1) Wasserstein R, et al:Moving to a World Beyond "p < 0.05". Am Stat, 73:1-19, 2019
2) Amrhein V, et al:Scientists rise up against statistical significance. Nature, 567:305-307, 2019
3) Wasserstein R & Lazar N:The ASA Statement on p-Values:Context, Process, and Purpose. Am Stat, 70:129-133, 2016
4) Simmons JP, et al:False-positive psychology:undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol Sci, 22:1359-1366, 2011
5) Kerr NL:HARKing:hypothesizing after the results are known. Pers Soc Psychol Rev, 2:196-217, 1998
6) Makin TR & Orban de Xivry JJ:Ten common statistical mistakes to watch out for when writing or reviewing a manuscript. Elife, 8:doi:10.7554/eLife.48175, 2019
7) Rossner M & Yamada KM:What's in a picture? The temptation of image manipulation. J Cell Biol, 166:11-15, 2004
8) Ploegh H:End the wasteful tyranny of reviewer experiments. Nature, 472:391, 2011
9) Schekman R:How journals like Nature, Cell and Science are damaging science. The Guardian, 9 Dec 2013. https://www.theguardian.com/commentisfree/2013/dec/09/how-journals-nature-science-cell-damage-science
10) Baas J & Fennell C. When Peer Reviewers Go Rogue - Estimated Prevalence of Citation Manipulation by Reviewers Based on the Citation Patterns of 69,000 Reviewers. ISSI 2019, 2-5 September 2019, Rome, Italy https://www.issi2019.org/. Available at SSRN:https://ssrn.com/abstract=3339568
11) Krummel M, et al:Universal Principled Review:A Community-Driven Method to Improve Peer Review. Cell, 179:1441-1445, 2019