newly diagnosed myeloma. N Engl J Med. 2007 ; 356 : 1110-20.
4) Garban F, Attal M, Michallet M, et al. Prospective comparison of autologous stem cell transplantation followed by dose-reduced allograft (IFM99-03 trial) with tandem autologous stem cell transplantation (IFM99-04 trial) in high-risk de novo multiple myeloma. Blood. 2006 ; 107 : 3474-80.
5) Rosinol L, Perez-Simon JA, Sureda A, et al. A prospective PETHEMA study of tandem autologous transplantation versus autograft followed by reduced-intensity conditioning allogeneic transplantation in newly diagnosed multiple myeloma. Blood. 2008 ; 112 : 3591-3.
6) Bjorkstrand B, Iacobelli S, Hegenbart U, et al. Tandem autologous/reduced-intensity conditioning allogeneic stem-cell transplantation versus autologous transplantation in myeloma : long-term follow-up. J Clin Oncol. 2011 ; 29 : 3016-22.
7) Lokhorst HM, van der Holt B, Cornelissen JJ, et al. Donor versus no-donor comparison of newly diagnosed myeloma patients included in the HOVON-50 multiple myeloma study. Blood. 2012 ; 119 : 6219-25 ; quiz 399.
10) Costa LJ, Iacobelli S, Pasquini MC, et al. Tandem autologous-autologous vs. autologous-allogeneic transplantation for newly diagnosed multiple myeloma : Pooled analysis of 1,338 patients from four trials with long-term follow up. Blood. 2019 ; 134 (Suppl 1) : 259.
12) Patriarca F, Bruno B, Einsele H, et al. Long-term follow-up of a donor versus no-donor comparison in patients with multiple myeloma in first relapse after failing autologous transplantation. Biol Blood Marrow Transplant. 2018 ; 24 : 406-9.
13) Patriarca F, Einsele H, Spina F, et al. Allogeneic stem cell transplantation in multiple myeloma relapsed after autograft : a multicenter retrospective study based on donor availability. Biol Blood Marrow Transplant. 2012 ; 18 : 617-26.
14) Kawamura K, Tsukada N, Kanda Y, et al. The role of allogeneic transplantation for multiple myeloma in the era of novel agents : A study from the Japanese society of myeloma. Biol Blood Marrow Transplanta. 2018 ; 24 : 1392-8.
15) Wolschke C, Stubig T, Hegenbart U, et al. Postallograft lenalidomide induces strong NK cell-mediated antimyeloma activity and risk for T cell-mediated GvHD : Results from a phase I/II dose-finding study. Exp Hematol. 2013 ; 41 : 134-42 e3.
16) Kroger N, Shimoni A, Schilling G, et al. Unrelated stem cell transplantation after reduced intensity conditioning for patients with multiple myeloma relapsing after autologous transplantation. Br J Haematol. 2010 ; 148 : 323-31.
17) Sahebi F, Garderet L, Kanate AS, et al. Outcomes of haploidentical transplantation in patients with relapsed multiple myeloma : An EBMT/CIBMTR report. Biol Blood Marrow Transplant. 2019 ; 25 : 335-42.
18) Kneppers E, van der Holt B, Kersten MJ, et al. Lenalidomide maintenance after nonmyeloablative allogeneic stem cell transplantation in multiple myeloma is not feasible : results of the HOVON 76 Trial. Blood. 2011 ; 118 : 2413-9.
19) Alsina M, Becker PS, Zhong X, et al. Lenalidomide maintenance for high-risk multiple myeloma after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2014 ; 20 : 1183-9.
20) Moreau P, Garban F, Attal M, et al. Long-term follow-up results of IFM99-03 and IFM99-04 trials comparing nonmyeloablative allotransplantation with autologous transplantation in high-risk de novo multiple myeloma. Blood. 2008 ; 112 : 3914-5.
P.423 掲載の参考文献
1) Eleutherakis-Papaiakovou V, Bamias A, Gika D, et al. Renal failure in multiple myeloma : incidence, correlations, and prognostic significance. Leuk Lymphoma. 2007 ; 48 : 337-41.
2) Torra R, Blade J, Cases A, et al. Patients with multiple myeloma requiring long-term dialysis : presenting features, response to therapy, and outcome in a series of 20 cases. Br J Haematol. 1995 ; 91 : 854-9.
3) Dimopoulos MA, Kastritis E, Rosinol L, et al. Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia. 2008 ; 22 : 1485-93.
4) Terpos E, Dimopoulos MA. Myeloma bone disease : pathophysiology and management. Ann Oncol. 2005 ; 16 : 1223-31.
5) Terpos E, Kleber M, Engelhardt M, et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica. 2015 ; 100 : 1254-66.
6) Tete SM, Bijl M, Sahota SS, et al. Immune defects in the risk of infection and response to vaccination in monoclonal gammopathy of undetermined significance and multiple myeloma. Front Immunol. 2014 ; 5 : 257.
7) Dimopoulos MA, Sonneveld P, Leung N, et al. International Myeloma Working Group recommendations for the diagnosis and management of myeloma-related renal impairment. J Clin Oncol. 2016 ; 34 : 1544-57.
8) Dimopoulos M, Weisel K, van de Donk NWCJ, et al. Pomalidomide plus low-dose dexamethasone in patients with relapsed/refractory multiple myeloma and renal impairment : Results from a phase II Trial. J Clin Oncol. 2018 ; 36 : 2035-43.
9) Anderson K, Ismaila N, Flynn PJ, et al. Role of bone-modifying agents in multiple myeloma : American Society of Clinical Oncology Clinical Practice Guideline update. J Clin Oncol. 2018 ; 36 : 812-8.
10) Blimark C, Holmberg E, Mellqvist UH, et al. Multiple myeloma and infections : a population-based study on 9253 multiple myeloma patients. Haematologica. 2015 ; 100 : 107-13.
11) Khan S, Vaisman A, Hota SS, et al. Listeria susceptibility in patients with multiple myeloma receiving daratumumab-based therapy. JAMA Oncol. 2020 ; 6 : 293-4.
12) Tsukune Y, Sasaki M, Odajima T, et al. Incidence and risk factors of hepatitis B virus reactivation in patients with multiple myeloma in an era with novel agents : a nationwide retrospective study in Japan. Blood Cancer J. 2017 ; 7 : 631.
13) Dimopoulos MA, Siegel D, White DJ, et al. Carfilzomib vs bortezomib in patients with multiple myeloma and renal failure : a subgroup analysis of ENDEAVOR. Blood. 2019 ; 133 : 147-55.
14) Raje N, Terpos E, Willenbacher W, et al. Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma : an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol. 2018 ; 19 : 370-81.
15) Stoma I, Karpov I, Iskrov I, et al. Clinical efficacy of pneumococcal vaccination in multiple myeloma patients on novel agents : Results of a prospective clinical study. Vaccine. 2020 ; 38 : 4713-6.
P.428 掲載の参考文献
1) Albarracin F, Fonseca R, et al. Plasma cell leukemia. Blood Rev. 2011 ; 25 : 107-12.
4) Gavriatopoulou M, Musto P, Caers J, et al. European Myeloma Network recommendations on diagnosis and management of patients with rare plasma cell dyscrasias. Leukemia. 2018 ; 32 : 1883-98.
5) Mahindra A, Matt EK, Vela-Ojeda J, et al. Hematopoietic cell transplantation for primary plasma cell leukemia : Results from the center for international blood and marrow transplant research. leukemia. 2012 ; 26 : 1091-7.
7) Jurczyszyn A, Radocha J, Davila J, et al. Prognostic indicators in primary plasma cell leukemia : a multicentre retrospective study of 117 patients. Br J Haematol. 2018 ; 180 : 831-9.
8) Mina R, Joseph NS, Kaufman JL, et al. Survival outcomes of patients with primary plasma cell leukemia (pPCL) treated with novel agents. Cancer. 2019 ; 125 : 416-23.
9) Musto P, Simeon V, Martorelli MC, et al. Lenalidomide and low-dose dexamethasone for newly diagnosed primary plasma cell leukemia. Leukemia. 2014 ; 28 : 222-5.
P.433 掲載の参考文献
2) Iwanaga M, Chiang CJ, Soda M, et al. Incidence of lymphoplasmacytic lymphoma/Waldenstrom's macroglobulinaemia in Japan and Taiwan population-based cancer registries, 1996-2003. Int J Cancer. 2014 ; 134 : 174-80.
3) Kapoor P, Ansell SM, Fonseca R, et al. Diagnosis and management of Waldenstrom macroglobulinemia : Mayo stratification of macroglobulinemia and risk-adapted therapy (mSMART) guidelines 2016. JAMA Oncol. 2017 ; 3 : 1257-65.
4) Gertz MA. Waldenstrom macroglobulinemia : 2017 update on diagnosis, risk stratification, and management. Am J Hematol. 2017 ; 92 : 209-17.
5) Dimopoulos MA, Kastritis E, Owen RG, et al. Treatment recommendations for patients with Waldenstrom macroglobulinemia (WM) and related disorders : IWWM-7 consensus. Blood. 2014 ; 124 : 1404-11.
7) Kastritis E, Gavriatopoulou M, Kyrtsonis MC, et al. Dexamethasone, rituximab, and cyclophosphamide as primary treatment of Waldenstrom macroglobulinemia : final analysis of a phase 2 study. Blood. 2015 ; 126 : 1392-4.
11) Dimopoulos MA, Tedeschi A, Trotman J, et al. Phase 3 Trial of ibrutinib plus rituximab in Waldenstrom's macroglobulinemia. N Engl J Med. 2018 ; 378 : 2399-410.
12) Sakurai M, Mori T, Uchiyama H, et al. Outcome of stem cell transplantation for Waldenstrom's macroglobulinemia : analysis of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) Lymphoma Working Group. Ann Hematol. 2020 ; 99 : 1635-42.
P.439 掲載の参考文献
1) Falk RH, Comenzo RI, Skinner M. et al. The systemic amyloidosis. N Engl J Med. 1997 ; 337 : 898-909.
2) MerliniG, Stone MJ. Dangerous small B cell clones. Blood. 2006 ; 108 : 2520-30.
3) 安東由喜雄. 全国疫学調査関係資料. 厚生労働科学研究補助金 (難治性疾患等政策研究事業) アミロイドーシスに関する調査研究. 平成27年度総括研究報告書 ; 熊本 : 熊本大学. 2016 ; 23-52.
4) Sher T, Dispenzieri A, Gertz MA. Evolution of hematopoietic cell transplantation for immunoglobulin light chain amyloidosis. Biol Blood Marrow Transplant. 2016 ; 22 : 796-801.
5) Tsukada N, Ikeda M, Shinkai S, et al. High-dose melphalan and autologous stem cell transplantation for systemic light-chain amyloidosis : a single institution retrospective analysis of 40cases. Int J Hematol. 2016 ; 103 : 299-305.
6) Dispenzieri A, Gerts MA, Kyle RA, et al. Serum cardiac troponins and N-terminal pro brain natriuretic peptide : astaging system for primary systemic amyloidosis. J Clin Oncol. 2004 ; 22 : 3751-7.
7) Kumar S, Dispenzieri A, Lacy MQ, et al. Reviced prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol. 2012 ; 30 : 989-95.
8) Palladini G, Sachchithanantham S, Milsni P, et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood. 2015 ; 126 : 612-5.
9) Palladini G, Milani P, Foli A, et al. Melphalan and dexamethasone with or without bortezomib in newly diagnosed AL amyloidosis : a matched case-control study on 174 patient. Leukemia. 2014 ; 28 : 2311-6.
10) Venner CP, Gillmore JD, C et al. A matched comparison of cyclophosphamide, bortezomib and dexamethasone (CVD) versus risk-adapted ayclophosphamide, thalidomide and dexamethasone (CTD) in AL amyloidosis. Leukemia. 2014 ; 28 : 2304-10.
11) Mahmood S, Venner CP, Sachchithanantham S, et al. Lenalidomide and dexamethasone for systemic AL amyloidosis following prior treatment with thalidomide or borteomib regimens. Br J Haematol. 2014, ; 166 : 842-8.
12) Palladini G, Milani P, Foli A, et al. A phase 2 trial of pomalidomide and dexamethasone rescue treatment in patients with AL amyloidosis. Blood. 2017 ; 129 : 2120-3.
13) Kaufman GP, Schrier SL, Lafayette RA, et al. Daratumumab yields rapid and deep hematologic responses in patients with heabily pretreated AL amyloidosis. Blood. 2017 ; 130 : 900-2.
14) Reece DE, Hegenbart U, Sandhorawala V, et al. Efficacy and safety of once-weekly and twice-weekly bortezomib in patients with relapsed systemic AL amyloidosis : results of a phase1/2 study. Blood. 2011 ; 118 : 865-73.
15) Milani P, Schonland S, Palladini G, et al. Response to bendamustine is associated with a surbebal advantage in aheavyly pretreated patients with AL amyloidosis. Amyloid. 2017 ; 24 (suppl) : 56-7.
16) Sandhorawala V, Palladini G, Kukreti V, et al. A phase 1/2 tudy of the oral proteasome inhibitor ixazomib in relapsed or refractory AL amyloidosis. Blood. 2017 ; 130 : 597-605.
17) Cohen AD, Landau H, Scott EC, et al. Safty and efficacy of carfizomib (CFZ) in previously-treated systemic light chain (AL) Amyloidosis. (abstrat) Blood. 2016 ; 128 : 645.
18) Merlini G. AL amyloidosis : from molecular mechanisms to targeted therapies. American Sosiety of Hematology : Ham-Wasserman Lecture. ; 2017 : 1-12.
19) Duncan B, Richards DM, Louis M, et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med. 2015 ; 373 : 1106-14.
P.445 掲載の参考文献
1) 吉崎和幸, 川上純, 宇野賀津子, 他. キャッスルマン病診療の参照ガイド. 臨床血液. 2017 ; 58 : 97-107.
2) Dispenzieri A, Fajgenbaum DC. Overview of Castleman disease. Blood 2020 ; 135 : 1353-64.
3) Van Rhee F, Voorhees P, Dispenzieri A, et al. International, evidence-based consensus treatment guideline for idiopathic multicentric Castleman disease. Blood. 2018 ; 132 : 2115-24.
4) Boutboul D, Fadiallah J, Chawki S, et al. Treatment and outcome of unicentric Castleman disease : a retrospective analysis of 71 cases. Br J Haematol. 2019 ; 186 : 269-63.
5) Nishimoto N, Kanakura Y, Aozawa K, et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood. 2005 ; 106 : 2627-32.
6) Van Rhee F, Casper C, Voorhees PM, et al. Long-term safety of siltuximab in patients with idiopathic multicentric Castleman disease : a prespecified, open-label, extension analysis of two trials. Lancet Haematol. 2020 ; 7 : e209-17.
8) 岡本真一郎. キャッスルマン病の診断と治療の進歩. 臨床血液. 2019 ; 60 : 1205-11.
P.449 掲載の参考文献
6) Zhao H, Huang XF, Gao XM, et al. What is the best first-line treatment for POEMS syndrome : autologous transplantation, melphalan and dexamethasone, or lenalidomide and dexamethasone? Leukemia. 2019 ; 33 : 1023-9.
7) Kawajiri-Manako C, Sakaida E, Ohwada C, et al. Efficacy and long-term outcomes of autologous stem cell transplantation in POEMS syndrome : A nationwide survey in Japan. Biol Blood Marrow Transplant. 2018 ; 24 : 1180-86.
P.455 掲載の参考文献
1) 高井和江, 新國公司, 渋谷宏行, et al. 発熱, 胸腹水, 肝脾腫を伴い, 骨髄に軽度の線維化を認める血小板減少症. 臨床血液. 2010 ; 51 : 320-5.
2) Dispenzieri A, Fajgenbaum DC. Overview of castleman disease. Blood. 2020 ; 135 : 1353-64.
3) Fujimoto S, Sakai T, Kawabata H, et al. Is TAFRO syndrome a subtype of idiopathic multicentric Castleman disease? Am J Hematol. 2019 ; 94 : 975-83.
4) Masaki Y, Kawabata H, Takai K, et al. 2019 Updated diagnostic criteria and disease severity classification for TAFRO syndrome. Int J Hematol. 2020 ; 111 : 155-8.
5) 正木康史, 川端浩, 高井和江, et al. 新規疾患-TAFRO症候群の診断基準・重症度分類・治療指針-Proposed diagnostic criteria, disease severity classification, and treatment strategy for a novel disorder ; TAFRO syndrome. [Rinsho ketsueki] Jpn J Clin Hematol. 2016 ; 57 : 2029-37.
7) Nishimura Y, Hanayama Y, Fujii N, et al. Comparison of the clinical characteristics of TAFRO syndrome and idiopathic multicentric Castleman disease in general internal medicine : a 6-year retrospective study. Intern Med J. 2020 ; 50 : 184-91.
8) van Rhee F, Voorhees P, Dispenzieri A, et al. International, evidence-based consensus treatment guidelines for idiopathic multicentric Castleman disease. Blood. 2018 ; 132 : 2115-24.
9) Shirai T, Onishi A, Waki D, et al. Successful treatment with tacrolimus in TAFRO syndrome : two case reports and literature review. Medicine (Baltimore). 2018 ; 97 : e11045.
10) Fujimoto S, Kawabata H, Sakai T, et al. Optimal treatments for TAFRO syndrome : a retrospective surveillance study in Japan. Int J Hematol. 2020 ; in press.
11) Meguri Y, Asada N, Nakasako Y, et al. A case report of TAFRO syndrome successfully treated by immunosuppressive therapies with plasma exchange. Ann Hematol. 2019 ; 98 : 537-9.
12) Fajgenbaum DC, Langan RA, Japp AS, et al. Identifying and targeting pathogenic PI3K/AKT/mTOR signaling in IL-6-blockade-refractory idiopathic multicentric Castleman disease. J Clin Invest. 2019 ; 130 : 4451-63.
13) Zhang Y, Suo SS, Yang HJ, et al. Clinical features and treatment of 7 Chinese TAFRO syndromes from 96 de novo Castleman diseases : a 10-year retrospective study. J Cancer Res Clin Oncol. 2020 ; 146 : 357-65.

VI. 出血・血栓性疾患

P.462 掲載の参考文献
2) Rodeghiero F, Stasi R, Gernsheimer T, et al. Standardization of terminology, definitions and outcome criteria in immune thrombocytopenic purpura of adults and children : report from an international working group. Blood. 2009 ; 113 : 2386-93.
3) 柏木浩和, 桑名正隆, 羽藤高明, 他. 成人特発性血小板減少性紫斑病治療の参照ガイド2019改訂版. 臨床血液. 2019 ; 60 : 877-96.
4) Mithoowani S, Gregory-Miller K, Goy J, et al. High-dose dexamethasone compared with prednisone for previously untreated primary immune thrombocytopenia : a systematic review and meta-analysis. Lancet Haematol. 2016 ; 3 : e489-96.
6) Wang L, Gao Z, Chen XP, et al. Efficacy and safety of thrombopoietin receptor agonists in patients with primary immune thrombocytopenia : A systematic review and meta-analysis. Sci Rep. 2016 ; 6 : 39003.
8) Bussel J, Arnold DM, Grossbard E, et al. Fostamatinib for the treatment of adult persistent and chronic immune thrombocytopenia : Results of two phase 3, randomized, placebo-controlled trials. Am J Hematol. 2018 ; 93 : 921-30.
9) Neunert C, Terrell DR, Arnold DM, et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019 ; 3 : 3829-66.
10) Provan D, Arnold DM, Bussel JB, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 2019 ; 3 : 3780-817.
P.467 掲載の参考文献
1) Sadler JE. Pathophysiology of thrombotic thrombocytopenic purpura. Blood. 2017 ; 130 : 1181-8.
2) Kremer Hovinga JA, Vesely SK, Terrell DR, et al. Survival and relapse in patients with thrombotic thrombocytopenic purpura. Blood. 2010 ; 115 : 1500-11 : quiz 1662.
4) Scully M, Hunt BJ, Benjamin S, et al. Guidelines on the diagnosis and management of thrombotic thrombocytopenic purpura and other thrombotic microangiopathies. Br J Haematol. 2012 ; 158 : 323-35.
5) 松本雅則, 藤村吉博, 和田英夫, 他. 血栓性血小板減少性紫斑病 (TTP) 診療ガイド 2017. 臨床血液. 2017 ; 58 : 271-81.
6) Jestin M, Benhamou Y, Schelpe AS, et al. Preemptive rituximab prevents long-term relapses in immune-mediated thrombotic thrombocytopenic purpura. Blood. 2018 ; 132 : 2143-53.
7) Kremer Hovinga JA, George JN. Hereditary thrombotic thrombocytopenic purpura. N Engl J Med. 2019 ; 381 : 1653-62.
8) Froissart A, Buffet M, Veyradier A, et al. Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French thrombotic microangiopathies reference center. Crit Care Med. 2012 ; 40 : 104-11.
9) Scully M, McDonald V, Cavenagh J, et al. A phase 2 study of the safety and efficacy of rituximab with plasma exchange in acute acquired thrombotic thrombocytopenic purpura. Blood. 2011 ; 118 : 1746-53.
10) Hie M, Gay J, Galicier L, et al. Preemptive rituximab infusions after remission efficiently prevent relapses in acquired thrombotic thrombocytopenic purpura. Blood. 2014 ; 124 : 204-10.
11) Scully M, Cataland SR, Peyvandi F, et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2019 ; 380 : 335-46.
12) Scully M, Knobl P, Kentouche K, et al. Recombinant ADAMTS-13 : first-in-human pharmacokinetics and safety in congenital thrombotic thrombocytopenic purpura. Blood. 2017 ; 130 : 2055-63.
14) Peyvandi F, Callewaert F. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med. 2016 ; 374 : 2497-8.
15) Coppo P, Cuker A, George JN. Thrombotic thrombocytopenic purpura : Toward targeted therapy and precision medicine. Res Pract Thromb Haemost. 2019 ; 3 : 26-37.
P.472 掲載の参考文献
1) Berntorp E, Boulyjenkov V, Brettler D, et al. Modern treatment of haemophilia. Bull World Health Organ. 1995 ; 107 : 691-701.
2) Kitazawa T, Igawa T, Sampei Z, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med. 2012 ; 18 : 1570-4.
3) Berntorp E, Astermark J. Bjorkman S, et al. Consensus perspectives on prophylactic therapy for haemophilia : summary statement. Haemophilia. 2003 ; 9 (Suppl 1) : 1-4.
4) 徳川多津子, 石黒精, 大平勝美, 他. 血友病患者に対する止血治療ガイドライン : 2019年補遺版. ヘムライブラ(R) (エミシズマブ) 使用について. 日本血栓止血学会誌. 2020 ; 31 : 93-104.
5) Manco-Johnson MJ, Abshire TC, Shapiro AD, et al. Prophylaxis versus episodic treatment to prevent joint disease in boys with severe hemophilia. N Engl J Med. 2007 ; 357 : 535-44.
6) Oldenburg J, Zimmermann R, Katsarou O, et al. Controlled, cross-sectional MRI evaluation of joint status in severe haemophilia A patients treated with prophylaxis vs. on demand. Haemophilia. 2015 ; 21 : 171-9.
7) Hay CR, DiMichele DM. The principal results of the International Immune Tolerance Study : a randomized dose comparison. Blood. 2012 ; 119 : 1335-44.
8) Nogami K, Shima M. The Japanese Immune Tolerance Induction (J-ITI) Study in haemophilia patients with inhibitor : Outcomes and successful predictors of ITI treatment. Haemophilia. 2018 ; 24 : e328-37.
10) Mahlangu J, Oldenburg J, Paz-Priel I, et al. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N Engl J Med. 2018 ; 379 : 811-22.
11) Pasi KJ, Rangarajan S, Georgiev P, et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N Engl J Med. 2017 ; 377 : 819-28.
12) Chowdary P, Lethagen S, Friedrich U, et al. Safety and pharmacokinetics of anti-TFPI antibody (concizumab) in healthy volunteers and patients with hemophilia : a randomized first human dose trial. J Thromb Haemost. 2015 ; 13 : 743-54.
P.474 掲載の参考文献
1) World Federation of Hemophilia : Carriers and women with hemophilia. <https://www1.wfh.org/publication/files/pdf-1471.pdf#search='World+Federation+of+Hemophilia%3A+Carriers+and+Women+with+Hemophilia.>
2) Kulkarni R, Soucie JM, et al. Sites of initial bleeding episodes, mode of delivery and age of diagnosis in babies with haemophilia diagnosed before the age of 2 years : a report from The Centers for Disease Control and Prevention's (CDC) Universal Data Collection (UDC) project. Haemophilia. 2009 ; 15 : 1281-90.
3) Osooli M, Donfield SM, Carlsson KS, et al. Joint comorbidities among Swedish carriers of haemophilia : A register-based cohort study over 22 years. Haemophilia. 2019 ; 25 : 845-50.
P.480 掲載の参考文献
1) 酒井道生, 天野景裕, 小川孔幸, 他. 後天性血友病A診療ガイドライン. 血栓止血誌. 2017 ; 28 : 715-47.
2) 一瀬白帝, 和田英夫, 惣宇利正善, 他. 自己免疫性出血病FXIII/13診断ガイド. 血栓止血誌. 2015 ; 26 : 658-68.
3) 一瀬白帝, 和田英夫, 惣宇利正善, 他. 自己免疫性出血病FXIII/13診断ガイド. 血栓止血誌. 2017 ; 28 : 393-420.
4) Collins PW, Chalmers E, Hart D, et al. United Kingdom Haemophilia Centre Doctors' Organization : Diagnosis and management of acquired coagulation inhibitors : a guideline from UKHCDO. Br J Haematol. 2013 ; 162 : 758-73.
5) Franchini M, Castaman G, Coppola A, et al. AICE recommendations for diagnosis and management. Blood Transfus. 2015 ; 13 : 498-513.
6) Hay CR, Brown S, Collins PW, et al. The diagnosis and management of factor VIII and IX inhibitors : a guideline from the United Kingdom Haemophilia Centre Doctors Organisation. Br J Haematol. 2006 ; 133 : 591-605.
7) Kruse-Jarres R, Kempton CL, Baudo F, et al. Acquired hemophilia A : updated review of evidence and treatment guidance. Am J Hematol. 2017 ; 92 : 695-705.
9) Collins P, Baudo F, Knoebl, et al. Immunosuppression for acquired hemophilia A : results from the European Acquired Haemophilia Registy (EACH2). Blood. 2012 ; 120 : 47-55.
10) Kruse-Jarres R, St-Louis J, Greist A, et al. Efficacy and safety of OBI-1, an antihaemophilic factor VIII (recombinant), porcine sequence, in subjects with acquired haemophilia A. Haemophilia. 2015 ; 21 : 162-70.
11) Takeyama M, Nogami K, Matsumoto T, et al. An anti-factor IXa/factor X bispecific antibody, emicizumab, improves ex vivo coagulant potentials in plasma from patients with acquired hemophilia A. J Thromb Haemoat. 2020 ; 18 : 825-33.
12) Trossaert M, Graveleau J, Voisin S, et al. The factor VIII : C/VWF : Ag ratio as a useful tool to predict relapse inpatients with acquired haemophilia A : A retrospective cohort study. Haemophilia. 2019 ; 25 : 527-34.
13) Zanon E, Pasca S, Santoro C, et al. Activated prothrombin complex concentrate (FEIBA(R)) in acquired haemophilia A : a large multicentre Italian study-the FAIR Registry. Br J Haematol. 2019 ; 184 : 853-5.
14) Dane KE, Lindsley JP, Streiff MB, et al. Successful use of emicizumab in a patient with refractory acquired hemophilia A and acute coronary syndrome requiring percutaneous coronary intervention. Res Pract Thromb Haemost. 2019 ; 3 : 420-3.
15) Mohnle P, Pekrul I, Spannagl M, et al. Emicizumab in the treatment of acquired haemophilia : a case report. Transfus Med Hemother. 2019 ; 46 : 121-3.
16) Hess KJ, Patel P, Joshi AM, et al. Utilization of emicizumab in acquired factor VIII deficiency. Am J Case Rep. 2020 ; 21 : e922326.
17) Ai-Banaa K, Alhillan A, Hawa F, et al. Emicizumab use in treatment of acquired hemophilia A : a case report. Am J Case Rep. 2019 ; 20 : 1046-8.
P.486 掲載の参考文献
1) Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost : JTH. 2006 ; 4 : 295-306.
2) Amengual O, Atsumi T. Antiphospholipid syndrome, "the best prophet of the future". Modern rheumatology/the Japan Rheumatism Association. 2018 ; 28 : 409-16.
3) Fujieda Y, Atsumi T, Amengual O, et al. Predominant prevalence of arterial thrombosis in Japanese patients with antiphospholipid syndrome. Lupus. 2012 ; 21 : 1506-14.
4) Otomo K, Atsumi T, Amengual O, et al. Efficacy of the antiphospholipid score for the diagnosis of antiphospholipid syndrome and its predictive value for thrombotic events. Arth Rheumat. 2012 ; 64 : 504-12.
5) Tektonidou MG, Andreoli L, Limper M, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheumatic Dis. 2019 ; 78 : 1296-304.
6) Kato M, Hisada R, Atsumi T. Clinical profiles and risk assessment in patients with antiphospholipid antibodies. Expert Rev Clin Immunol. 2019 ; 15 : 73-81.
7) Tektonidou MG, Ioannidis JP, Boki KA, et al. Prognostic factors and clustering of serious clinical outcomes in antiphospholipid syndrome. QJM : monthly Journal of the Association of Physicians. 2000 ; 93 : 523-30.
8) Pengo V, Denas G, Zoppellaro G, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood. 2018 ; 132 : 1365-71.
9) Ordi-Ros J, Saez-Comet L, Perez-Conesa M, et al. Rivaroxaban versus vitamin K antagonist in antiphospholipid syndrome : A randomized noninferiority Trial. Ann Intern Med. 2019.
10) Sato T, Nakamura H, Fujieda Y, et al. Factor Xa inhibitors for preventing recurrent thrombosis in patients with antiphospholipid syndrome : a longitudinal cohort study. Lupus. 2019 ; 28 : 1577-82.
11) Arnaud L, Mathian A, Ruffatti A, et al. Efficacy of aspirin for the primary prevention of thrombosis in patients with antiphospholipid antibodies : an international and collaborative meta-analysis. Autoimmun Rev. 2014 ; 13 : 281-91.
12) Crowther MA, Ginsberg JS, Julian J, et al. A comparison of two intensities of warfarin for the prevention of recurrent thrombosis in patients with the antiphospholipid antibody syndrome. N Engl J Med. 2003 ; 349 : 1133-8.
14) Erkan D, Harrison MJ, Levy R, et al. Aspirin for primary thrombosis prevention in the antiphospholipid syndrome : a randomized, double-blind, placebo-controlled trial in asymptomatic antiphospholipid antibody-positive individuals. Arthrit Rheumat. 2007 ; 56 : 2382-91.
15) Lim W, Crowther MA, Eikelboom JW. Management of antiphospholipid antibody syndrome : a systematic review. JAMA : J Am Med Associat. 2006 ; 295 : 1050-7.
16) Ruiz-Irastorza G, Hunt BJ, Khamashta MA. A systematic review of secondary thromboprophylaxis in patients with antiphospholipid antibodies. Arthrit Rheumat. 2007 ; 57 : 1487-95.
17) Fonseca AG, D'Cruz DP. Controversies in the antiphospholipid syndrome : can we ever stop warfarin? J Autoimmune Dis. 2008 ; 5 : 6.
18) Ohnishi N, Fujieda Y, Hisada R, et al. Efficacy of dual antiplatelet therapy for preventing recurrence of arterial thrombosis in patients with antiphospholipid syndrome. Rheumatol. 2018.
19) Tektonidou MG, Laskari K, Panagiotakos DB, et al. Risk factors for thrombosis and primary thrombosis prevention in patients with systemic lupus erythematosus with or without antiphospholipid antibodies. Arthritis and Rheumat. 2009 ; 61 : 29-36.
20) Erkan D, Unlu O, Sciascia S, et al. Hydroxychloroquine in the primary thrombosis prophylaxis of antiphospholipid antibody positive patients without systemic autoimmune disease. Lupus. 2017 : 961203317724219.
21) Nuri E, Taraborelli M, Andreoli L, et al. Long-term use of hydroxychloroquine reduces antiphospholipid antibodies levels in patients with primary antiphospholipid syndrome. Immunol Res. 2017 ; 65 : 17-24.
22) Meroni PL, Raschi E, Testoni C, et al. Statins prevent endothelial cell activation induced by antiphospholipid (anti-beta2-glycoprotein I) antibodies : effect on the proadhesive and proinflammatory phenotype. Arthritis Rheum. 2001 ; 44 : 2870-8.
23) Watanabe T, Oku K, Amengual O, et al. Effects of statins on thrombosis development in patients with systemic lupus erythematosus and antiphospholipid antibodies. Lupus. 2018 ; 27 : 225-34.
P.494 掲載の参考文献
1) 厚生労働省 平成29年4月1日施行の指定難病 (新規・更新). 特発性血栓症 (遺伝性血栓性素因によるものに限る.) <http://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000085261.html.>
2) Middeldorp S. Inherited thrombophilia : a double-edged sword. Hematology Am Soc Hematol Educ Program. 2016 ; 2016 : 1-9.
3) Moran J, Bauer KA. Managing thromboembolic risk in patients with hereditary and acquired thrombophilias. Blood. 2020 ; 135 : 344-50.
4) Sakata T, Okamoto A, Mannami T, et al. Prevalence of protein S deficiency in the Japanese general population : The Suita Study. J Thromb Haemost. 2004 ; 2 : 1012-3.
5) Kimura R, Honda S, Kawasaki T, et al. Protein S-K196E mutations as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood. 2006 ; 107 : 1737-8.
6) Ohga S, Ishiguro A, Takahashi Y, et al. Protein C deficiency as the major cause of thrombophilias in childhood. Pediatr Int. 2013 ; 55 : 267-71.
7) Di Minno MND, Ambrosino P, Ageno W, et al. Natural anticoagulants deficiency and the risk of venous thromboembolism : a meta-analysis of observational studies. Thromb Res. 2015 ; 135 : 923-32.
8) Chiasakul T, Jesus ED, Tong J, et al. Inherited thrombophilia and the risk of arterial ischemic stroke : A systematic review and meta-analysis. Am Heart Assoc. 2019 ; 8 : e012877.
9) Gosselin RC, Adcock DM. Assessing nonvitamin K antagonist oral anticoagulants (NOACs) in the laboratory. Int J Lab Hematol. 2015 ; 37 (Suppl 1) : 46-51.
10) Skelley JW, White CW, Thomason AR, et al. The use of direct oral anticoagulants in inherited thrombophilia. J Thromb Thrombolysis. 2017 ; 43 : 24-30.

VII. 支持療法・輸血

P.502 掲載の参考文献
2) Suzuki T, Tomonaga M, Miyazaki Y, et al. Japanese epidemiological survey with consensus statement on Japanese guidelines for treatment of iron overload in bone marrow failure syndromes. Int J Hematol. 2008 ; 88 : 30-5.
3) Leitch HA, Parmar A, Wells RA, et al. Overall survival in lower IPSS risk MDS by receipt of iron chelation therapy, adjusting for patient-related factors and measuring from time of first red blood cell transfusion dependence : an MDS-CAN analysis. Br J Haematol. 2017 ; 179 : 83-97.
5) Malcovati L, Porta MG, Pascutto C, et al. Prognostic factors and life expectancy in myelodysplastic syndromes classified according to WHO criteria : a basis for clinical decision making. J Clin Oncol. 2005 ; 23 : 7594-603.
6) Armand P, Sainvil MM, Kim HT, et al. Does iron overload really matter in stem cell transplantation? Am J Hematol. 2012 ; 87 : 569-72.
7) 輸血後鉄過剰症の診断基準と診療の参照ガイド改訂版作成のためのワーキンググループ. 輸血後鉄過剰症診療の参照ガイド令和1年改訂版. 2020. <http://zoketsushogaihan.umin.jp/file/2020/05.pdf>
8) Hoeks M,Yu G, Langemeijer S, et al. Impact of treatment with iron chelation therapy in patients with lower-risk myelodysplastic syndromes participating in the European MDS registry Haematologica. 2020 ; 105 : 640-51.
9) Takatoku M, Uchiyama T, Okamoto S, et al. Retrospective nationwide survey of Japanese patients with transfusion-dependent MDS and aplastic anemia highlights the negative impact of iron overload on morbidity/mortality, Eur J Haematol, 2007 ; 78 : 487-94.
10) Lee JW, Kang HJ, Kim EK, et al. Effect of iron overload and iron-chelating therapy on allogeneic hematopoietic SCT in children. Bone Marrow Transplant. 2009 ; 44 : 793-7.
P.508 掲載の参考文献
1) Freifeld AG, Bow EJ, Sepkowitz KA, et al. Clinical practice guideline for the use of antimicrobial agents in neutropenic patients with cancer : 2010 update by the infectious diseases society of America. Clin Infect Dis. 2011 ; 52 : e56-93.
2) 日本臨床腫瘍学会. 発熱性好中球減少症 (FN) 診療ガイドライン 改訂第2版. 東京 : 南江堂, 2017.
3) Cordonnier C, Pautas C, Maury S, et al. Empirical versus preemptive antifungal therapy for high-risk, febrile, neutropenic patients : a randomized, controlled trial. Clin Infect Dis. 2009 ; 48 : 1042-51.
4) Morrissey CO, Chen SC, Sorrell TC, et al. Galactomannan and PCR versus culture and histology for directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients : a randomised controlled trial. Lancet Infect Dis. 2013 ; 13 : 519-28.
5) Kanda Y, Kimura SI, Iino M, et al. D-Index-guided early antifungal therapy versus empiric antifungal therapy for persistent febrile neutropenia : A randomized controlled noninferiority trial. J Clin Oncol. 2020 ; 38 : 815-22.
P.514 掲載の参考文献
1) McDonald LC, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005 ; 353 : 2433-41.
2) Misch EA, N. Safdar, Clostridioides difficile infection in the stem cell transplant and hematologic malignancy population. Infect Dis Clin North Am. 2019 ; 33 : 447-66.
3) Salamonowicz M, et al. Incidence, course, and outcome of Clostridium difficile infection in children with hematological malignancies or undergoing hematopoietic stem cell transplantation. Eur J Clin Microbiol Infect Dis. 2018 ; 37 : 1805-12.
4) Selvey LA, et al. Clostridium difficile Infections amongst patients with haematological malignancies : A Data Linkage Study. PLoS One. 2016 ; 11 : p. e0157839.
5) Zacharioudakis IM, Ziakas PD, Mylonakis E, Clostridium difficile infection in the hematopoietic unit : a meta-analysis of published studies. Biol Blood Marrow Transplant. 2014 ; 20 : 1650-4.
6) Young JA, et al. Infections after transplantation of bone marrow or peripheral blood stem cells from unrelated donors. Biol Blood Marrow Transplant. 2016 ; 22 : 359-70.
7) Dubberke ER, et al. Risk for Clostridium difficile infection after allogeneic hematopoietic cell transplant remains elevated in the postengraftment period. Transplant Direct. 2017 ; 3 : e145.
8) Alonso CD, et al. Epidemiology and outcomes of Clostridium difficile infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2012 ; 54 : p1053-63.
9) Trifilio SM, Pi J, Mehta J. Changing epidemiology of Clostridium difficile-associated disease during stem cell transplantation. Biol Blood Marrow Transplant. 2013 ; 19 : 405-9.
10) Schuster MG, et al. Infections in hematopoietic cell transplant recipients : results from the organ transplant infection project, A multicenter, prospective, cohort study. Open Forum Infect Dis. 2017 ; 4 : p. ofx050.
11) McDonald LC, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children : 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis. 2018 ; 66 : p. e1-48.
12) Parmar SR, et al. A retrospective review of metronidazole and vancomycin in the management of Clostridium difficile infection in patients with hematologic malignancies. J Oncol Pharm Pract. 2014 ; 20 : p172-82.
13) Cornely OA, et al. Resolution of Clostridium difficile-associated diarrhea in patients with cancer treated with fidaxomicin or vancomycin. J Clin Oncol. 2013 ; 31 : 2493-9.
14) Ganetsky A, et al. Oral vancomycin prophylaxis is highly effective in preventing clostridium difficile Infection in allogeneic hematopoietic cell transplant recipients. Clin Infect Dis. 2019 ; 68 : 2003-9.
15) Mullane KM, et al. A randomized, placebo-controlled trial of fidaxomicin for prophylaxis of Clostridium difficile-associated diarrhea in adults undergoing hematopoietic stem cell transplantation. Clin Infect Dis. 2019 ; 68 : 196-203.
16) Louie TJ, et al. Fidaxomicin versus vancomycin for clostridium difficile infection. N Engl J Med. 2011 ; 364 : p.422-31.
17) Cornely OA, et al. Fidaxomicin versus vancomycin for infection with Clostridium difficile in Europe, Canada, and the USA : a double-blind, non-inferiority, randomised controlled trial. Lancet Infect Dis. 2012 ; 12 : p.281-9.
18) Mikamo H, et al. Efficacy and safety of fidaxomicin for the treatment of Clostridioides (Clostridium) difficile infection in a randomized, double-blind, comparative Phase III study in Japan. J Infect Chemother. 2018 ; 24 : 744-52.
19) Baur D, et al. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection : a systematic review and meta-analysis. Lancet Infect Dis. 2017 ; 17 : p.990-1001.
20) Dingle KE, et al. Effects of control interventions on Clostridium difficile infection in England : an observational study. Lancet Infect Dis. 2017 ; 17 : p.411-21.
21) Kallen AJ, et al. Complete restriction of fluoroquinolone use to control an outbreak of Clostridium difficile infection at a community hospital. Infect Control Hosp Epidemiol. 2009 ; 30 : p264-72.
22) Mikulska M, et al. Fluoroquinolone prophylaxis in haematological cancer patients with neutropenia : ECIL critical appraisal of previous guidelines. J Infect. 2018 ; 76 : p.20-37.
23) Vehreschild MJ, et al. Clostridium difficile infection in patients with acute myelogenous leukemia and in patients undergoing allogeneic stem cell transplantation : epidemiology and risk factor analysis. Biol Blood Marrow Transplant. 2014 ; 20 : 823-8.
P.520 掲載の参考文献
1) Hibbett DS, Binder M, Bischoff JF, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007 ; 111 (Pt 5) : 509-47.
2) Cornely OA, Alastruey-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis : An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019 ; 19 : e405-21.
3) Richardson M. The ecology of the Zygomycetes and its impact on environmental exposure. Clin Microbiol Infect. 2009 ; 15 (Suppl 5) : 2-9.
4) Petrikkos G, Skiada A, Lortholary O, et al. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis. 2012 ; 54 (Suppl 1) : S23-34.
5) Ostrosky-Zeichner L, Smith M, McGinnis MR. Zygomycosis. In : Anaissie EJ, et al. Editors. Clinical Mycology, 2nd ed. Chunrchill Livingstone ; 2009. p.297-307.
6) Davoudi S, Graviss LS, Kontoyiannis DP. Healthcare-associated outbreaks due to Mucorales and other uncommon fungi. Eur J Clin Invest. 2015 ; 45 : 767-73.
7) Uchida T, Okamoto M, Fujikawa K, et al. Gastric mucormycosis complicated by a gastropleural fistula : A case report and review of the literature. Medicine (Baltimore). 2019 ; 98 : e18142.
8) Maravi-Poma E, Rodriguez-Tudela JL, de Jalon JG, et al. Outbreak of gastric mucormycosis associated with the use of wooden tongue depressors in critically ill patients. Intensive Care Med. 2004 ; 30 : 724-8.
9) Sivagnanam S, Sengupta DJ, Hoogestraat D, et al. Seasonal clustering of sinopulmonary mucormycosis in patients with hematologic malignancies at a large comprehensive cancer center. Antimicrob Resist Infect Control. 2017 ; 6 : 123.
10) Donnelly JP, Chen SC, Kauffman CA, et al. Revision and Update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2019 ; ciz1008.
11) Georgiadou SP, Sipsas NV, Marom EM, Kontoyiannis DP. The diagnostic value of halo and reversed halo signs for invasive mold infections in compromised hosts. Clin Infect Dis. 2011 ; 91 : 1144-55.
12) Harris B, Geyer AI. Diagnostic evaluation of pulmonary abnormalities in patients with hematologic malignancies and hematopoietic cell transplantation. Clin Chest Med. 2017 ; 38 : 317-31.
13) Zare Mehrjardi M, Kahkouee S, Pourabdollah M. Radio-pathological correlation of organizing pneumonia (OP) : a pictorial review. Br J Radiol. 2017 ; 90 : 20160723.
14) Lee YR, Choi YW, Lee KJ, et al. CT halo sign : the spectrum of pulmonary diseases. Br J Radiol. 2005 ; 78 : 862-5.
15) Godoy MC, Viswanathan C, Marchiori E, et al. The reversed halo sign : update and differential diagnosis. Br J Radiol. 2012 ; 85 : 1226-35.
16) Rickerts V, Mousset S, Lambrecht E, et al. Comparison of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infections from biopsy specimens. Clin Infect Dis. 2007 ; 44 : 1078-83.
17) Lass-Florl C, Resch G, Nachbaur D, et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. Clin Infect Dis. 2007 ; 45 : e101-4.
18) Walsh TJ, Gamaletsou MN, McGinnis MR, et al. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis. 2012 ; 54 (Suppl 1) : S55-60.
19) Caillot D, Couaillier JF, Bernard A, et al. Increasing volume and changing characteristics of invasive pulmonary aspergillosis on sequential thoracic computed tomography scans in patients with neutropenia. J Clin Oncol. 2001 ; 19 : 253-9.
20) Klimko N, Khostelidi S, Shadrivova O, et al. Contrasts between mucormycosis and aspergillosis in oncohematological patients. Med Mycol. 2019 ; 57 (Suppl 2) : S138-S44.
21) Son HJ, Sung H, Park SY, et al. Diagnostic performance of the (1-3) -β-D-glucan assay in patients with Pneumocystis jirovecii compared with those with candidiasis, aspergillosis, mucormycosis, and tuberculosis, and healthy volunteers. PLoS One. 2017 ; 12 : e0188860.
22) Angebault C, Lanternier F, Dalle F, et al. Prospective evaluation of serum β-Glucan testing in patients with probable or proven fungal diseases. Open Forum Infect Dis. 2016 ; 3 : ofw128.
23) Ibrahim AS, Bowman JC, Avanessian V, et al. Caspofungin inhibits Rhizopus oryzae 1,3-beta-D-glucan synthase, lowers burden in brain measured by quantitative PCR, and improves survival at a low but not a high dose during murine disseminated zygomycosis. Antimicrob Agents Chemother. 2005 ; 49 : 721-7.
24) Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis. 2008 ; 47 : 503-9.
25) Kontoyiannis DP, Azie N, Franks B, et al. Prospective antifungal therapy (PATH) alliance (R) : focus on mucormycosis. Mycoses. 2014 ; 57 : 240-6.
26) 河野茂, 泉川公一, 吉田稔, 他. 深在性真菌症の日本人患者を対象としたポサコナゾールの安全性および有効性を検討する無作為化, 実薬対照, 非盲検比較試験. 日本医真菌学会雑誌. 2020 ; 61 : 1-11.
27) Maertens JA, Raad II, Marr KA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE) : a phase 3, randomised-controlled, non-inferiority trial. Lancet. 2016 ; 387 : 760-9.
28) Marty FM, Ostrosky-Zeichner L, Cornely OA, et al. Isavuconazole treatment for mucormycosis : a single-arm open-label trial and case-control analysis. Lancet Infect Dis. 2016 ; 16 : 828-37.
29) Tissot F, Agrawal S, Pagano L, et al. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematol. 2017 ; 102 : 433-44.
30) Bays DJ, Thompson GR 3rd. Fungal Infections of the stem cell transplant recipient and hematologic malignancy patients. Infect Dis Clin North Am. 2019 ; 33 : 545-66.
31) Reed C, Bryant R, Ibrahim AS, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008 ; 47 : 364-71.
32) Ota H, Yamamoto H, Kimura M, et al. Successful treatment of pulmonary mucormycosis caused by cunninghamella bertholletiae with high-dose liposomal amphotericin B (10 mg/kg/day) followed by a lobectomy in cord blood transplant recipients. Mycopathologia. 2017 ; 182 : 847-53.
33) West KA, Gea-Banacloche J, Stroncek D, Kadri SS. Granulocyte transfusions in the management of invasive fungal infections. Br J Haematol. 2017 ; 177 : 357-74.
34) Estcourt LJ, Stanworth SJ, Hopewell S, et al. Granulocyte transfusions for treating infections in people with neutropenia or neutrophil dysfunction. Cochrane Database Syst Rev. 2016 ; 4 : CD005339.
35) Prakash H, Chakrabarti A. Global Epidemiology of Mucormycosis. J Fungi (Basel). 2019 ; 5 : 26.
36) Lass-Florl C, Cuenca-Estrella M. Changes in the epidemiological landscape of invasive mould infections and disease. J Antimicrob Chemother. 2017 ; 72 (suppl 1) : i5-i11.
37) Kontoyiannis DP, Marr KA, Park BJ, et al. Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006 : overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis. 2010 ; 50 : 1091-100.
38) Skiada A, Pagano L, Groll A, et al. Zygomycosis in Europe : analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect. 2011 ; 17 : 1859-67.
39) Lamaris GA, Ben-Ami R, Lewis RE, et al. Increased virulence of Zygomycetes organisms following exposure to voriconazole : a study involving fly and murine models of zygomycosis. J Infect Dis. 2009 ; 199 : 1399-406.
40) Lewis RE, Georgiadou SP, Sampsonas F, et al. Risk factors for early mortality in haematological malignancy patients with pulmonary mucormycosis. Mycoses. 2014 ; 57 : 49-55.
41) Jeong W, Keighley C, Wolfe R, et al. The epidemiology and clinical manifestations of mucormycosis : a systematic review and meta-analysis of case reports. Clin Microbiol Infect. 2019 ; 25 : 26-34.
42) Spellberg B, Ibrahim AS, Chin-Hong PV, et al. The Deferasirox-AmBisome Therapy for Mucormycosis (DEFEAT Mucor) study : a randomized, double-blinded, placebo-controlled trial. J Antimicrob Chemother. 2012 ; 67 : 715-22.
43) Soman R, Gupta N, Shetty A, et al. Deferasirox in mucormycosis : hopefully, not defeated. J Antimicrob Chemother. 2012 ; 67 : 783-4.
44) Ino K, Nakase K, Nakamura A, et al. Management of pulmonary mucormycosis based on a polymerase chain reaction (PCR) diagnosis in patients with hematologic malignancies : A report of four cases. Intern Med. 2017 ; 56 : 707-11.
45) Shibata W, Niki M, Sato K, et al. Detection of Rhizopus-specific antigen in human and murine serum and bronchoalveolar lavage. Med Mycol. 2020 ; 58 : 958-64.
P.528 掲載の参考文献
1) Ljungman P, Ward KN, Crooks BN, et al. Respiratory virus infections after stem cell transplantation : a prospective study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2001 ; 28 : 479-84.
2) Nichols WG, Guthrie KA, Corey L, et al. Influenza infections after hematopoietic stem cell transplantation : risk factors, mortality, and the effect of antiviral therapy. Clin Infect Dis. 2004 ; 39 : 1300-6.
3) Kmeid J, Vanichanan J, Dimpy P, et al. Outcomes of influenza infections in hematopoietic cell transplant recipients : Application of an immunodeficiency scoring index. Biol Blood and Marrow Transplant. 2016 ; 22 : 542-8.
4) Kumar D, Ferreira VH, Blumberg E, et al. A 5-Year Prospective Multicenter Evaluation of Influenza Infection in Transplant Recipients. Clin Infect Dis. 2018 ; 67 : 1322-9.
5) Ljungman P, Camara R, Perez-Bercoff L, et al. Outcome of pandemic H1N1 infections in hematopoietic stem cell transplant recipients. Haematologica. 2011 ; 96 : 1231-5.
6) Cordero E, Perez-Romero P, Moreno A, et al. Pandemic influenza A (H1N1) virus infection in solid organ transplant recipients : impact of viral and non-viral co-infection. Clin Microbiol Infect. 2012 ; 18 : 67-73.
7) Boudreault AA, Xie H, Leisenring W, et al. Impact of Corticosteroid Treatment and Antiviral Therapy on Clinical Outcomes in Hematopoietic Cell Transplant Patients Infected with Influenza Virus Author links open overlay panel. Biol Blood and Marrow Transplant 2011 ; 17 : 979-86.
8) Choi S, Boudreault AA, Xie H, et al. Differences in clinical outcomes after 2009 influenza A/H1N1 and seasonal influenza among hematopoietic cell transplant recipients. Blood. 2011 ; 117 : 5050-6.
9) Hermann B, Lehners N, Brodhun M, et al. Influenza virus infections in patients with malignancies ?? characteristics and outcome of the season 2014/15. A surveyconducted by the Infectious Diseases Working Party (AGIHO) of the German Society of Haematology and Medical Oncology (DGHO). Eur J Clin Microbiol Infect Dis. 2017 ; 36 : 565-73.
10) Reid G, S. Huprikar S, Patel G, et al. A multicenter evaluation of pandemic influenza A/H1N1 in hematopoietic stem cell transplant recipients. Transpl Infect Dis. 2013 ; 15 : 487-92.
11) Pinana JL, Perez A, Montoro J, et al. Clinical effectiveness of influenza vaccination after allogeneic hematopoietic stem cell transplantation : A cross-sectional, prospective, observational study. Clin Infect Dis. 2019 ; 68 : 1894-903.
12) Quispe-Laime AM, Bracco JD, Barberio PA, et al. H1N1 influenza A virus-associated acute lung injury : response to combination oseltamivir and prolonged corticosteroid treatment. Intensive Care Med. 2010 ; 36 : 33-41.
13) Engelhard D, Mohty B, de la Camara R, et al. European guidelines for prevention and management of influenza in hematopoietic stemcell transplantation and leukemia patients : summary of ECIL-4 (2011), on behalf of ECIL, a jointventure of EBMT, EORTC, ICHS, and ELND. Transpl Infect Dis. 2013 ; 15 : 219-32.
14) Rubin LG, Levin MJ, Ljungman P, et al. Infectious Diseases Society of America. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014 ; 58 : 309-18.
15) Casper C, Englund J, Boeckh M, et al. How I treat influenza in patients with hematologic malignancies. Blood. 2010 ; 115 : 1331-42.
16) Shah DP, Ghantoji SS, Ariza-Heredia EJ, et al. Immunodeficiency scoring index to predict poor outcomes in hematopoietic cell transplant recipients with RSV infections. Blood. 2014 ; 123 : 3263-8.
17) Kobayashi S, Kimura F, Kobayashi A, et al. Influenza virus reactivation after remission with oseltamivir treatment in a patient undergoing nonmyeloablative bone marrow transplantation Author links open overlay panel. J Infect Chemother. 2008 ; 14 : 308-10.
18) Kohno S, Kida H, Mizuguchi M, et al. Intravenous peramivir for treatment of influenza A and B virus infection in high-risk patients. Antimicrob Agents Chemother. 2011 ; 55 : 2803-12.
19) Jong MD, Ison MG, Monto AS, et al. Evaluation of intravenous peramivir for treatment of influenza in hospitalized patients. Clin Infect Dis. 2014 ; 59 : e172-e85.
20) Ison MG, Fraiz J, Heller B, et al. Intravenous peramivir for treatment of influenza in hospitalized patients. Antivir Ther. 2014 ; 19 : 349-61.
21) Treanor JJ, Hayden FG, Vrooman PS, et al. Efficacy and Safety of the Oral Neuraminidase Inhibitor Oseltamivir in Treating Acute InfluenzaA Randomized Controlled Trial. JAMA 2000 ; 283 : 1016.
22) Ison MG, Portsmouth S, Yoshida Y, et al. Early treatment with baloxavir marboxil in high-risk adolescent and adult outpatients with uncomplicated influenza (CAPSTONE-2) : a randomised, placebo-controlled, phase 3 trial. Lancet Infect Dis. 2020 ; S1473-3099 : 30004-9.
23) Thorlund K, Awad T, Boivin G, et al. Systematic review of influenza resistance to theneuraminidase inhibitors. BMC Infect Dis. 2011 ; 11 : 134.
24) Renaud C, Boudreault AA, Kuypers J, et al. H275Y mutant pandemic (H1N1) 2009 virus in immunocompromised patients. Emerg Infect Dis. 2011 ; 17 : 653-765.
25) Nguyen H, Fry A, Loveless PA, et al. Recovery of a multidrug-resistant strain of pandemic influenza A 2009 (H1N1) virus carrying a dual H275Y/I223Rmutation from a child after prolongedtreatment with oseltamivir. Clin Infect Dis. 2010 ; 51 : 983-4.
26) Machado CM, Cardoso MRA, Rocha IF, The benefit of influenza vaccination after bone marrow transplantation. Bone marrow transplant. 2005 ; 36 : 897-900.
P.535 掲載の参考文献
2) von Wolff M, Germeyer A, Liebenthron J, et al. Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part II : fertility preservation techniques. Arch Gynecol Obstet. 2018 ; 297 : 257-67.
3) Sanders JE, Hawley J, Levy W, et al. Pregnancies following high-dose cyclophosphamide with or without high-dose busulfan or total-body irradiation and bone marrow transplantation. Blood. 1996 ; 87 : 3045-52.
4) Anserini P, Chiodi S, Spinelli S, et al. Semen analysis following allogeneic bone marrow transplantation. Additional data for evidence-based counselling. Bone Marrow Transplant. 2002 ; 30 : 447-51.
5) Jacob A, Barker H, Goodman A, et al. Recovery of spermatogenesis following bone marrow transplantation. Bone Marrow Transplant. 1998 ; 22 : 277-9.
6) Spinelli S, Chiodi S, Bacigalupo A, et al. Ovarian recovery after total body irradiation and allogeneic bone marrow transplantation : long-term follow up of 79 females. Bone Marrow Transplant. 1994 ; 14 : 373-80.
7) Fujino H, Ishida H, Iguchi A, et al. High rates of ovarian function preservation after hematopoietic cell transplantation with melphalan-based reduced intensity conditioning for pediatric acute leukemia : an analysis from the Japan Association of Childhood Leukemia Study (JACLS). Int J Hematol. 2019 ; 109 : 578-83.
8) Shimizu M, Sawada A, Yamada K, et al. Encouraging results of preserving ovarian function after allo-HSCT with RIC. Bone Marrow Transplant. 2012 ; 47 : 141-2.
9) Lasica M, Taylor E, Bhattacharyya P, et al. Fertility in premenopausal women post autologous stem cell transplant with BEAM conditioning. Eur J Haematol. 2016 ; 97 : 348-52.
10) Jackson GH, Wood A, Taylor PR, et al. Early high dose chemotherapy intensification with autologous bone marrow transplantation in lymphoma associated with retention of fertility and normal pregnancies in females. Scotland and Newcastle Lymphoma Group, UK. Leuk Lymphoma. 1997 ; 28 : 127-32.
11) Ashizawa M, Akahoshi Y, Nakano H, et al. Updated Clinical outcomes of hematopoietic stem cell transplantation using myeloablative total body irradiation with ovarian shielding to preserve fertility. Biol Blood Marrow Transplant. 2019 ; 25 : 2461-7.
12) Rueffer U, Breuer K, Josting A, et al. Male gonadal dysfunction in patients with Hodgkin's disease prior to treatment. Ann Oncol. 2001 ; 12 : 1307-11.
13) Ashizawa M, Kanda Y. Preservation of fertility in patients with hematological malignancies. Jpn J Clin Oncol. 2020.
15) Dolmans MM, Marinescu C, Saussoy P, et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood. 2010 ; 116 : 2908-14.
16) Greve T, Clasen-Linde E, Andersen MT, et al. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood. 2012 ; 120 : 4311-6.
17) Demee Stere, Brice P, Peccatori FA, No evidence for the benefit of genadotropin-releasing hormone agonist in preserving ovarian function and fertility in lymphoma survivors treated with chemotherapy : final long-term report of a prospective randomized trial. J Clin Oncol. 2016 ; 34 : 2568-74.

VIII. 造血幹細胞移植

P.543 掲載の参考文献
1) Penack O, Marchetti M, Ruutu T, et al. Prophylaxis and management of graft versus host disease after stem-cell transplantation for haematological malignancies : updated consensus recommendations of the European Society for Blood and Marrow Transplantation. Lancet Haematol. 2020 ; 7 : e157-e67.
2) Inamoto Y, Kimura F, Kanda J, et al. Comparison of graft-versus-host disease-free, relapse-free survival according to a variety of graft sources : antithymocyte globulin and single cord blood provide favorable outcomes in some subgroups. Haematol. 2016 ; 101 : 1592-602.
3) Ravinet A, Cabrespine A, Socie G, et al. Impact of thymoglobulin by stem cell source (Peripheral blood stem cell or bone marrow) after myeloablative stem cell transplantation from HLA 10/10-matched unrelated donors : A report from the societe francaise de greffe de moelle et de therapie cellulaire. Transplant. 2016 ; 100 : 1732-9.
4) Shichijo T, Fuji S, Tajima K, et al. Beneficial impact of low-dose rabbit anti-thymocyte globulin in unrelated hematopoietic stem cell transplantation : focusing on difference between stem cell sources. Bone Marrow Transplant. 2018 ; 53 : 634-9.
5) Finke J, Schmoor C, Bethge WA, et al. Long-term outcomes after standard graft-versus-host disease prophylaxis with or without anti-human-T-lymphocyte immunoglobulin in haemopoietic cell transplantation from matched unrelated donors : final results of a randomised controlled trial. Lancet Haematol. 2017 ; 4 : e293-e301.
6) Bonifazi F, Solano C, Wolschke C, et al. Acute GVHD prophylaxis plus ATLG after myeloablative allogeneic haemopoietic peripheral blood stem-cell transplantation from HLA-identical siblings in patients with acute myeloid leukaemia in remission : final results of quality of life and long-term outcome analysis of a phase 3 randomised study. Lancet Haematol. 2019 ; 6 : e89-e99.
7) Finke J, Bethge WA, Schmoor C, et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation from matched unrelated donors : a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 2009 ; 10 : 855-64.
8) Kroger N, Solano C, Wolschke C, et al. Antilymphocyte globulin for prevention of chronic graft-versus-host disease. N Engl J Med. 2016 ; 374 : 43-53.
9) Soiffer RJ, Kim HT, McGuirk J, et al. Prospective, randomized, double-blind, phase III clinical rial of anti-T-lymphocyte globulin to assess impact on chronic graft-versus-host disease-free survival in patients undergoing HLA-matched unrelated myeloablative hematopoietic cell transplantation. J Clin Oncol. 2017 ; 35 : 4003-11.
10) Wakamatsu M, Terakura S, Ohashi K, et al. Impacts of thymoglobulin in patients with acute leukemia in remission undergoing allogeneic HSCT from different donors. Blood Adv. 2019 ; 3 : 105-15.
11) Devillier R, Crocchiolo R, Castagna L, et al. The increase from 2.5 to 5 mg/kg of rabbit anti-thymocyte-globulin dose in reduced intensity conditioning reduces acute and chronic GVHD for patients with myeloid malignancies undergoing allo-SCT. Bone Marrow Transplant. 2012 ; 47 : 639-45.
12) Shin DY, Lee JH, Park S, et al. Role of thymoglobulin in matched sibling allogeneic hematopoietic stem cell transplantation with busulfan and fludarabine conditioning in myeloid malignanicies. Bone Marrow Transplant. 2018 ; 53 : 207-12.
13) Kanda J, Brazauskas R, Hu ZH, et al. Graft-versus-host disease after HLA-matched sibling bone marrow or peripheral blood stem cell transplantation : Comparison of north american caucasian and Japanese populations. Biol Blood Marrow Transplant. 2016 ; 22 : 744-51.
14) Kuriyama K, Fuji S, Inamoto Y, et al. Impact of low-dose rabbit anti-thymocyte globulin in unrelated hematopoietic stem cell transplantation. Int J Hematol. 2016 ; 103 : 453-60.
15) Imataki O, Matsumoto K, Uemura M. Low-dose anti-thymocyte globulin reduce severe acute and chronic graft-versus-host disease after allogeneic stem cell transplantation. J Cancer Res Clin Oncol. 2017 ; 143 : 709-15.
16) Kawamura K, Kanda J, Fuji S, et al. Impact of the presence of HLA 1-locus mismatch and the use of low-dose antithymocyte globulin in unrelated bone marrow transplantation. Bone Marrow Transplant. 2017 ; 52 : 1390-8.
17) Admiraal R, Nierkens S, de Witte MA, et al. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation : a multicentre, retrospective, pharmacodynamic cohort analysis. Lancet Haematol. 2017 ; 4 : e183-e91.
18) Kennedy VE, Chen H, Savani BN, et al. Optimizing antithymocyte globulin dosing for unrelated donor allogeneic Hematopoietic cell transplantation based on recipient absolute lymphocyte count. Biol Blood Marrow Transplant. 2018 ; 24 : 150-5.
19) Russell JA, Turner AR, Larratt L, et al. Adult recipients of matched related donor blood cell transplants given myeloablative regimens including pretransplant antithymocyte globulin have lower mortality related to graft-versus-host disease : a matched pair analysis. Biol Blood Marrow Transplant. 2007 ; 13 : 299-306.
20) Kim HJ, Min WS, Cho BS, Successful prevention of acute graft-versus-host disease using low-dose antithymocyte globulin after mismatched, unrelated, hematopoietic stem cell transplantation for acute myelogenous leukemia. Biol Blood Marrow Transplant. 2009 ; 15 : 704-17.
21) Walker I, Panzarella T, Couban S, et al. Pretreatment with anti-thymocyte globulin versus no anti-thymocyte globulin in patients with haematological malignancies undergoing haemopoietic cell transplantation from unrelated donors : a randomised, controlled, open-label, phase 3, multicentre trial. Lancet Oncol. 2016 ; 17 : 164-73.
22) Bryant A, Mallick R, Huebsch L, et al. Low-dose antithymocyte globulin for graft-versus-host-disease prophylaxis in matched unrelated allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2017 ; 23 : 2096-101.
23) Mountjoy L, Jain T, Kunze KL, et al. Clinical outcomes with low dose anti-thymocyte globulin in patients undergoing matched unrelated donor allogeneic hematopoietic cell transplantation. Leuk Lymphoma. 2020 ; 1-7.
P.550 掲載の参考文献
1) Ruutu T, Gratwohl A, de Witte T, et al. Prophylaxis and treatment of GVHD : EBMT-ELN Working Group Recommendations for a Standardized Practice. Bone Marrow Transplant. 2014 ; 49 : 168-73.
2) Zeiser R, Blazar BR. Acute graft-versus-host disease-biologic process, prevention, and therapy. N Engl J Med. 2017 ; 377 : 2167-79.
3) Martin PJ, Rizzo JD, Wingard JR, et al. First- and second-line systemic treatment of acute graft-versus-host disease : recommendations of the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2012 ; 18 : 1150-63.
4) Westin JR, Saliba RM, De Lima M, et al. Steroid-refractory acute GVHD : predictors and outcomes. Adv Hematol. 2011 ; 2011 : 601953.
5) Saad A, Lima MD, Anand S, et al. NCCN clinical practice guideline in oncology. Hematopoietic Cell Transplantation, Version 2.2020. 2020 ; 18 : 599-634.
6) Zeiser R, Budnoff N, Butler J, et al. Ruxolitinib for glucocorticoid-refractory acute graft-versus-host disease. N Eng J Med. 2020 ; 382 : 1800-10.
7) Miklos D, Culter CS, Arora M, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood. 2017 ; 130 : 2243-50.
8) Koreth J, Jim HT, Jones KT, at al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood. 2016 ; 128 : 130-7
9) Ganetsky A, Frey NV, Hexner EO, et al. Tocilizumab for the treatment of severe steroid-refractory acute graft-versus-host disease of the lower gastrointestinal tract. Bone Marrow Transplant 2019 ; 54 : 212-7
10) 日本造血細胞移植学会. 造血細胞移植ガイドラインGVHD. 第4版. 2018.
11) Jagasia M, Perales MA, Schroeder MA, et al. Ruxolitinib for the treatment of steroid-refractory acute GVHD (REACH1) : A multicenter, open-label phase 2 trial. Blood. 2020 ; 135 : 1739-49.
12) Abu-Dalle I, Reljic T, Nishihori T, et al. Extracorporeal photopheresis in steroid-refractory acute or chronic graft-versus-host disease : results of a systematic review of prospective studies. Biol Blood Marrow Transplant. 2014 ; 20 : 1677-86.
13) Martin PJ, et al. How I treat steroid-refractory acute graft-versus-host disease. Blood. 2020 ; 135 : 1630-8.
P.554 掲載の参考文献
1) Shouval R, Labopin M, Unger R, et al. Prediction of hematopoietic stem cell transplantation related mortality-lessons learned from the in-silico approach : A European society for blood and marrow transplantation acute leukemia working party data mining study. PLoS One. 2016 ; 11 : e0150637.
2) Buturovic L, Shelton J, Spellman SR, et al. Evaluation of a machine learning-based prognostic model for unrelated hematopoietic cell transplantation donor selection. Biol Blood Marrow Transplant. 2018 ; 24 : 1299-306.
3) Gandelman JS, Byrne MT, Mistry AM, et al. Machine learning reveals chronic graft-versus-host disease phenotypes and stratifies survival after stem cell transplant for hematologic malignancies. Haematologica. 2019 ; 104 : 189-96.
4) Fuse K, Uemura S, Tamura S, et al. Patient-based prediction algorithm of relapse after allo-HSCT for acute leukemia and its usefulness in the decision-making process using a machine learning approach. Cancer Med. 2019 ; 8 : 5058-67.
5) Arai Y, Kondo T, Fuse K, et al. Using a machine learning algorithm to predict acute graft-versus-host disease following allogeneic transplantation. Blood Adv. 2019 ; 3 : 3626-34.
P.560 掲載の参考文献
1) Filipovich AH, Weisdorf D, Pavletic S, et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease : I. diagnosis and staging working group report. Biol Blood Marrow Transplant. 2005 ; 11 : 945-56.
2) Jagasia MH, Greinix HT, Arora M, et al. National institutes of health consensus development project on criteria for clinical trials in chronic graft-versus-host disease : I. The 2014 Diagnosis and staging working group report. Biol Blood Marrow Transplant [Internet]. 2015 ; 21 : 389-401. e1. <Available from : http://dx.doi.org/10.1016/j.bbmt.2014.12.001>
3) Arai S, Jagasia M, Storer B, et al. Global and organ-specific chronic graft-versus-host disease severity according to the 2005 NIH consensus criteria. Blood. 2011 ; 118 : 4242-9.
4) Arora M, Cutler CS, Jagasia MH, et al. Late acute and chronic graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant [Internet]. 2016 ; 22 : 449-55. <Available from : http://dx.doi.org/10.1016/j.bbmt.2015.10.018>
5) Palmer J, Chai X, Martin PJ, et al. Failure-free survival in a prospective cohort of patients with chronic graft-versus-host disease. Haematologica. 2015 ; 100 : 690-5.
6) Ohwada C, Sakaida E, Igarashi A, et al. A prospective, longitudinal observation of the incidence, Treatment, and survival of late acute and chronic graft-versus-host disease by national institutes of health criteria in a Japanese cohort. Biol Blood Marrow Transplant. 2020 ; 26 : 162-70.
7) Ito R, Inamoto Y, Inoue Y, et al. Characterization of late acute and chronic graft-versus-host disease according to the 2014 national institutes of health consensus criteria in Japanese patients. Biol Blood Marrow Transplant. 2019 ; 25 : 293-300.
8) Kurosawa S, Oshima K, Yamaguchi T, et al. Quality of life after allogeneic hematopoietic cell transplantation according to affected organ and severity of chronic graft-versus-host disease. Biol Blood Marrow Transplant [Internet]. 2017 ; 23 : 1749-58. <Available from : https://doi.org/10.1016/j.bbmt.2017.06.011>
9) Inamoto Y, White J, Ito R, et al. Comparison of characteristics and outcomes of late acute and NIH chronic GVHD between Japanese and white patients. Blood Adv. 2019 ; 3 : 2764-77.
10) Martin PJ, Storer BE, Inamoto Y, et al. An endpoint associated with clinical benefit after initial treatment of chronic graft-versus-host disease. Blood. 2017 ; 130 : 360-7.
P.566 掲載の参考文献
2) Zino E, Frumento G, Marktel S, et al. A T-cell epitope encoded by a subset of HLA-DPB1 alleles determines nonpermissive mismatches for hematologic stem cell transplantation. Blood. 2004 ; 103 : 1417-24.
3) Fleischhauer K, Shaw BE, Gooley T, et al. Effect of T-cell-epitope matching at HLA-DPB1 in recipients of unrelated-donor haemopoietic-cell transplantation : a retrospective study. Lancet Oncol. 2012 ; 13 : 366-74.
4) Petersdorf EW, Malkki M, O'HUigin C, et al. High HLA-DP expression and graft-versus-host disease. N Engl J Med. 2015 ; 373 : 599-609.
5) Goto T, Tanaka T, Sawa M, et al. Prospective observational study on the first 51 cases of peripheral blood stem cell transplantation from unrelated donors in Japan. Int J Hematol. 2018 ; 107 : 211-21.
6) Fuji S, Miyamura K, Kanda Y, et al. Short-term clinical outcomes after HLA 1-locus mismatched uPBSCT are similar to that after HLA-matched uPBSCT and uBMT. Int J Hematol. 2019 ; 109 : 684-93.
7) Pidala J, Lee SJ, Ahn KW, et al. Nonpermissive HLA-DPB1 mismatch increases mortality after myeloablative unrelated allogeneic hematopoietic cell transplantation. Blood. 2014 ; 124 : 2596-606.
8) Morishima S, Shiina T, Suzuki S, et al. Evolutionary basis of HLA-DPB1 alleles affects acute GVHD in unrelated donor stem cell transplantation. Blood. 2018 ; 131 : 808-17.
9) Fuji S, Miyamura K, Kanda Y, et al. Short-term clinical outcomes after HLA 1-locus mismatched uPBSCT are similar to that after HLA-matched uPBSCT and uBMT. Int J Hematol. 2019.
10) Atsuta Y, Kanda J, Takanashi M, et al. Different effects of HLA disparity on transplant outcomes after single-unit cord blood transplantation between pediatric and adult patients with leukemia. Haematologica. 2013 ; 98 : 814-22.
11) Yokoyama H, Morishima Y, Fuji S, et al. Impact of HLA allele mismatch at HLA-A, -B, -C, and -DRB1 in single cord blood transplantation. Biol Blood Marrow Transplant. 2020 ; 26 : 519-28.
12) Mayor NP, Hayhurst JD, Turner TR, et al. Recipients receiving better HLA-matched hematopoietic cell transplantation grafts, uncovered by a novel HLA typing method, have superior survival : A retrospective study. Biol Blood Marrow Transplant. 2019 ; 25 : 443-50.
P.572 掲載の参考文献
1) Pfeifer H, Raum K, Markovic S, et al. Genomic CDKN2A/2B deletions in adult Ph (+) ALL are adverse despite allogeneic stem cell transplantation. Blood. 2018 ; 131 : 1464-75.
3) Jabbour E, Short NJ, Ravandi F, et al. Combination of hyper-CVAD with ponatinib as first-line therapy for patients with Philadelphia chromosome-positive acute lymphoblastic leukaemia : long-term follow-up of a single-centre, phase 2 study. Lancet Haemat. 2018 ; 5 : e618-27.
4) Bachanova V, Marks DI, Zhang MJ, et al. Ph+ALL patients in first complete remission have similar survival after reduced intensity and myeloablative allogeneic transplantation : impact of tyrosine kinase inhibitor and minimal residual disease. Leukemia. 2014 ; 28 : 658-65.
5) Foa R, Vitale A, Vignetti M, et al. Dasatinib as first-line treatment for adult patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2011 ; 118 : 6521.
6) Warraich Z, Tenneti P, Thai T, et al. Relapse prevention with tyrosine kinase inhibitors after allogeneic transplantation for Philadelphia chromosome-positive acute lymphoblast leukemia : A systematic review. Biol Blood Marrow Transplant. 2020 ; 26 : e55-64.
7) Hatta Y, Mizuta S, Matsuo K, et al. Final analysis of the JALSG Ph+ALL202 study : tyrosine kinase inhibitor-combined chemotherapy for Ph+ALL. Ann Hematol. 2018 ; 97 : 1535-45.
8) Towatari M, Yanada M, Usui N, et al. Combination of intensive chemotherapy and imatinib can rapidly induce high-quality complete remission for a majority of patients with newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia. Blood. 2004 ; 104 : 3507-12.
9) Yanada M, Takeuchi J, Sugiura I, et al. High complete remission rate and promising outcome by combination of imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia : a phase II study by the Japan Adult Leukemia Study Group. J Clin Oncol. 2006 ; 24 : 460-6.
10) Mizuta S, Matsuo K, Yagasaki F, et al. Pre-transplant imatinib-based therapy improves the outcome of allogeneic hematopoietic stem cell transplantation for BCR-ABL-positive acute lymphoblastic leukemia. Leukemia. 2011 ; 25 : 41-7.
12) Short NJ, Jabbour E, Sasaki K, et al. Impact of complete molecular response on survival in patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood. 2016 ; 128 : 504-7.
14) Tojo A, Kyo T, Yamamoto K, et al. Ponatinib in Japanese patients with Philadelphia chromosome-positive leukemia, a phase 1/2 study. Int J Hematol. 2017 ; 106 : 385-97.
15) Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012 ; 367 : 2075-88.
P.577 掲載の参考文献
1) Majhail NS, Rizzo JD, Lee SJ, et al. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Biol Blood Marrow Transplant 2012 ; 18 : 348-71.
2) Kendler DL, Body JJ, Brandi ML, et al. Bone management in hematologic stem cell transplant recipients. Osteoporos Int. 2018 ; 29 : 2597-610.
3) Schulte C, Beelen DW, Schaefer UW, et al. Bone loss in long-term survivors after transplantation of hematopoietic stem cells : a prospective study. osteoporosis Int. 2000 : 11 : 344-53.
4) Schulte CMS, Beelen DW, bone loss following hematopoietic stem cell transplantation : a long-term follow-up. Blood. 2004 : 103 : 3635-43.
5) Pundole X, Murphy WA, Ebede CC, et al. Fracture risk prediction using FRAX in patients following hematopoietic stem cell transplantation. Arch Osteoporos. 2018 : 13 : 38.
6) Tauchmanova L, Ricci P, Serio B, et al. Short-term zoledronic acid treatment increases bone mineral density and marrow clonogenic fibroblast progenitors after allogeneic stem cell transplantation. J Clin Endocrinol Metab. 2005 ; 90 : 627-34.
7) Weinstein RS. Clinical practice. Glucocorticoid-induced bone disease. N Engl J Med. 2011 ; 365 : 62-70.
8) Tauchmanova L, Selleri C, Esposito M, et al. Beneficial treatment with risedronate in long-term survivors after allogeneic stem cell transplantation for hematological malignancies. Osteoporosis Int. 2003 : 14 : 1013-9.
9) Kananen K, Volin L, Laitinen K, et al. Prevention of bone loss after allogeneic stem cell transplantation by calcium, vitamin d, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metabolism. 2005 ; 7 : 3877-85.
10) Grigg AP, Shuttleworth P, Reynolds J, et al. Pamidronate reduces bone loss after allogeneic stem cell transplantation. J Clin Endocrinol Metabolism. 2006 ; 10 : 3835-43.
11) Pundole X, Cheema HI, Petitto GS, et al. Prevention and treatment of bone loss and fractures in patients undergoing a hematopoietic stem cell transplant : A systematic review and meta-analysis. Bone Marrow Transplant. 2017 ; 52 : 663-70.
12) Jeong C, Kim HJ, Lee S, et al. Effect of denosumab on bone mineral density of hematopoietic stem cell transplantation recipients. Int J Endocrinol. 2020 ; 4 ; 2020 : 3410921.
13) Anastasilakis AD, Toulis KA, Goulis DG, et al. Efficacy and safety of denosumab in postmenopausal women with osteopenia or osteoporosis : A systematic review and a meta-analysis. Horm Metab Res. 2009 ; 41 : 721-9.
P.584 掲載の参考文献
1) Bredeson C, LeRademacher J, Kato K, et al. Prospective cohort study comparing intravenous busulfan to total body irradiation in hematopoietic cell transplantation. Blood. 2013 ; 122 : 3871-8.
2) Copelan EA, Hamilton BK, Avalos B, et al. Better leukemia-free and overall survival in AML in first remission following cyclophosphamide in combination with busulfan compared with TBI. Blood. 2013 ; 122 : 3863-70.
3) Nakasone H, Fuji S, Yakushijin K, et al. Impact of total body irradiation on successful neutrophil engraftment in unrelated bone marrow or cord blood transplantation. Am J Hematol. 2017 ; 92 : 171-8.
4) Horwitz ME, Morris A, Gasparetto C, et al. Myeloablative intravenous busulfan/fludarabine conditioning does not facilitate reliable engraftment of dual umbilical cord blood grafts in adult recipients. Biol Blood Marrow Transplant. 2008 ; 14 : 591-4.
5) Narimatsu H, Watanabe M, Kohno A, et al. High incidence of graft failure in unrelated cord blood transplantation using a reduced-intensity preparative regimen consisting of fludarabine and melphalan. Bone Marrow Transplant. 2008 ; 41 : 753-6.
6) Komatsu T, Narimatsu H, Yoshimi A, et al. Successful engraftment of mismatched unrelated cord blood transplantation following reduced intensity preparative regimen using fludarabine and busulfan. Ann Hematol. 2007 ; 86 : 49-54.
7) Uchida N, Matsumoto K, Sakura T, et al. Myeloablative intravenous busulfan-containing regimens for allo-HSCT in AML or MDS patients over 54 years old : combined results of three phase II studies. Int J Hematol. 2020.
8) Yamamoto H, Uchida N, Yuasa M, et al. A novel reduced-toxicity myeloablative conditioning regimen using full-dose busulfan, fludarabine, and melphalan for single cord blood transplantation provides durable engraftment and remission in nonremission myeloid malignancies. Biol Blood Marrow Transplant. 2016 ; 22 : 1844-50.
9) Ruggeri A, Sanz G, Bittencourt H, et al. Comparison of outcomes after single or double cord blood transplantation in adults with acute leukemia using different types of myeloablative conditioning regimen, a retrospective study on behalf of Eurocord and the Acute Leukemia Working Party of EBMT. Leukemia. 2014 ; 28 : 779-86.
10) Sanz J, Wagner JE, Sanz MA, et al. Myeloablative cord blood transplantation in adults with acute leukemia : comparison of two different transplant platforms. Biol Blood Marrow Transplant. 2013 ; 19 : 1725-30.
11) Abedin S, Peres E, Levine JE, et al. Double umbilical cord blood transplantation after novel myeloablative conditioning using a regimen of fludarabine, busulfan, and total lymphoid irradiation. Biol Blood Marrow Transplant. 2014 ; 20 : 2062-6.
12) Tang B, Zhu X, Zheng C, et al. Retrospective cohort study comparing the outcomes of intravenous busulfan vs. total-body irradiation after single cord blood transplantation. Bone Marrow Transplant. 2019 ; 54 : 1614-24.
13) Ballen KK, Spitzer TR, Yeap BY, et al. Double unrelated reduced-intensity umbilical cord blood transplantation in adults. Biol Blood Marrow Transplant. 2007 ; 13 : 82-9.
14) Barker JN, Kurtzberg J, Ballen K, et al. Optimal practices in unrelated donor cord blood transplantation for hematologic malignancies. Biol Blood Marrow Transplant. 2017 ; 23 : 882-96.
15) Arai Y, Takeda J, Aoki K, et al. Efficiency of high-dose cytarabine added to CY/TBI in cord blood transplantation for myeloid malignancy. Blood. 2015 ; 126 : 415-22.
16) Oh H, Loberiza FR, Jr., Zhang MJ, et al. Comparison of graft-versus-host-disease and survival after HLA-identical sibling bone marrow transplantation in ethnic populations. Blood. 2005 ; 105 : 1408-16.
17) Kanda J, Hayashi H, Ruggeri A, et al. Prognostic factors for adult single cord blood transplantation among European and Japanese populations : the Eurocord/ALWP-EBMT and JSHCT/JDCHCT collaborative study. Leukemia. 2020 ; 34 : 128-37.
P.589 掲載の参考文献
1) Palmer J, McCune JS, Perales MA, et al. Personalizing busulfan-based conditioning : considerations from the American Society for Blood and Marrow Transplantation Practice Guidelines Committee. Biol Blood Marrow Transplant. 2016 ; 22 : 1915-25.
2) Geddes M, Kangarloo SB, Naveed F, et al. High busulfan exposure is associated with worse outcomes in a daily i. v. busulfan and fludarabine allogeneic transplant regimen. Biol Blood Marrow Transplant. 2008 ; 14 : 220-8.
3) Nath CE, Trotman J, Tiley C, et al. High melphalan exposure is associated with improved overall survival in myeloma patients receiving high dose melphalan and autologous transplantation. Br J Clin Pharmacol. 2016 ; 82 : 149-59.
4) Remberger M, Sundberg B. Rabbit-immunoglobulin G levels in patients receiving thymoglobulin as part of conditioning before unrelated donor stem cell transplantation. Haematologica. 2005 ; 90 : 931-8.
5) Huang J, Li Z, Liang W, et al. Accurate prediction of initial busulfan exposure using a test dose with 2- and 6-hour blood sampling in adult patients eeceiving a twice-daily intravenous busulfan-based conditioning regimen. J Clin Pharmacol. 2019 ; 59 : 638-45.
6) Davis JM, Ivanova A, Chung Y, et al. Evaluation of a test dose strategy for pharmacokinetically-guided busulfan dosing for hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019 ; 25 : 391-7.
7) Weil E, Zook F, Oxencis C, et al. Evaluation of the pharmacokinetics and efficacy of a busulfan test dose in adult patients undergoing myeloablative hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2017 ; 23 : 952-7.
8) Tranchand B, Ploin YD, Minuit MP, et al. High-dose melphalan dosage adjustment : Possibility of using a test-dose. Cancer Chemother Pharmacol. 1989 ; 23 : 95-100.
9) Kishimoto K, Hasegawa D, Irie K, et al. Pharmacokinetic analysis for model-supported therapeutic drug monitoring of busulfan in Japanese pediatric hematopoietic stem cell transplantation recipients. Pediatr Transplant. 2020 ; 24 : e13696.
10) Teitelbaum Z, Nassar L, Scherb I, et al. Limited sampling strategies supporting individualized dose adjustment of intravenous busulfan in children and young adults. Ther Drug Monit. 2020 ; 42 : 427-34.
11) Mizuno K, Dong Min, Fukuda T, et al. Population pharmacokinetics and optimal sampling strategy for model-based precision dosing of melphalan in patients undergoing hematopoietic stem cell transplantation. Clin Pharmacokinet. 2018 ; 57 : 625-36.
12) Kangarloo SB, Naveed F, Ng ES, et al. Development and validation of a test dose strategy for once-daily i. v. busulfan : importance of fixed infusion rate dosing. Biol Blood Marrow Transplant. 2012 ; 18 : 295-301.
13) Matsumoto K, Morita K. An evaluation of blood sample preservation methods based on melphalan stability. Jpn J Ther Drug Monit. 2016 ; 33 : 100-3.
14) Jamani K, Dabas R, Kangarloo SB, et al. Rabbit antithymocyte globulin serum levels : Factors impacting the levels and clinical outcomes impacted by the levels. Biol Blood Marrow Transplant. 2019 ; 25 : 639-47.
15) Dabas R, Jamani K, Kangarloo SB, et al. Antirelapse effect of pretransplant exposure to rabbit antithymocyte globulin. Blood Adv. 2019 ; 3 : 1394-405.
P.600 掲載の参考文献
1) Wang Y, Wu D-P, Liu Q-F, et al. In adults with t (8 ; 21) AML, posttransplant RUNX1/RUNX1T1-based MRD monitoring, rather than c-KIT mutations, allows further risk stratification. Blood. 2014 ; 124 : 1880-6.
2) Tsirigotis P, Byrne M, Schmid C, et al. Relapse of AML after hematopoietic stem cell transplantation : methods of monitoring and preventive strategies. A review from the ALWP of the EBMT. Bone Marrow Transplant. 2016 ; 51 : 1431-8.
3) Rubnitz JE, Inaba H, Dahl G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia : results of the AML02 multicentre trial. Lancet Oncol. 2010 ; 11 : 543-52.
4) van Dongen JJM, van der Velden VHJ, Bruggemann M, et al. Minimal residual disease diagnostics in acute lymphoblastic leukemia : need for sensitive, fast, and standardized technologies. Blood. 2015 ; 125 : 3996-4009.
5) Daga S, Rosenberger A, Kashofer K, et al. Sensitive and broadly applicable residual disease detection in acute myeloid leukemia using flow cytometry-based leukemic cell enrichment followed by mutational profiling. Am J Hematol. 2020.
6) Ivey A, Hills RK, Simpson MA, et al. Assessment of minimal residual disease in standard-risk AML. N Engl J Med. 2016 ; 374 : 422-33.
7) Parkin B, Londono-Joshi A, Kang Q, et al. Ultrasensitive mutation detection identifies rare residual cells causing acute myelogenous leukemia relapse. J Clin Invest. 2017 ; 127 : 3484-95.
8) Wiseman DH, Somervaille TCP. Nanofluidic allele-specific digital PCR method for quantifying IDH1 and IDH2 mutation burden in acute myeloid leukemia. Methods Mol Biol. 2017 ; 1633 : 235-55.
9) Voso MT, Ottone T, Lavorgna S, et al. MRD in AML : The role of new techniques. front oncol. 2019 ; 9 : 655.
10) Newman AM, Lovejoy AF, Klass DM, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016 ; 34 : 547-55.
11) Scherer F, Kurtz DM, Newman AM, et al. Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA. Sci Transl Med. 2016 ; 8 : 364ra155.
12) Kurtz DM, Green MR, Bratman SV, et al. Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood. 2015 ; 125 : 3679-87.
13) Mandel P, Metais P : [Not Available]. C R Seances Soc Biol Fil. 1948 ; 142 : 241-3.
14) Heitzer E, Haque IS, Roberts CES, et al. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019 ; 20 : 71-88.
15) Thress KS, Brant R, Carr TH, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma : A cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. 2015 ; 90 : 509-15.
16) Corcoran RB, Chabner BA. Application of cell-free DNA analysis to cancer treatment. N Engl J Med. 2018 ; 379 : 1754-65.
17) Wong HY, Sung AD, Lindblad KE, et al. Molecular measurable residual disease testing of blood during AML cytotoxic therapy for early prediction of clinical response. Front Oncol. 2018 ; 8 : 669.
18) Nakamura S, Yokoyama K, Shimizu E, et al. Prognostic impact of circulating tumor DNA status post-allogeneic hematopoietic stem cell transplantation in AML and MDS. Blood. 2019 ; 133 : 2682-95.
19) Short NJ, Patel KP, Albitar M, et al. Targeted next-generation sequencing of circulating cell-free DNA vs bone marrow in patients with acute myeloid leukemia. Blood Adv. 2020 ; 4 : 1670-7.
20) Kurtz DM, Scherer F, Jin MC, et al. Circulating tumor DNA measurements as early outcome predictors in diffuse large B-Cell Lymphoma. J Clin Oncol. 2018 ; 36 : 2845-53.
21) Roschewski M, Dunleavy K, Pittaluga S, et al. Circulating tumour DNA and CT monitoring in patients with untreated diffuse large B-cell lymphoma : a correlative biomarker study. Lancet Oncol. 2015 ; 16 : 541-9.
22) Mithraprabhu S, Morley R, Khong T, et al. Monitoring tumour burden and therapeutic response through analysis of circulating tumour DNA and extracellular RNA in multiple myeloma patients. Leukemia. 2019 ; 33 : 2022-33.
23) Morita K, Kantarjian HM, Wang F, et al. Clearance of somatic mutations at remission and the risk of relapse in acute myeloid leukemia. J Clin Oncol. 2018 ; 36 : 1788-97.
24) Herrera AF, Kim HT, Kong KA, et al. Next-generation sequencing-based detection of circulating tumour DNA After allogeneic stem cell transplantation for lymphoma. Br J Haematol. 2016 ; 175 : 841-50.
25) Jovanovic BD, Levy PS. A look at the rule of three. The American Statistician. 1997 ; 51 : 137-9.
26) Vossen RH, White SJ. Quantitative DNA Analysis using droplet digital PCR. Methods Mol Biol. 2017 ; 1492 : 167-77.
27) Fontana F, Rapone C, Bregola G, et al. Isolation and genetic analysis of pure cells from forensic biological mixtures : The precision of a digital approach. Forensic Sci Int Genet. 2017 ; 29 : 225-41.
P.610 掲載の参考文献
1) Swerdlow SH CE, Harris NL, Jaffe ES, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised fourth edition. IARC. 2017.
2) Dierickx D, Habermann TM. Post-transplantation lymphoproliferative disorders in adults. N Engl J Med. 2018 ; 378 : 549-62.
3) Fujimoto A, Hiramoto N, Yamasaki S, et al. Risk factors and predictive scoring system for post-transplant lymphoproliferative disorder after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2019 ; 25 : 1441-9.
5) Uhlin M, Wikell H, Sundin M, et al. Risk factors for Epstein-Barr virus-related post-transplant lymphoproliferative disease after allogeneic hematopoietic stem cell transplantation. Haematologica. 2014 ; 99 : 346-52.
6) Styczynski J, Gil L, Tridello G, et al. Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults : a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis. 2013 ; 57 : 794-802.
7) Styczynski J, van der Velden W, Fox CP, et al. Management of epstein-barr virus infections and post-transplant lymphoproliferative disorders in patients after allogeneic hematopoietic stem cell transplantation : Sixth European Conference on Infections in Leukemia (ECIL-6) guidelines. Haematologica. 2016 ; 101 : 803-11.
8) Fujimoto A, Suzuki R. Epstein-barr virus-associated post-transplant lymphoproliferative disorders after hematopoietic stem cell transplantation : Pathogenesis, risk factors and clinical outcomes. Cancers (Basel). 2020 ; 12.
9) Dominietto A, Tedone E, Soracco M, et al. In vivo B-cell depletion with rituximab for alternative donor hemopoietic SCT. Bone Marrow Transplant. 2012 ; 47 : 101-6.
10) van der Velden WJ, Mori T, Stevens WB, et al. Reduced PTLD-related mortality in patients experiencing EBV infection following allo-SCT after the introduction of a protocol incorporating pre-emptive rituximab. Bone Marrow Transplant. 2013 ; 48 : 1465-71.
11) Garcia-Cadenas I, Castillo N, Martino R, et al. Impact of epstein barr virus-related complications after high-risk allo-SCT in the era of pre-emptive rituximab. Bone Marrow Transplant. 2015 ; 50 : 579-84.
12) Omar H, Hagglund H, Gustafsson-Jernberg A, et al. Targeted monitoring of patients at high risk of post-transplant lymphoproliferative disease by quantitative Epstein-Barr virus polymerase chain reaction. Transpl Infect Dis. 2009 ; 11 : 393-9.
13) Fox CP, Burns D, Parker AN, et al. EBV-associated post-transplant lymphoproliferative disorder following in vivo T-cell-depleted allogeneic transplantation : clinical features, viral load correlates and prognostic factors in the rituximab era. Bone Marrow Transplant. 2014 ; 49 : 280-6.
14) Menter T, Juskevicius D, Alikian M, et al. Mutational landscape of B-cell post-transplant lymphoproliferative disorders. Br J Haematol. 2017 ; 178 : 48-56.
15) Ferreiro JF, Morscio J, Dierickx D, et al. EBV-Positive and EBV-Negative posttransplant diffuse large B Cell lymphomas have distinct genomic and transcriptomic features. Am J Transplant. 2016 ; 16 : 414-25.
16) Doubrovina E, Oflaz-Sozmen B, Prockop SE, et al. Adoptive immunotherapy with unselected or EBV-specific T cells for biopsy-proven EBV+lymphomas after allogeneic hematopoietic cell transplantation. Blood. 2012 ; 119 : 2644-56.
17) Kazi S, Mathur A, Wilkie G, et al. Long-term follow up after third-party viral-specific cytotoxic lymphocytes for immunosuppression- and Epstein-Barr virus-associated lymphoproliferative disease. Haematologica. 2019 ; 104 : e356-e9.

IX. 血液疾患に対する遺伝子治療・細胞治療

P.616 掲載の参考文献
1) Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018 ; 378 : 439-48.
2) Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019 ; 380 : 45-56.
3) Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017 ; 377 : 2531-44.
4) Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1) : a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. 2019 ; 20 : 31-42.
5) Sauter CS, Senechal B, Riviere I, et al. CD19 CAR T cells following autologous transplantation in poor-risk relapsed and refractory B-cell non-Hodgkin lymphoma. Blood. 2019 ; 134 : 626-35.
6) Yeku OO, Brentjens RJ. Armored CAR T-cells : utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem Soc Trans. 2016 ; 44 : 412-8.
7) Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor T-cell therapy- assessment and management of toxicities. Nat Rev Clin Oncol. 2018 ; 15 : 47-62.
8) Yakoub-Agha I, Chabannon C, Bader P, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy : best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020 ; 105 : 297-316.
9) Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019 ; 25 : 625-38.
a) Abramson SJ, Palomba LM, Gordon IL, et al. Pivotal safety and efficacy results from transcend NHL 001, a multicenter phase 1 study of lisocabtagene maraleucel (liso-cel) in relapsed/refractory (R/R) Large B Cell Lymphomas. Abst. 626. Blood. 2019 ; 134 (Supplement 1) : 241.
b) Locke FL, WestinJR, Miklos DB, et al. Phase 1 results from ZUMA-6 : Axicabtagene ciloleucel (axi-cel ; KTE-C19) in combination with atezolizumab for the treatment of patients with refractory diffuse large B cell lymphoma (DLBCL). Abst. 626. Blood. 2017 ; 130 (Supplement 1) : 2826.
P.624 掲載の参考文献
1) Joyner A, Keller G, Phillips RA, et al. Retroviral transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature. 1983 ; 305 : 556-8.
2) Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002 ; 296 : 2410-3.
3) Kang EM, Choi U, Theobald N, et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long term-correction of oxidase activity in peripheral blood neutrophils. Blood. 2009 ; 115 : 783-91.
4) Kohn DB, Booth C, Kang EM, et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med. 2020 ; 26 : 200-6.
5) Negre O, Eggimann AV, Beuzard Y, et al. Gene therapy of the β-hemoglobinopathies by lentiviral transfer of the β (A (T87Q)) -globin gene. Hum Gene Ther. 2016 ; 27 : 148-65.
6) Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018 ; 378 : 1479-93.
7) Marktel S, Scaramuzza S, Cicalese MP, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent β-thalassemia. Nat Med. 2019 ; 25 : 234-41.
8) Magrin E, Miccio A, Cavazzana M. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood. 2019 ; 34 : 1203-13.
10) Hagedorn EJ, Durand EM, Fast EM, et al. Getting more for your marrow : boosting hematopoietic stem cell numbers with PGE2. Exp Cell Res. 2014 ; 329 : 220-6.
P.628 掲載の参考文献
1) Ohmori T, Mizukami H, Ozawa K, et al. New approaches to gene and cell therapy for hemophilia. J Thromb Haemost. 2015 ; 13 Suppl 1 : S133-42.
2) Ohmori T. Advances in gene therapy for hemophilia : basis, current status, and future perspectives. Int J Hematol. 2020 ; 111 : 31-41.
3) Manno CS, Pierce GF, Arruda VRJ, et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med. 2006 ; 12 : 342-7.
4) Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011 ; 365 : 2357-65.
5) Simioni P, Tormene D, Tognin G, et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N Engl J Med. 2009 ; 361 : 1671-5.
6) George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IXvariant. N Engl J Med. 2017 ; 377 : 2215-27.
7) Miesbach W, Meijer K, Coppens M, et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood. 2018 ; 131 : 1022-31.
8) Von Drygalski A, Giermasz A, Castaman G, et al. Etranacogene dezaparvovec (AMT-061 phase 2b) : normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Adv. 2019 ; 3 : 3241-7.
9) Chowdary P, Shapiro S, Davidoff AM, et al. A single intravenous infusion of FLT180a results in factor IX activity levels of more than 40% and has the potential to provide a functional cure for patients with haemophilia B. Blood. 2018 ; 132 (Suppl 1) : 631
10) Rangarajan S, Walsh L, Lester W, et al. AAV5-Factor VIII gene transfer in severe hemophilia A. N Engl J Med. 2017 ; 377 : 2519-30.
11) Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population : implications for gene therapy using AAV vectors. Hum Gene Ther. 2010 ; 21 : 704-12.
12) Majowicz A, Nijmeijer B, Lampen MH, et al. Therapeutic hFIX activity achieved after single AAV5-hFIX treatment in hemophilia B patients and NHPs with pre-existing anti-AAV5 NABs. Mol Ther Methods Clin Dev. 2019 ; 14 : 27-36
13) High KA, George LA, Eyster ME, et al. A Phase 1/2 Trial of Investigational Spk-8011 in hemophilia a demonstrates durable expression and prevention of bleeds. Blood. 2018 ; 132 (Suppl 1) : 487.

最近チェックした商品履歴

Loading...