敗血症 controversy

出版社: 中外医学社
著者:
発行日: 2021-04-14
分野: 臨床医学:一般  >  救命/救急
ISBN: 9784498166301
電子書籍版: 2021-04-15 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

5,940 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

5,940 円(税込)

商品紹介

臨床医であるか研究者であるかによっても,そこから想起するイメージの異なる「敗血症」.臨床の最前線,研究の最先端の場に存在する敗血症のさまざまな”controversy”について,気鋭のエキスパートたちが明快な解説を加えます.敗血症に関する確立したエビデンス,最新の知見を概観できる唯一無二の書.敗血症診療,Next Stageへ!

目次

  • INTRODUCTION
       敗血症Next Stage! 敗血症のcontroversyを追え
       敗血症の疫学
       敗血症の原因と重症化に関わる因子
       敗血症の治療

    CONTROVERSY
     01 Sepsis–3とSepsis–2,どちらが良いか? 診断補助マーカーの有用性は?
     02 敗血症の輸液はどのようにすべきか?
     03 Hour–1バンドルとは何か? EGDTは不要か?
     04 敗血症患者の適切な気道管理とは?
     05 敗血症患者の最適な血液培養とは?
     06 敗血症に対する抗菌薬投与はどのように行うべきか?
     07 敗血症に対するステロイド投与は予後を改善するか?
     08 敗血症に対するサイトカイン吸着療法,エンドトキシン吸着療法は有効か?
     09 敗血症に対する血漿交換は有効か?
     10 敗血症による乳酸アシドーシスに重炭酸ナトリウムは有効か?
     11 敗血症に対する抗凝固療法は有効か?
     12 敗血症の栄養療法はどのようにすべきか?
     13 敗血症に対する免疫グロブリンはもはや不要なのか?
     14 敗血症における循環作動薬はどのように使用すべきか?
     15 敗血症に対するバソプレシン,セレプレシン投与は有効か?
     16 敗血症による発熱は解熱すべきか?
     17 敗血症にβブロッカーは有効か?
     18 敗血症に対するECMOは有効か?
     19 トロポニンは敗血症の予後を予測できるか?
     20 ARDSを発症していない敗血症患者へ肺保護換気を行う必要はあるのか?
     21 敗血症に対する鎮痛,鎮静はどのように行うべきか?
     22 敗血症に対するビタミン投与の是非
     23 敗血症の長期予後に関係する因子は何か? 退院後の敗血症患者はどうなるか?
     24 敗血症にobesity paradoxはあるのか?
     25 小児敗血症の初期循環作動薬はアドレナリン? ノルアドレナリン? それともドパミン?
     26 小児敗血症に対するサイトカイン吸着療法・エンドトキシン吸着療法は有効か?
     27 敗血症に対して抗PD–1抗体は有効か?
     28 敗血症における基礎研究の有効性と限界
     29 敗血症に対するプレホスピタル研究の有効性と限界

    CONCLUSION
     敗血症の過去,現在,そして未来へ

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

INTRODUCTION

P.6 掲載の参考文献
2. Abe T, Yamakawa K, Ogura H, et al. Epidemiology of sepsis and septic shock in intensive care units between sepsis-2 and sepsis-3 populations : sepsis prognostication in intensive care unit and emergency room (SPICE-ICU). J Intensive Care. 2020 ; 8 : 44.
3. Rhee C, Wang R, Zhang Z, et al. Epidemiology of hospital-onset versus community-onset sepsis in U. S. Hospitals and association with mortality : a retrospective analysis using electronic clinical data. Crit Care Med. 2019 ; 47 : 1169-76.
4. Buchman TG, Simpson SQ, Sciarretta KL, et al. Sepsis among medicare beneficiaries : 3. the methods, models, and forecasts of sepsis, 2012-2018. Crit Care Med. 2020 ; 48 : 302-18.
5. Bernet S, Gut L, Baechli C, et al. Association of weekend admission and clinical outcomes in hospitalized patients with sepsis : an observational study. Medicine (Baltimore). 2020 ; 99 : e20842.
6. Paludo FJ, Picanco JB, Fallavena PR, et al. Higher frequency of septic shock in septic patients with the 47C allele (rs4880) of the SOD2 gene. Gene. 2013 ; 517 : 106-111.
7. Kuti EL, Patel AA, Coleman CI. Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection : a meta-analysis. J Crit Care. 2008 ; 23 : 91-100.
8. Vardakas KZ, Voulgaris GL, Maliaros A, et al. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis : a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018 ; 18 : 108-20.
9. Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS) : a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016 ; 42 : 1535-45.

CONTROVERSY

P.15 掲載の参考文献
1. Bone RC, Fisher CJ Jr, Clemmer TP, et al. Sepsis syndrome : a valid clinical entity. Methylprednisolone Severe Sepsis Study Group. Crit Care Med. 1989 ; 17 : 389-93.
2. Bone RC, Balk RA, Cerra FB, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992 ; 20 : 864-74.
3. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003 ; 31 : 1250-6.
4. Churpek MM, Zadravecz FJ, Winslow C, et al. Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients. Am J Respir Crit Care Med. 2015 ; 192 : 958-64.
6. Vincent JL, Opal SM, Marshall JC, et al. Sepsis definitions : time for change. Lancet. 2013 ; 381 : 774-5.
8. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis : For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 ; 315 : 762-74.
9. Raith EP, Udy AA, Bailey M, et al. Prognostic accuracy of the SOFA Score, SIRS Criteria, and qSOFA Score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA. 2017 ; 317 : 290-300.
10. Freund Y, Lemachatti N, Krastinova E, et al. Prognostic accuracy of Sepsis-3 Criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA. 2017 ; 317 : 301-8.
11. Fang X, Wang Z, Yang J, et al. Clinical evaluation of Sepsis-1 and Sepsis-3 in the ICU. Chest. 2018 ; 153 : 1169-76.
12. Umemura Y, Ogura H, Gando S, et al. Assessment of mortality by qSOFA in patients with sepsis outside ICU : a post hoc subgroup analysis by the Japanese Association for Acute Medicine Sepsis Registry Study Group. J Infect Chemother. 2017 ; 23 : 757-62.
13. Umemura Y, Ogura H, Gando S, et al. Prognostic accuracy of quick SOFA is different according to the severity of illness in infectious patients. J Infect Chemother. 2019 ; 25 : 943-9.
14. Gando S, Shiraishi A, Abe T, et al. The SIRS criteria have better performance for predicting infection than qSOFA scores in the emergency department. Sci Rep. 2020 ; 10 : 8095.
15. Vincent JL, Martin GS, Levy MM. qSOFA does not replace SIRS in the definition of sepsis. Crit Care. 2016 ; 20 : 210.
17. Wu C, Lan H, Han S, et al. Comparison of diagnostic accuracy in sepsis between presepsin, procalcitonin, and C-reactive protein : a systematic review and meta-analysis. Ann Intensive Care. 2017 ; 7 : 91.
18. van Dach E, Albrich W, Brunel A, et al. Effect of C-reactive protein-guided antibiotic treatment duration, 7-day treatment, or 14-day treatment on 30-day clinical failure rate in patients with uncomplicated gram-negative bacteremia a randomized clinical trial. JAMA. 2020 ; 323 : 2160-9.
19. Bouadma L, Luyt C, Tubach F, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial) : a multicentre randomised controlled trial. Lancet. 2010 ; 375 : 463-74.
20. Pepper D, Sun J, Rhee C, et al. Procalcitonin-guided antibiotic discontinuation and mortality in critically ill adults. Chest. 2019 ; 155 : 1109-18.
P.24 掲載の参考文献
1. Becker BF, Chappell D, Bruegger D, et al. Therapeutic strategies targeting the endothelial glycocalyx : acute deficits, but great potential. Cardiovasc Res. 2010 ; 87 : 300-10.
3. Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014 ; 371 : 1496-506.
6. Lamontagne F, Meade MO, Hebert PC, et al. Higher versus lower blood pressure targets for vasopressor therapy in shock : a multicentre pilot randomized controlled trial. Intensive Care Med. 2016 ; 42 : 542-50.
7. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx : a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019 ; 23 : 16.
8. Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015 ; 3 : 48.
9. Hoste EA, Maitland K, Brudney CS, et al. Four phases of intravenous fluid therapy : a conceptual model. Br J Anaesth. 2014 ; 113 : 740-7.
11. Marik PE, Linde-Zwirble WT, Bittner EA, et al. Fluid administration in severe sepsis and septic shock, patterns and outcomes : an analysis of a large national database. Intensive Care Med. 2017 ; 43 : 625-32.
12. Boulain T, Achard JM, Teboul JL, et al. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002 ; 121 : 1245-52.
13. Puskarich MA, Cornelius DC, Tharp J, et al. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J Crit Care. 2016 ; 36 : 125-9.
14. Levy B. Lactate and shock state : the metabolic view. Curr Opin Crit Care. 2006 ; 12 : 315-21.
15. Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014 ; 40 : 1795-815.
16. Monnet X, Rienzo M, Osman D, et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006 ; 34 : 1402-7.
17. Carsetti A, Cecconi M, Rhodes A. Fluid bolus therapy : monitoring and predicting fluid responsiveness. Curr Opin Crit Care. 2015 ; 21 : 388-94.
18. Monnet X, Teboul JL. Passive leg raising : five rules, not a drop of fluid! Crit Care. 2015 ; 19 : 18.
19. Douglas IS, Alapat PM, Corl KA, et al. Fluid response evaluation in sepsis hypotension and shock : a randomized clinical trial. Chest. 2020 ; 158 : 1431-45.
20. Rochwerg B, Alhazzani W, Sindi A, et al. Fluid resuscitation in sepsis : a systematic review and network meta-analysis. An Intern Med. 2014 ; 161 : 347-55.
P.36 掲載の参考文献
1. ARISE Investigators, ANZICS Clinical Trials Group ; Peake SL, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014 ; 371 : 1496-506.
3. PRISM Investigators ; Rowan KM, Angus DC, et al. Early, goal-directed therapy for septic shock-a patient-level meta-analysis. N Engl J Med. 2017 ; 376 : 2223-34.
4. ProCESS Investigators ; Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014 ; 370 : 1683-93.
6. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
7. Levy MM, Rhodes A, Phillips GS, et al. Surviving Sepsis Campaign : association between performance metrics and outcomes in a 7.5-year study. Crit Care Med. 2015 ; 43 : 3-12.
8. Damiani E, Donati A, Serafini G, et al. Effect of performance improvement programs on compliance with sepsis bundles and mortality : a systematic review and meta-analysis of observational studies. PLoS One. 2015 ; 10 : e0125827.
9. Marik PE, Farkas JD, Spiegel R, et al ; collaborating authors. POINT : Should the Surviving Sepsis Campaign Guidelines be retired? Yes. Chest. 2019 ; 155 : 12-4.
10. Levy MM, Rhodes A, Evans LE ; Steering and Executive Committee of the Surviving Sepsis Campaign. COUNTERPOINT : should the Surviving Sepsis Campaign Guidelines be retired? No. Chest. 2019 ; 155 : 14-7.
11. Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle : 2018 update. Crit Care Med. 2018 ; 46 : 997-1000.
13. De Backer D, Creteur J, Silva E, et al. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock : which is best? Crit Care Med. 2003 ; 31 : 1659-67.
14. Deis AS, Whiles BB, Brown AR, et al. Three-hour bundle compliance and outcomes in patients with undiagnosed severe sepsis. Chest. 2018 ; 153 : 39-45.
15. Seymour CW, Gesten F, Prescott HC, et al. Time to treatment and mortality during mandated emergency care for sepsis. N Engl J Med. 2017 ; 376 : 2235-44.
16. IDSA Sepsis Task Force. Infectious Diseases Society of America (IDSA) POSITION STATEMENT : why IDSA did not endorse the Surviving Sepsis Campaign Guidelines. Clin Infect Dis. 2018 ; 66 : 1631-5.
17. Murphy CV, Schramm GE, Doherty JA, et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009 ; 136 : 102-9.
18. Levy MM, Dellinger RP, Townsend SR, et al. The Surviving Sepsis Campaign : results of an international guideline-based performance improvement program targeting severe sepsis. Crit Care Med. 2010 ; 38 : 367-74.
19. Pruinelli L, Westra BL, Yadav P, et al. Delay within the 3-hour Surviving Sepsis Campaign Guideline on mortality for patients with severe sepsis and septic shock. Crit Care Med. 2018 ; 46 : 500-5.
20. Rothrock SG, Cassidy DD, Barneck M, et al. Outcome of immediate versus early antibiotics in severe sepsis and septic shock : a systematic review and meta-analysis. Ann Emerg Med. 2020 ; 76 : 427-41.
21. Marik PE, Malbrain MLNG. The SEP-1 quality mandate may be harmful : how to drown a patient with 30 mL per kg fluid! Anaesthesiol Intensive Ther. 2017 ; 49 : 323-8.
22. Rhee C, Filbin MR, Massaro AF, et al. Compliance with the national SEP-1 quality measure and association with sepsis outcomes : a multicenter retrospective cohort study. Crit Care Med. 2018 ; 46 : 1585-91.
23. Levy MM, Pronovost PJ, Dellinger RP, et al. Sepsis change bundles : converting guidelines into meaningful change in behavior and clinical outcome. Crit Care Med. 2004 ; 32 (11 Suppl) : S595-7.
24. Xantus G, Allen P, Norman S, et al. Antibiotics administered within 1 hour to adult emergency department patients screened positive for sepsis : a systematic review. Eur J Emerg Med. 2020 ; 27 : 260-7.
25. Johnston ANB, Park J, Doi SA, et al. Effect of immediate administration of antibiotics in patients with sepsis in tertiary care : a systematic review and meta-analysis. Clin Ther. 2017 ; 39 : 190-202. e6.
26. Kelm DJ, Perrin JT, Cartin-Ceba R, et al. Fluid overload in patients with severe sepsis and septic shock treated with early goal-directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock. 2015 ; 43 : 68-73.
P.50 掲載の参考文献
1. Benumof JL. Management of the difficult adult airway. With special emphasis on awake tracheal intubation. Anesthesiology. 1991 ; 75 : 1087-110.
2. Brown CA 3rd, Bair AE, Pallin DJ, et al. Techniques, success, and adverse events of emergency department adult intubations. Ann Emerg Med. 2015 ; 65 : 363-70. e1.
3. Mort TC. Emergency tracheal intubation : complications associated with repeated laryngoscopic attempts. Anesth Analg. 2004 ; 99 : 607-13, table of contents.
4. Martin LD, Mhyre JM, Shanks AM, et al. 3,423 emergency tracheal intubations at a university hospital : airway outcomes and complications. Anesthesiology. 2011 ; 114 : 42-8.
5. Taboada M, Doldan P, Calvo A, et al. Comparison of tracheal intubation conditions in operating room and intensive care unit : a prospective, observational study. Anesthesiology. 2018 ; 129 : 321-8.
6. Simpson GD, Ross MJ, McKeown DW, et al. Tracheal intubation in the critically ill : a multi-centre national study of practice and complications. Br J Anaesth. 2012 ; 108 : 792-9.
7. De Jong A, Molinari N, Terzi N, et al. Early identification of patients at risk for difficult intubation in the intensive care unit : development and validation of the MACOCHA score in a multicenter cohort study. Am J Respir Crit Care Med. 2013 ; 187 : 832-9.
8. Bair AE, Caravelli R, Tyler K, et al. Feasibility of the preoperative Mallampati airway assessment in emergency department patients. J Emerg Med. 2010 ; 38 : 677-80.
9. Mort TC. Preoxygenation in critically ill patients requiring emergency tracheal intubation. Crit Care Med. 2005 ; 33 : 2672-5.
10. Binks MJ, Holyoak RS, Melhuish TM, et al. Apnoeic oxygenation during intubation in the intensive care unit : a systematic review and meta-analysis. Heart Lung. 2017 ; 46 : 452-7.
11. Binks MJ, Holyoak RS, Melhuish TM, et al. Apneic oxygenation during intubation in the emergency department and during retrieval : a systematic review and meta-analysis. Am J Emerg Med. 2017 ; 35 : 1542-6.
12. Cabrini L, Landoni G, Baiardo Radaelli M, et al. Tracheal intubation in critically ill patients : a comprehensive systematic review of randomized trials. Crit Care. 2018 ; 22 : 6.
13. Russotto V, Cortegiani A, Raineri SM, et al. Respiratory support techniques to avoid desaturation in critically ill patients requiring endotracheal intubation : a systematic review and meta-analysis. J Crit Care. 2017 ; 41 : 98-106.
14. Pavlov I, Medrano S, Weingart S. Apneic oxygenation reduces the incidence of hypoxemia during emergency intubation : a systematic review and meta-analysis. Am J Emerg Med. 2017 ; 35 : 1184-9.
15. Oliveira JE Silva L, Cabrera D, Barrionuevo P, et al. Effectiveness of apneic oxygenation during intubation : a systematic review and meta-analysis. Ann Emerg Med. 2017 ; 70 : 483-94. e11.
16. Holyoak RS, Melhuish TM, Vlok R, et al. Intubation using apnoeic oxygenation to prevent desaturation : a systematic review and meta-analysis. J Crit Care. 2017 ; 41 : 42-8.
17. Tan E, Loubani O, Kureshi N, et al. Does apneic oxygenation prevent desaturation during emergency airway management? A systematic review and meta-analysis. Can J Anaesth. 2018 ; 65 : 936-49.
18. Baillard C, Fosse JP, Sebbane M, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006 ; 174 : 171-7.
19. Perbet S, De Jong A, Delmas J, et al. Incidence of and risk factors for severe cardiovascular collapse after endotracheal intubation in the ICU : a multicenter observational study. Crit Care. 2015 ; 19 : 257.
20. Upadhyay SP, Mallick PN. Reducing failure rate in rapid sequence intubation in emergency department. J Anesth Anesthesiol. 2017 ; 1 : 6-9.
21. Higgs A, McGrath BA, Goddard C, et al. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth. 2018 ; 120 : 323-52.
22. Takahashi J, Goto T, Okamoto H, et al. Association of fentanyl use in rapid sequence intubation with post-intubation hypotension. Am J Emerg Med. 2018 ; 36 : 2044-9.
23. Reich DL, Hossain S, Krol M, et al. Predictors of hypotension after induction of general anesthesia. Anesth Analg. 2005 ; 101 : 622-8.
24. Tsung JW, Fenster D, Kessler DO, et al. Dynamic anatomic relationship of the esophagus and trachea on sonography : implications for endotracheal tube confirmation in children. J Ultrasound Med. 2012 ; 31 : 1365-70.
25. Myatra SN, Shah A, Kundra P, et al. All India Difficult Airway Association 2016 guidelines for the management of unanticipated difficult tracheal intubation in adults. Indian Anaesth. 2016 ; 60 : 885-98.
26. Cook TM, Woodall N, Harper J, et al. Major complications of airway management in the UK : results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2 : intensive care and emergency departments. Br J Anaesth. 2011 ; 106 : 632-42.
27. Mosier JM, Sakles JC, Stolz U, et al. Neuromuscular blockade improves first-attempt success for intubation in the intensive care unit. A propensity matched analysis. Ann Am Thorac Soc. 2015 ; 12 : 734-41.
28. Lundstrom LH, Duez CH, Norskov AK, et al. Avoidance versus use of neuromuscular blocking agents for improving conditions during tracheal intubation or direct laryngoscopy in adults and adolescents. Cochrane Database Syst Rev. 2017 ; 5 : Cd009237.
29. Wilcox SR, Bittner EA, Elmer J, et al. Neuromuscular blocking agent administration for emergent tracheal intubation is associated with decreased prevalence of procedure-related complications. Crit Care Med. 2012 ; 40 : 1808-13.
30. Collins SR. Direct and indirect laryngoscopy : equipment and techniques. Respiratory Care. 2014 ; 59 : 862-4.
31. Apfelbaum JL, Hagberg CA, Caplan RA, et al. Practice guidelines for management of the difficult airway : an updated report by the American Society of Anesthesiologists Task Force on Management of the Difficult Airway. Anesthesiology. 2013 ; 118 : 251-70.
32. Jaber S, Amraoui J, Lefrant JY, et al. Clinical practice and risk factors for immediate complications of endotracheal intubation in the intensive care unit : a prospective, multiple-center study. Crit Care Med. 2006 ; 34 : 2355-61.
33. De Jong A, Molinari N, Pouzeratte Y, et al. Difficult intubation in obese patients : incidence, risk factors, and complications in the operating theatre and in intensive care units. Br J Anaesth. 2015 ; 114 : 297-306.
34. Asai T. Airway management inside and outside operating rooms-circumstances are quite different. Brit J Anaesth. 2018 ; 120 : 207-9.
35. Cook TM, Woodall N, Frerk C. Major complications of airway management in the UK : results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 1 : anaesthesia. Br J Anaesth. 2011 ; 106 : 617-31.
36. 浅井隆. 麻酔科医に必要な気道確保のポイントと教育 (第2回) 緊急気道確保 器具と外科的処置 エアウェイ・声門上器具. 日臨麻会誌. 2014 ; 34 : 608-12.
37. Brown CA, 3rd, Bair AE, Pallin DJ, et al. Improved glottic exposure with the Video Macintosh Laryngoscope in adult emergency department tracheal intubations. Ann Emerg Med. 2010 ; 56 : 83-8.
39. Aziz MF, Brambrink AM, Healy DW, et al. Success of intubation rescue techniques after failed direct laryngoscopy in adults : a retrospective comparative analysis from the multicenter perioperative outcomes group. Anesthesiology. 2016 ; 125 : 656-66.
40. Smith GM, Reed JC, Choplin RH. Radiographic detection of esophageal malpositioning of endotracheal tubes. AJR Am J Roentgenol. 1990 ; 154 : 23-6.
P.59 掲載の参考文献
1. Peake SL, Delaney A, Bailey M, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014 ; 371 : 1496-506.
2. Yealy DM, Kellum JA, Huang DT, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014 ; 370 : 1683-93.
3. Abe T, Ogura H, Shiraishi A, et al. Characteristics, management, and in-hospital mortality among patients with severe sepsis in intensive care units in Japan : the FORECAST study. Crit Care. 2018 ; 22 : 322.
4. Nagao M. A multicentre analysis of epidemiology of the nosocomial bloodstream infections in Japanese university hospitals. Clin Microbiol Infect. 2013 ; 19 : 852-8.
5. Hattori H, Maeda M, Nagatomo Y, et al. Epidemiology and risk factors for mortality in bloodstream infections : A single-center retrospective study in Japan. Am J Infect Control. 2018 ; 46 : e75-9.
6. Fabre V, Sharara SL, Salinas AB, et al. Does this patient need blood cultures? A scoping review of indications for blood cultures in adult nonneutropenic inpatients. Clin Infect Dis. 2020 ; 71 : 1339-47.
7. Doern G V, Carroll KC, Diekema DJ, et al. Practical Guidance for Clinical Microbiology Laboratories : a comprehensive update on the problem of blood culture contamination and a discussion of methods for addressing the problem. Clin Microbiol Rev. 2019 ; 33 : e00009-19.
8. Velasco M, Martinez JA, Moreno-Martinez A, et al. Blood cultures for women with uncomplicated acute pyelonephritis : are they necessary? Clin Infect Dis. 2003 ; 37 : 1127-30.
9. Artero A, Inglada L, Gomez-Belda A, et al. The clinical impact of bacteremia on outcomes in elderly patients with pyelonephritis or urinary sepsis : a prospective multicenter study. PLoS One. 2018 ; 13 : e0191066.
10. Abe T, Tokuda Y, Ishimatsu S, et al. Usefulness of initial blood cultures in patients admitted with pneumonia from an emergency department in Japan. J Infect Chemother. 2009 ; 15 : 180-6.
11. Bordon J, Peyrani P, Brock GN, et al. The presence of pneumococcal bacteremia does not influence clinical outcomes in patients with community-acquired pneumonia : results from the Community-Acquired Pneumonia Organization (CAPO) International Cohort study. Chest. 2008 ; 133 : 618-24.
12. Paolo WF, Poreda AR, Grant W, et al. Blood culture results do not affect treatment in complicated cellulitis. J Emerg Med. 2013 ; 45 : 163-7.
13. Collazos J, de la Fuente B, Garcia A, et al. Cellulitis in adult patients : a large, multicenter, observational, prospective study of 606 episodes and analysis of the factors related to the response to treatment. PLoS One. 2018 ; 13 : e0204036.
14. 青木眞. レジデントのための感染症診療マニュアル. 第2版. 東京 : 医学書院 ; 2008. p.27-9.
15. Coburn B, Morris AM, Tomlinson G, et al. Does this adult patient with suspected bacteremia require blood cultures? JAMA. 2012 ; 308 : 502-11.
16. Snyder SR, Favoretto AM, Baetz RA, et al. Effectiveness of practices to reduce blood culture contamination : a Laboratory Medicine Best Practices systematic review and meta-analysis. Clin Biochem. 2012 ; 45 : 999-1011.
18. Mermel LA. Drawing blood cultures through intravascular catheters : controversy and update. Infect Control Hosp Epidemiol. 2019 ; 40 : 457-9.
19. Stohl S, Benenson S, Sviri S, et al. Blood cultures at central line insertion in the intensive care unit : comparison with peripheral venipuncture. J Clin Microbiol. 2011 ; 49 : 2398-403.
20. Levin PD, Moss J, Stohl S, et al. Use of the nonwire central line hub to reduce blood culture contamination. Chest. 2013 ; 143 : 640-5.
21. Garcia RA, Spitzer ED, Beaudry J, et al. Multidisciplinary team review of best practices for collection and handling of blood cultures to determine effective interventions for increasing the yield of true-positive bacteremias, reducing contamination, and eliminating false-positive central line-associated bloodstream infections. Am J Infect Control. 2015 ; 43 : 1222-37.
22. Miller JM, Binnicker MJ, Campbell S, et al. A Guide to Utilization of the Microbiology Laboratory for Diagnosis of Infectious Diseases : 2018 Update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin Infect Dis. 2018 ; 67 : 813-6.
23. Washer LL, Chenoweth C, Kim H-W, et al. Blood culture contamination : a randomized trial evaluating the comparative effectiveness of 3 skin antiseptic interventions. Infect Control Hosp Epidemiol. 2013 ; 34 : 15-21.
24. Maiwald M, Chan ESY. The forgotten role of alcohol : a systematic review and meta-analysis of the clinical efficacy and perceived role of chlorhexidine in skin antisepsis. PLoS One. 2012 ; 7 : e44277.
25. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
26. Lamy B, Dargere S, Arendrup MC, et al. How to optimize the use of blood cultures for the diagnosis of bloodstream infections? A state-of-the art. Front Microbiol. 2016 ; 7 : 697.
28. Cheng MP, Stenstrom R, Paquette K, et al. Blood culture results before and after antimicrobial administration in patients with severe manifestations of sepsis : a diagnostic study. Ann Intern Med. 2019 ; 171 : 547-54.
29. Zitek T, Bourne M, Raber J, et al. Blood culture results and overtreatment associated with the use of a 1-Hour Sepsis Bundle. J Emerg Med. 2020 ; 59 : 629-36.
30. van der Heijden YF, Miller G, Wright PW, et al. Clinical impact of blood cultures contaminated with coagulase-negative staphylococci at an academic medical center. Infect Control Hosp Epidemiol. 2011 ; 32 : 623-5.
31. Kamboj M, Blair R, Bell N, et al. Use of disinfection cap to reduce central-line-associated bloodstream infection and blood culture contamination among hematology-oncology patients. Infect Control Hosp Epidemiol. 2015 ; 36 : 1401-8.
32. Martinez JA, DesJardin JA, Aronoff M, et al. Clinical utility of blood cultures drawn from central venous or arterial catheters in critically ill surgical patients. Crit Care Med. 2002 ; 30 : 7-13.
33. Nakayama I, Izawa J. Contamination of blood cultures from arterial catheters vs peripheral venipuncture in critically ill patients : a multicenter prospective observational study[Internet]. UMIN000035392. 2018. https://rctportal.niph.go.jp/en/detail-trial_id=UMIN000035392
P.71 掲載の参考文献
1. National Action Plan on Antimicrobial Resistance (AMR). 2016.
2. Nishida O, Ogura H, Egi M, et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). Acute Med Surg. 2018 ; 5 : 3-89.
4. Freund Y, Khoury A, Mockel M, et al. European Society of Emergency Medicine position paper on the 1-hour sepsis bundle of the Surviving Sepsis Campaign : expression of concern. Eur J Emerg Med. 2019 ; 26 : 232-33.
5. De Waele JJ, Schouten J, Beovic B, et al. Antimicrobial de-escalation as part of antimicrobial stewardship in intensive care : no simple answers to simple questions-a viewpoint of experts. Intensive Care Med. 2020 ; 46 : 236-44.
6. Ogura H, Gando S, Saitoh D, et al. Epidemiology of severe sepsis in Japanese intensive care units : a prospective multicenter study. J Infect Chemother. 2014 ; 20 : 157-62.
7. Abe T, Ogura H, Kushimoto S, et al. Variations in infection sites and mortality rates among patients in intensive care units with severe sepsis and septic shock in Japan. J Intensive Care. 2019 ; 7 : 28.
8. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States : Analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001 ; 29 : 1303-10.
10. Sigakis MJG, Jewell E, Maile MD, et al. Culture-negative and culture-positive sepsis : a comparison of characteristics and outcomes. Anesth Analg. 2019 ; 129 : 1300-9.
11. Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med. 2002 ; 136 : 834-44.
12. Hayakawa K, Mezaki K, Sugiki Y, et al. High rate of multidrug-resistant organism colonization among patients hospitalized overseas highlights the need for preemptive infection control. Am J Infect Control. 2016 ; 44 : e257-9.
13. Raineri E, Pan A, Mondello P, et al. Role of the infectious diseases specialist consultant on the appropriateness of antimicrobial therapy prescription in an intensive care unit. Am J Infect Control. 2008 ; 36 : 283-90.
15. Charbonneau P, Parienti J-J, Thibon P, et al. Fluoroquinolone use and methicillin-resistant Staphylococcus aureus isolation rates in hospitalized patients : a quasi experimental study. Clin Infect Dis. 2006 ; 42 : 778-84.
16. Owens RC Jr. An overview of harms associated with beta-lactam antimicrobials : where do the carbapenems fit in? Crit Care. 2008 ; 12 (Suppl 4) : S3.
17. Taccone FS, Laterre P-F, Dugernier T, et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010 ; 14 : R126.
18. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d'Anesthesie et Reanimation-SFAR). Crit Care. 2019 ; 23 : 104.
19. Chen C-H, Chen Y-M, Chang Y-J, et al. Continuous versus intermittent infusions of antibiotics for the treatment of infectious diseases : meta-analysis and systematic review. Medicine (Baltimore). 2019 ; 98 : e14632.
20. Abdul-Aziz MH, Sulaiman H, Mat-Nor M-B, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS) : a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016 ; 42 : 1535-45.
21. Vardakas KZ, Voulgaris GL, Maliaros A, et al. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis : a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018 ; 18 : 108-20.
22. Lee YR, Miller PD, Alzghari SK, et al. Continuous infusion versus intermittent bolus of beta-lactams in critically ill patients with respiratory infections : a systematic review and meta-analysis. Eur J Drug Metab Pharmacokinet. 2018 ; 43 : 155-70.
24. Charles PE, Tinel C, Barbar S, et al. Procalcitonin kinetics within the first days of sepsis : relationship with the appropriateness of antibiotic therapy and the outcome. Crit Care. 2009 ; 13 : R38.
25. Karlsson S, Heikkinen M, Pettila V, et al. Predictive value of procalcitonin decrease in patients with severe sepsis : a prospective observational study. Crit Care. 2010 ; 14 : R205.
26. Chu DC, Mehta AB, Walkey AJ, et al. Practice patterns and outcomes associated with procalcitonin use in critically ill patients with sepsis. Clin Infect Dis. 2017 ; 64 : 1509-15.
27. Pugh R, Grant C, Cooke RPD, et al. Short-course versus prolonged-course antibiotic therapy for hospital-acquired pneumonia in critically ill adults. Cochrane Database Syst Rev. 2015 ; 2015 : CD007577.
28. Montravers P, Tubach F, Lescot T, et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection : the DURAPOP randomised clinical trial. Intensive Care Med. 2018 ; 44 : 300-10.
P.83 掲載の参考文献
1. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017 ; 17 : 233-47.
2. Jurney TH, Cockrell JL Jr, Lindberg JS, et al. Spectrum of serum cortisol response to ACTH in ICU patients. Correlation with degree of illness and mortality. Chest. 1987 ; 92 : 292-5.
3. Arlt W, Allolio B. Adrenal insufficiency. Lancet. 2003 ; 361 : 1881-93.
4. Pastores SM, Annane D, Rochwerg B ; Corticosteroid Guideline Task Force of SCCM and ESICM. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part II) : Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med. 2018 ; 46 : 146-8.
5. Schumer W. Steroids in the treatment of clinical septic shock. Ann Surg. 1976 ; 184 : 333-41.
7. Veterans Administration Systemic Sepsis Cooperative Study Group. Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. N Engl J Med. 1987 ; 317 : 659-65.
8. Bone RC, Fisher CJ Jr, Clemmer TP, et al. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987 ; 317 : 653-8.
10. Sprung CL, Annane D, Keh D, et al ; CORTICUS Study Group. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008 ; 358 : 111-24.
11. Venkatesh B, Finfer S, Cohen J, et al ; ADRENAL Trial Investigators and the Australian-New Zealand Intensive Care Society Clinical Trials Group. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018 ; 378 : 797-808.
12. Annane D, Renault A, Brun-Buisson C, et al ; CRICS-TRIGGERSEP Network. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018 ; 378 : 809-18.
13. Annane D, Bellissant E, Bollaert PE, et al. Corticosteroids for treating sepsis in children and adults. Cochrane Database Syst Rev. 2019 ; 12 : CD002243.
14. Yamamoto R, Nahara I, Toyosaki M, et al. Hydrocortisone with fludrocortisone for septic shock : a systematic review and meta-analysis. Acute Med Surg. 2007 ; 7 : e563.
15. COIITSS Study Investigators ; Annane D, Cariou A, Maxime V, et al. Corticosteroid treatment and intensive insulin therapy for septic shock in adults : a randomized controlled trial. JAMA. 2010 ; 303 : 341-8.
16. Keh D, Trips E, Marx G, et al ; SepNet-Critical Care Trials Group. Effect of hydrocortisone on development of shock among patients with severe sepsis : The HYPRESS randomized clinical trial. JAMA. 2016 ; 316 : 1775-85.
17. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group ; Sterne JAC, Murthy S, Diaz JV, et al. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19. A meta-analysis. JAMA. 2020 ; 324 : 1330-41.
P.96 掲載の参考文献
1. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
2. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
3. Cinel I, Opal SM. Molecular biology of inflammation and sepsis : a primer. Crit Care Med. 2009 ; 37 : 291-304.
6. Honore PM, Matson JR. Extracorporeal removal for sepsis : acting at the tissue level-the beginning of a new era for this treatment modality in septic shock. Crit Care Med. 2004 ; 32 : 896-7.
9. Rimmele T, Kellum JA. High-volume hemofiltration in the intensive care unit : a blood purification therapy. Anesthesiology. 2012 ; 116 : 1377-87.
10. Palevsky PM. Intensity of continuous renal replacement therapy in acute kidney injury. Semin Dial. 2009 ; 22 : 151-4.
12. Leaf DE, Waikar SS. IDEAL-ICU in context. Clin J Am Soc Nephrol. 2019 ; 14 : 1264-7.
13. Monard C, Rimmele T, Ronco C. Extracorporeal blood purification therapies for sepsis. Blood Purif. 2019 ; 47 Suppl 3 : 1-14.
14. Ostermann M, Bellomo R, Burdmann EA, et al. Controversies in acute kidney injury : conclusions from a Kidney Disease : Improving Global Outcomes (KDIGO) Conference. Kidney Int. 2020 ; 98 : 294-309.
18. Bagshaw SM, Wald R, Adhikari NKJ, et al. Timing of initiation of renal-replacement therapy in acute kidney injury. N Engl J Med. 2020 ; 383 : 240-51.
19. Nakada TA, Oda S, Matsuda K, et al. Continuous hemodiafiltration with PMMA hemofilter in the treatment of patients with septic shock. Mol Med. 2008 ; 14 : 257-63.
20. Matsuda K, Moriguchi T, Harii N, et al. Comparison of efficacy between continuous hemodiafiltration with a PMMA high-performance membrane dialyzer and a PAN membrane hemofilter in the treatment of septic shock patients with acute renal failure. Contrib Nephrol. 2011 ; 173 : 182-90.
21. Sakamoto Y, Mashiko K, Obata T, et al. Effectiveness of continuous hemodiafiltration using a polymethylmethacrylate membrane hemofilter after polymyxin B-immobilized fiber column therapy of septic shock. ASAIO J. 2008 ; 54 : 129-32.
22. 森山和, 小野塚紀, 綱島 英. Cytokine-adsorbing hemofilter : バクスター セプザイリス (AN69ST膜hemofilter). 人工臓器. 2014 ; 43 : 233-7.
23. Lavaud S, Canivet E, Wuillai A, et al. Optimal anticoagulation strategy in haemodialysis with heparin-coated polyacrylonitrile membrane. Nephrol Dial Transplant. 2003 ; 18 : 2097-104.
24. Yumoto M, Nishida O, Moriyama K, et al. In vitro evaluation of high mobility group box 1 protein removal with various membranes for continuous hemofiltration. Ther Apher Dial. 2011 ; 15 : 385-93.
26. Peng Y, Yuan Z, Li H. Removal of inflammatory cytokines and endotoxin by veno-venous continuous renal replacement therapy for burned patients with sepsis. Burns. 2005 ; 31 : 623-8.
27. Peng Z, Pai P, Han-Min W, et al. Evaluation of the effects of pulse high-volume hemofiltration in patients with severe sepsis : a preliminary study. Int J Artif Organs. 2010 ; 33 : 505-11.
28. Peng Z, Pai P, Hong-Bao L, et al. The impacts of continuous veno-venous hemofiltration on plasma cytokines and monocyte human leukocyte antigen-DR expression in septic patients. Cytokine. 2010 ; 50 : 186-91.
30. Doi K, Iwagami M, Yoshida E, et al. Associations of polyethylenimine-coated AN69ST membrane in continuous renal replacement therapy with the intensive care outcomes : observations from a claims database from Japan. Blood Purif. 2017 ; 44 : 184-92.
31. Kobashi S, Maruhashi T, Nakamura T, et al. The 28-day survival rates of two cytokine-adsorbing hemofilters for continuous renal replacement therapy : a single-center retrospective comparative study. Acute Med Surg. 2019 ; 6 : 60-7.
32. Hayashi K, Sasabuchi Y, Matsui H, et al. Clinical effect of the acrylonitrile-Co-methallyl sulfonate surface-treated membrane as a cytokine adsorption therapy for sepsis due to acute panperitonitis : a retrospective cohort study. Blood Purif. 2020 ; 49 : 364-71.
33. Nishida O, Ogura H, Egi M, et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). J Intensive Care. 2018 ; 6 : 7.
34. 小路久敬. 血中エンドトキシン除去カラム (PMX) の有用性と意義の確立に向けた多角的アプローチ (<特集> 敗血症とアフェレシス). 日アフェレシス会誌. 2012 ; 31 : 109-17.
37. Kellum JA, Uchino S. International differences in the treatment of sepsis : are they justified? JAMA. 2009 ; 301 : 2496-7.
38. Ronco C, Klein DJ. Polymyxin B hemoperfusion : a mechanistic perspective. Crit Care. 2014 ; 18 : 309.
39. Dellinger RP, Bagshaw SM, Antonelli M, et al. Effect of targeted polymyxin B hemoperfusion on 28-day mortality in patients with septic shock and elevated endotoxin level : The EUPHRATES Randomized Clinical Trial. JAMA. 2018 ; 320 : 1455-63.
40. Romaschin AD, Obiezu-Forster CV, Shoji H, et al. Novel insights into the direct removal of endotoxin by polymyxin B hemoperfusion. Blood Purif. 2017 ; 44 : 193-7.
42. Iba T, Klein DJ. The wind changed direction and the big river still flows : from EUPHRATES to TIGRIS. J Intensive Care. 2019 ; 7 : 31.
43. Fujii T, Ganeko R, Kataoka Y, et al. Polymyxin B-immobilized hemoperfusion and mortality in critically ill adult patients with sepsis/septic shock : a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018 ; 44 : 167-78.
44. Lin WT, Lai CC, Wang JJ, et al. Effect of polymyxin B hemoperfusion on the outcome of patients with sepsis and septic shock. J Infect. 2020 ; 80 : 350-71.
46. Peres Bota D, Melot C, Lopes Ferreira F, et al. The Multiple Organ Dysfunction Score (MODS) versus the Sequential Organ Failure Assessment (SOFA) score in outcome prediction. Intensive Care Med. 2002 ; 28 : 1619-24.
47. Chang T, Tu YK, Lee CT, et al. Effects of polymyxin B hemoperfusion on mortality in patients with severe sepsis and septic shock : a systemic review, meta-analysis update, and disease severity subgroup meta-analysis. Crit Care Med. 2017 ; 45 : e858-64.
P.108 掲載の参考文献
2. Lockwood CM, Boulton-Jones JM, Lowenthal RM, et al. Recovery from Goodpasture's syndrome after immunosuppressive treatment and plasmapheresis. Br Med J. 1975 ; 2 : 252-4.
3. Pinching AJ, Peters DK. Remission of myasthenia gravis following plasma-exchange. Lancet. 1976 ; 2 : 1373-6.
4. Pedersen RS, Pedersen OL, Nielsen I, et al. Meningococcal septicaemia treated with combined plasmapheresis and leucapheresis or with blood exchange. Br Med J (Clin Res Ed). 1984 ; 289 : 254-5.
5. van Deuren M, Santman FW, van Dalen R, et al. Plasma and whole blood exchange in meningococcal sepsis. Clin Infect Dis. 1992 ; 15 : 424-30.
6. Rimmer E, Houston BL, Kumar A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock : a systematic review and meta-analysis. Crit Care. 2014 ; 18 : 699.
7. Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the Use of Therapeutic Apheresis in Clinical Practice-Evidence-Based Approach from the Writing Committee of the American Society for Apheresis : The Seventh Special Issue. J Clin Apher. 2016 ; 31 : 149-62.
8. Vanholder R, De Smet R, Glorieux G, et al. Review on uremic toxins : classification, concentration, and interindividual variability. Kidney Int. 2003 ; 63 : 1934-43.
9. Williams ME, Balogun RA. Principles of separation : indications and therapeutic targets for plasma exchange. Clin J Am Soc Nephrol. 2014 ; 9 : 181-90.
10. Aibar J, Castro P, Espinosa G, et al. ADAMTS-13 in critically ill patients with septic syndromes and noninfectious systemic inflammatory response syndrome. Shock. 2015 ; 43 : 556-62.
11. Knaup H, Stahl K, Schmidt BMW, et al. Early therapeutic plasma exchange in septic shock : a prospective open-label nonrandomized pilot study focusing on safety, hemodynamics, vascular barrier function, and biologic markers. Crit Care. 2018 ; 22 : 285.
12. Stahl K, Schmidt JJ, Seeliger B, et al. Effect of therapeutic plasma exchange on endothelial activation and coagulation-related parameters in septic shock. Crit Care. 2020 ; 24 : 71.
13. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020 ; 46 : 10-67.
14. Hafer C, Golla P, Gericke M, et al. Membrane versus centrifuge-based therapeutic plasma exchange : a randomized prospective crossover study. Int Urol Nephrol. 2016 ; 48 : 133-8.
15. Ward DM. Conventional apheresis therapies : a review. J Clin Apher. 2011 ; 26 : 230-8.
16. Mokrzycki MH, Balogun RA. Therapeutic apheresis : a review of complications and recommendations for prevention and management. J Clin Apher. 2011 ; 26 : 243-8.
17. Reeves JH, Butt WW, Shann F, et al. Continuous plasmafiltration in sepsis syndrome. Plasmafiltration in Sepsis Study Group. Crit Care Med. 1999 ; 27 : 2096-104.
18. Busund R, Koukline V, Utrobin U, et al. Plasmapheresis in severe sepsis and septic shock : a prospective, randomised, controlled trial. Intensive Care Med. 2002 ; 28 : 1434-9.
19. Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008 ; 36 : 2878-87.
20. Long EJ, Taylor A, Delzoppo C, et al. A randomised controlled trial of plasma filtration in severe paediatric sepsis. Crit Care Resusc. 2013 ; 15 : 198-204.
21. Levi M, Scully M, Singer M. The role of ADAMTS-13 in the coagulopathy of sepsis. J Thromb Haemost. 2018 ; 16 : 646-51.
P.117 掲載の参考文献
1. Marsh JD, Margolis TI, Kim D. Mechanism of diminished contractile response to catecholamines during acidosis. Am J Physiol. 1988 ; 254 : H20-7.
2. Orchard CH, Hamilton DL, Astles P, et al. The effect of acidosis on the relationship between Ca2+ and force in isolated ferret cardiac muscle. J Physiol. 1991 ; 436 : 559-78.
3. Rudnick MR, Blair GJ, Kuschner WG, et al. Lactic acidosis and the role of sodium bicarbonate : a narrative opinion. Shock. 2020 ; 53 : 528-36.
4. Boyd JH, Walley KR. Is there a role for sodium bicarbonate in treating lactic acidosis from shock? Curr Opin Crit Care. 2008 ; 14 : 379-83.
5. Cooper DJ, Walley KR, Wiggs BR, et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med. 1990 ; 112 : 492-8.
6. Mathieu D, Neviere R, Billard V, et al. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis : a prospective, controlled clinical study. Crit Care Med. 1991 ; 19 : 1352-6.
7. Mark NH, Leung JM, Arieff AI, et al. Safety of low-dose intraoperative bicarbonate therapy : a prospective, double-blind, randomized study. The Study of Perioperative Ischemia (SPI) Research Group. Crit Care Med. 1993 ; 21 : 659-65.
8. El-Solh AA, Abou Jaoude P, Porhomayon J. Bicarbonate therapy in the treatment of septic shock : a second look. Intern Emerg Med. 2010 ; 5 : 341-7.
9. Jung B, Rimmele T, Le Goff C, et al. Severe metabolic or mixed acidemia on intensive care unit admission : incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care. 2011 ; 15 : R238.
10. Kim HJ, Son YK, An WS. Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis : a retrospective analysis. PLoS One. 2013 ; 8 : e65283.
11. Zhang Z, Zhu C, Mo L, et al. Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis. Intensive Care Med. 2018 ; 44 : 1888-95.
12. Jaber S, Paugam C, Futier E, et al. Sodium bicarbonate therapy for patients with severe metabolic acidemia in the intensive care unit (BICAR-ICU) : a multicenter, open-label, randomized controlled, phase 3 trial. Lancet. 2018 ; 392 : 31-40.
13. Yasuda H, Kato A, Fujigaki Y, et al. Incidence and clinical outcomes of acute kidney injury requiring renal replacement therapy in Japan. Ther Apher Dial. 2010 ; 14 : 541-6
14. Hewitt J, Uniacke M, Hansi NK, et al. Sodium bicarbonate supplements for treating acute kidney injury. Cochrane Datebase Syst Rev. 2012 ; 2012 : CD009204.
15. Gaudry S, Hajage D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med. 2016 : 375 ; 122-33.
16. Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury : The ELAIN randomized clinical trial. JAMA. 2016 ; 315 : 2190-99.
18. Bagshaw SM, Wald R, Adhikari NKJ, et al. Timing of initiation renal-replacement therapy in acute kidney injury. N Engl J Med. 2020 ; 383 : 240-51.
P.124 掲載の参考文献
1. Fourrier F, Chopin C, Huart JJ, et al. Double-blind, placebo-controlled trial of antithrombin III concentrates in septic shock with disseminated intravascular coagulation. Chest. 1993 ; 104 : 882-8.
2. Eisele B, Lamy M, Thijs LG, et al. Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998 ; 24 : 663-72.
3. Baudo F, Caimi TM, de Cataldo F, et al. Antithrombin III (ATIII) replacement therapy in patients with sepsis and/or postsurgical complications : a controlled double-blind, randomized, multicenter study. Intensive Care Med. 1998 ; 24 : 336-42.
4. Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001 ; 344 : 699-709.
5. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004 ; 32 : 858-73.
6. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign : international guidelines for management of severe sepsis and septic shock : 2008. Crit Care Med. 2008 ; 36 : 296-327.
7. Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. N Engl J Med. 2005 ; 353 : 1332-41.
8. Nadel S, Goldstein B, Williams MD, et al. Drotrecogin alfa (activated) in children with severe sepsis : a multicentre phase III randomised controlled trial. Lancet. 2007 ; 369 : 836-43.
11. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013 ; 369 : 840-51.
12. Levi M, Ten Cate H. Disseminated intravascular coagulation. N Engl J Med. 1999 ; 341 : 586-92.
13. Zeerleder S, Hack CE, Wuillemin WA. Disseminated intravascular coagulation in sepsis. Chest. 2005 ; 128 : 2864-75.
14. Levi M, de Jonge E, van der Poll T. Sepsis and disseminated intravascular coagulation. J Thromb Thrombolysis. 2003 ; 16 : 43-7.
15. Ito T, Thachil J, Asakura H, et al. Thrombomodulin in disseminated intravascular coagulation and other critical conditions-a multi-faceted anticoagulant protein with thera peutic potential. Crit Care. 2019 ; 23 : 280.
16. Vincent JL, Castro P, Hunt BJ, et al. Thrombocytopenia in the ICU : disseminated intravascular coagulation and thrombotic microangiopathies-what intensivists need to know. Crit Care. 2018 ; 22 : 158.
17. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017 ; 149 : 38-44.
18. Iba T, Ogura H. Role of extracellular vesicles in the development of sepsis-induced coagulopathy. J Intensive Care. 2018 ; 6 : 68.
19. Lipinska-Gediga M. Coagulopathy in sepsis-a new look at an old problem. Anaesthesiol Intensive Ther. 2016 ; 48 : 352-9.
20. Taylor FB, Jr., Toh CH, Hoots WK, et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001 ; 86 : 1327-30.
21. Gando S, Saitoh D, Ogura H, et al. Natural history of disseminated intravascular coagulation diagnosed based on the newly established diagnostic criteria for critically ill patients : results of a multicenter, prospective survey. Crit Care Med. 2008 ; 36 : 145-50.
22. Gando S, Iba T, Eguchi Y, et al. A multicenter, prospective validation of disseminated intravascular coagulation diagnostic criteria for critically ill patients : comparing current criteria. Crit Care Med. 2006 ; 34 : 625-31.
23. Ding R, Wang Z, Lin Y, et al. Comparison of a new criteria for sepsis-induced coagulopathy and International Society on Thrombosis and Haemostasis disseminated intravascular coagulation score in critically ill patients with sepsis 3.0 : a retrospective study. Blood Coagul Fibrinolysis. 2018 ; 29 : 551-8.
24. Cauchie P, Cauchie C, Boudjeltia KZ, et al. Diagnosis and prognosis of overt disseminated intravascular coagulation in a general hospital-meaning of the ISTH score system, fibrin monomers, and lipoprotein-C-reactive protein complex formation. Am J Hematol. 2006 ; 81 : 414-9.
25. Gando S, Saitoh D, Ogura H, et al. A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis. Crit Care. 2013 ; 17 : R111.
26. Mesters RM, Mannucci PM, Coppola R, et al. Factor VIIa and antithrombin III activity during severe sepsis and septic shock in neutropenic patients. Blood. 1996 ; 88 : 881-6.
27. Warren BL, Eid A, Singer P, et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis : a randomized controlled trial. JAMA. 2001 ; 286 : 1869-78.
28. Levi M, Toh CH, Thachil J, et al. Guidelines for the diagnosis and management of disseminated intravascular coagulation. British Committee for Standards in Haematology. Br J Haematol. 2009 ; 145 : 24-33.
29. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
31. Hayakawa M, Kudo D, Saito S, et al. Antithrombin supplementation and mortality in sepsis-induced disseminated intravascular coagulation : a multicenter retrospective observational study. Shock. 2016 ; 46 : 623-31.
32. Hayakawa M, Yamakawa K, Kudo D, et al. Optimal antithrombin activity threshold for initiating antithrombin supplementation in patients with sepsis-induced disseminated intravascular coagulation : a multicenter retrospective observational study. Clin Appl Thromb Hemost. 2018 ; 24 : 874-83.
33. Tagami T, Matsui H, Fushimi K, et al. Supplemental dose of antithrombin use in disseminated intravascular coagulation patients after abdominal sepsis. Thromb Haemost. 2015 ; 114 : 537-45.
34. Tagami T, Matsui H, Horiguchi H, et al. Antithrombin and mortality in severe pneumonia patients with sepsis-associated disseminated intravascular coagulation : an observational nationwide study. J Thromb Haemost. 2014 ; 12 : 1470-9.
35. Wiedermann CJ, Kaneider NC. A systematic review of antithrombin concentrate use in patients with disseminated intravascular coagulation of severe sepsis. Blood Coagul Fibrinolysis. 2006 ; 17 : 521-6.
36. Afshari A, Wetterslev J, Brok J, et al. Antithrombin III in critically ill patients : systematic review with meta-analysis and trial sequential analysis. BMJ. 2007 ; 335 : 1248-51.
37. Umemura Y, Yamakawa K, Ogura H, et al. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis : a meta-analysis of randomized controlled trials. J Thromb Haemost. 2016 ; 14 : 518-30.
38. Allingstrup M, Wetterslev J, Ravn FB, et al. Antithrombin III for critically ill patients : a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2016 ; 42 : 505-20.
39. Tagami T. Antithrombin concentrate use in sepsis-associated disseminated intravascular coagulation : re-evaluation of a 'pendulum effect' drug using a nationwide database. J Thromb Haemost. 2018 ; 16 : 458-61.
40. Faust SN, Heyderman RS, Levin M. Coagulation in severe sepsis : a central role for thrombomodulin and activated protein C. Crit Care Med. 2001 ; 29 : S62-7.
41. Maruyama I. Recombinant thrombomodulin and activated protein C in the treatment of disseminated intravascular coagulation. Thromb Haemost. 1999 ; 82 : 718-21.
42. Saito H, Maruyama I, Shimazaki S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation : results of a phase III, randomized, double-blind clinical trial. J Thromb Haemost. 2007 ; 5 : 31-41.
43. Vincent JL, Ramesh MK, Ernest D, et al. A randomized, double-blind, placebo-controlled, phase 2b study to evaluate the safety and efficacy of recombinant human soluble thrombomodulin, ART-123, in patients with sepsis and suspected disseminated intravascular coagulation. Crit Care Med. 2013 ; 41 : 2069-79.
44. Vincent JL, Francois B, Zabolotskikh I, et al. Effect of a recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy : the SCARLET Randomized Clinical Trial. JAMA. 2019 ; 321 : 1993-2002.
45. Yamakawa K, Murao S, Aihara M. Recombinant human soluble thrombomodulin in sepsis-induced coagulopathy : an updated systematic review and meta-analysis. Thromb Haemost. 2019 ; 119 : 56-65.
46. Umemura Y, Yamakawa K, Ogura H, et al. Efficacy and safety of anticoagulant therapy in three specific populations with sepsis : a meta-analysis of randomized controlled trials. J Thromb Haemost. 2016 ; 14 : 518-30.
P.134 掲載の参考文献
1. Moore FA, Moore EE. Evolving concepts in the pathogenesis of postinjury multiple organ failure. Surg Clin North Am. 1995 ; 75 : 257-77.
2. McClave SA, Taylor BE, Martindale RG, et al ; Society of Critical Care Medicine ; American Society for Parenteral and Enteral Nutrition. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient : Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A. S. P. E. N.). JPEN J Parenter Enteral Nutr. 2016 ; 40 : 159-211.
3. Kreymann KG, Berger MM, Deutz NE, et al ; DGEM (German Society for Nutritional Medicine), Ebner C, Hartl W, Heymann C, et al ; ESPEN (European Society for Parenteral and Enteral Nutrition). ESPEN guidelines on enteral nutrition : Intensive care. Clin Nutr. 2006 ; 25 : 210-23.
4. Singer P, Berger MM, Van den Berghe G, et al : ESPEN guidelines on parenteral nutrition : intensive care. Clin Nutr. 2009 ; 28 : 387-400.
5. Heyland DK, Dhaliwal R, Drover JW, et al ; Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003 ; 27 : 355-73.
6. 日本集中治療医学会日本版重症患者の栄養管理ガイドライン作成委員会, 編. 小谷譲治, 江木盛時, 海塚安郎, 他. 日本版重症患者の栄養療法ガイドライン-総論 2016 & 病態別 2017- (J-CCNTG). 東京 : 真興交易医書出版部 ; 2018.
7. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign : International guidelines for management of sepsis and septic shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
8. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
9. Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS) : a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011 ; 37 : 601-9.
10. Arabi YM, Tamim HM, Dhar GS, et al. Permissive underfeeding and intensive insulin therapy in critically ill patients : a randomized controlled trial. Am J Clin Nutr. 2011 ; 93 : 569-77.
11. Pontes-Arruda A, Martins LF, de Lima SM, et al. Enteral nutrition with EPA, GLA and antioxidants in the early treatment of sepsis : results from a multicenter, prospective, randomized, double-blinded, controlled study : the INTERSEPT Study. Crit Care. 2011 ; 15 : R144.
12. Rice TW, Wheeler AP, Thompson BT, et al. Enteral omega-3 fatty acid, γ-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA. 2011 ; 306 : 1574-81.
13. The NICE-SUGAR Study Investigators. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009 ; 360 : 1283-97.
14. Arabi YM, Aldawood AS, Haddad SH, et al ; PermiT Trial Group. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015 ; 372 : 2398-408.
15. TARGET Investigators, for the ANZICS Clinical Trials Group ; Chapman M, Peake SL, Bellomo R, et al. Energy-dense versus routine enteral nutrition in the critically ill. N Engl J Med. 2018 ; 379 : 1823-34.
16. Nicolo M, Heyland DK, Chittams J, et al. Clinical outcomes related to protein delivery in a critically ill population : a multicenter, multinational observation study. JPEN J Parenter Enteral Nutr. 2016 ; 40 : 45-51.
18. Heyland DK, Patel J, Bear D, et al. The effect of higher protein dosing in critically ill patients : a multicenter registry-based randomized trial : The EFFORT Trial. JPEN J Parenter Enteral Nutr. 2019 ; 43 : 326-34.
19. Irahara T, Sato N, Otake K, et al. Alterations in energy substrate metabolism in mice with different degrees of sepsis. J Surg Res. 2018 ; 227 : 44-51.
20. Irahara T, Sato N, Inoue K, et al. Low-intensity exercise in the acute phase of lipopolysaccharide-induced sepsis improves lipid metabolism and survival in mice by stimulating PGC-1α expression. J Trauma Acute Care Surg. 2016 ; 80 : 933-40.
21. Irahara T, Sato N, Otake K, et al. Neuromuscular electrical stimulation improves energy substrate metabolism and survival in mice with acute endotoxic shock. Shock. 2020 ; 53 : 236-41.
P.145 掲載の参考文献
1. Martin-Loeches I, Muriel-Bombin A, Ferrer R, et al. The protective association of endogenous immunoglobulins against sepsis mortality is restricted to patients with moderate organ failure. Ann Intensive Care. 2017 ; 7 : 44.
2. 安田純一, 寺野由剛. 免疫グロブリン療法の歴史と発展-抗体療法・補充療法・免疫調節療法-. In : 小室勝利編. 免疫グロブリン療法. 東京 : 近代出版 ; 1992. p.2-13.
3. 螺良英郎. IgG抗体の役割と機序. In : 螺良英郎編. 図説免疫グロブリン療法-その基礎と臨床. 東京 : ライフ・サイエンス出版 ; 1988. p.11-2.
4. 伴野丞計, 鈴木亨. 免疫グロブリン製剤の構造と機能. In : 小室勝利編. 免疫グロブリン療法. 東京 : 近代出版 ; 1992. p.15-32.
5. 斧康雄. 免疫グロブリン製剤の作用機序. In : 正岡徹編. 静注用免疫グロブリン製剤ハンドブック. 大阪 : メディカルレビュー社 ; 2013. p.18-28.
6. Werdan K, Pilz G, Bujdoso O, et al ; Score-Based Immunoglobulin Therapy of Sepsis (SBITS) Study Group. Score-based immunoglobulin G therapy of patients with sepsis : the SBITS study. Crit Care Med. 2007 ; 35 : 2693-701.
7. 正岡徹, 長谷川廣文, 高久史麿, 他. 重症感染症に対する抗菌薬との併用療法における静注用ヒト免疫グロブリンの効果. 日化療会誌. 2000 ; 48 : 199-217.
8. Shankar-Hari M, Culshaw N, Post B, et al. Endogenous IgG hypogammaglobulinaemia in critically ill adults with sepsis : systematic review and meta-analysis. Intensive Care Med. 2015 ; 41 : 1393-401.
9. Taccone FS, Stordeur P, De Backer D, et al. Gamma-globulin levels in patients with community-acquired septic shock. Shock. 2009 ; 32 : 379-85.
10. 松田直之, 織田成人, 相引眞幸, 他. 日本集中治療医学会 第1回 Sepsis Registry調査 2007年の重症敗血症および敗血症性ショックの診療結果報告. 日集中医誌. 2013 ; 20 : 329-34.
11. 小谷穣治, 齋藤大蔵, 丸藤哲, 他. 日本救急医学会Sepsis Registry特別委員会報告 Severe Sepsis治療データ解析結果. 日救急医会誌. 2013 ; 24 : 291-6.
12. Darenberg J, Ihendyane N, Sjolin J, et al. Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome : a European randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2003 ; 37 : 333-40.
13. Tagami T, Matsui H, Fushimi K, et al. Intravenous immunoglobulin and mortality in pneumonia patients with septic shock : an observational nationwide study. Clin Infect Dis. 2015 ; 61 : 385-92.
14. Tagami T, Matsui H, Fushimi K, et al. Intravenous immunoglobulin use in septic shock patients after emergency laparotomy. J Infect. 2015 ; 71 : 158-66.
15. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
16. 西田修, 小倉裕司, 井上茂亮, 他. 日本版敗血症診療ガイドライン 2016. 日集中医誌. 2016 ; 24 : 1-232.
17. Parks T, Wilson C, Curtis N, et al. Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome : a systematic review and meta-analysis. Clin Infect Dis. 2018 ; 67 : 1434-6.
18. わが国における劇症型溶血性レンサ球菌感染症の疫学. IASR. 2015 ; 36 : 153-4.
19. Gilbert DN, Chambers HF, Eliopoulos GM, et al. Sanford guide to antimicrobial therapy antibimcrobial therapy. 2019.
20. Moore DL, Allen UD, Mailman T. Invasive group A streptococcal disease : management and chemoprophylaxis. Paediatr Child Health. 2019 ; 24 : 128-9.
21. Prairie Collaborative Immune Globulin Utilization Management Framework Project. Criteria for the clinical use of immune globulin. Alberta Ministry of Health, Shared Health Manitoba, and Saskatchewan Ministry of Health ; 2018.
22. Gottlieb M, Long B, Koyfman A. The evaluation and management of toxic shock syndrome in the emergency department : a review of the literature. J Emerg Med. 2018 ; 54 : 807-14.
23. Nationnal Blood Authority Australia. Criteria for the clinical use of intravenous immunoglobulin in Australia Version 3. 2018.
P.152 掲載の参考文献
1. Vail E, Gershenhorn HB, Hua M, et al. Association between US norepinephrine shortage and mortality among patients with septic shock. JAMA. 2017 ; 317 : 1433-42.
2. Walley KR. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018 ; 24 : 292-9.
3. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
4. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
6. Storms MM, Cook DJ, Presneill JJ, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med. 2008 ; 358 : 877-87.
7. Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock : The VANISH Randomized Clinical Trial. JAMA. 2016 ; 316 : 509-18.
8. Macdonald SPJ, Keijzers G, Taylor DM, et al. Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH) : a pilot randomised controlled trial. Intensive Care Med. 2018 ; 44 : 2070-8.
9. Permpikul C, Tongyoo S, Viarasilpa T, et al. Early use of norepinephrine in septic shock resuscitation (CENSER). A randomized trial. Am J Respir Crit Care Med. 2019 ; 199 : 1097-105.
10. Martin C, Medam S, Antonini F, et al. Norepinephrine : not too much, too long. Shock. 2015 ; 44 : 305-9.
11. Yamamura H, Kawazoe Y, Miyamoto K, et al. Effect of norepinephrine dosage on mortality in patients with septic shock. J Intensive Care. 2018 ; 6 : 12.
12. Cheng L, Yan J, Han S, et al. Comparative efficacy of vasoactive medications in patients with septic shock : a network meta-analysis of randomized controlled trials. Crit Care. 2019 ; 23 : 168.
13. Annane D, Ouanes-Besbes L, de Backer D, et al. A global perspective on vasoactive agents in shock. Intensive Care Med. 2018 ; 44 : 833-46.
15. Annane D, Vignon P, Renault A, et al. Norepinephrine plus dobutamine versus epinephrine alone for management of septic shock : a randomised trial. Lancet. 2007 ; 370 : 676-84.
16. Russell JA. Vasopressor therapy in critically ill patients with septic shock. Intensive Care Med. 2019 ; 45 : 1503-17.
P.161 掲載の参考文献
1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
2. Nishida O, Ogura H, Egi M, et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). J Intensive Care. 2018 ; 6 : 7.
3. McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock : a systematic review and meta-analysis. JAMA. 2018 ; 319 : 1889-900.
4. Nagendran M, Russell JA, Walley KR, et al. Vasopressin in septic shock : an individual patient data meta-analysis of randomised controlled trials. Intensive Care Med. 2019 ; 45 : 844-55.
5. Maybauer MO, Maybauer DM, Enkhbaatar P, et al. The selective vasopressin type 1a receptor agonist selepressin (FE 202158) blocks vascular leak in ovine severe sepsis*. Crit Care Med. 2014 ; 42 : e525-33.
6. Milano SP, Boucheix OB, Reinheimer TM. Selepressin, a novel selective V (1A) receptor agonist : effect on mesenteric flow and gastric mucosa perfusion in the endotoxemic rabbit. Peptides. 2020 ; 129 : 170318.
7. Russell JA, Vincent JL, Kjolbye AL, et al. Selepressin, a novel selective vasopressin V1A agonist, is an effective substitute for norepinephrine in a phase IIa randomized, placebo-controlled trial in septic shock patients. Crit Care. 2017 ; 21 : 213.
8. Laterre PF, Berry SM, Blemings A, et al. Effect of selepressin vs placebo on ventilator- and vasopressor-free days in patients with septic shock : The SEPSIS-ACT Randomized Clinical Trial. JAMA. 2019 ; 322 : 1476-85.
10. Marks JA, Pascual JL. Selepressin in septic shock : sharpening the VASST effects of vasopressin?*. Crit Care Med. 2014 ; 42 : 1747-8.
11. O'Callaghan DJ, Gordon AC. What's new in vasopressin? Intensive Care Med. 2015 ; 41 : 2177-9.
14. Levy B, Fritz C, Tahon E, et al. Vasoplegia treatments : the past, the present, and the future. Crit Care. 2018 ; 22 : 52.
15. Stolk RF, van der Poll T, Angus DC, et al. Potentially inadvertent immunomodulation : norepinephrine use in sepsis. Am J Respir Crit Care Med. 2016 ; 194 : 550-8.
16. Martin C, Medam S, Antonini F, et al. Norepinephrine : not too much, too long. Shock. 2015 ; 44 : 305-9.
17. Landry DW, Levin HR, Gallant EM, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997 ; 95 : 1122-5.
18. Leone M, Boyle WA. Decreased vasopressin responsiveness in vasodilatory septic shock-like conditions. Crit Care Med. 2006 ; 34 : 1126-30.
19. Russell JA, Fjell C, Hsu JL, et al. Vasopressin compared with norepinephrine augments the decline of plasma cytokine levels in septic shock. Am J Respir Crit Care Med. 2013 ; 188 : 356-64.
20. Lauzier F, Levy B, Lamarre P, et al. Vasopressin or norepinephrine in early hyperdynamic septic shock : a randomized clinical trial. Intensive Care Med. 2006 ; 32 : 1782-9.
21. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001 ; 345 : 588-95.
22. Gordon AC, Mason AJ, Thirunavukkarasu N, et al. Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock : The VANISH Randomized Clinical Trial. JAMA. 2016 ; 316 : 509-18.
23. Hajjar LA, Zambolim C, Belletti A, et al. Vasopressin versus norepinephrine for the management of septic shock in cancer patients : The VANCS II Randomized Clinical Trial. Crit Care Med. 2019 ; 47 : 1743-50.
24. Rodriguez R, Cucci M, Kane S, et al. Novel vasopressors in the treatment of vasodilatory shock : a systematic review of angiotensin II, selepressin, and terlipressin. J Intensive Care Med. 2020 ; 35 : 327-37.
25. Saad AF, Maybauer MO. The role of vasopressin and the vasopressin type V1a receptor agonist selepressin in septic shock. J Crit Care. 2017 ; 40 : 41-5.
26. Rehberg S, Morelli A, Jansen G. Selepressin for patients with septic shock. JAMA. 2020 ; 323 : 667.
27. Khanna A, English SW, Wang XS, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. 2017 ; 377 : 419-30.
P.172 掲載の参考文献
1. Park S, Jeon K, Oh DK, et al. Normothermia in patients with sepsis who present to emergency departments is associated with low compliance with sepsis bundles and increased in-hospital mortality rate. Crit Care Med. 2020 ; 48 : 1462-70.
2. Kushimoto S, Abe T, Ogura H, et al. Impact of body temperature abnormalities on the implementation of sepsis bundles and outcomes in patients with severe sepsis : a retrospective sub-analysis of the focused outcome research on emergency care for acute respiratory distress syndrome, sepsis and trauma study. Crit Care Med. 2019 ; 47 : 691-9.
3. Bhavani SV, Carey KA, Gilbert ER, et al. Identifying novel sepsis subphenotypes using temperature trajectories. Am J Respir Crit Care Med. 2019 ; 200 : 327-35.
4. Launey Y, Nesseler N, Malledant Y, et al. Clinical review : fever in septic ICU patients-friend or foe? Crit Care. 2011 ; 15 : 222.
5. Walter EJ, Hanna-Jumma S, Carraretto M, et al. The pathophysiological basis and consequences of fever. Crit Care. 2016 ; 20 : 200.
7. Simpson SQ. SIRS in the time of Sepsis-3. Chest. 2018 ; 153 : 34-8.
8. Kushimoto S, Gando S, Saitoh D, et al. The impact of body temperature abnormalities on the disease severity and outcome in patients with severe sepsis : an analysis from a multicenter, prospective survey of severe sepsis. Crit Care. 2013 ; 17 : R271.
9. Young PJ, Saxena M, Beasley R, et al. Early peak temperature and mortality in critically ill patients with or without infection. Intensive Care Med. 2012 Jan 31 ; doi : 10.1007/s00134-012-2478-3. Online ahead of print.
10. Marik PE, Zaloga GP. Hypothermia and cytokines in septic shock. Norasept II Study Investigators. North American study of the safety and efficacy of murine monoclonal antibody to tumor necrosis factor for the treatment of septic shock. Intensive Care Med. 2000 ; 26 : 716-21.
11. Sunden-Cullberg J, Rylance R, Svefors J, et al. Fever in the emergency department predicts survival of patients with severe sepsis and septic shock admitted to the ICU. Crit Care Med. 2017 ; 45 : 591-9.
12. Rumbus Z, Matics R, Hegyi P, et al. Fever is associated with reduced, hypothermia with increased mortality in septic patients : a meta-analysis of clinical trials. PLoS One. 2017 ; 12 : e0170152.
13. Drewry AM, Fuller BM, Skrupky LP, et al. The presence of hypothermia within 24 hours of sepsis diagnosis predicts persistent lymphopenia. Crit Care Med. 2015 ; 43 : 1165-9.
14. Drewry AM, Ablordeppey EA, Murray ET, et al. Monocyte function and clinical outcomes in febrile and afebrile patients with severe sepsis. Shock. 2018 ; 50 : 381-7.
15. Wise WC, Cook JA, Eller T, et al. Ibuprofen improves survival from endotoxic shock in the rat. J Pharmacol Exp Ther. 1980 ; 215 : 160-4.
16. Bernard GR, Wheeler AP, Russell JA, et al. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med. 1997 ; 336 : 912-8.
17. Lee BH, Inui D, Suh GY, et al. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis : multi-centered prospective observational study. Crit Care. 2012 ; 16 : R33.
18. Young P, Saxena M, Bellomo R, et al. Acetaminophen for fever in critically ill patients with suspected infection. N Engl J Med. 2015 ; 373 : 2215-24.
19. Schortgen F, Clabault K, Katsahian S, et al. Fever control using external cooling in septic shock : a randomized controlled trial. Am J Respir Crit Care Med. 2012 ; 185 : 1088-95.
20. Schortgen F, Charles-Nelson A, Bouadma L, et al. Respective impact of lowering body temperature and heart rate on mortality in septic shock : mediation analysis of a randomized trial. Intensive Care Med. 2015 ; 41 : 1800-8.
21. Itenov TS, Johansen ME, Bestle M, et al. Induced hypothermia in patients with septic shock and respiratory failure (CASS) : a randomised, controlled, open-label trial. Lancet Respir Med. 2018 ; 6 : 183-92.
22. Drewry AM, Ablordeppey EA, Murray ET, et al. Antipyretic therapy in critically ill septic patients : a systematic review and meta-analysis. Crit Care Med. 2017 ; 45 : 806-13.
23. Young PJ, Bellomo R, Bernard GR, et al. Fever control in critically ill adults. An individual patient data meta-analysis of randomised controlled trials. Intensive Care Med. 2019 ; 45 : 468-76.
24. Tharakan S, Nomoto K, Miyashita S, et al. Body temperature correlates with mortality in COVID-19 patients. Crit Care. 2020 ; 24 : 298.
25. Drewry AM, Hotchkiss R, Kulstad E. Response to"body temperature correlates with mortality in COVID-19 patients". Crit Care. 2020 ; 24 : 460.
26. Tang JW, Young S, May S, et al. Comparing hospitalised, community and staff COVID-19 infection rates during the early phase of the evolving COVID-19 epidemic. J Infect. 2020 ; 81 : 647-79.
27. Choron RL, Butts CA, Bargoud C, et al. Fever in the ICU : a predictor of mortality in mechanically ventilated COVID-19 patients. J Intensive Care Med. 2021 ; 36 : 484-93.
28. Young PJ, Bellomo R. Fever in sepsis : is it cool to be hot? Crit Care. 2014 ; 18 : 109.
P.183 掲載の参考文献
1. Andrea M, Christian E, Martin W, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock : a randomized clinical trial. JAMA. 2013 ; 310 : 1683-91.
2. Andrew R, Laura EE, Waleed A, et al. Surviving sepsis campaign : international guidelines for management of sepsis and septic shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
3. Jones SB, Romano FD : Plasma catecholamines in the conscious rat during endotoxicosis. Circ Shock. 1984 ; 14 : 189-201.
4. Groves AC, Griffiths J, Leung F, et al. Plasma catecholamines in patients with serious postoperative infection. Ann Surg. 1973 ; 178 : 102-7.
5. Suzuki T, Suzuki Y, Okuda J, et al. Sepsis-induced cardiac dysfunction and β-adrenergic blockade therapy for sepsis. J Intensive Care. 2017 ; 5 : 22.
7. Allan JW, Stephen RE, Michael RW, et al. Practice patterns and outcomes of treatments for atrial fibrillation during sepsis : a propensity-matched cohort study. Chest. 2016 ; 149 : 74-83.
8. Allan JW, Melissa AG, Susan RH, et al. Atrial fibrillation among medicare beneficiaries hospitalized with sepsis : incidence and risk factors. Am Heart J. 2013 ; 165 : 949-55.
9. Allan JW, Bradley GH, Lesley HC, et al. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. Chest. 2014 ; 146 : 1187-95.
10. Okajima M, Takamura M, Taniguchi T. Landiolol, an ultra-short-acting β1-blocker, is useful for managing supraventricular tachyarrythmias in sepsis. World J Crit Care Med. 2015 ; 4 : 251-7.
11. Annane D, Sebille V, Duboc D, et al. Incidence and prognosis of sustained arrhythmias in critically ill patients. Am J Respir Cirt Care Med. 2008 ; 178 : 20-5.
12. Kindem IA, Reindal EK, Wester AL, et al. New-onset atrial fibrillation in bacteremia is not associated with C-reactive protein, but is an indicator of increased mortality during hospitalization. Cardiology. 2008 ; 111 : 171-80.
13. Leibovici L, Gafter-Gvili A, Paul M, et al. Relative tachycardia in patients with sepsis : an independent risk factor for mortality. QJM. 2007 ; 100 : 629-34.
14. Schmittinger CA, Torgersen C, Luckner G, et al. Adverse cardiac events during catechoamine vasopressor therapy : a prospective observational study. Intensive Care Med. 2012 ; 38 : 950-8.
15. Kapoor JR, Heidenreich PA. Role of heart rate as a marker and mediator of poor outcome for patients with heart failure. Curr Heart Fail Rep. 2012 ; 9 : 133.
16. Nicholas AB, Jonathan CBS, Allan JW, et al. Atrial fibrillation in the ICU. Chest. 2018 ; 154 : 1424-34.
17. Ackland GL, Yao ST, Rudiger A, et al. Cardioprotection, attenuated systemic inflammation, and survival benefit of beta1-adrenoceptor blockade in severe sepsis in rats. Crit Care Med. 2010 : 38 : 388-94.
18. Jardin F, Fourme T, Page B, et al. Persistent preload defect in severe sepsis despite fluid loading : a longitudinal echocardiographic study in patients with septic shock. Chest. 1999 ; 116 : 1354-9.
19. Etchecopar-Chevreuil C, Francois B, Clavel M, et al. Cardiac morphological and functional changes during early septic shock : a transesophageal echocardiographic study. Intensive Care Med. 2008 ; 34 : 250-6.
22. Serita R, Morisaki H, Ai K, et al. Sevoflurane preconditions stunned myocardium in septic but not healthy isolated rat hearts. Br J Anaesth. 2002 ; 89 : 896-903.
23. Cunnion RE, Schaer GL, Parker MM, et al. The coronary circulation in human septic shock. Circulation. 1986 ; 73 : 637-44.
24. Takasu O, Gaut JP, Watanabe R, et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013 ; 187 : 509-17.
25. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007 ; 35 : 1599-608.
26. Kakihara Y, Ito T, Nakahara M, et al. Sepsis-induced myocardial dysfunction : pathophysiology and treatment. J Intensive Care. 2016 ; 4 : 22.
27. Macchia A, Romero M, Comignani PD, et al. Previous prescription of β-blockers is associated with reduced mortality among patients hospitalized in intensive care units for sepsis. Crit Care Med. 2012 ; 40 : 2768-72.
28. 白子隆志, 加藤雅康, 藤山芳樹, 他. 心肺蘇生中に自らも心肺停止に陥った肥大型心筋症の1例. 日救急医学会誌. 2014 ; 25 : 897-903.
29. Marinella A. Sepsis and beta-blockade : a look into diastolic function. Curr Med Res Opin. 2015 ; 31 : 1827-8.
30. Sanfilippo F, Santonocito C, Maybauer MO. Short-acting beta-blocker administration in patients with septic shock. JAMA. 2014 ; 311 : 736.
31. Jorgensen K, Bech-Hanssen O, Houltz E, et al. Effects of levosimendan on left relaxation and early filling at maintained preload and afterload conditions after aortic valve replacement for aortic stenosis. Circulation. 2008 ; 117 : 1075-81.
32. Orme RM, Perkins GD, McAuley DF, et al. An efficacy and mechanism evaluation study of Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS) : protocol for a randomized controlled trial. Trials. 2014 ; 15 : 199.
33. David BA, Shalini S, Robert ML. Levosimendan in septic shock in patients with biochemical evidence of cardiac dysfunction : a subgroup analysis of the LeoPARDS randomized trial. Intensive Care Med. 2019 ; 45 : 1392-400.
34. Anthony CG, Gavin DP, Mervyn S. Levosimendan for the prevention of acute organ dysfunction in sepsis. N Engl J Med. 2016 ; 375 : 1638-48.
35. Anthony CG, Robert ML, Mervyn S, et al. Levosimendan in sepsis. N Engl J Med. 2017 ; 376 : 798-800.
36. Richard LP, Jose AJ, Mary AC, et al. 2015 ACC/AHA/HRS guideline for the management of adult patients with supraventricular tachycardia. Circulation. 2016 ; 133 : 506-74.
37. Young RL, Michael SS, Dylan S, et al. Benefits of beta-blockade in sepsis and septic shock : a systematic review. Clin Drug Investig. 2019 ; 39 : 429-40.
38. Cyril JC, Shameer G. Systematic review of use of β-blockers in sepsis. J Anaesthesiol Clin Pharmacol. 2015 ; 31 : 460-5.
39. Laurens EN, Brenda JO, Shobit D, et al. Adrenergic β2 receptor activation stimulates anti-inflammatory properties of dendritic cells in vitro. PLoS One. 2014 ; 9 : e85086.
40. Kevin JT. Immune cells exploit a neural circuit to enter the CNS. Cell. 2012 ; 148 : 392-4.
41. Hjemdahl P, Larsson PT, Wallen NH. Effects of stress and beta-blockade on platelet function. Circulation. 1991 ; 84 : VI44-61.
42. Brian KA, Michael G, AI Schafer, et al. Prostacyclin and beta-adrenergic catecholamines inhibit arachidonate release and PGI2 synthesis by vascular endothelium. Blood. 1981 ; 58 : 514-7.
43. 鈴木武志, 芹田良平, 森崎浩. 敗血症における心機能障害 : 心筋保護とβ遮断薬の可能性. 日集中医誌. 2011 ; 18 : 193-200.
44. 岡島正樹. 敗血症に対するβ遮断薬. ICUとCCU. 2019 ; 43 : 19-23.
45. 小倉崇以. 敗血症に対するβ遮断薬 (2017年2月実施). JSEPTIC臨床研究委員会 簡単アンケート 第60弾.
P.193 掲載の参考文献
1. Beca J, Butt W. Extracorporeal membrane oxygenation for refractory septic shock in children. Pediatrics. 1994 ; 93 : 726-9.
2. Goldman AP, Kerr SJ, Butt W, et al. Extracorporeal support for intractable cardiorespiratory failure due to meningococcal disease. Lancet. 1997 ; 349 : 466-9.
3. Bartlett RH. Extracorporeal support for septic shock. Pediatr Crit Care Med. 2007 ; 8 : 498-9.
4. Brierley J, Carcillo JA, Choong K, et al. Clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock : 2007 update from the American College of Critical Care Medicine. Crit Care Med. 2009 ; 37 : 666-88.
5. Vogel DJ, Murray J, Czapran AZ, et al. Veno-arterio-venous ECMO for septic cardiomyopathy : a single-centre experience. Perfusion. 2018 ; 33 (1_suppl) : 57-64.
6. Godin M, Murray P, and Mehta RL. Clinical approach to the patient with AKI and sepsis. Semin Nephrol. 2015 ; 35 : 12-22.
7. Na SJ, Jeon K. Extracorporeal membrane oxygenation support in adult patients with acute respiratory distress syndrome. Expert Rev Respir Med. 2020 ; 14 : 511-9.
8. Falk L, Hultman J, Broman LM. Extracorporeal membrane oxygenation for septic shock. Crit Care Med. 2019 ; 47 : 1097-105.
13. 高氏修平, 早川峰司, 大野浩太, 他. 成人重症敗血症・敗血症ショックに対するV-A ECMOについての後ろ向き研究. 日救急医会誌. 2017 ; 28 : 904-9.
14. Barbaro RP, Odetola FO, Kidwell KM, et al. Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry. Am J Respir Crit Care Med. 2015 ; 191 : 894-901.
15. Muguruma K, Kunisawa S, Fushimi K, et al. Epidemiology and volume-outcome relationship of extracorporeal membrane oxygenation for respiratory failure in Japan : a retrospective observational study using a national administrative database. Acute Med Surg. 2020 ; 7 : e486.
16. Gail MA, William RL, Graeme ML, et al. ECMO : extracorporeal cardiopulmonary support in critical care, 4th ed. Extracorporeal Life Support ; 2015.
18. Schmidt M, Bailey M, Sheldrake J, et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) Score. Am J Respir Crit Care Med. 2014 ; 189 : 1374-82.
21. Brogan TV, Thiagarajan RR, Rycus PT, et al. Extracorporeal membrane oxygenation in adults with severe respiratory failure : a multicenter database. Intensive Care Med. 2009 ; 35 : 2105-14.
22. Robinson TM, Kickler TS, Walker LK, et al. Effect of extracorporeal membrane oxygenation on platelets in newborns. Crit Care Med. 1993 ; 21 : 1029-34.
23. Kimmoun A, Oulehri W, Sonneville R, et al. Prevalence and outcome of heparin-induced thrombocytopenia diagnosed under veno-arterial extracorporeal membrane oxygenation : a retrospective nationwide study. Intensive Care Med. 2018 ; 44 : 1460-9.
24. Teman NR. Extracorporeal membrane oxygenation in adults with sepsis : The next frontier? Ann Thorac Surg. 2020 ; 110 : 878.
P.200 掲載の参考文献
1. Antonucci E, Fiaccadori E, Donadello K, et al. Myocardial depression in sepsis : from pathogenesis to clinical manifestations and treatment. J Crit Care. 2014 ; 29 : 500-11.
3. Brush JE Jr, Kaul S, Krumholz HM. Troponin testing for clinicians. J Am Coll Cardiol. 2016 ; 68 : 2365-75.
4. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Circulation. 2018 ; 138 : e618-51.
5. Eggers KM, Jernberg T, Lindahl B. Cardiac troponin elevation in patients without a specific diagnosis. J Am Coll Cardiol. 2019 ; 73 : 1-9.
6. Roos A, Bandstein N, Lundback M, et al. Stable high-sensitivity cardiac troponin T levels and outcomes in patients with chest pain. J Am Coll Cardiol. 2017 ; 70 : 2226-36.
7. Babuin L, Vasile VC, Rio Perez JA, et al. Elevated cardiac troponin is an independent risk factor for short- and long-term mortality in medical intensive care unit patients. Crit Care Med. 2008 ; 36 : 759-65.
8. Bessiere F, Khenifer S, Dubourg J, et al. Prognostic value of troponins in sepsis : a meta-analysis. Intensive Care Med. 2013 ; 39 : 1181-9.
9. Vallabhajosyula S, Sakhuja A, Geske JB, et al. Role of admission troponin-T and serial troponin-T testing in predicting outcomes in severe sepsis and septic shock. J Am Heart Assoc. 2017 ; 6 : e005930.
10. Rosjo H, Varpula M, Hagve TA, et al. Circulating high sensitivity troponin T in severe sepsis and septic shock : distribution, associated factors, and relation to outcome. Intensive Care Med. 2011 ; 37 : 77-85.
12. Kim JS, Kim M, Kim YJ, et al. Troponin testing for assessing sepsis-induced myocardial dysfunction in patients with septic shock. J Clin Med. 2019 ; 8 : 239.
13. Altmann DR, Korte W, Maeder MT, et al. Elevated cardiac troponin I in sepsis and septic shock : no evidence for thrombus associated myocardial necrosis. PLoS One. 2010 ; 5 : e9017.
14. Zochios V, Valchanov K. Raised cardiac troponin in intensive care patients with sepsis, in the absence of angiographically documented coronary artery disease : a systematic review. J Intensive Care Soc. 2015 ; 16 : 52-7.
15. Sato R, Nasu M. A review of sepsis-induced cardiomyopathy. J Intensive Care. 2015 ; 3 : 48.
16. Horiuchi Y, Wettersten N, Patel MP, et al. Biomarkers enhance discrimination and prognosis of type 2 myocardial infarction. Circulation. 2020 ; 142 : 1532-44.
17. Chapman AR, Shah ASV, Lee KK, et al. Long-term outcomes in patients with type 2 myocardial infarction and myocardial injury. Circulation. 2018 ; 137 : 1236-45.
P.212 掲載の参考文献
1. Slutsky AS, Ranieri VM. Ventilator-induced lung injury. N Engl J Med. 2013 ; 369 : 2126-36.
2. Dreyfuss D, Saumon G. Ventilator-induced lung injury : lessons from experimental studies. Am J Respir Crit Care Med. 1998 ; 157 : 294-323.
3. Brochard L, Slutsky A, Pesenti A. Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med. 2017 ; 195 : 438-42.
4. Parker JC, Townsley MI, Rippe B, et al. Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol Respir Environ Exerc Physiol. 1984 ; 57 : 1809-16.
5. Dreyfuss D, Basset G, Soler P, et al. Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis. 1985 ; 132 : 880-4.
6. Dreyfuss D, Soler P, Basset G, et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988 ; 137 : 1159-64.
7. Mead J, Takishima T, Leith D. Stress distribution in lungs : a model of pulmonary elasticity. J Appl Physiol. 1970 ; 28 : 596-608.
8. Fan E, Del Sorbo L, Goligher EC, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline : mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017 ; 195 : 1253-63.
9. Yoshida T, Uchiyama A, Matsuura N, et al. The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med. 2013 ; 41 : 536-45.
10. Mojoli F, Torriglia F, Orlando A, et al. Technical aspects of bedside respiratory monitoring of transpulmonary pressure. Ann Transl Med. 2018 ; 6 : 377.
11. Modesto IAV, Aguar Carrascosa M, Medina Villanueva A. Stress, strain and mechanical power : is material science the answer to prevent ventilator induced lung injury? Med Intensiva. 2019 ; 43 : 165-75.
12. Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med. 2005 ; 31 : 776-84.
13. Amato MB, Barbas CS, Medeiros DM, et al. Beneficial effects of the "open lung approach" with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med. 1995 ; 152 : 1835-46.
14. Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015 ; 372 : 747-55.
15. Gattinoni L, Tonetti T, Cressoni M, et al. Ventilator-related causes of lung injury : the mechanical power. Intensive Care Med. 2016 ; 42 : 1567-75.
16. Cressoni M, Gotti M, Chiurazzi C, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016 ; 124 : 1100-8.
17. Protti A, Maraffi T, Milesi M, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016 ; 44 : e838-45.
18. Yoshida T, Fujino Y, Amato MB, et al. Fifty years of research in ARDS. Spontaneous breathing during mechanical ventilation. Risks, mechanisms, and management. Am J Respir Crit Care Med. 2017 ; 195 : 985-92.
19. Yoshida T, Torsani V, Gomes S, et al. Spontaneous effort causes occult pendelluft during mechanical ventilation. Am J Respir Crit Care Med. 2013 ; 188 : 1420-7.
20. Papazian L, Forel JM, Gacouin A, et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010 ; 363 : 1107-16.
21. Moss M, Huang DT, Brower RG, et al. Early neuromuscular blockade in the acute respiratory distress syndrome. N Engl J Med. 2019 ; 380 : 1997-2008.
22. Alhazzani W, Belley-Cote E, Moller MH, et al. Neuromuscular blockade in patients with ARDS : a rapid practice guideline. Intensive Care Med. 2020 ; 46 : 1977-86.
23. Brower RG, Matthay MA, Morris A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000 ; 342 : 1301-8.
24. Futier E, Constantin JM, Paugam-Burtz C, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013 ; 369 : 428-37.
25. Simonis FD, Serpa Neto A, Binnekade JM, et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS : a randomized clinical trial. JAMA. 2018 ; 320 : 1872-80.
26. Karalapillai D, Weinberg L, Peyton P, et al. Effect of intraoperative low tidal volume vs conventional tidal volume on postoperative pulmonary complications in patients undergoing major surgery : a randomized clinical trial. JAMA. 2020 ; 324 : 848-58.
27. Hager DN, Krishnan JA, Hayden DL, et al. Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med. 2005 ; 172 : 1241-5.
28. Protti A, Andreis DT, Milesi M, et al. Lung anatomy, energy load, and ventilator-induced lung injury. Intensive Care Med Exp. 2015 ; 3 : 34.
29. Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure : a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med. 2001 ; 163 : 69-78.
30. Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators ; Cavalcanti AB, Suzumura EA, Laranjeira LN, et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome : a randomized clinical trial. JAMA. 2017 ; 318 : 1335-45.
P.227 掲載の参考文献
1. Hall JE. ガイトン生理学. 原著第13版. 東京 : エルゼビア・ジャパン ; 2018. p.556-66.
2. Chapman CR, Tuckett RP, Song CW. Pain and stress in a systems perspective : reciprocal neural, endocrine, and immune interactions. J Pain. 2008 ; 9 : 122-45.
3. Tennant F. The physiologic effects of pain on the endocrine system. Pain Ther. 2013 ; 2 : 75-86.
4. Adunsky A, Levy R, Mizrahi E, et al. Exposure to opioid analgesia in cognitively impaired and delirious elderly hip fracture patients. Arch Gerontol Geriatr. 2002 ; 35 : 245-51.
5. Harvey MA, Davidson JE. Postintensive care syndrome : right care, right now... and later. Crit Care Med. 2016 ; 44 : 381-5.
6. Marra A, Pandharipande PP, Patel MB. Intensive care unit delirium and intensive care unit-related posttraumatic stress disorder. Surg Clin North Am. 2017 ; 97 : 1215-35.
7. Suarez-Roca H, Leal L, Silva JA, et al. Reduced GABA neurotransmission underlies hyperalgesia induced by repeated forced swimming stress. Behav Brain Res. 2008 ; 189 : 159-69.
8. Imbe H, Murakami S, Okamoto K, et al The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus. Pain. 2004 ; 112 : 361-71.
9. Devlin JW, Skrobik Y, Gelinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018 ; 46 : e825-73.
10. Ely EW. The ABCDEF Bundle : Science and philosophy of how ICU liberation serves patients and families. Crit Care Med. 2017 ; 45 : 321-30.
11. Pun BT, Balas MC, Barnes-Daly MA, et al. Caring for critically ill patients with the ABCDEF Bundle : results of the ICU liberation collaborative in over 15,000 adults. Crit Care Med. 2019 ; 47 : 3-14.
12. Wohleb ES, McKim DB, Sheridan JF, et al. Monocyte trafficking to the brain with stress and inflammation : a novel axis of immune-to-brain communication that influences mood and behavior. Front Neurosci. 2015 ; 8 : 447.
13. Fonken LK, Weber MD, Daut RA, et al. Stress-induced neuroinflammatory priming is time of day dependent. Psychoneuroendocrinology. 2016 ; 66 : 82-90.
14. de Goeij M, van Eijk LT, Vanelderen P, et al. Systemic inflammation decreases pain threshold in humans in vivo. PLoS One. 2013 ; 8 : e84159.
15. Baumbach P, Gotz T, Gunther A, et al. Prevalence and characteristics of chronic intensive care-related pain : the role of severe sepsis and septic shock. Crit Care Med. 2016 ; 44 : 1129-37.
16. Jiang X, Orton M, Feng R, et al. Chronic opioid usage in surgical patients in a large academic center. Ann Surg. 2017 ; 265 : 722-7.
17. Faust AC, Rajan P, Sheperd LA, et al. Impact of an analgesia-based sedation protocol on mechanically ventilated patients in a medical intensive care unit. Anesth Analg. 2016 ; 123 : 903-9.
18. Chanques G, Viel E, Constantin JM, et al. The measurement of pain in intensive care unit : comparison of 5 self-report intensity scales. Pain. 2010 ; 151 : 711-21.
19. Samuelson KA. Adult intensive care patients' perception of endotracheal tube-related discomforts : a prospective evaluation. Heart Lung. 2011 ; 40 : 49-55.
20. Karlsson V, Bergbom I, Forsberg A. The lived experiences of adult intensive care patients who were conscious during mechanical ventilation : a phenomenological-hermeneutic study. Intensive Crit Care Nurs. 2012 ; 28 : 6-15.
21. Martyn JAJ, Mao J, Bittner EA. Opioid tolerance in critical illness. N Engl J Med. 2019 ; 380 : 365-78.
22. Porreca F, Cowan A, Raffa RB, et al. Estimation in vivo of the receptor constants of morphine in naive and morphine-tolerant rats. Life Sci. 1982 ; 31 : 2355-8.
23. Cahill CM, Walwyn W, Taylor AMW, et al. Allostatic mechanisms of opioid tolerance beyond desensitization and downregulation. Trends Pharmacol Sci. 2016 ; 37 : 963-76.
24. Corder G, Tawfik VL, Wang D, et al. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med. 2017 ; 23 : 164-73.
25. Roeckel LA, Le Coz GM, Gaveriaux-Ruff C, et al. Opioid-induced hyperalgesia : cellular and molecular mechanisms. Neuroscience. 2016 ; 338 : 160-82.
26. Costantino CM, Gomes I, Stockton SD, et al. Opioid receptor heteromers in analgesia. Expert Rev Mol Med. 2012 ; 14 : e9.
27. Hutchinson MR, Shavit Y, Grace PM, et al. Exploring the neuroimmunopharmacology of opioids : an integrative review of mechanisms of central immune signaling and their implications for opioid analgesia. Pharmacol Rev. 2011 ; 63 : 772-810.
28. Hsiao SY, Lai YR, Kung CT, et al. α-1-acid glycoprotein concentration as an outcome predictor in adult patients with sepsis. Biomed Res Int. 2019 ; 2019 : 3174896.
29. Kharasch ED. Current concepts in methadone metabolism and transport. Clin Pharmacol Drug Dev. 2017 ; 6 : 125-34.
30. Smith MT. Neuroexcitatory effects of morphine and hydromorphone : evidence implicating the 3-glucuronide metabolites. Clin Exp Pharmacol Physiol. 2000 ; 27 : 524-8.
31. Hamrick KL, Beyer CA, Lee JA, et al. Multimodal analgesia and opioid use in critically ill trauma patients. J Am Coll Surg. 2019 ; 228 : 769-75.e1.
32. Kohler M, Chiu F, Gelber KM, et al. Pain management in critically ill patients : a review of multimodal treatment options. Pain Manag. 2016 ; 6 : 591-602.
34. Ma HH, Chou TA, Tsai SW, et al. The efficacy and safety of continuous versus single-injection popliteal sciatic nerve block in outpatient foot and ankle surgery : a systematic review and meta-analysis. BMC Musculoskelet Disord. 2019 ; 20 : 441.
35. Chan EY, Fransen M, Parker DA, et al. Femoral nerve blocks for acute postoperative pain after knee replacement surgery. Cochrane Database Syst Rev. 2014 ; 2014 : CD009941.
36. Capdevila X, Pirat P, Bringuier S, et al. Continuous peripheral nerve blocks in hospital wards after orthopedic surgery : a multicenter prospective analysis of the quality of postoperative analgesia and complications in 1,416 patients. Anesthesiology. 2005 ; 103 : 1035-45.
37. Ma N, Duncan JK, Scarfe AJ, et al. Clinical safety and effectiveness of transversus abdominis plane (TAP) block in post-operative analgesia : a systematic review and meta-analysis. J Anesth. 2017 ; 31 : 432-52.
38. Tran DQ, Bravo D, Leurcharusmee P, et al. Transversus abdominis plane block : a narrative review. Anesthesiology. 2019 ; 131 : 1166-90.
45. Loss SH, de Oliveira RP, Maccari JG, et al. The reality of patients requiring prolonged mechanical ventilation : a multicenter study. Rev Bras Ter Intensiva. 2015 ; 27 : 26-35.
49. Kawazoe Y, Miyamoto K, Morimoto T, et al. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis : a randomized clinical trial. JAMA. 2017 ; 317 : 1321-8.
53. Morelli A, Sanfilippo F, Arnemann P, et al. The effect of propofol and dexmedetomidine sedation on norepinephrine requirements in septic shock patients : a crossover trial. Crit Care Med. 2019 ; 47 : e89-95.
54. Pisani MA, Murphy TE, Van Ness PH, et al. Characteristics associated with delirium in older patients in a medical intensive care unit. Arch Intern Med. 2007 ; 167 : 1629-34.
55. Inouye SK. Delirium in older persons. N Engl J Med. 2006 ; 354 : 1157-65.
57. Van Rompaey B, Schuurmans MJ, Shortridge-Baggett LM, et al. Risk factors for intensive care delirium : a systematic review. Intensive Crit Care Nurs. 2008 ; 24 : 98-107.
58. Piva S, McCreadie VA, Latronico N. Neuroinflammation in sepsis : sepsis associated delirium. Cardiovasc Hematol Disord Drug Targets. 2015 ; 15 : 10-8.
60. Krewulak KD, Stelfox HT, Leigh JP, et al. Incidence and prevalence of delirium subtypes in an adult ICU : a systematic review and meta-analysis. Crit Care Med. 2018 ; 46 : 2029-35.
63. Pandharipande P, Cotton BA, Shintani A, et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J Trauma. 2008 ; 65 : 34-41.
64. Al-Qadheeb NS, Skrobik Y, Schumaker G, et al. Preventing ICU subsyndromal delirium conversion to delirium with low-dose IV haloperidol : a double-blind, placebo-controlled pilot study. Crit Care Med. 2016 ; 44 : 583-91.
P.240 掲載の参考文献
4. 厚生労働省. 日本人の食事摂取基準 (2020年版). https://www.mhlw.go.jp/content/10904750/000586553.pdf.
P.250 掲載の参考文献
5. Abe T, Ogura H, Shiraishi A, et al. Characteristics, management, and in-hospital mortality among patients with severe sepsis in intensive care units in Japan : the FORECAST study. Crit Care. 2018 ; 22 : 322.
6. ICU機能評価委員会 ; 今中雄一, 林田智史, 村上玄樹, 他. わが国集中治療室の現状調査 松田班調査結果報告. 日集中医誌. 2010 ; 17 : 227-32.
18. Harvey MA, Davidson JE. Postintensive care syndrome : right care, right now... and later. Crit Care Med. 2016 ; 44 : 381-5.
20. 福原俊一. 臨床のためのQOL評価と疫学. 日腰痛会誌. 2002 ; 8 : 31-7.
26. Devlin JW, Skrobik Y, Gelinas C, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018 ; 46 : e825-73.
P.262 掲載の参考文献
5. Johansen H, Semenciw R, Morrison H, et al. Important risk factors for death in adults : a 10-year follow-up of the Nutrition Canada survey cohort. CMAJ. 1987 ; 136 : 823-8.
10. WHO. Obesity and overweight. https ://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (2020年9月閲覧)
11. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013 : a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2014 ; 384 : 766-81.
P.270 掲載の参考文献
4. Weiss SL, Peters MJ, Alhazzani W, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020 ; 46 : S10-67.
7. 横川真理, 笠井正志, 志馬伸朗. 本邦小児集中治療領域における敗血症性ショック管理の現状. 日集中医誌. 2018 ; 25 : 115-20.
15. McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock : a systematic review and meta-analysis. JAMA. 2018 ; 319 : 1889-900.
18. 日本集中治療医学会Sepsis Registry委員会. 日本版敗血症診療ガイドライン The Japanese Guidelines for Management of Sepsis. 日集中医誌. 2013 ; 20 : 124-73.
19. 西田修, 小倉裕司, 井上茂亮, 他, 日本版敗血症診療ガイドライン2016作成特別委員会. 日本版敗血症診療ガイドライン 2016. 日集中医誌. 2017 ; 24 : S1-232.
20. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
P.280 掲載の参考文献
1. 貞広智仁, 小口萌. 敗血症性急性腎障害と血液浄化療法開始のタイミング. 日外感染症会誌. 2018 ; 15 : 221-7.
2. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
12. Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012 ; 2 : 1-138.
15. 伊藤秀一. 我が国の小児急性血液浄化療法の実態調査. 日小児腎不全会誌. 2012 ; 32 : 231-2.
16. 永渕弘之, 和田尚弘, 吉村仁志. 小児急性血液浄化療法の実態調査 小児急性血液浄化グループからの報告. 日急性血浄化会誌. 2012 ; 3 : 145-50.
17. Weiss S, peters MJ, Waleed A, et al. Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children. Intensive Care Med. 2020 ; 46 (Suppl 1) : S10-S67.
18. 茨聡, 和田尚弘, 大曽根義輝, 他. 体外循環による新生児急性浄化療法ガイドライン. 日未熟児新生児会誌. 2013 ; 25 : 89-97.
19. 伊藤秀一 : わが国における小児急性血液浄化療法の実態. In : 伊藤秀一, 他偏. 小児急性血液浄化療法ハンドブック. 1版. 東京 : 東京医学社 ; 2013. p.15-23.
25. Long EJ, Taylor A, Delzoppo C, et al. A randomised controlled trial of plasma filtration in severe paediatric sepsis. Crit Care Resusc. 2013 ; 15 : 198-204.
27. 北山浩嗣, 和田尚弘, 山田昌由, 他. 敗血症小児対するPMX-DHPの救命率に関わる臨床的検討. 日小児腎不全会誌. 2008 ; 21 Suppl : 132.
28. 澤田真理子, 渡部晋一, 荻野佳代, 他. エンドトキシン吸着療法を施行した低体重児9例の検討. 日急性血浄化会誌. 2012 ; 3 : 34-9.
P.288 掲載の参考文献
4. Vincent JL, Opal SM, Marshall JC, et al. Sepsis definitions : time for change. Lancet. 2013 ; 381 : 774-5.
25. Chiche L, Forel JM, Thomas G, et al. Interferon-γ production by natural killer cells and cytomegalovirus in critically ill patients. Crit Care Med. 2012 ; 40 : 3162-9.
27. Grimaldi D, Pradier O, Hotchkiss RS, et al. Nivolumab plus interferon-γ in the treatment of intractable mucormycosis. Lancet Infect Dis. 2017 ; 17 : 18.
P.301 掲載の参考文献
1. Nishida O, Ogura H, Egi M, et al. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). J Intensive Care. 2018 ; 6 : 7.
4. Gando S, Saitoh D, Ogura H, et al. A multicenter, prospective validation study of the Japanese Association for Acute Medicine disseminated intravascular coagulation scoring system in patients with severe sepsis. Crit Care. 2013 ; 17 : R111.
7. 和田剛志. 線溶亢進型DIC (第4回) 心停止蘇生と線溶亢進型DIC. Thromb Med. 2020 ; 10 : 138-42.
11. Levi M, van der Poll T. Coagulation and sepsis. Thromb Res. 2017 ; 149 : 38-44.
22. Chorinchath BB, Kong LY, Mao L, et al. Age-associated differences in TNF-alpha and nitric oxide production in endotoxic mice. J Immunol. 1996 ; 156 : 1525-30.
P.313 掲載の参考文献
1. IV 心肺機能停止前の静脈路確保と輸液の実施. https://www.mhlw.go.jp/shingi/2010/02/dl/s0201-4c_008.pdf (2020年8月9日閲覧)
2. 救急救命士の心肺機能停止前の重度傷病者に対する静脈路確保及び輸液, 血糖測定並びに低血糖発作症例へのブドウ糖溶液の投与の実施に係るメディカルコントロール体制の充実強化について. https://www.mhlw.go.jp/web/t_doc-dataId=00tc0712&dataType=1&pageNo=1 (2020年8月9日閲覧)
5. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis : For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 ; 315 : 762-74.
6. Surviving Sepsis Campaign : International Guidelines for Management of Sepsis and Septic Shock : 2016. https://journals.lww.com/ccmjournal/Fulltext/2017/03000/Surviving_Sepsis_Campaign___International.15.aspx (2020年8月9日閲覧)
7. 消防庁. 令和元年版 消防白書. https://www.fdma.go.jp/publication/hakusho/r1/items/r1_all.pdf (2020年8月9日閲覧)
8. 江木盛時, 小倉裕司, 矢田部智昭, 他. 日本版敗血症診療ガイドライン 2020 (J-SSCG 2020). 日集中医誌. 2021 ; 28 (suppl).
9. Fowler RL, Pepe PE, Stevens JT, et al. Shock : high-space shock (relative hypovolemia). international trauma life support for emergency care providers. 8ht ed. Pearson ; 2016. p.161-2.
11. Erwin A, Salzman J, Wewerka S, et al. Can paramedics accurately diagnose sepsis and severe sepsis in the field? Acad Emerg Med. 2011 ; 1 : S23-4.
14. Travers A, Green R, Cain E, et al. Can paramedics diagnose sepsis in the prehospital setting? A feasibility study. Can J Emerg Med. 2013 ; 15 : S55.
16. Churpek MM, Zadravecz FJ, Winslow C, et al. Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients. Am J Respir Crit Care Med. 2015 ; 192 : 958-64.
22. Alam N, Oskam E, Stassen OM, et al ; PHANTASi Trial Investigators and the ORCA (Onderzoeks Consortium Acute Geneeskunde) Research Consortium the Netherlands. Prehospital antibiotics in the ambulance for sepsis : a multicenter, open label, randomized traial. Lancet Respir Med. 2018 ; 6 : 40-50.
P.323 掲載の参考文献
5. Hiensch R, Poeran J, Saunders-Hao P, et al. Impact of an electronic sepsis initiative on antibiotic use and health care facility-onset Clostridium difficile infection rates. Am J Infect Control. 2017 ; 45 : 1091-100.
21. Yu C, Liu J, Nemati S. Reinforcement learning in healthcare : a survey. arXiv. 2020. https://arxiv.org/abs/1908.08796 (2020年5月閲覧)
22. Does the "Artificial Intelligence Clinician" learn optimal treatment strategies for sepsis in intensive care? https://point85.ai/artificial-intelligence-clinician/
23. Weng WH, Gao M, He Z, et al. Representation and reinforcement learning for personalized glycemic control in septic patients. arXiv. 2017. 1712.00654.

CONCLUSION

P.327 掲載の参考文献

最近チェックした商品履歴

Loading...