医学と薬学 78/5 2021年5月号

出版社: 自然科学社
発行日: 2021-04-27
分野: 薬学  >  雑誌
ISSN: 03893898
雑誌名:
特集: 不整脈―デバイス診療の最前線
電子書籍版: 2021-04-27 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

2,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,540 円(税込)

目次

  • 特集 不整脈―デバイス診療の最前線

    序文
    リードレスペースメーカの現状と問題点,そして今後の展望
    植込み型除細動器(ICD)
    心臓再同期療法(CRT)
    ヒス束ペーシング・左脚領域ペーシング
    遠隔モニタリング
    植込型心電図記録計(ICM)
    左心耳閉鎖デバイス

    臨床試験
     デュロキセチンカプセル30mg「アメル」の生物学的同等性試験
     エスゾピクロン錠3mg「サワイ」の健康成人における生物学的同等性試験

    Diagnosis
     蛍光酵素免疫測定法を用いたエリアSS-A/Ro・エリアSS-B/La測定試薬と
      二重免疫拡散法の比較検討
     化学発光免疫測定装置を用いた新規第三世代TRAb測定試薬の開発と性能評価
     新型コロナウイルス迅速抗原検査キットの比較検討
     Clostridioides difficile抗原迅速診断キット
      「クイックチェイサーCD GDH/TOX」の有用性に関する評価
     スマートジーンを用いたSARS-CoV-2核酸検出検査における
      陽性判定サイクル数(Ct値)についての検討

    Health Care
     電子タバコDR.STICK を用いた禁煙・節煙支援の有効性と心身への影響
     医薬部外品爪用ジェルの爪水虫症状の改善効果

    Cosmetic
     医薬部外品「3Uリンクルクリーム」の皮膚水分量測定試験,皮膚弾力性測定試験

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

【特集 不整脈 - デバイス診療の最前線】

P.525 掲載の参考文献
1) Kondo Y, Ueda M, Kobayashi Y, et al : New horizon for infection prevention technology and implantable device. J Arrhythm 32 : 297-302, 2016.
2) Reddy VY, Knops RE, Sperzel J, et al : Permanent leadless cardiac pacing : results of the LEADLESS trial. Circulation 129 : 1466-1471, 2014.
3) Spickler JW, Rasor NS, Kezdi P, et al : Totally self-contained intracardiac pacemaker. J Electrocardiol 3 : 325-331, 1970.
4) Reynolds D, Duray GZ, Omar R, et al : A Leadless Intracardiac Transcatheter Pacing System. N Eng J Med 374 : 533-541, 2016.
5) Soejima K, Aasano T, Ishikawa T, et al : Performance of Leadless Pacemaker in Japanese Patients vs. Rest of the World?Results From a Global Clinical Trial?. Circ J 81 : 1589-1595, 2017.
6) 日本循環器学会, 他 : 不整脈非薬物治療ガイドライン (2018年改訂版), 日本循環器学会/日本不整脈心電学会合同ガイドライン, 2019. https://www.j-circ.or.jp/old/guideline/pdf/JCS2018_kurita_nogami.pdf
7) Kajiyama T, Kondo Y, Nakano M, et al : Peak deflection index as a predictor of a free-wall implantation of contemporary leadless pacemakers. J Interv Card Electrophysiol 60 : 239-245, 2021.
8) Sanchez P, Apolo J, San Antonio R, et al : Safety and usefulness of a second Micra transcatheter pacemaker implantation after battery depletion. Europace 21 : 885, 2019.
9) Chinitz L, Ritter P, Khelae SK, et al : Accelerometer-based atrioventricular synchronous pacing with a ventricular leadless pacemaker : Results from the Micra atrioventricular feasibility studies. Heart Rhythm 15 : 1363-1371, 2018.
P.533 掲載の参考文献
1) Epstein AE, DiMarco JP, Ellenbogen KA, et al : ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities : a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51 : e1-62, 2008.
2) 日本循環器学会, 他 : 急性・慢性心不全診療ガイドライン (2017年改訂版), 日本循環器学会/日本心不全学会合同ガイドライン, 2018. http://www.j-circ.or.jp/guideline/pdf/JCS2017_tsutsui_h.pdf (2021年1月18日閲覧)
3) 日本循環器学会, 他 : 不整脈非薬物治療ガイドライン (2018年改訂版), 日本循環器学会/日本不整脈心電学会合同ガイドライン, 2019. https://www.j-circ.or.jp/old/guideline/pdf/JCS2018_kurita_nogami.pdf (2021年1月18日閲覧)
4) The Antiarrhythmics Versus Implantable Defibrillators (AVID) Investigators. A comparison of antiarrhythmic-drug therapy with implantable defibrillators in patients resuscitated from near-fatal ventricular arrhythmias. N Engl J Med 337 : 1576-1583, 1997.
5) Kuck KH, Cappato R, Siebels J, et al : Randomized comparison of antiarrhythmic drug therapy with implantable defibrillators inpatients resuscitated from cardiac arrest : the Cardiac Arrest Study Hamburg (CASH). Circulation 102 : 748-754, 2000.
6) Connolly SJ, Gent M, Roberts RS, et al. Canadian implantable defibrillator study (CIDS) : a randomized trial of the implantable cardioverter defibrillator against amiodarone. Circulation 101 : 1297-1302, 2000.
7) Connolly SJ, Hallstrom AP, Cappato R, et al : Meta-analysis of the implantable cardioverter defibrillator secondary prevention trials. AVID, CASH and CIDS studies. Antiarrhythmics vs Implantable Defibrillator study. Cardiac Arrest Study Hamburg. Canadian Implantable Defibrillator Study. Eur Heart J 21 : 2071-2078, 2000.
8) Moss AJ, Zareba W, Hall WJ, et al : Prophylactic implantation of adefibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med 346 : 877-883, 2002.
9) Kadish A, Dyer A, Daubert JP, et al : Prophylactic defibrillator implantation in patients with non-ischemic dilated cardiomyopathy. N Engl J Med 350 : 2151-2158, 2004.
10) Bardy GH, Lee KL, Mark DB, et al : Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med 352 : 225-237, 2005.
11) Shiga T, Hagiwara N, Ogawa H, et al : Heart Institute of Japan Acute Myocardial Infarction-II (HIJAMI-II) Investigators. Sudden cardiac death and left ventricular ejection fraction during long-term follow-up after acute myocardial infarction in the primary percutaneous coronary intervention era : results from the HIJAMI-II registry. Heart 95 : 216-220, 2009.
12) Tanno K, Miyoshi F, Watanabe N, et al : Are the MADIT II criteria for ICD implantation appropriate for Japanese patients? Circ J 69 : 19-22, 2005.
13) Satake H, Fukuda K, Sakata Y, et al : Current status of primary prevention of sudden cardiac death with implantable cardioverter defibrillator in patients with chronic heart failure-a report from the CHART-2 Study. Circ J 79 : 381-390, 2015.
14) Kober L, Thune JJ, Nielsen JC, et al : Defibrillator Implantation in Patients with Nonischemic Systolic Heart Failure. N Engl J Med 375 : 1221-1230, 2016.
15) Desai AS, Fang JC, Maisel WH, et al : Implantable defibrillators for the prevention of mortality in patients with nonischemic cardiomyopathy : a meta-analysis of randomized controlled trials. JAMA 292 : 2874-2879, 2004.
16) Shiba M, Shimokawa H : Chronic heart failure in Japan : Implications of the CHART studies. Vascular Health and Risk Management 4 : 103-113, 2008.
17) Poole JE, Johnson GW, Hellkamp AS, et al : Prognostic importance of defibrillator shocks in patients with heart failure. N Engl J Med 359 : 1009-1017, 2008.
P.540 掲載の参考文献
1) Shenkman HJ, Pampati V, Khandelwal AK, et al : Congestive heart failure and QRS duration : Establishing prognosis study Chest 122 (2) : 528-534, 2002.
2) Cazeau S, Ritter P, Lazarus A, et al : Multisite pacing for end-stage heart failure : Early experience. Pacing Electrophysiol 19 (Part II) : 1748-1757, 1996.
3) Tsutsui H, Isobe M, Ito H, et al : JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure. Circ J 83 : 2084-2184, 2019.
4) Cleland JGF, Daubert JC, Erdmann E, et al : The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352 : 1539-1549, 2005.
5) Zareba W, Klein H, Cygankiewicz I, et al : Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial-Cardiac Resynchronization Therapy (MADIT-CRT). Circulation 123 : 1061-1072, 2011.
6) Nakai T : CRT/ICD. Update of Non-pharmacological therapy for heart failure (ed. By Kinugawa K, Imamura T), pp.17-24, Springer Singapore, 2020.
7) Ruschitzka F, Abraham WT, Singh JP, et al : Cardiac-Resynchronization Therapy in Heart Failure with a Narrow QRS Complex. N Engl J Med 369 : 1395-1405, 2013.
8) Ponikowski P, Voors AA, Anker SD, et al : 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37 : 2129-2200, 2016.
9) Nakai T, Mano H, Ikeya Y, et al : Narrower QRS may be enough to respond to cardiac resynchronization therapy in lightweight patients. Heart and Vessels 35 : 835-841, 2020.
11) Bristow MR, Saxon LA, Boehmer J, et al : Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N Engl J Med 350 : 2140-2150, 2004.
12) Tang ASL, Wells GA, Talajic M, et al : Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 363 : 2385-2395, 2010.
13) Fornwalt BK, Sprague WW, BeDell P, et al : Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation 121 : 1985-1991, 2010.
14) Martens P, Nijst P, Verbrugge FH, et al : Profound differences in prognostic impact of left ventricular reverse remodeling after cardiac resynchronization therapy relate to heart failure etiology. Heart Rhythm 15 : 130-136, 2018.
15) Nakai T, Ikeya Y, Kogawa R, et al : What Are the Expectations for cardiac resynchronization therapy? A validation of two response definitions. J Clin Med 10 : 514, 2021.
16) Tomassoni G. How to define cardiac resynchronization therapy response. J Innov Cardiac Rhythm Manage 7 : S1-S7, 2016.
17) Mullens W, Auricchio A, Martens P, et al : Optimized Implementation of cardiac resynchronization therapy-A call for action for referral and optimization of care. Eur. J. Heart Fail 22 : 2349-2369, 2020.
P.545 掲載の参考文献
1) Sweeney MO, Hellkamp AS, Ellenbogen KA, et al : MOde Selection Trial Investigators. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107 (23) : 2932-2937, 2003.
2) Wilkoff BL, Cook JR, Epstein AE, et al : Dual Chamber and VVI Implantable Defibrillator Trial Investigators. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator : the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 288 (24) : 3115-3123, 2002.
3) Healey JS, Toff WD, Lamas GA, et al : Cardiovascular outcomes with atrial-based pacing compared with ventricular pacing : meta-analysis of randomized trials, using individual patient data. Circulation 114 (1) : 11 -17, 2006.
4) Kaye GC, Linker NJ, Marwick TH, et al : Protect-Pace trial investigators. Effect of right ventricular pacing lead site on left ventricular function in patients with high-grade atrioventricular block : results of the Protect-Pace study. Eur Heart J 36 (14) : 856-862, 2015.
5) Deshmukh P, Casavant D, Romanyshyn M, et al : Permanent direct HB pacing : a novel approach to cardiac pacing in patients with normal His Purkinje activation. Circulation 101 : 869-877, 2000.
6) Vijayaraman P, Naperkowski A, Ellenbogen KA, et al : Electrophysiologic Insights into site of atrioventricular block : Lessons from permanent His bundle pacing. J Am Coll Cardiol EP 1 : 571-581, 2015
7) Sato T, Soejima K, Maeda A, et al : Deep negative deflection in unipolar His-bundle electrogram as a predictor of excellent His-bundle pacing threshold postimplant. Circ Arrhythm Electrophysiol 12 : e007415, 2019.
8) Vijayaraman P, Dandamudi G, Worsnick SA, et al : Acute His bundle injury current during permanent His bundle pacing predicts excellent pacing outcomes. Pacing Clin Electrophysiol 38 : 540-546, 2015.
9) Sato T, Soejima K, Maeda A, et al : Safety of Distal His Bundle Pacing via the Right Ventricle Backed Up by Adjacent Ventricular Capture. JACC Clin Electrophysiol. article in press. https://doi.org/10.1016/j.jacep.2020.09.018
10) Lustgarten DL, Crespo EM, Arkhipova-Jenkins I, et al : His-bundle pacing versus biventricular pacing in cardiac resynchronization therapy patients : a crossover design comparison. Heart Rhythm 12 : 1548-1557, 2015.
11) Huang W, Su L, Wu S, et al : A novel pacing strategy with low and stable output : pacing the left bundle branch immediately beyond the conduction block. Can J Cardiol 33 : 1736.e1-3, 2017.
12) Huang W, Wu S, Vijayaraman P et al : Cardiac Resynchronization Therapy in Patients With Nonischemic Cardiomyopathy Using Left Bundle Branch Pacing. JACC Clin Electrophysiol 6 (7) : 849-858, 2020.
P.555 掲載の参考文献
1) Varma N, Epstein AE, Irimpen A, et al : Efficacy and safety of automatic remote monitoring for implantable cardioverter-defibrillator follow-up : the Lumos-T Safely Reduces Routine Office Device Follow-up (TRUST) trial. Circulation 122 : 325-332, 2010.
2) Landolina M, Perego GB, Lunati M, et al : Remote monitoring reduces healthcare use and improves quality of care in heart failure patients with implantable defibrillators : the evolution of management strategies of heart failure patients with implantable defibrillators (EVOLVO) study. Circulation 125 : 2985-2992, 2012.
3) Saxon LA, Hayes DL, Gilliam FR, et al : Longterm outcome after ICD and CRT implantation and influence of remote device follow-up : the ALTITUDE survival study. Circulation 122 : 2359-2367, 2010.
4) Hindricks G, Taborsky M, Glikson M, et al : Implant-based multiparameter telemonitoring of patients with heart failure (IN-TIME) : a randomised controlled trial. Lancet 384 : 583-590, 2014.
5) Healey JS, Connolly SJ, Gold MR, et al : Subclinical atrial fibrillation and the risk of stroke. N Engl J Med 366 : 120-129, 2012.
6) Noseworthy PA, Kaufman ES, Chen LY, et al : Subclinical and Device-Detected Atrial Fibrillation : Pondering the Knowledge Gap : A Scientific Statement From the American Heart Association. Circulation 140 : e944-e963, 2019.
7) Nishii N, Miyoshi A, Kubo M, et al : Analysis of arrhythmic events is useful to detect lead failure earlier in patients followed by remote monitoring. J Cardiovasc Electrophysiol 29 : 463-470, 2018.
8) Cleland JG, Swedberg K, Follath F, et al : The EuroHeart Failure survey programme-a survey on the quality of care among patients with heart failure in Europe. Part 1 : patient characteristics and diagnosis. Eur Heart J 24 : 442-463, 2003.
9) Chaudhry SI, Mattera JA, Curtis JP, et al : Telemonitoring in patients with heart failure. N Engl J Med 363 : 2301-2309, 2010.
10) Abraham WT, Adamson PB, Bourge RC, et al : Wireless pulmonary artery haemodynamic monitoring in chronic heart failure : a randomised controlled trial. Lancet 377 : 658-666, 2011.
11) Heywood JT, Jermyn R, Shavelle D, et al : Impact of Practice-Based Management of Pulmonary Artery Pressures in 2000 Patients Implanted With the CardioMEMS Sensor. Circulation 135 : 1509-1517, 2017.
12) Yu CM, Wang L, Chau E, et al : Intrathoracic impedance monitoring in patients with heart failure : correlation with fluid status and feasibility of early warning preceding hospitalization. Circulation 112 : 841-848, 2005.
13) Vanderheyden M, Houben R, Verstreken S, et al : Continuous monitoring of intrathoracic impedance and right ventricular pressures in patients with heart failure. Circ Heart Fail 3 : 370-377, 2010.
14) van Veldhuisen DJ, Braunschweig F, Conraads V, et al : Intrathoracic impedance monitoring, audible patient alerts, and outcome in patients with heart failure. Circulation 124 : 1719-1726, 2011.
15) Bohm M, Drexler H, Oswald H, et al : Fluid status telemedicine alerts for heart failure : a randomized controlled trial. Eur Heart J 37 : 3154-3163, 2016.
16) Nishii N, Kubo M, Okamoto Y, et al : Decreased Intrathoracic Impedance Associated With OptiVol Alert Can Diagnose Increased B-Type Natriuretic Peptide-MOMOTARO (Monitoring and Management of OptiVol Alert to Reduce Heart Failure Hospitalization) Study?. Circ J 79 : 1315-1322, 2015.
17) Miyoshi A, Nishii N, Kubo M, et al : An improved algorithm calculated from intrathoracic impedance can precisely diagnose preclinical heart failure events : Sub-analysis of a multicenter MOMOTARO (Monitoring and Management of OptiVol Alert to Reduce Heart Failure Hospitalization) trial study. J Cardiol 70 : 425-431, 2017.
18) Boehmer JP, Hariharan R, Devecchi FG, et al : A Multisensor Algorithm Predicts Heart Failure Events in Patients With Implanted Devices : Results From the MultiSENSE Study. JACC Heart Fail 5 : 216-225, 2017.
P.564 掲載の参考文献
1) Brignole M, Vardas P, Hoffman E, et al : Indications for the use of diagnostic implantable and external ECG loop recorders. Europace 11 : 671-687, 2009.
2) Jung W, Zvereva V, Rillig A, et al : How to use implantable loop recorders in clinical trials and hybrid therapy. J Interv Card Electrophysiol 32 : 227-232, 2011.
3) Lortz J, Varnavas V, WeisEnberger W, et al : Maintaining Accurate Long-Term Sensing Ability Despite Significant Size Reduction of Implantable Cardiac Monitors. Pacing Clin Electrophysiol 39 : 1344-1350, 2016.
4) Sandesara CM, Gopinathannair R, Olshansky B : Implantable Cardiac Monitors : Evolution Through Disruption. J Innov Card Rhythm Manag 8 : 2824-2834, 2017.
5) Giancaterino S, Lupercio F, Nishimura M, et al : Current and Future Use of Insertable Cardiac Monitors. JACC Clin Electrophysiol 4 : 1383-1396, 2018.
6) 日本循環器学会, 他 : 失神の診断・治療ガイドライン (2012年改訂版). 循環器病の診断と治療に関するガイドライン (2011年度合同研究班報告), 2012.
7) 日本循環器学会, 他 : 不整脈非薬物治療ガイドライン (2018年改訂版). 日本循環器学会/日本不整脈心電学会合同ガイドライン, 2019.
8) 日本脳卒中学会 脳卒中医療向上・社会保険委員会, 潜因性脳梗塞患者診断手引き作成部会 : 植込み型心電図記録計の適応となり得る潜因性脳梗塞患者の診断の手引き, 2016.
9) Andrade JG, Field T, Khairy P : Detection of occult atrial fibrillation in patients with embolic stroke of uncertain source : a work in progress. Front Physiol 6 : 100, 2015.
10) Krahn AD, Klein GJ, Yee R, et al. Randomized assessment of syncope trial : conventional diagnostic testing versus a prolonged monitoring strategy. Circulation 104 : 46-51, 2001.
11) Edvardsson N, Frykman V, van Mechelen R, et al : Use of an implantable loop recorder to increase the diagnostic yield in unexplained syncope : results from the PICTURE registry. EP Europace 13 : 262-269, 2010.
12) Brignole M, Menozzi C, Moya A, et al : Pacemaker therapy in patients with neurally mediated syncope and documented asystole : Third International Study on Syncope of Uncertain Etiology (ISSUE-3) : a randomized trial. Circulation 125 : 2566-2571, 2012.
13) Brignole M, Donateo P, Tomaino M, et al : Benefit of pacemaker therapy in patients with presumed neurally mediated syncope and documented asystole is greater when tilt test is negative : an analysis from the third International Study on Syncope of Uncertain Etiology (ISSUE-3). Circ Arrhythm Electrophysiol 7 : 10-16, 2014.
14) Monte CP, Monte CJ, Boon P, et al : Epileptic seizures associated with syncope : Ictal bradycardia and ictal asystole. Epilepsy Behav 90 : 168-171, 2019.
15) Kohno R, Abe H, Hayashi K, et al : Pacemaker therapy for ictal asystole : potentially hazardous programming? Europace : euaa310, 2020. [Online ahead of print]
16) Sanna T, Diener HC, Passman RS, et al : Cryptogenic stroke and underlying atrial fibrillation. N Engl J Med 370 : 2478-2486. 2014.
17) Ziegler PD, Rogers JD, Ferreira SW, et al : Long-term detection of atrial fibrillation with insertable cardiac monitors in a real-world cryptogenic stroke population. Int J Cardiol 244 : 175-179, 2017.
18) Martin DT, Bersohn MM, Waldo AL, et al : Randomized trial of atrial arrhythmia monitoring to guide anticoagulation in patients with implanted defibrillator and cardiac resynchronization devices. Eur Heart J 36 : 1660-1668, 2015.
19) Brambatti M, C onnolly SJ, Gold MR, et al : Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 129 : 2094-2099, 2014.
20) Giada F, Gulizia M, Francese M, et al : Recurrent unexplained palpitations (RUP) study comparison of implantable loop recorder versus conventional diagnostic strategy. J Am Coll Cardiol 49 : 1951-1956, 2007.
21) Wechselberger S, Kronborg M, Huo Y, et al : Continuous monitoring after atrial fibrillation ablation : the LINQ AF study. Europace 20 : f 312-f 320, 2018.
22) Reiffel JA, Verma A, Kowey PR, et al : Incidence of Previously Undiagnosed Atrial Fibrillation Using Insertable Cardiac Monitors in a High-Risk Population : The REVEAL AF Study. JAMA Cardiol 2 : 1120-1127, 2017.
P.572 掲載の参考文献
1) Shen AY, Yao JF, Brar SS, et al : Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. J Am Coll Cardiol 50 (4) : 309 -315, 2007.
2) Blackshear JL, Odell JA : Appendage obliteration to reduce stroke in cardiac surgical patients with atrial fibrillation. Ann Thorac Surg 61 (2) : 755-759, 1996.
3) Asmarats L, Rodes-Cabau J : Percutaneous Left Atrial Appendage Closure : Current Devices and Clinical Outcomes. Circ Cardiovasc Interv 10 (11) : e005359, 2017.
4) Schwartz RS, Holmes DR, Van Tassel RA, et al : Left atrial appendage obliteration : mechanisms of healing and intracardiac integration. JACC Cardiovasc Interv 3 (8) : 870-877, 2010.
5) Reddy VY, Doshi SK, Kar S et al : 5-Year Outcomes After Left Atrial Appendage Closure : From the PREVAIL and PROTECT AF Trials. J Am Coll Cardiol 70 (24) : 2964-2975, 2017.
6) Price MJ, Reddy VY, Valderrabano M et al : Bleeding Outcomes After Left Atrial Appendage Closure Compared With Long-Term Warfarin : A Pooled, Patient-Level Analysis of the WATCHMAN Randomized Trial Experience. JACC Cardiovasc Interv 8 (15) : 1925 -1932, 2015.
7) Osmancik P, Herman D, Neuzil P, et al : Left Atrial Appendage Closure Versus Direct Oral Anticoagulants in High-Risk Patients With Atrial Fibrillation. J Am Coll Cardiol 75 (25) : 3122-3135, 2020.
8) Reddy VY, Gibson DN, Kar S, et al : Post-Approval U. S. Experience with Left Atrial Appendage Closure for Stroke Prevention in Atrial Fibrillation. J Am Coll Cardiol 69 (3) : 253-261, 2017.
9) Boersma LV, Schmidt B, Betts TR, et al : EWOLUTION investigators. Implant success and safety of left atrial appendage closure with the WATCHMAN device : peri-procedural outcomes from the EWOLUTION registry. Eur Heart J 37 (31) : 2465-2474, 2016.
10) Dukkipati SR, Kar S, Holmes DR, et al : Device-Related Thrombus After Left Atrial Appendage Closure : Incidence, Predictors, and Outcomes. Circulation 138 (9) : 874 -885, 2018.
11) Aonuma K, Yamasaki H, Nakamura M, et al : Percutaneous WATCHMAN Left Atrial Appendage Closure for Japanese Patients With Nonvalvular Atrial Fibrillation at Increased Risk of Thromboembolism-First Results From the SALUTE Trial. Circ J 82 (12) : 2946-2953, 2018.
12) Aonuma K, Yamasaki H, Nakamura M, et al : Efficacy and Safety of Left Atrial Appendage Closure With WATCHMAN in Japanese Nonvalvular Atrial Fibrillation Patients-Final 2-Year Follow-up Outcome Data From the SALUTE Trial. Circ J 84 (8) : 1237 -1243, 2020.

【臨床試験】

P.596 掲載の参考文献
1) 塩野義製薬株式会社 : サインバルタ(R) カプセル20mg, 同カプセル30mg 医薬品インタビューフォーム [2019年4月改訂 (改訂第13版) ]
2) 後発医薬品の生物学的同等性試験ガイドラインについて (平成9年12月22日付医薬審第487号)
3) 後発医薬品の生物学的同等性試験ガイドライン等の一部改正について (平成24年2月29日薬食審査発0229 第10号)
4) 医薬品の臨床試験の実施の基準に関する省令 (平成9年3月27日付厚生省令 第28号)
5) 医薬品の臨床試験の実施の基準に関する省令の一部を改正する省令 (平成28年1月22日付厚生労働省令第9号), 医薬品の臨床試験の実施の基準に関する省令の一部を改正する省令の施行について (平成28年1月22日付薬生発0122 第2号)
P.606 掲載の参考文献
1) 後発医薬品の生物学的同等性試験ガイドライン (平成9年12月22日医薬審第487号 (平成13年5月31日医薬審発第786号, 平成18年11月24日薬食審査発第1124004号および平成24年2月29日薬食審査発0229 第10号にて一部改正)
2) 含量が異なる経口固形製剤の生物学的同等性試験ガイドラインについて (平成12年2月14日医薬審発第64号 (平成13年5月31日医薬審発第786号, 平成18年11月24日薬食審査発第1124004号および平成24年2月29日薬食審査発0229 第10号にて一部改正)

【Diagnosis】

P.613 掲載の参考文献
1) 日本臨床検査医学会ガイドライン作成委員会 : 膠原病と類縁疾患. 日本臨床検査医学会ガイドライン作成委員会編, 臨床検査のガイドラインJSLM2015検査値アプローチ/症候/疾患, pp.431-434, 一般社団法人 日本臨床検査医学会, 東京, 2015.
2) 三森経世 : 抗核抗体研究の進歩-自己抗体が認識する核および細胞質蛋白の構造と機能-. リウマチ 32 (4) : 366-378, 1992.
3) 平形道人 : II. 膠原病検査の進歩と診断・治療への応用 5. 抗リボ核蛋白 (ribonucleoprotein : RNP) 抗体. 日本内科学会 92 (10) : 1932-1940, 2003.
4) 坪井洋人, 住田孝之 : 抗SS-A/Ro抗体, 抗SS-B/La抗体. 三橋知明編, 臨床検査ガイド 2015年改訂版. pp.752-754, 株式会社文光堂, 東京, 2015.
5) Ben-Chetrit E, Edward KI, Sullivan KF, et al : A 52-kD protein is a novel component of the SS-A/Ro antigenic particle. J Exp Med 167 (5) : 1560-1571, 1988.
6) Kelekar A, Saitta MR, Keene JD : Molecular composition of Ro small ribonucleoprotein complexes in human cells. Intracellular localization of the 60-and 52-kD proteins. J Clin Invest 93 (4) : 1637-1644, 1994.
7) Sim S, Wolin SL : Emerging roles for the Ro 60-kDa autoantigen in noncoding RNA metabolism. Wiley Interdiscip Rev RNA 2 (5) : 686-699, 2011.
8) Boccitto M, Wolin SL : Ro60 and Y RNAs : structure, functions, and roles in autoimmunity. Crit Rev Biochem Mol Biol 54 (2) : 133-152, 2019.
9) Peek R, Pruijn GJ, van Venrooij WJ : Epitope specificity determines the ability of anti-Ro52 autoantibodies to precipitate Ro ribonucleoprotein particles. J Immunol 153 (9) : 4321-4329, 1994.
10) Itoh Y, Itoh K, et al : Autoantibodies to the Ro/SSA antigen are conformation dependent. II : Antibodies to the denatured form of 52 kD Ro/SSA are a cross reacting subset of antibodies to the native 60 kD Ro/SSA molocule. Autoimmunity 14 (2) : 89-95, 1992.
11) 平形道人 : 膠原病における自己抗体の意義. 医学のあゆみ 199 (5) : 313-320, 2001.
12) 岡野哲郎, 佐藤 実, 秋月正史 : 抗SS-A/Ro, SS-B/La抗体. 日本臨床 68 (増刊 6) : 541-544, 2010.
13) Yukiko N : Immune responses to SS-A 52-kDa and 60-kDa proteins and to SS-B 50-kDa protein in mothers of infants with neonatal lupus erythematosus. Br J Dermatol 142 (5) : 908-912, 2000.
14) Buyon JP, Winchester RJ, Slade DG, et al : Identification of mothers at risk for congenital heart block and other neonatal lupus syndromes in their children. Comparison of enzyme-linked immunosorbent assay and immunoblot for measurement of anti-SS-A/Ro and anti-SS-B/La antibodies. Arthritis Rheum 36 (9) : 1263-1273, 1993.
15) Salomonsson S, Dorner T, Theander E, et al : A serologic marker for fetal risk of congenital heart block. Arthritis Rheum 46 (5) : 1233-1241, 2002.
16) Fritsch C, Hoebeke J, Dali H, et al : 52-kDa Ro/SSA epitopes preferentially recognized by antibodies from mothers of children with neonatal lupus and congenital heart block. Arthritis Res Ther 8 (1) : R4, 2006.
17) Vila J, Best K, Mitchell S, et al : The clinical relevance of anti-Ro52 and anti-Ro60 in patients in the United Kingdom Primary Sjogren's Syndrome Registry. Ann Rheum Dis 71 (3) : 2013.
18) McCauliffe DP, Wang L, Satho M, et al : A recombinant 52 kD Ro (SS-A) ELISA detects autoantibodies in Sjogren's syndrome sera that go undetected by conventional serologic assays. J Rheumatol 24 (5) : 860-866, 1997.
19) Shi J, Li S, Yang H, et al : Clinical Profiles and Prognosis of Patients with Distinct Antisynthetase Autoantibodies. J Rheumatol 44 (7) : 1051-1057, 2017.
20) Bauhammer J, Blank N, Max R, et al : Rituximab in the treatment of Jo1 antibody-associated antisynthetase syndrome : Anti-Ro52 positivity as a marker for severity and treatment response. J Rheumatol 43 (8) : 1566-1574, 2016.
21) Wodkowski M, Hudson M, Proudman S, et al : Monospecific anti-Ro52/TRIM21 antibodies in a tri-nation cohort of 1574 systemic sclerosis subjects : evidence of an association with interstitial lung disease and worse survival. Clin Exp Rheumatol 33 (Suppl 91) : S131-135, 2015.
22) Hudson M, Pope J, Mahler M, et al : Clinical significance of antibodies to Ro52/TRIM21 in systemic sclerosis. Arthritis Res Ther 14 (2) : R50, 2012.
23) Reiseter S, Gunnarsson R, Aalokken TM, et al : Progression and mortality of interstitial lung disease in mixed connective tissue disease : a longterm observational nationwide cohort study. Rheumatology 57 (2) : 255-262, 2018.
24) Gunnarssonn R, EI-Hage F, Aalokken TM, et al : Associations between anti-Ro52 antibodies and lung fibrosis in mixed connective tissue disease. Rheumatology 55 (1) : 103-108, 2016.
25) 三森経世 : 膠原病における自己抗体研究の進歩. 日本臨床免疫学会雑誌 25 (1) : 23-27, 2002.
26) 高崎芳成 : 新しい検査の意義と使い方. 日本内科学会雑誌 98 (10) : 2124-2131, 2009.
27) 糸島浩一, 古川雅規, 本郷佐佳恵, 他 : 自己抗体測定試薬「ユニキャップ エリア」による各種自己抗体の測定に関する基礎的検討-従来法との比較-. 医学と薬学 64 (3) : 413-419, 2010.
28) Satoh M, Ceribelli A, Hirakata M, et al : Immunodiagnosis of autoimmune myopathies. Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition. B Detrick, RG Hamilton, JL Schmitz. pp.878-887, ASM Press, Washington, D. C., 2016.
29) 福住典子, 林伸英, 三枝淳, 他 : 使用抗原に52kDa蛋白を加えた蛍光酵素免疫測定法による抗SS-A/Ro抗体測定法の臨床的有用性. 臨床病理 59 (4) : 352-359, 2011.
P.626 掲載の参考文献
1) Mclntosh RS, Asghar MS, Weetman AP : The antibody response in human autoimmune thyroid disease. Clin Sci 92 (6) : 529-541, 1997.
2) Feldt-Rasmussen U : Analytical and clinical performance goals for testing autoantibodies to thyroperoxidase, thyroglobulin and thyrotropin receptor. Clin Chem 42 (1) : 160-163, 1996.
3) Sanders J, Oda Y, Roberts S, et al : The interaction of TSH receptor autoantibodies with 125I-labelled TSH receptor. J Clin Endocrinol Metab 84 (10) : 3797-3802, 1999.
4) Smith BR, Bolton J, Young S, et al : A new assay for thyrotropin receptor autoantibodies. Thyroid 14 (8) : 830-835, 2004.
5) 吉村弘, 村上司, 宮崎直子, 他 : 抗TSHレセプターヒトモノクローナル抗体 (M22) を用いた電気化学発光免疫測定法 (ECLIA) による抗TSHレセプター抗体 (TRAb) 全自動測定試薬の基礎的, 臨床的性能評価. 医学と薬学 59 (6) : 1111-1120, 2008.
6) 古田島伸雄, 小林良乃, 町田哲男, 他 : M22を用いたルミパルスプレストTRAbによるTRAb測定法の基礎的検討. 医学と薬学 67 (6) : 911-916, 2012.
7) Clinical and Laboratory Standards Institute (CLSI). Evaluation of Precision of Quantitative Measurement Procedures : Approved Guideline? Third Edition. CLSI Document EP05-A3. Wayne, PA : CLSI ; 2014.
8) Clinical and Laboratory Standards Institute (CLSI). Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures ; Approved Guideline-Second Edition. CLSI Document EP17-A2. Wayne, PA : CLSI ; 2012.
9) Clinical and Laboratory Standards Institute (CLSI). Evaluation of the Linearity of Quantitative Measurement Procedures : A Statistical Approach ; Approved Guideline. CLSI Document EP06-A. Wayne, PA : CLSI ; 2003.
10) Clinical and Laboratory Standards Institute (CLSI). Evaluation of Stability of In Vitro Diagnostic Reagents ; Approved Guideline, 1st Edition. CLSI EP25-A : 2009.
11) Clinical and Laboratory Standards Institute (CLSI). Measurement Procedure Comparison and Bias Estimation Using Patient Samples. 3rd ed. CLSI Guideline EP09c. Wayne, PA : CLSI ; 2018.
P.632 掲載の参考文献
2) 新型コロナウイルス感染症 (COVID-19) 診療の手引き 第4.1版
3) WHO Director-General's opening remarks at the media briefing on COVID19-11-March 2020.
5) 山川賢太郎, 藤本陽, 宮本和慶, 他 : イムノクロマト法を用いた新型コロナウイルスSARS-CoV-2抗原検出試薬の開発. 医学と薬学 77 (6) : 937-944, 2020.
6) 新型コロナウイルス感染症 (COVID-19) 病原体検査の指針 第3.1版
7) Yamayoshi S, Sakai-Tagawa Y, Koga M, et al : Comparison of Rapid Antigen Tests for COVID-19. Viruses 12 : 1420, 2020.
8) Cubas-Atienzar AI, Kontogianni K, Edwards T, et al : Limit of detection in different matrices of nineteen commercially available rapid antigen tests for the detection of SARS-CoV-2. medRxiv 2021. doi : https://doi.org/10.1101/2021.03.19.21253950
9) Corman VM, Haage VC, Bleicker T, e t al : Comparison of seven commercial SARS-CoV-2 rapid Point-of-Care Antigen tests. medRxiv 2020. doi : https://doi.org/10.1101/2020.11.12.20230292
10) 新型コロナウイルスSARS-CoV-2 のゲノム分子疫学調査 https://www.niid.go.jp/niid/ja/basic-science/467-genome/9586-genome-2020-1.html
11) Pekosz A, Parvu V, Li M, et al : Antigen-Based Testing but Not Real-Time Polymerase Chain Reaction Correlates With Severe Acute Respiratory Syndrome Coronavirus 2 Viral Culture. Clin Infect Dis : ciaa1706, 2021. https://doi.org/10.1093/cid/ciaa1706
P.641 掲載の参考文献
1) CDI感染症診療ガイドライン作成委員会 : Clostridioides (Clostridium) difficile感染症診療ガイドライン, 2018
2) 中川莉彩, 飯沼由嗣, 山本正樹, 他 : Clostridium difficileトキシン迅速検査キットの評価と微生物学的検討. 感染症誌 84 : 147-152, 2010.
3) 村端真由美, 加藤はる, 矢野久子, 他 : 長期入院がん患児におけるClostridium difficile消化管保有と院内伝播に関する検討. 感染症誌 82 : 419-426, 2008.
4) Monot M, Eckert C, Lemire A, et al : Clostridium difficile : New Insights into the Evolution of the Pathogenicity Locus. Sci Rep 5 : 15023, 2015.
5) Kubota H, Sakai T, Gawad A, et al : Development of TaqMan-Based Quantitative PCR for Sensitive and Selective Detection of Toxigenic Clostridium difficile in Human Stools. PLOS ONE 9 (10) : e111684, 2014.
6) Barna JCJ, Williams DH : The structure and mode of action of glycopeptide antiBiotics of the vancomycin group. Annu Rev Microbiol 38 : 339-357, 1984.
7) 山本達男, 種池郁恵, 大塚岳人 : H. pylori除菌と消化性潰瘍・関連疾患 ―基礎・臨床研究のアップデート-IX. 除菌療法に用いる主要薬物の最新の知見 メトロニダゾール (MNZ). 日本臨牀 63 (Suppl 11) : 376-381, 2005.
P.650 掲載の参考文献
1) 厚生労働省 診療の手引き検討委員会 : 新型コロナウイルス感染症 (COVID-19) 診療の手引き (第4.2版, 2021年2月19日)
2) 厚生労働省 病原体検査の指針検討委員会 : 新型コロナウイルス感染症 (COVID-19) 病原体検査の指針 (第3版, 2021年1月22日)
3) 国立感染症研究所 : 病原体検出マニュアル 2019-nCoV (Ver.2.9.1, 2020年3月19日)
4) 若松謙太郎, 他 : スマートジーン(R) 新型コロナウイルス検出試薬の臨床性能評価. 日本呼吸器学会誌 2021. (in press)
5) 勝見正道, 他 : 検体中のSARS-CoV-2ウイルスコピー数とウイルス力価に係る考察. 国立感染症研究所 病原微生物検出情報 (IASR) 42 (1) : 21-24, 2021.
6) Nandini Sethuraman, et al : Interpreting Diagnostic Tests for SARS-CoV-2. JAMA 323 (22) : 2249-2251, 2020.
7) 日本感染症学会 : COVID-19検査法および結果の考え方 (2020年10月12日)
8) Soren Alexandersen, et al : SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat Commun 11 (1) : 6059, 2020.

【Health Care】

P.661 掲載の参考文献
1) 朔啓二郎, 張波, 野田慶太, 他 : 喫煙と心臓病. 日本内科学雑誌 101 (3) : 779-786, 2006.
2) 橋本洋一郎, 和田邦泰 : 喫煙本数による脳卒中リスク. ファルマシア 58 (8) : 715-719, 2020.
3) 今野哲 : 喫煙と成人喘息, COPD. アレルギー 64 (8) : 1127-1134, 2015.
4) 吉野浩一, 深井穫博, 松久保隆, 他 : 喫煙習慣および口腔保健行動と歯の喪失に関するコホート分析. 口腔衛生会誌 52 (2) : 92-97, 2002.
5) リーフレット「喫煙と健康 望まない受動喫煙を防止する取り組みはマナーからルールへ. 国立がん研究センター. 2020年4月. https://ganjoho.jp/data/reg_stat/cancer_control/report/tabacoo_report2020/tabacoo_leaflet_2020.pdf [最終アクセス 2021年3月20日]
6) 禁煙治療のための標準手順書 第7版. 日本循環器学会, 日本肺癌学会, 日本癌学会, 日本呼吸器学会. 2020年4月.
7) 喫煙と健康 喫煙の健康影響に関する検討会報告書, 厚生労働省 喫煙の健康影響に関する検討会. 2016年6月. https://www.mhlw.go.jp/file/05-Shingikai-10901000-Kenkoukyoku-Soumuka/0000172687.pdf [最終アクセス 2021年3月20日]
8) これで禁煙-決定版・禁煙ツールガイド. 健康21推進フォーラムブック. 健康日本21推進フォーラム「健康を支える研究会」, 東京, 2002.
9) 柳井久江 : 4 Steps エクセル統計 第4版. オーエムエス出版, 東京, 2015.
10) 厚生労働省 : 令和元年 国民健康・栄養調査. 2019. https://www.mhlw.go.jp/content/10900000/000687163.pdf [最終アクセス 2021年3月20日]
11) 中村正和 : 喫煙による健康被害-個人から社会へ, どうして減らない喫煙率. 循環器専門医 24 (2) : 300-306, 2016.
12) 厚生労働省 : 「国民の健康の増進の総合的な推進を図るための基本的な方針」厚生労働省告示第四百三十号. 平成24年7月10日.
13) 「健康日本21 (第二次) 」中間報告書. 厚生科学審議会地域保健健康増進栄養部会. 平成30年9月. https://www.mhlw.go.jp/content/000378312.pdf [最終アクセス 2021年3月20日]
14) 繁田正子, 松井大輔, 渡辺功 : 卒煙 (禁煙) の医学. 京府医大誌 119 (6) : 405-415, 2010.
15) 満石寿, 藤澤雄太, 前場康介, 他 : 喫煙に伴う離脱症状および渇望, および喫煙衝動の評価の重要性. 禁煙科学 6 (1) : 16-23, 2012.
P.665 掲載の参考文献
1) 太田伸, 長井克浩, 全田浩, 川上由行 : 各種消毒薬の殺真菌効果. 防貧薬学 18 (4) : 343-348, 1992.
2) 城野久美子, 上村都美子, 久野光造, 東出栄治 : 塩化ベンザルコニウム及びグルコン酸クロルヘキシジンの殺菌力と殺菌速度. 薬学雑誌 105 (8) : 751-759, 1985.
3) 丸山奈保, 安部茂 : 植物精油の抗真菌・抗炎症効果~真菌感染症治療への可能性~. におい・かおり環境学会誌 43 (3) : 199-210, 2012.
4) 小林洋一 : 薬物のヒト爪甲透過機構および透過促進に関する研究. Jousai University 13 : 2012.

最近チェックした商品履歴

Loading...