糖尿病学 2022

出版社: 診断と治療社
著者:
発行日: 2022-05-27
分野: 臨床医学:内科  >  糖尿病
ISBN: 9784787825445
電子書籍版: 2002-05-27 (電子版)
書籍・雑誌
≪全国送料無料でお届け≫
品切れ

11,000 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

11,000 円(税込)

商品紹介

糖尿病学のなかでも特にわが国発の研究に重点を置いて重要な課題を取り上げ,専門的に解説したイヤーブック.今年もこの1年の基礎的研究,臨床・展開研究の成果等が18編の論文に凝集されている.糖尿病研究者のみならず,一般臨床医にとっても必読の書.

目次

  • 特別企画:Voyage to the Islets of Langerhans
    ■はじめに
    ■グルコースによるインスリン分泌の分子機構の解明
    ■cAMPによるインスリン分泌機構の解明
    ■糖尿病治療薬の作用機序に関する新たな知見
    ■おわりに

    基礎研究

    1.インスリン発見から100年「今,あらためて糖尿病を問い直す」
    ■はじめに
    ■糖尿病の診断は現在のままでよいのか
    ■糖尿病の合併症・併存症発症のメカニズムは何か
    ■インスリン抵抗性とは何か
    ■血糖コントロールを正常化する方法
    ■糖尿病のない世界を目指して

    2.東アジア人集団における新規2型糖尿病関連領域の同定
    ■はじめに
    ■2型糖尿病感受性領域の同定
    ■BMJ,性別の影響
    ■民族集団間のリスク効果の比較
    ■おわりに

    3.イメグリミンによる膵β細胞保護作用
    ■はじめに
    ■イメグリミンの想定される作用機序
    ■イメグリミンの膵β細胞からのインスリン分泌促進作用
    ■イメグリミンの膵β細胞の増殖に与える影響
    ■イメグリミンの膵β細胞における小胞体ストレス関連分子群の発現制御
    ■イメグリミンの動物モデルやヒト膵島における膵β細胞保護効果
    ■イメグリミンによる膵β細胞におけるタンパク質翻訳制御
    ■おわりに

    4.膵β細胞の量と機能制御におけるMEK/ERKシグナルの役割
    ■はじめに
    ■MEK/ERKシグナルは高脂肪食負荷時の膵β細胞増殖に寄与する
    ■MEK/ERKシグナルは膵β細胞のインスリン顆粒開口放出を制御する
    ■MEK/ERKシグナルによる開口放出の制御メカニズム
    ■膵β細胞におけるMEK/ERKシグナル活性化と2型糖尿病
    ■膵β細胞においてMEK/ERKシグナルを制御する上流因子
    ■治療応用に向けて

    5.脳におけるIRS―1の役割
    ■はじめに
    ■脳特異的IRS―1欠損マウスの作成および解析にあたって
    ■脳特異的IRS―1欠損マウスは成長障害を呈する
    ■脳特異的IRS―1欠損マウスはインスリン感受性が亢進している
    ■脳特異的IRS―1欠損マウスの視床下部ではGHRHの発現が低下している
    ■IRS―1はIGF―1刺激によるGHRH産生視床下部ニューロンの伸長に関与する
    ■おわりに

    6.IGF―1受容体異常症とIGF―1受容体の構造機能関連
    ■はじめに
    ■IGF―1受容体異常症について
    ■IGF1Rのタンパク質立体構造と機能
    ■FnⅢドメインにおけるIGF1受容体異常症のバリアントの解析
    ■IGF1R遺伝子のバリアントによるタンパク質立体構造への影響と表現型の相関
    ■おわりに

    7.ライフステージと1日のエネルギー消費量
    ■日常生活環境下の1日総エネルギー代謝量を知る意義
    ■TEEの内訳
    ■TEEの評価法(ゴールドスタンダード)
    ■TEE評価法(各種簡便法)
    ■ヒトの生涯にわたるTEE
    ■TEEを測って現場の健康管理・保健指導に生かす
    ■まとめ(細胞・組織の代謝と身体運動)

    8.非アルコール性脂肪肝炎におけるマクロファージの多様性の制御機構
    ■はじめに
    ■組織マクロファージの発生と由来
    ■肝臓由来シグナルによる単球のリプログラミング機構
    ■NASHにおける単球・マクロファージのニッシェ依存的なリプログラミング
    ■NASHにおけるクッパー細胞のリプログラミング
    ■NASHにおけるクッパー細胞死
    ■おわりに

    臨床研究・展開研究

    9.糖尿病,肥満とCOVID―19感染症
    ■はじめに
    ■糖尿病と感染症の一般論
    ■細菌性肺炎,ウイルスによる上気道感染・肺炎と糖尿病
    ■糖尿病と新型コロナウイルス(SARS―CoV―2)
    ■肥満とCOVID―19
    ■まとめ

    10.DiaMATと糖尿病災害対策
    ■はじめに
    ■震災と血糖コントロールの関係
    ■災害時の糖尿病患者支援に関する活動
    ■DiaMAT組織の構築
    ■DiaMATの活動
    ■今後の課題

    11.rtCGM/isCGM(FGM)の進歩
    ■はじめに
    ■CGMの進化
    ■最新のシステム
    ■CGMセンサーの精度
    ■トレンド矢印の活用
    ■rtCGMのアラート機能
    ■HbA1cを超えるコントロール指標
    ■TIRと合併症の関連
    ■CGMの臨床効果
    ■CGMによる低血糖予防
    ■CGMによる急性合併症予防
    ■データシェアの利点と課題
    ■妊娠とCGM
    ■ポンプとCGM
    ■rtCGM/isCGMの選択
    ■CGMとmHealth(モバイルヘルス)
    ■CGMの障壁
    ■解析・指導・支援の実際
    ■機器企業との連携
    ■おわりに

    12.わが国における2型糖尿病の治療実態について―大規模データベース研究
    ■はじめに
    ■方法
    ■結果
    ■考察
    ■ADAガイドライン改定を受けた示唆

    13.高齢者糖尿病治療ガイド2021
    ■はじめに
    ■高齢者糖尿病とは
    ■高齢者に多い併存症とその対策
    ■高齢者糖尿病をサポートする制度
    ■DASC―8
    ■高齢者糖尿病の食事療法
    ■具体的な症例による解説
    ■おわりに

    14.メトホルミンの新たな作用―消化管への糖排泄
    ■はじめに
    ■メトホルミンの血中濃度と作用との解離
    ■メトホルミンのもつ多彩な消化管作用
    ■メトホルミンによる腸内細菌叢の変化
    ■メトホルミンによるFDGの腸管集積
    ■PET/CTの限界とPET/MRIの優位性
    ■PET/MRIを用いたメトホルミンによるブドウ糖動態変化の解析
    ■腸管内腔へのブドウ糖排泄―どこから出ているのか―
    ■腸管内腔へのブドウ糖排泄―どこへ行くのか―
    ■おわりに

    15.心不全治療薬としてのSGLT2阻害薬
    ■はじめに
    ■SGLT2阻害薬の心血管保護メカニズム
    ■糖尿病患者を対象としたSGLT2阻害薬心血管アウトカム試験における心不全イベントに対する効果
    ■左室駆出率の低下した心不全(HFrEF)患者を対象としたSGLT2阻害薬の大規模試験
    ■左室駆出率の保たれた心不全(HFpEF)患者を対象としたSGLT2阻害薬の大規模試験
    ■ガイドラインにおけるSGLT2阻害薬の位置付け
    ■他剤との併用
    ■おわりに

    16.肥満症治療薬としてのGLP―1受容体作動薬
    ■はじめに
    ■GLP―1受容体作動薬について
    ■GLP―1受容体作動薬の減量効果
    ■STEP試験,セマグルチドの減量効果
    ■GLP―1受容体/GIP受容体共作動薬の減量効果
    ■おわりに

    17.日本人の肥満2型糖尿病患者に対する減量・代謝改善手術の適応基準に関する
      3学会合同委員会コンセンサスステートメント
      ―肥満症に対する統合的な治療としての減量・代謝改善技術の進歩
    ■はじめに―肥満と新型コロナ 2つのパンデミック―
    ■肥満を取り巻く複雑な病態と統合的な肥満症治療の必要性
    ■肥満スティグマの存在とアドボカシー活動
    ■減量・代謝改善手術の歴史と現状
    ■肥満2型糖尿病への減量・代謝改善手術の臨床応用とその作用機構
    ■減量・代謝改善手術の適応基準に関する3学会合同委員会コンセンサスステートメント2021
    ■安全で有効な減量・代謝手術を普及させるための課題
    ■おわりに

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

特別企画 : Voyage to the Islets of Langerhans

P.10 掲載の参考文献
1) Fukumoto H, Seino S, Imura H, et al. : Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc Natl Acad Sci U S A 1988 ; 85 : 5434-5438
2) Yamada Y, Post SR, Wang K, et al. : Cloning and functional characterization of a family of human and mouse somatostatin receptors expressed in brain, gastrointestinal tract, and kidney. Proc Natl Acad Sci U S A 1992 ; 89 : 251-255.
3) Seino S, Chen L, Seino M, et al. : Cloning of the alpha 1 subunit of a voltage-dependent calcium channel expressed in pancreatic beta cells. Proc Natl Acad Sci U S A 1992 ; 89 : 584-588
4) Inagaki N, Gonoi T, Clement JPt, et al. : Reconstitution of IKATP : an inward rectifier subunit plus the sulfonylurea receptor. Science 1995 ; 270 : 1166-1170
5) Seino S : ATP-sensitive potassium channels : a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 1999 ; 61 : 337-362
6) Miki T, Nagashima K, Tashiro F, et al. : Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci U S A 1998 ; 95 : 10402-10406
7) Shibasaki T, Takahashi H, Miki T, et al. : Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc Natl Acad Sci U S A 2007 ; 104 : 19333-19338
8) Uenishi E, Shibasaki T, Takahashi H, et al. : Actin dynamics regulated by the balance of neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin activities determines the biphasic response of glucose-induced insulin secretion. J Biol Chem 2013 ; 288 : 25851-25864
9) Seino S, Shibasaki T, and Minami K : Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J Clin Invest 2011 ; 121 : 2118-2125
10) Yasuda T, Shibasaki T, Minami K, et al. : Rim2alpha determines docking and priming states in insulin granule exocytosis. Cell Metab 2010 ; 12 : 117-129
11) Ozaki N, Shibasaki T, Kashima Y, et al. : cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat Cell Biol 2000 ; 2 : 805-811
12) Kashima Y, Miki T, Shibasaki T, et al. : Critical role of cAMP-GEFII--Rim2 complex in incretin-potentiated insulin secretion. J Biol Chem 2001 ; 276 : 46046-46053
13) Seino S, and Shibasaki T : PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005 ; 85 : 1303-1342
14) Iwasaki M, Minami K, Shibasaki T, et al. : Establishment of new clonal pancreatic beta-cell lines (MIN6-K) useful for study of incretin/cyclic adenosine monophosphate signaling. J Diabetes Investig 2010 ; 1 : 137-142
15) Gheni G, Ogura M, Iwasaki M, et al. : Glutamate acts as a key signal linking glucose metabolism to incretin/cAMP action to amplify insulin secretion. Cell Rep 2014 ; 9 : 661-673
16) Takahashi H, Yokoi N, and Seino S : Glutamate as intracellular and extracellular signals in pancreatic islet functions. Proc Jpn Acad Ser B Phys Biol Sci 2019 ; 95 : 246-260
17) Zhang CL, Katoh M, Shibasaki T, et al. : The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 2009 ; 325 : 607-610
18) Takahashi T, Shibasaki T, Takahashi H, et al. : Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci Signal 2013 ; 6 : ra94
19) Takahashi H, Shibasaki T, Park JH, et al. : Role of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion. Diabetes 2015 ; 64 : 1262-1272
20) Oduori OS, Murao N, Shimomura K, et al. : Gs/Gq signaling switch in beta cells defines incretin effectiveness in diabetes. J Clin Invest 2020 ; 130 : 6639-6655

基礎研究

P.15 掲載の参考文献
1) Seino Y, Nanjo K, Tajima N, et al. : Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Diabetol Int 2010 ; 1 : 2-20
2) Sun JK, Keenan HA, Cavallerano JD, et al. : Protection from retinopathy and other complications in patients with type 1 diabetes of extreme duration : the joslin 50-year medalist study. Diabetes care 2011 ; 34 : 968-974
3) Gotoh S, Doi Y, Hata J, et al. : Insulin resistance and the development of cardiovascular disease in a Japanese community : the Hisayama study. J Atheroscler Thromb 2012 ; 19 : 977-985
4) Cariou B : The metabolic triad of non-alcoholic fatty liver disease, visceral adiposity and type 2 diabetes : Implications for treatment. Diabetes Obes Metab 2022 ; 24 Suppl 2 : 15-27
5) Matsuzaki T, Sasaki K, Tanizaki Y, et al. : Insulin resistance is associated with the pathology of Alzheimer disease : the Hisayama study. Neurology 2010 ; 75 : 764-770
6) Ware J, Hovorka R : Recent advances in closed-loop insulin delivery. Metabolism 2022 ; 127 : 154953
7) Goto A, Takao T, Yoshida Y, et al. : Causes of death and estimated life expectancy among people with diabetes : A retrospective cohort study in a diabetes clinic. J Diabetes Investig 2020 ; 11 : 52-54
8) Kato A, Fujimaki Y, Fujimori S, et al. : How self-stigma affects patient activation in persons with type 2 diabetes : a cross-sectional study. BMJ Open 2020 ; 10 : e034757
P.20 掲載の参考文献
1) Spracklen CN, Horikoshi M, Kim YJ, et al. : Identification of type 2 diabetes loci in 433,540 East Asian individuals. Nature 2020 ; 582 : 240-245.
2) Suzuki K, Akiyama M, Ishigaki K, et al. : Identification of 28 new susceptibility loci for type 2 diabetes in the Japanese population. Nat. Genet 2019 ; 51 : 379-386.
3) Okada Y, Momozawa Y, Sakaue S, et al. : Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat. Commun 2018 ; 9 : 1631.
4) Mahajan A, Taliun D, Thurner M, et al. : Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet 2018 ; 50 : 1505-1513
P.28 掲載の参考文献
1) Vial G, Chauvin MA, Bendridi N, et al. : Imeglimin normalizes glucose tolerance and insulin sensitivity and improves mitochondrial function in liver of a high-fat, high-sucrose diet mice model. Diabetes 2015 ; 64 : 2254-2264
2) Hallakou-Bozec S, Kergoat M, Fouqueray P, et al. : Imeglimin amplifies glucose-stimulated insulin release from diabetic islets via a distinct mechanism of action. PLoS One 2021 ; 16 : e0241651
3) Okuyama T, Kyohara M, Terauchi Y, et al. : The Roles of the IGF Axis in the Regulation of the Metabolism : Interaction and Difference between Insulin Receptor Signaling and IGF-I Receptor Signaling. Int J Mol Sci 2021 ; 22 : 6817
4) Li J, Inoue R, Togashi Y, et al. : Imeglimin ameliorates beta-cell apoptosis by modulating the endoplasmic reticulum homeostasis pathway. Diabetes, 2022 ; 71 : 424-439
5) Shirakawa J. : Translational research on human pancreatic beta-cell mass expansion for the treatment of diabetes. Diabetol Int 2021 ; 12 : 349-355
6) Shirakawa J, Fernandez M, Takatani T, et al. : Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic beta Cell Proliferation. Cell Metab 2017 ; 25 : 868-882 e5
7) Shirakawa J, Togashi Y, Sakamoto E, et al. : Glucokinase activation ameliorates ER stress-induced apoptosis in pancreatic beta-cells. Diabetes 2013 ; 62 : 3448-3458
8) Pakos-Zebrucka K, Koryga I, Mnich K, et al. The integrated stress response. EMBO Rep 2016 ; 17 : 1374-1395
9) Marciniak SJ, Yun CY, Oyadomari S, et al. : CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 2004 ; 18 : 3066-3077
10) Novoa I, Zeng H, Harding HP, et al. : Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 2001 ; 153 : 1011-1022
11) Novoa I, Zhang Y, Zeng H, et al. : Stress-induced gene expression requires programmed recovery from translational repression. EMBO J 2003 ; 22 : 1180-1187
12) Yusta B, Baggio LL, Estall JL, et al. : GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress. Cell Metab 2006 ; 4 : 391-406
13) Shirakawa J. : Pancreatic beta-cell fate in subjects with COVID-19. J Diabetes Investig 2021 ; 12 : 2126-2128
P.34 掲載の参考文献
1) Taniguchi CM, Emanuelli B, Kahn CR : Critical nodes in signalling pathways : insights into insulin action. Nat Rev Mol Cell Biol 2006 ; 7 : 85-96
2) Ueki K, Okada T, Hu J, et al. : Total insulin and IGF-I resistance in pancreatic beta cells causes overt diabetes. Nat Genet 2006 ; 38 : 583-588
3) Kaneko K, Ueki K, Takahashi N, et al. : Class IA phosphatidylinositol 3-kinase in pancreatic beta cells controls insulin secretion by multiple mechanisms. Cell Metab 2010 ; 12 : 619-632
4) Ikushima YM, Awazawa M, Kobayashi N, et al. : MEK/ERK Signaling in β-Cells Bifunctionally Regulates β-Cell Mass and Glucose-Stimulated Insulin Secretion Response to Maintain Glucose Homeostasis. Diabetes 2021 ; 70 : 1519-1535
5) Oropeza D, Jouvet N, Budry L, et al. : Phenotypic Characterization of MIP-CreERT1Lphi Mice With Transgene-Driven Islet Expression of Human Growth Hormone. Diabetes 2015 ; 64 : 3798-3807
6) Brouwers B, de Faudeur G, Osipovich AB, et al. : Impaired islet function in commonly used transgenic mouse lines due to human growth hormone minigene expression. Cell Metab 2014 ; 20 : 979-990
7) Talchai C, Xuan S, Lin HV, et al. : Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 2012 ; 150 : 1223-1234
8) Kadowaki T. : Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 2000 ; 106 : 459-465
9) Dalboge LS, Almholt DL, Neerup TS, et al. : Characterisation of age-dependent beta cell dynamics in the male db/db mice. PLoS One 2013 ; 8 : e82813
10) Hull RL, Kodama K, Utzschneider KM, et al. : Dietary-fat-induced obesity in mice results in beta cell hyperplasia but not increased insulin release : evidence for specificity of impaired beta cell adaptation. Diabetologia 2005 ; 48 : 1350-1358
11) Peyot ML, Pepin E, Lamontagne J, et al. : Beta-cell failure in diet-induced obese mice stratified according to body weight gain : secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes 2010 ; 59 : 2178-2187
12) Gehart H, Kumpf S, Ittner A, et al. : MAPK signalling in cellular metabolism : stress or wellness? EMBO Rep 2010 ; 11 : 834-840
13) Chen H, Gu X, Liu Y, et al. : PDGF signalling controls age-dependent proliferation in pancreatic beta-cells. Nature 2011 ; 478 : 349-355
14) Ying W, Lee YS, Dong Y, et al. : Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting beta Cell Proliferation and Function in Obesity. Cell Metab 2019 ; 29 : 457-474 e5
15) Assmann A, Ueki K, Winnay JN, et al. : Glucose effects on beta-cell growth and survival require activation of insulin receptors and insulin receptor substrate 2. Mol Cell Biol 2009 ; 29 : 3219-3228
16) Lawrence M, Shao C, Duan L, et al. : The protein kinases ERK1/2 and their roles in pancreatic beta cells. Acta Physiol (Oxf) 2008 ; 192 : 11-17
17) Banks AS, McAllister FE, Camporez JP, et al. : An ERK/Cdk5 axis controls the diabetogenic actions of PPARgamma. Nature 2015 ; 517 : 391-395
18) Roberts PJ, Der CJ. : Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007 ; 26 : 3291-3310
19) Iezzi A, Caiola E, Scagliotti A, et al. : Generation and characterization of MEK and ERK inhibitors- resistant non-small-cells-lung-cancer (NSCLC) cells. BMC Cancer 2018 ; 18 : 1028
P.42 掲載の参考文献
1) Virkamaki A, Ueki K, Kahn CR : Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 1999 ; 103 : 931-943
2) Nakae J, Kido Y, Accili D : Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 2001 ; 22 : 818-835
3) Sun XI, Rothellberg P, Kahn CR, et al. : Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991 ; 352 : 73-77
4) Sun XJ, Wang LM, Zhang Y, et al. : Role of IRS-2 in insulin and cytokine signalling. Nature 1995 ; 377 : 173-177
5) Lavan BE, Lienhard GE : The insulin-elicited 60-kDa phosphotyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J Biol Chem 1993 ; 268 : 5921-5928
6) Lavan BE, Fantin VR, Chang ET, et al. : A novel 160-kDa phosphotyrosine protein in insulin-treated embryonic kidney cells is a new member of the insulin receptor substrate family. J Biol Chem 1997 ; 272 : 21403-21407
7) Bruning JC, Gautam D, Burks DJ, et al. : Role of brain insulin receptor in control of body weight and reproduction. Science 2000 ; 289 : 2122-2125
8) Holzenberger M, Dupont J, Ducos B, et al. : IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003 ; 421 : 182-187
9) Kappeler L, De Magalhaes Filho C, Dupont J, et al. : Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 2008 ; 6 : e254
10) Choudhury AI, Heffron H, Smith MA, et al. : The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest 2005 ; 115 : 940-950
11) Tamemoto H, Kadowaki T, Tobe K, et al. : Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 1994 ; 372 : 182-186
12) Araki E, Lipes MA, Patti ME, et al. : Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994 ; 372 : 186-190
13) Hayashi T, Kubota T, Mariko I, et al. Lack of Brain Insulin Receptor Substrate-1 Causes Growth Retardation, With Decreased Expression of Growth Hormone-Releasing Hormone in the Hypothalamus. Diabetes 2021 ; 70 : 1640-1653.
14) Tronche F, Kellendonk C, Kretz O, et al. : Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 1999 ; 23 : 99-103
15) Harno E, Cottrell EC, White A : Metabolic pitfalls of CNS Cre-based technology. Cell Metab 2013 ; 18 : 21-28
16) Declercq J, Brouwers B, Pruniau VP, et al. : Metabolic and Behavioural Phenotypes in Nestin-Cre Mice Are Caused by Hypothalamic Expression of Human Growth Hormone. PLoS One 2015 ; 10 : e0135502
17) Hirono S, Lee EY, Kuribayashi S, et al. : Importance of Adult Dmbx1 in Long-Lasting Orexigenic Effect of Agouti-Related Peptide. Endocrinology 2016 ; 157 : 245-257.
18) Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, et al. : Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer, and diabetes in humans. Sci Transl Med 2011 ; 3 : 70ra13
19) Liu JL, Coschigano KT, Robertson K, et al. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice. Am J Physiol Endocrinol Metab 2004 ; 287 : E405-413.
20) Decourtye L, Mire E, Clemessy M, et al. : IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS One 2017 ; 12 : e0170083
21) Laurino L, Wang XX, de la Houssaye BA, et al. : PI3K activation by IGF-1 is essential for the regulation of membrane expansion at the nerve growth cone. J Cell Sci 2005 ; 118 : 3653-3662
22) Barbour LA, Shao J, Qiao L, et al : Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 2004 ; 145 : 1144-1150
23) Barbour LA, Mizanoor Rahman S, Gurevich I, et al : Increased P85alpha is a potent negative regulator of skeletal muscle insulin signaling and induces in vivo insulin resistance associated with growth hormone excess. J Biol Chem 2005 ; 280 : 37489-37494
24) Cordoba-Chacon J, Gahete MD, McGuinness OP, et al : Differential impact of selective GH deficiency and endogenous GH excess on insulin-mediated actions in muscle and liver of male mice. Am J Physiol Endocrinol Metab 2014 ; 307 : E928-934
25) List EO, Berryman DE, Ikeno Y, et al : Removal of growth hormone receptor (GHR) in muscle of male mice replicates some of the health benefits seen in global GHR-/- mice. Aging (Albany NY) 2015 ; 7 : 500-512
26) List EO, Berryman DE, Funk K, et al : The role of GH in adipose tissue : lessons from adipose-specific GH receptor gene-disrupted mice. Mol Endocrinol 2013 ; 27 : 524-535
27) O'Neill BT, Lauritzen HP, Hirshman MF, et al : Differential Role of Insulin/IGF-1 Receptor Signaling in Muscle Growth and Glucose Homeostasis. Cell Rep 2015 ; 11 : 1220-1235
28) Bake S, Selvamani A, Cherry J, et al. : Blood brain barrier and neuroinflammation are critical targets of IGF-1-mediated neuroprotection in stroke for middle-aged female rats. PLoS One 2014 ; 9 : e91427
29) Kothari V, Luo Y, Tornabene T, et al. : High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis 2016 ; 1863 : 499-508
30) Bomfim TR, Forny-Germano L, Sathler LB, et al. : An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer's disease-associated Abeta oligomers. J Clin Invest 2012 ; 122 : 1339-1353
31) Yarchoan M, Toledo JB, Lee EB, et al. : Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol 2014 ; 128 : 679-689
P.48 掲載の参考文献
1) Hosoe J, Kadowaki H, Miya F, et al. : Structural Basis and Genotype-Phenotype Correlations of INSR Mutations Causing Severe Insulin Resistance. Diabetes 2017 ; 66 : 2713-2723
2) Accili D, Kadowaki T, Kadowaki H, et al. : Immunoglobulin heavy chain-binding protein binds to misfolded mutant insulin receptors with mutations in the extracellular domain. J Biol Chem 1992 ; 267 : 586-590
3) Taylor SI. Lilly Lecture : molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes 1992 ; 41 : 1473-1490
4) van Nieuwpoort IC, Drent ML. Cognition in the adult with childhood-onset GH deficiency. Eur J Endocrinol 2008 ; 159 Suppl 1 : S53-57
5) Abuzzahab MJ, Schneider A, Goddard A, et al. : IGF-I receptor mutations resulting in intrauterine and postnatal growth retardation. N Engl J Med 2003 ; 349 : 2211-2222
6) Storr HL, Dunkel L, Kowalczyk J, et al. : Genetic characterisation of a cohort of children clinically labelled as GH or IGF1 insensitive : diagnostic value of serum IGF1 and height at presentation. Eur J Endocrinol 2015 ; 172 : 151-161
7) Kawashima Y, Higaki K, Fukushima T, et al. : Novel missense mutation in the IGF-I receptor L2 domain results in intrauterine and postnatal growth retardation. Clin Endocrinol (Oxf) 2012 ; 77 : 246-254
8) Leal AC, Montenegro LR, Saito RF, et al. : Analysis of the insulin-like growth factor 1 receptor gene in children born small for gestational age : in vitro characterization of a novel mutation (p. Arg511Trp). Clin Endocrinol (Oxf) 2013 ; 78 : 558-563
9) Prontera P, Micale L, Verrotti A, et al. : A New Homozygous IGF1R Variant Defines a Clinically Recognizable Incomplete Dominant form of SHORT Syndrome. Hum Mutat 2015 ; 36 : 1043-1047
10) Labarta JI, Barrio E, Audi L, et al. : Familial short stature and intrauterine growth retardation associated with a novel mutation in the IGF-I receptor (IGF1R) gene. Clin Endocrinol (Oxf) 2013 ; 78 : 255-262
11) Yang L, Xu DD, Sun CJ, et al. : IGF1R Variants in Patients With Growth Impairment : Four Novel Variants and Genotype-Phenotype Correlations. J Clin Endocrinol Metab 2018 ; 103 : 3939-3944
12) De Meyts P, Whittaker J. : Structural biology of insulin and IGF1 receptors : implications for drug design. Nature reviews Drug discovery 2002 ; 1 : 769-783
13) Xu Y, Kong GK, Menting JG, et al. : How ligand binds to the type 1 insulin-like growth factor receptor. Nature communications 2018 ; 9 : 821
14) Yau M, Haider S, Khattab A, et al. : Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11beta-hydroxysteroid dehydrogenase type 2 deficiency. Proc Natl Acad Sci U S A 2017 ; 114 : E11248-e1256
15) Haider S, Islam B, D'Atri V, et al. : Structure-phenotype correlations of human CYP21A2 mutations in congenital adrenal hyperplasia. Proc Natl Acad Sci U S A. 2013 ; 110 : 2605-2610
16) Kawashima Y, Kanzaki S, Yang F, et al. : Mutation at cleavage site of insulin-like growth factor receptor in a short-stature child born with intrauterine growth retardation. J Clin Endocrinol Metab 2005 ; 90 : 4679-4687
17) Wallborn T, Wuller S, Klammt J, et al. : A heterozygous mutation of the insulin-like growth factor-I receptor causes retention of the nascent protein in the endoplasmic reticulum and results in intrauterine and postnatal growth retardation. J Clin Endocrinol Metab 2010 ; 95 : 2316-2324
18) Juanes M, Guercio G, Marino R, et al. : Three novel IGF1R mutations in microcephalic patients with prenatal and postnatal growth impairment. Clin Endocrinol (Oxf) 2015 ; 82 : 704-711
19) Walenkamp MJE, Robers JML, Wit JM, et al. : Phenotypic Features and Response to GH Treatment of Patients With a Molecular Defect of the IGF-1 Receptor. J Clin Endocrinol Metab 2019 ; 104 : 3157-3171
20) Hosoe J, Kawashima-Sonoyama Y, Miya F, et al. : Genotype-Structure-Phenotype Correlations of Disease-Associated IGF1R Variants and Similarities to Those of INSR Variants. Diabetes 2021 ; 70 : 1874-1884
P.61 掲載の参考文献
1) Hills AP, Mokhtar N, Byrne NM : Assessment of physical activity and energy expenditure : an overview of objective measures. Front Nutr 2014 ; 1 : 5
2) 伊藤貞嘉, 佐々木敏監修 : 日本人の食事摂取基準 (2020年版) (厚生労働省. 日本人の食事摂取基準策定検討委員会報告書), 第一出版, 2020 ; 51-105
3) Ganpule AA, Tanaka S, Ishikawa-Takata K, et al. : Interindividual variability in sleeping metabolic rate in Japanese subjects. Eur J Clin Nutr 2007 ; 61 : 1256-1261
4) Itoi A, Yamada Y, Yokoyama K, et al. : Validity of predictive equations for resting metabolic rate in healthy older adults. Clin Nutr ESPEN 2017 ; 22 : 64-70
5) Elia M : Organ and tissue contribution to metabolic rate. Edited by Kinney JM and Tucker HN. Energy Metabolism. Tissue Determinants and Cellular Corrolaries. Raven Press, New York, 1992 ; 61-77
6) 田中茂穂 : 人の基礎代謝量. 実験医学 27 (増刊 肥満・糖尿病の病態を解明するエネルギー代謝の最前線), 2009 ; 1058-1062
7) Caspersen CJ, Powell KE, Christenson GM : Physical activity, exercise, and physical fitness : definitions and distinctions for health-related research. Public Health Rep100, 1985 ; 126-131
8) 田中茂穂 : エネルギー消費量とその測定方法. 静脈経腸栄養 2009 ; 24 : 1013-1019
9) Weir JB : New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 1949 ; 109 : 1-9
10) Westerterp KR : Doubly labelled water assessment of energy expenditure : principle, practice, and promise. Eur J Appl Physiol 2017 ; 117 : 1277-1285
11) International Atomic Energy Agency : Assessment of Body Composition and Total Energy Expenditure in Humans Using Stable Isotope Techniques. IAEA Human Health Series No. 3, 2009
12) Speakman JR, Yamada Y, Sagayama H, et al. : A standard calculation methodology for human doubly labeled water studies. Cell Rep Med 2021 ; 2 : 100203
13) Plasqui G, Westerterp KR : Physical activity assessment with accelerometers : an evaluation against doubly labeled water. Obesity (Silver Spring) 2007 ; 15 : 2371-2379
14) Yamada Y, Yokoyama K, Noriyasu R, et al. : Light-intensity activities are important for estimating physical activity energy expenditure using uniaxial and triaxial accelerometers. Eur J Appl Physiol 2009 ; 105 : 141-152
15) Ainsworth BE, Haskell WL, Whitt MC, et al. : Compendium of Physical Activities : An update of activity codes and MET intensities. Med Sci Sports Exerc 2000 ; 32 : S498-S516
16) Neilsen HK, Neilson HK, Robson PJ, et al. : Estimating activity energy expenditure : how valid are physical activity questionnaires? Am J Clin Nutr 2008 ; 87 : 279-291
17) Livingstone MB, Black AE : Markers of the validity of reported energy intake. J Nutr 2003 ; 133 : 895S-920S
18) Yamada Y, Noriyasu R, Yokoyama k, et al. : Association between lifestyle and physical activity level in the elderly : a study using doubly labeled water and simplified physical activity record. Eur J Appl Physiol 2013 ; 113 : 2461-2471
19) Pontzer H, Yamada Y, Sagayama H, et al. 3 : Daily energy expenditure through the human life course. Science 2021 ; 373 : 808-812
20) Lifson N, Gordon GB, Mc CR : Measurement of total carbon dioxide production by means of D2O18. J Appl Physiol 1955 ; 7 : 704-710
21) Schoeller DA, van Santen E. : Measurement of energy expenditure in humans by doubly labeled water method. J Appl Physiol Respir Environ Exerc Physiol 1982 ; 53 : 955-959
22) Yamada Y, Hashii-Arishima Y, Yokoyama K, et al : Validity of triaxial accelerometer ans simplified physical activity record in older adults aged 64-96 years : a doubly labeled water study. Eur J Appl Physiol 2018 ; 118 : 2133-2146
23) Koebnick C, Wagner K, Thielecke F, et al : Validation of a simplified physical activity record by doubly labeled water technique. Int J Obes (Lond) 2005 ; 29 : 302-309
24) Bland JM. Altman DG. : Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986 ; 1 ; 307-310
25) 中江悟司, 山田陽介, 木村みさか他 : 児童の日常生活中におけるエネルギー消費量と肥満・体力との連関 (二重標識水法および加速度計法を用いた検討). 体力科学 2013 ; 62 : 353-360
26) Yamada Y, Sagayama H, Itoi A, et al : Total energy expenditure, body composition, physical activity, and step count in Japanese preschool children : a study based on doubly labeled water. Nutrients 2020 ; 12 : 1223 ; doi : 10.3390/nu12051223
27) 天笠志保, 荒神裕之, 鎌田真光他 : 医療・健康分野におけるスマートフォンおよびウエアラブルディバイスを用いた身体活動の評価 : 現状と今後の展望. 日本公衆衛生雑誌 2021 ; 68 (9) : 585-596
28) Westerterp KR, Yamada Y, Sagayama H et al. Physical activity and fat-free mass during growth and in later life. Am J Clin Nutr 2021 ; 114 : 1583-1589
29) Yamada Y, Nishizawa M, Uchiyama T et al. Developing and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for Sarcopenia. Int J Environ Res Public Health 2017 ; 14 : 809, 2017
30) Careau V, Halsey LG, Pontzer H et al. Energy compensation and adiposity in humans. Curr Biol 2021 ; 31 : 4659-4666.e2
31) Rimbach R, Yamada Y, Sagayama H et al : Total energy expenditure is repeatable in adults but not associated with short-term changes in body composition. Nat Commun 2022 ; 13 : 99
32) Tasali E, Wroblewski K, Kahn E, et al. : Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults With Overweight in Real-life Settings : A Randomized Clinical Trial. JAMA Int Med 2022 ; e218098. doi : 10.1001/jamainternmed.2021.8098. Online ahead of print
P.68 掲載の参考文献
1) Gosselin D, Link VM, Romanoski CE, et al. : Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 2014 ; 159 : 1327-1340
2) Mass E, Ballesteros I, Farlik M, et al. : Specification of tissue-resident macrophages during organogenesis. Science 2016 ; 353 : aaf4238
3) Okabe Y, Medzhitov R. : Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 2014 ; 157 : 832-844
4) Ginhoux F, Guilliams M. : Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 2016 ; 44 : 439-449
5) Bleriot C, Dupuis T, Jouvion G, et al. : Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 2015 ; 42 : 145-158
6) Sakai M, Troutman TD, Seidman JS, et al. : Liver-Derived Signals Sequentially Reprogram Myeloid Enhancers to Initiate and Maintain Kupffer Cell Identity. Immunity 2019 ; 51 : 655-670.e8
7) Bonnardel J, T'Jonck W, Gaublomme D, et al. Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity 2019 ; 51 : 638-654.e9
8) Seidman JS, Troutman TD, Sakai M, et al. : Niche-Specific Reprogramming of Epigenetic Landscapes Drives Myeloid Cell Diversity in Nonalcoholic Steatohepatitis. Immunity 2020 ; 52 : 1057-1074.e7
9) Ramachandran P, Dobie R, Wilson-Kanamori JR, et al. : Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 2019 ; 575 : 512-518
10) Jaitin DA, Adlung L, Thaiss CA, et al. : Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell 2019 ; 178 : 686-698.e14
11) Scott CL, T'Jonck W, Martens L, et al. : The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity 2018 ; 49 : 312-325.e5
12) Tran S, Baba I, Poupel L, et al. : Impaired Kupffer Cell Self-Renewal Alters the Liver Response to Lipid Overload during Non-alcoholic Steatohepatitis. Immunity 2020 ; 53 : 627-640.e5

臨床研究・展開研究

P.77 掲載の参考文献
1) Hodgson K, Morris J, Bridson T, et al. : Immunological mechanisms contributing to the double burden of diabetes and intracellular bacterial infections. Immunology 2015 ; 144 : 171-185
2) 日本糖尿病. 糖尿病における急性代謝失調・シックデイ (感染症を含む). In : 糖尿病診療ガイドライン 2019. 2019. p.329-345
3) 宇野俊介, 長谷川直樹 : 糖尿病と感染症 3. 糖尿病と呼吸器感染症. 糖尿病 2018 ; 10 : 668-670.
4) Yang JK, Feng Y, Yuan MY, et al. : Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabetic Med 2006 ; 23 : 623-628
5) Yang J-K, Lin S-S, Ji X-J, et al. : Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010 ; 47 : 193-199
6) 日本糖尿病学会. 糖尿病と新型コロナウイルス感染症に関するQ&A 第2版 [Internet]. 2021 [cited 2021 Aug 17]. Available from : http://www.fa.kyorin.co.jp/jds/uploads/2021-03-26_JDS_COVID-19.pdf
7) Kumar A, Arora A, Sharma P, et al. : Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metabolic Syndrome 2020 ; 14 : 535-545
8) Fadini GP, Morieri ML, Longato E, et al. : Prevalence and impact of diabetes among people infected with SARS-CoV-2. J Endocrinol Invest 2020 ; 43 : 867-869
9) Team CC-19 R, Chow N, Fleming-Dutra K, et al. : Preliminary Estimates of the Prevalence of Selected Underlying Health Conditions Among Patients with Coronavirus Disease 2019-United States, February 12-March 28, 2020. Morbidity Mortal Wkly Rep 2020 ; 69 : 382-386
10) Matsunaga N, Hayakawa K, Terada M, et al. : Clinical epidemiology of hospitalized patients with COVID-19 in Japan : Report of the COVID-19 REGISTRY JAPAN. Clin Infect Dis 2020 ; 73 : e3677-e3689 ciaa1470-
11) Terada M, Ohtsu H, Saito S, et al. : Risk factors for severity on admission and the disease progression during hospitalisation in a large cohort of patients with COVID-19 in Japan. Bmj Open 2021 ; 11 : e047007
12) Wander PL, Lowy E, Beste LA, et al. : Prior Glucose-Lowering Medication Use and 30-Day Outcomes Among 64,892 Veterans With Diabetes and COVID-19. Diabetes Care 2021 ; 44 : 2708-2713
13) Hippisley-Cox J, Coupland CA, Mehta N, et al. : Risk prediction of covid-19 related death and hospital admission in adults after covid-19 vaccination : national prospective cohort study. Bmj 2021 ; 374 : n2244
14) Barron E, Bakhai C, Kar P, et al. : Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England : a whole-population study. Lancet Diabetes Endocrinol 2020 ; 8 : 813-822
15) Williamson EJ, Walker AJ, Bhaskaran K, et al. : Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020 ; 584 : 430-436
16) Ando W, Horii T, Uematsu T, et al. : Impact of overlapping risks of type 2 diabetes and obesity on coronavirus disease severity in the United States. Sci Rep-uk 2021 ; 11 : 17968
17) Agarwal S, Schechter C, Southern W, et al. : Preadmission Diabetes-Specific Risk Factors for Mortality in Hospitalized Patients With Diabetes and Coronavirus Disease 2019. Diabetes Care 2020 ; 43 : 2339-2344
18) Popkin BM, Du S, Green WD, et al. : Individuals with obesity and COVID-19 : A global perspective on the epidemiology and biological relationships. Obes Rev 2020 ; 21 : e13128
19) Kompaniyets L, Goodman AB, Belay B, et al. : Body Mass Index and Risk for COVID-19-Related Hospitalization, Intensive Care Unit Admission, Invasive Mechanical Ventilation, and Death-United States, March-December 2020. Morbidity Mortal Wkly Rep 2021 ; 70 : 355-361
20) Hamer M, Gale CR, Batty GD : Diabetes, glycaemic control, and risk of COVID-19 hospitalisation : Population-based, prospective cohort study. Metabolis 2020 ; 112 : 154344
21) O'Malley G, Ebekozien O, Desimone M, et al. : COVID-19 Hospitalization in Adults with Type 1 Diabetes : Results from the T1D Exchange Multi-Center Surveillance Study. J Clin Endocrinol Metabolism 2021 ; 106 : e936-e942 dgaa825-
22) Holman N, Knighton P, Kar P, et al. : Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England : a population-based cohort study. Lancet Diabetes Endocrinol 2020 ; 8 : 823-833
23) Klonoff DC, Messler JC, Umpierrez GE, et al. : Association Between Achieving Inpatient Glycemic Control and Clinical Outcomes in Hospitalized Patients With COVID-19 : A Multicenter, Retrospective Hospital-Based Analysis. Diabetes Care 2021 ; 44 : 578-585
24) Saand AR, Flores M, Kewan T, et al. : Does inpatient hyperglycemia predict a worse outcome in COVID-19 intensive care unit patients? J Diabetes 2021 ; 13 : 253-260
25) Ling P, Luo S, Zheng X, et al. : Elevated fasting blood glucose within the first week of hospitalization was associated with progression to severe illness of COVID-19 in patients with preexisting diabetes : A multicenter observational study. J Diabetes 2021 ; 13 : 89-93
26) Chen L, Sun W, Liu Y, et al. : Association of Early-Phase In-Hospital Glycemic Fluctuation With Mortality in Adult Patients With Coronavirus Disease 2019. Diabetes Care 2021 ; dc200780
27) Yang P, Wang N, Wang J, et al. : Admission fasting plasma glucose is an independent risk factor for 28-day mortality in patients with COVID-19. J Med Virol 2021 ; 93 : 2168-2176
28) Singh AK, Singh R : At-admission hyperglycemia is consistently associated with poor prognosis and early intervention can improve outcomes in patients with COVID-19. Diabetes Metabolic Syndrome Clin Res Rev 2020 ; 14 : 1641-1644
29) Zhu L, She Z-G, Cheng X, et al. : Association of Blood Glucose Control and Outcomes in Patients with COVID-19 and Pre-existing Type 2 Diabetes. Cell Metab 2020 ; 31 : 1068-1077.e3
30) Singh AK, Singh R : Does poor glucose control increase the severity and mortality in patients with diabetes and COVID-19? Diabetes Metabolic Syndrome Clin Res Rev 2020 ; 14 : 725-727
31) Brunkhorst FM, Engel C, Bloos F, et al. : Intensive Insulin Therapy and Pentastarch Resuscitation in Severe Sepsis. New Engl J Medicine 2008 ; 358 : 125-139
32) Investigators N-SS, Finfer S, Chittock DR, et al. : Intensive versus Conventional Glucose Control in Critically Ill Patients. New Engl J Medicine 2009 ; 360 : 1283-1297
33) Investigators N-SS, Finfer S, Liu B, et al. : Hypoglycemia and Risk of Death in Critically Ill Patients. New Engl J Medicine 2012 ; 367 : 1108-1118
34) Khunti K, Knighton P, Zaccardi F, et al. : Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes : a nationwide observational study in England. Lancet Diabetes Endocrinol 2021 ; 9 : 293-303
35) Unsworth R, Wallace S, Oliver NS, et al. : New-Onset Type 1 Diabetes in Children During COVID-19 : Multicenter Regional Findings in the U. K. Diabetes Care 2020 ; 43 : e170-171
36) Vlad A, Serban V, Timar R, et al. : Increased Incidence of Type 1 Diabetes during the COVID-19 Pandemic in Romanian Children. Medicina 2021 ; 57 : 973
37) Barrett CE, Koyama AK, Alvarez P, et al. : Risk for Newly Diagnosed Diabetes> 30 Days After SARS-CoV-2 Infection Among Persons Aged < 18 Years-United States, March 1, 2020-June 28, 2021. Morbidity Mortal Wkly Rep 2022 ; 71 : 59-65
38) Al-Aly Z, Xie Y, Bowe B : High-dimensional characterization of post-acute sequelae of COVID-19. Nature 2021 ; 594 : 259-264
39) Ayoubkhani D, Khunti K, Nafilyan V, et al. : Post-covid syndrome in individuals admitted to hospital with covid-19 : retrospective cohort study. Bmj 2021 ; 372 : n693
40) Sathish T, Kapoor N, Cao Y, et al. : Proportion of newly diagnosed diabetes in COVID-19 patients : a systematic review and meta-analysis. Diabetes Obes Metabolism 2020 ; 23 : 10.1111/dom.14269
41) Coate KC, Cha J, Shrestha S, et al. : SARS-CoV-2 Cell Entry Factors ACE2 and TMPRSS2 Are Expressed in the Microvasculature and Ducts of Human Pancreas but Are Not Enriched in β Cells. Cell Metab 2020 ; 32 : 1028-1040.e4
42) Fignani D, Licata G, Brusco N, et al. : SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Front Endocrinol 2020 ; 11 : 596898
43) Hoffmann M, Kleine-Weber H, Schroeder S, et al. : SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020 ; 181 : 271-280.e8
44) Hikmet F, Mear L, Edvinsson A, et al. : The protein expression profile of ACE2 in human tissues. Mol Syst Biol 2020 ; 16 : e9610
45) Akarsu C, Karabulut M, Aydin H, et al. : Association between Acute Pancreatitis and COVID-19 : Could Pancreatitis Be the Missing Piece of the Puzzle about Increased Mortality Rates? J Invest Surg 2020 ; 35 : 1-7
46) Liu F, Long X, Zhang B, et al. : ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol H 2020 ; 18 : 2128-2130.e2
47) Yang L, Han Y, Nilsson-Payant BE, et al. : A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020 ; 27 : 125-136.e7
48) Muller JA, Gros R, Conzelmann C, et al. : SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metabolism 2021 ; 3 : 149-165
49) Wu C-T, Lidsky PV, Xiao Y, et al. : SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab 2021 ; 33 : 1565-1576.e5
50) Tang X, Uhl S, Zhang T, et al. : SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab 2021 ; 33 : 1577-1591.e7
51) Heide V van der, Jangra S, Cohen P, et al. : Limited extent and consequences of pancreatic SARS-CoV-2 infection. Cell Reports 2022 ; 38 : 110508
52) Lim S, Bae JH, Kwon H-S, et al. : COVID-19 and diabetes mellitus : from pathophysiology to clinical management. Nat Rev Endocrinol 2021 ; 17 : 11-30
53) Gianchandani R, Esfandiari NH, Ang L, et al. : Managing Hyperglycemia in the COVID-19 Inflammatory Storm. Diabetes 2020 ; 69 : 2048-2053
54) Huttunen R, Syrjanen J : Obesity and the outcome of infection. Lancet Infect Dis 2010 ; 10 : 442-443
55) Huttunen R, Syrjanen J : Obesity and the risk and outcome of infection. Int J Obesity 2013 ; 37 : 333-340
56) Roth J, Sahota N, Patel P, et al. : Obesity Paradox, Obesity Orthodox, and the Metabolic Syndrome : An Approach to Unity. Mol Med 2016 ; 22 : 873-885
57) Dixon AE, Peters U : The effect of obesity on lung function. Expert Rev Resp Med 2018 ; 12 : 755-767
58) McLaughlin T, Ackerman SE, Shen L, et al. : Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest 2017 ; 127 : 5-13
59) O'Sullivan JM, Gonagle DM, Ward SE, et al. : Endothelial cells orchestrate COVID-19 coagulopathy. Lancet Haematol 2020 ; 7 : e553-555
60) Gao M, Piernas C, Astbury NM, et al. : Associations between body-mass index and COVID-19 severity in 6・9 million people in England : a prospective, community-based, cohort study. Lancet Diabetes Endocrinol 2021 ; 9 : 350-359
61) Kang IS, Kong KA : Body mass index and severity/fatality from coronavirus disease 2019 : A nationwide epidemiological study in Korea. Plos One 2021 ; 16 : e0253640
62) 府民文化部 府政情報室広報広聴課 広報グループ. 令和3年 (2021年) 9月8日 知事記者会見で使用した資料の説明 [Internet]. 2021 [cited 2021 Nov 10]. Available from : https://www.pref.osaka.lg.jp/koho/kaiken2/20210908f.html (2022年3月21日閲覧)
P.87 掲載の参考文献
1) Kirizuka K, Nishizaki H, Kohriyama K, et al. : Influences of The Great Hanshin-Awaji Earthquake on Glycemic Control in Diabetic Patient. Diabetes Res Clin Pract 1997 ; 36 : 193-196
2) Kamoi K, Tanaka M, Ikarashi T, et al. : Effect of the 2004 Mid Niigata Prefecture earthquake on glycemic control in type 1 diabetic patients. Diabetes Res Clin Pract 2006 ; 74 : 141-147
3) Tanaka M, Imai J, Satoh M, et al. : Glycemic Control in Diabetic Patients With Impaired Endogenous Insulin Secretory Capacity Is Vulnerable After a Natural Disaster : Study of Great East Japan Earthquake. Diabetes care 2014 ; 37 : e212-213
4) Kondo T, Miyakawa N, Motoshima H, et al. : Impact of the 2016 Kumamoto Earthquake on glycemic control in patients with diabetes. Journal of Diabetes Investig 2019 ; 10 : 521-530
5) 日本糖尿病学会編・著 : 糖尿病医療者のための災害時糖尿病診療マニュアル, 文光堂, 2014年
6) 安西慶三, 荒木栄一 : 糖尿病の災害時支援体制, DM Ensemble 2021 ; 45 : 7-10
P.98 掲載の参考文献
1) ADA Professional Practice Committee. Diabetes Technology : Standard of Medical Care in Diabetes 2022. : Diabetes Care 2022 ; 45 (Suppl. 1) : S97-S112
2) Gavin JR, Bailey CJ : Real-World Studies Support Use of Continuous Glucose Monitoring in Type 1 and Type 2 Diabetes Independently of Treatment Regimen. Diabetes Technol Ther 2021 ; 23 S3 : S19-S27
3) Garg SK, David Rodbard D, Hirsch IB, et al. : Managing new-Onset Type 1 Diabetes During the COVID-19 Pandemic : Challenges and Opportunities. Diabetes Technol Ther 2020 ; 22 : 431-439
4) Holt RIG, DeVries JH, Hess-Fischl A, et al. : The management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European association for the Study of Diabetes (EASD). Diabetes Care 2021 ; 44 : 2589-2625
5) 小出景子 : 医療スタッフが行うDMS指導. 小出景子, 渥美義仁 (編). いま読んでおきたい! 血糖データの活かし方. 南山堂. 2020 ; 9-18
6) Alva S, Bailey T, Liu H, et al. : Accuracy of a 14-Day Factory-Calibrated Continuous Glucose Monitoring System With Advanced Algorithm in Pediatric and Adult Population With Diabetes. J Diabetes Sci and Technol 2022 ; 16 : 70-77
7) Christiansen MP, Klaff LJ, Ronald Brazg R, et al. : A prospective multicenter Evaluation of the accuracy of a novel implanted continuous glucose sensor : PRECISE II. Diabetes Technol Ther 2018 ; 20 : 197-206
8) Bailey TS, Alva S. : Landscape of Continuous Glucose Monitoring (CGM) and integrated CGM : Accuracy Considerations. Diabetes Technol Ther 2021 ; 23, Suppl 3 : S5-S11
9) Koide K, Azuma K, Kodama K, et al. : Practical guidance for treatment of patients with diabetes using flash glucose monitoring : a pilot study. Diabetol Metab Syndr 2018 ; 10 : 63 : 1-7
10) 小出景子. CGM の進歩と応用. 医学のあゆみ 2021 ; 276 : 334-338
11) Miller EM. : Using Continuous Glucose Monitoring in Clinical Practice. Clinical Diabetes 2020 ; 5 : 429-438
12) Moser O, Riddle MC, Eckstein ML, et al. : Glucose management for exercise using continuous glucose monitoring (CGM) and intermittently scanned CGM (isCGM) systems in type 2 diabetes : position statement of the European Association for the Study of Diabetes (EASD) and the International Society for Pediatric and Adolescent Diabetes (ISPAD) endorsed by JDRF and supported by the American Diabetes Association (ADA). Diabetologia 2020 ; 63 : 2501-2520
13) Battelino T, Danne T, Bergenstal RM, et al. : Clinical targets for continuous glucose monitoring data interpretation : recommendations from the international consensus on time in range. Diabetes Care 2019 ; 42 : 1593-1603
14) Vigersky RA, McMahon C. : The relationship of hemoglobin A1c to Time-in-Range in patients with Diabetes. Diabetes Technol Ther 2019 ; 21 : 81-85
15) Bergenstal RM, Beck RW, Close KL, et al. : Glucose Management Indicator (GMI) : A New Term for estimating A1c From Continuous Glucose Monitoring. Diabetes Care 2018 ; 41 : 2275-2280
16) Brown SA, Basu A, Kovatchev BP. et al. : Beyond HbA1c : using continuous glucose monitoring metrics to enhance interpretation of treatment effect and improve clinical decision-making. DIABETIC Medicine 2019 ; 36 : 679-687
17) Battelino T, Bergenstal RM. : Continuous Glucose Monitoring-Derived Data Report-Simply a Better Management Tool. Diabetes Care 2020 ; 43 : 2327-2329
18) Bergenstal RM, Ahmann AJ, Bailey T, et al. : Recommendation for standardizing glucose reporting and analysis to optimize clinical decision making in diabetes : the Ambulatory Glucose Profile (AGP). Diabetes Technol Ther 2013 ; 15 : 198-211
19) Beck RW, Bergensta RM, Riddlesworth TD, et al. : Validation of Time in Range as an Outcome Measure for Diabetes Clinical Trials. Diabetes Care 2019 ; 42 : 400-405
20) Lu J. Ma X, Zhou J, et al. : Association of time in Range, as Assessed by Continuous Glucose monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care 2018 ; 41 : 2370-2376
21) Lu J. Ma X, Shen Y, et al. : Time in range is associated with Carotid Intima-Media Thickness in Type 2 Diabetes. Diabetes Technol Ther 2020 ; 22 : 72-78
22) Lu J. Wang C, Shen Y, et al. : Time in Range in Relation to All-Cause and Cardiovascular Mortality in Patients with Type 2 Diabetes : A Prospective Cohort Study. Diabetes Care 2021 ; 44 : 549-555
23) Maiorino MI, Signoriello S, Maio A, et al. : Effects of Continuous Glucose monitoring on Metrics of Glycemic Control in Diabetes : A systematic Reviews With Meta-analysis of Randomized Controlled Trials. Diabetes Care 2020 ; 43 : 1146-1156
24) Aleppo G, Beck RW, Bailey R, et al. : The Effect of Discontinuing Continuous Glucose Monitoring in Adults With Type 2 Diabetes Treated with Basal Insulin. Diabetes Care 2021 ; 44 : 2729-2737
25) Heinemann L. Freckmann G, Ehrmann D, et al. : Real-time continuous glucose monitoring in adults with type 1 diabetes and impaired hypoglycaemia awareness or severe hypoglycaemia treated with multiple daily insulin injections (HypoDE) : a multicentre, randomized controlled trial. Lancet 2018 ; 391 : 1367-1377
26) Singh LG, Satyarengga M, Marcano I, et al. : Reducing Inpatient Hypoglycemia in the General Wards Using Real-time Continuous Glucose Monitoring : The Glucose Telemetry System, a Randomized Clinical Trial. Diabetes Care 2020 ; 43 : 2736-2743
27) Roussel R, Riveline JP, Eric Vicaut E, et al. : Important Drop Rate of Acute Diabetes Complications in People With Type 1 or Type 2 Diabetes After Initiation of Flash Glucose Monitoring in France : The RELIEF Study. Diabetes Care 2021 ; 44 : 1368-1376
28) Charleer S, Block CD, Huffel LV, et al. : Quality of Life and Glucose Control After 1 year of Nationwide Reimbursement of Intermittently Scanned Continuous Glucose Monitoring in Adults Living With Type 1 Diabetes (FUTURE) : A Prospective Observational Real-World Cohort Study. Diabetes Care 2020 ; 43 : 389-397
29) Deshmukh H, Wilmot EG, Gregory R, et al. : Effect of Flash Glucose Monitoring on glycemic control, hypoglycemia, diabetes-related distress, and resource utilization in the Association of British Clinical Diabetologists (ABCD) nationwide audit. Diabetes Care 2020 ; 43 : 2153-2160
30) Polonsky WH, Addie L. : Fortmann AL. Impact of Real-Time Continuous Glucose Monitoring Data Sharing on Quality of Life and Health Outcomes in Adults with Type 1 Diabetes. Diabetes Technol Ther 2021 ; 23 : 195-202
31) Litchman ML, Allen NA, Colicchio VD, et al. : A Qualitative Analysis of Real-Time Continuous Glucose Monitoring data sharing with Care Partners : To share or Not to share. Diabetes Technol Ther 2018 ; 20 : 25-31
32) Feig DS, Donovan LE, Corcoy R, et al. : Continuous glucose monitoring in pregnant women with type 1 diabetes (CONCEPTT) : a multicentre international randomized controlled trial. Lancet 2017 ; 390 : 2347-59
33) Yamamoto JM, Murphy HR. : Benefit of Real-Time Continuous Glucose monitoring in Pregnancy. Diabetes Technol Ther 2021 ; 23 : S8-S14
34) Norgaard SK, Mathiesen ER, Norgaard K, et al. : Comparison of Glycemic Metrics Measured Simultaneously by Intermittently Scanned Continuous Glucose Monitoring and Real-Time Continuous Glucose Monitoring in Pregnant Women with Type 1 Diabetes. Diabetes Technol Ther 2021 ; 23 : 665-672
35) Halbron M, Bourron O, Andreelli F, et al. : Insulin Pump Combined with Flash Glucose Monitoring : A Therapeutic Option to Improve Glycemic Control in Severely Nonadherent Patients with Type 1 Diabetes. Diabetes Technol Ther 2019 ; 21 : 409-412
36) Pinsker JE, Church MM, Brown SA, et al. : Clinical Evaluation of a Novel CGM-Informed Bolus Calculator with Automatic Glucose Trend adjustment. Diabetes Technol Ther 2022 ; 24 : 18-25
37) Haskova A, Radovnicka L, Petruzelkova L, et al. : Real-Time CGM Is Superior to Flash Glucose Monitoring for Glucose Control in Type 1 Diabetes : The CORRIDA Randomized Controlled Trial. Diabetes Care 2020 ; 43 : 2744-2750
38) Reddy M, Jugnee N, Anantharaja S, et al. : Switching from Flash Glucose monitoring to Continuous Glucose Monitoring on hypoglycemia in Adults with Type 1 Diabetes at High Hypoglycemia Risk : The Extension Phase of the I HART CGM Study. Diabetes Technol Ther 2018 ; 20 : 751-757
39) Preau Y, Armand M, Galie S, et al. : Impact of Switching from Intermittently Scanned to Real-Time Continuous Glucose Monitoring Systems in a Type 1 Diabetes Patient French Cohort : An Observational Study of Clinical Practices. Diabetes Technol Ther 2021 ; 23 : 259-267
40) 小出景子 : 糖尿病関連スマートフォンアプリ. 糖尿病・内分泌代謝内科 2021 : 52 : 594-600
41) Tanenbaum ML, Hanes SJ, Miller KM, et al. : Diabetes Device Use in Adults With Type 1 Diabetes : Barriers to Uptake and Potential Intervention Targets. Diabetes Care 2017 ; 40 : 181-187
42) 小出景子 : 糖尿病管理統合ソフトの活かし方. 小出景子, 渥美義仁 (編). いま読んでおきたい! 血糖データの活かし方. 南山堂, 2020 ; 316-328
P.107 掲載の参考文献
1) 日本糖尿病学会. 糖尿病治療ガイド 2020-2021. 東京 : 文光堂 ; 2020
2) 日本糖尿病学会. 糖尿病診療ガイドライン 2019. 東京 : 南江堂 ; 2019
3) American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment : Standards of Medical Care in Diabetes-2021. Diabetes Care 2020 ; 44 (Supplement_1) : S111-S24
4) Kohro T, Yamazaki T, Sato H, et al. : Trends in Antidiabetic Prescription Patterns in Japan From 2005 to 2011. Impact of the Introduction of Dipeptidyl Peptidase-4 Inhibitors. International heart journal 2013 ; 54 : 93-97
5) Bouchi R, Sugiyama T, Goto A, et al. : Retrospective nationwide study on the trends in first-line antidiabetic medication for patients with type 2 diabetes in Japan. J Diabetes Investig 2022 ; 13 : 280-291
6) American Diabetes Association. Pharmacologic Approaches to Glycemic Treatment : Standards of Medical Care in Diabetes-2022. Diabetes Care 2021 ; 45 (Supplement_1) : S125-S143
P.114 掲載の参考文献
1) 日本老年医学会・日本糖尿病学会 編・著 : 高齢者糖尿病診療ガイドライン 2017, 南江堂, 2017
2) 日本糖尿病学会・日本老年医学会 編・著 : 高齢者糖尿病治療ガイド 2018, 南江堂, 2018
3) 日本糖尿病学会・日本老年医学会 編・著 : 高齢者糖尿病治療ガイド 2021, 南江堂, 2021
4) Tanaka T, Takahashi K, Akishita M et al. : "Yubi-wakka" (finger-ring) test : A practical self-screening method for sarcopenia, and a predictor of disability and mortality among Japanese community-dwelling older adults. Geriatr Gerontol Int. 2018 ; 18 : 224-232
5) Kubota Y, Iso H, Tamakoshi A ; JACC Study Group. : Association of body mass index and mortality in Japanese diabetic men and women based on self-reports : The Japan Collaborative Cohort (JACC) Study. J Epidemiol. 2015 ; 25 : 553-558
P.123 掲載の参考文献
1) LaMoia TE, Shulman GI : Cellular and Molecular Mechanisms of Metformin Action. Endocr Rev 2021 ; 42 : 77-96
2) Takashima M, Ogawa W, Hayashi K, et al. : Role of KLF15 in regulation of hepatic gluconeogenesis and metformin action. Diabetes 2010 ; 59 : 1608-1615
3) Lee CB, Chae SU, Jo SJ, et al. : The Relationship between the Gut Microbiome and Metformin as a Key for Treating Type 2 Diabetes Mellitus. Int J Mol Sci 2021 ; 22 : 3566
4) Kanto K, Ito H, Noso S, et al. : T Effects of dosage and dosing frequency on the efficacy and safety of high-dose metformin in Japanese patients with type 2 diabetes mellitus. J Diabetes Investig 2017 ; 9 : 587-593
5) Buse JB, DeFronzo RA, Rosenstock J, et al. : The Primary Glucose-Lowering Effect of Metformin Resides in the Gut, Not the Circulation : Results From Short-term Pharmacokinetic and 12-Week Dose-Ranging Studies. Diabetes Care 2016 ; 39 : 198-205
6) Czyzyk A, Tawecki J, Sadowski J, et al. : Effect of biguanides on intestinal absorption of glucose. Diabetes 1968 ; 17 : 492-498
7) Horakova O, Kroupova P, Bardova K, et al. : Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci Rep 2019 ; 9 : 6156
8) Wu T, Xie C, Wu H, et al. : Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes Metab 2017 ; 19 : 290-293
9) Duca FA, Cote CD, Rasmussen BA, et al. : Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat Med 2015 ; 21 : 506-511
10) Sakar Y, Meddah B, Faouzi MA, et al. : Metformin-induced regulation of the intestinal D-glucose transporters. J Physiol Pharmacol 2010 ; 61 : 301-307
11) Bahne E, Sun EWL, Young RL, et al. : Metformin-induced glucagon-like peptide-1 secretion contributes to the actions of metformin in type 2 diabetes. JCI Insight 2018 6 ; 3 : e93936
12) Coll AP, Chen M, Taskar P, et al. : GDF15 mediates the effects of metformin on body weight and energy balance. Nature 2020 ; 578 : 444-448
13) Day EA, Ford RJ, Smith BK, et al. : Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat Metab 2019 ; 1 : 1202-1208
14) Wu H, Esteve E, Tremaroli V, et al. : Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017 ; 23 : 850-858
15) Sun L, Xie C, Wang G, Wu Y, et al. : Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med 2018 ; 24 : 1919-1929
16) Cypess AM, Lehman S, Williams G, et al. : Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009 ; 360 : 1509-1517
17) Eriksson JW, Visvanathar R, Kullberg J, G, et al. : Tissue-specific glucose partitioning and fat content in prediabetes and type 2 diabetes : whole-body PET/MRI during hyperinsulinemia. Eur J Endocrinol 2021 ; 184 : 879-889
18) Tsuchida H, Morita Y, Nogami M, Ogawa W. Metformin action in the gut-insight provided by [18F] FDG PET imaging. Diabetol Int 2021 ; 13 : 35-40
19) Gontier E, Fourme E, Wartski M, et al. : High and typical 18F-FDG bowel uptake in patients treated with metformin. Eur J Nucl Med Mol Imaging 2008 ; 35 : 95-99
20) Lee SH, Jin S, Lee HS, et al. : Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel. Ann Nucl Med 2016 ; 30 : 629-636.
21) Schreuder N, Klarenbeek H, Vendel BN, et al. : Discontinuation of metformin to prevent metformin-induced high colonic FDG uptake : is 48 h sufficient? Ann Nucl Med 2020 ; 34 : 833-839
22) Penicaud L, Hitier Y, Ferre P, Girard J. Hypoglycaemic effect of metformin in genetically obese (fa/fa) rats results from an increased utilization of blood glucose by intestine. Biochem J 1989 ; 262 : 881-885
23) Bailey CJ, Mynett KJ, Page T. Importance of the intestine as a site of metformin-stimulated glucose utilization. Br J Pharmacol 1994 ; 112 : 671-675
24) Kim S, Chung JK, Kim BT, et al. : Relationship between Gastrointestinal F-18-fluorodeoxyglucose Accumulation and Gastrointestinal Symptoms in Whole-Body PET. Clin Positron Imaging 1999 ; 2 : 273-279
25) Wang K, Chen YC, Palmer MR, et al. : Focal physiologic fluorodeoxyglucose activity in the gastrointestinal tract is located within the colonic lumen. Nucl Med Commun 2012 ; 33 : 641-647
26) Morita Y, Nogami M, Sakaguchi K, et al. : Enhanced Release of Glucose Into the Intraluminal Space of the Intestine Associated With Metformin Treatment as Revealed by [ 18F] Fluorodeoxyglucose PET-MRI. Diabetes Care 2020 ; 43 : 1796-1802
27) Ito J, Nogami M, Morita Y, et al. : Dose-dependent accumulation of glucose in the intestinal wall and lumen induced by metformin as revealed by 18F- labelled fluorodeoxyglucose positron emission tomography-MRI. Diabetes Obes Metab 2021 ; 23 : 692-969
28) Ait-Omar A, Monteiro-Sepulveda M, Poitou C, et al. : GLUT2 accumulation in enterocyte apical and intracellular membranes : A study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 2011 ; 60 : 2598-2607
29) Long CL, Geiger JW, Kinney JM. Absorption of glucose from the colon and rectum. Metabolism 1967 ; 16 : 413-418
30) Mueller NT, Differding MK, Zhang M, et al. : Metformin Affects Gut Microbiome Composition and Function and Circulating Short-Chain Fatty Acids : A Randomized Trial. Diabetes Care 2021 ; 44 : 1462-1471
31) Koffert JP, Mikkola K, Virtanen KA, et al. : Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes : Results from a randomized clinical trial. Diabetes Res Clin Pract 2017 ; 131 : 208-216
P.132 掲載の参考文献
1) 日本循環器学会/日本心不全学会 2021年 JCS/JHFS ガイドライン フォーカスアップデート版 急性・慢性心不全診療 (班長 筒井裕之) https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf (2022年2月閲覧)
2) Baartscheer, A, Schumacher, CA, Wust, RC et al. : Empagliflozin decreases myocardial cytoplasmic Na (+) through inhibition of the cardiac Na (+) /H (+) exchanger in rats and rabbits. Diabetologia 2017 ; 60 : 568-573
3) Rajasekeran H, Lytvyn Y, Cherney DZ : Sodium-glucose cotransporter 2 inhibition and cardiovascular risk reduction in patients with type 2 diabetes : the emerging role of natriuresis. Kidney Int 2016 ; 89 : 534-526
4) Zinman B, Wanner C, Lachin JM et al. : Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015 ; 373 : 2117-2128
5) Zelniker TA, Wiviott SD, Raz I, et al. : SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes : a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 2019 ; 393 : 31-39
6) Fitchett D, Butler J, van de Borne P, et al. : Effects of empagliflozin on risk for cardiovascular death and heart failure hospitalization across the spectrum of heart failure risk in the EMPA-REG OUTCOME(R) trial. Eur Heart J 2018 ; 39 : 363-370
7) Neal B, Perkovic V, Matthews DR : Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med 2017 ; 377 : 644-657
8) Wiviott SD, Raz I, Sabatine MS : Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019 ; 380 : 347-357
9) McMurray JJV, Solomon SD, Inzucchi SE, et al. : Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019 ; 381 : 1995-2008
10) Packer M, Anker SD, Butler J, et al. : Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020 ; 383 : 1413-1424
11) Zannad F, Ferreira JP, Pocock SJ, et al. : SGLT2 inhibitors in patients with heart failure with reduced ejection fraction : a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet 2020 ; 396 : 819-829
12) Bhatt DL, Szarek M, Steg PG, et al. : Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med 2021 ; 384 : 117-128
13) Bhatt DL, Szarek M, Pitt B, et al. : Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med 2021 ; 384 : 129-139
14) Anker SD, Butler J, Filippatos G, et al. : Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N Engl J Med 2021 ; 385 : 1451-1461
15) Packer M, Zannad F, Anker SD, et al. : Heart Failure and a Preserved Ejection Fraction : A Side-by-Side Examination of the PARAGON-HF and EMPEROR-Preserved Trials. Circulation 2021 ; 144 : 1193-1195
16) Imamura T, Kinugawa K : Prognostic Impacts of Hyponatremia, Renal Dysfunction, and High-Dose Diuretics During a 10-Year Study Period in 4,087 Japanese Heart Failure Patients. Int Heart J 2016 ; 57 : 657-658
P.140 掲載の参考文献
1) Muramoto A, Matsushita M, Kato A, et al. : Three percent weight reduction is the minimum requirement to improve health hazards in obese and overweight people in Japan. Obes Res Clin Pract 2014 ; 8 : e466-475
2) 日本糖尿病学会編著 : 糖尿病専門医研修ガイドブック 改訂第8版. 診断と治療社, 2020
3) Marso SP, Daniels GH, Brown-Frandsen K, et al. : Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016 ; 375 : 311-322
4) Steven P Marso, Stephen C Bain, Consoli A, et al. : Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016 ; 375 : 1834-1844
5) Gerstein HC, Colhoun HM, Dagenais GR, et al. : Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND) : a double-blind, randomised placebo-controlled trial. Lancet 2019 ; 394 : 121-130
6) American Diabetes Association Professional Practice Committee : 9. Pharmacologic Approaches to Glycemic Treatment : Standards of Medical Care in Diabetes-2021 2021 ; 44 (Suppl 1) : S111-S124
7) Nauck MA, Quast DR, Wefers J, et al. : GLP-1 receptor agonists in the treatment of type 2 diabetes-state-of-the-art. Mol Metab 2021 ; 46 : 101102
8) Wang L, Li P, Tang Z. : Structural modulation of the gut microbiota and the relationship with body weight : compared evaluation of liraglutide and saxagliptin treatment. Sci Rep 2016 ; 6 : 33251
9) Tsapas A, Karagiannis T, Kakotrichi P, et al. : Comparative efficacy of glucose-lowering medications on body weight and blood pressure in patients with type 2 diabetes : A systematic review and network meta-analysis. Diabetes Obes Metab 2021 ; 23 : 2116-2124
10) Wilding JPH, Batterham RL, Calanna S, et al. : Once-Weekly Semaglutide in Adults with Overweight or Obesity. N Engl J Med. 2021 ; 384 : 989
11) Davies M, Farch L, Jeppesen OK, et al. : Semaglutide 2・4 mg once a week in adults with overweight or obesity, and type 2 diabetes (STEP 2) : a randomised, double-blind, double-dummy, placebo-controlled, phase 3 trial. Lancet 2021 ; 397 : 971-984
12) Wadden TA, Bailey TS, Billings LK, et al. : Effect of Subcutaneous Semaglutide vs Placebo as an Adjunct to Intensive Behavioral Therapy on Body Weight in Adults With Overweight or Obesity : The STEP 3 Randomized Clinical Trial. JAMA 2021 ; 325 : 1403-1413
13) Rubino D, Abrahamsson N, Davies M, et al. : Effect of Continued Weekly Subcutaneous Semaglutide vs Placebo on Weight Loss Maintenance in Adults With Overweight or Obesity : The STEP 4 Randomized Clinical Trial. JAMA 2021 ; 325 : 1414-1425
14) Rubino DM, Greenway FL, Khalid U, et al. : Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults With Overweight or Obesity Without Diabetes : The STEP 8 Randomized Clinical Trial. JAMA 2022 ; 327 : 138-150
15) Kadowaki T, Isendahl J, Khalid U, et al. : Semaglutide once a week in adults with overweight or obesity, with or without type 2 diabetes in an east Asian population (STEP 6) : a randomised, double-blind, double-dummy, placebo-controlled, phase 3a trial. Lancet Diabetes Endocrinol 2022 ; 10 : 193-206
16) Min T, Bain CS : The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes : The SURPASS Clinical Trials. Diabetes Ther 2021 ; 12 : 143-157
17) Finan B, Ma T, Ottaway N, et al. : Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 2013 ; 5 : 209ra151
18) Rosenstock J, Wysham C, Frias JP, et al. : Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1) : a double-blind, randomised, phase 3 trial. Lancet 2021 ; 398 : 143-155
19) Frias JP, Davies MJ, Rosenstock J, et al. : Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N Engl J Med 2021 ; 385 : 503-515
20) Ludvik B, Giorgino F, Jodar E, et al. : Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3) : a randomised, open-label, parallel-group, phase 3 trial. Lancet 2021 ; 398 : 583-598
21) Prato SD, Kahn SE, Pavo I, et al. : Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4) : a randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet. 2021 ; 398 : 1811-1824
22) Stefan N, Birkenfeld AL, Schulze MB : Global pandemics interconnected-obesity, impaired metabolic health and COVID-19. Nat Rev Endocrinol 2021 ; 17 : 135-149
P.148 掲載の参考文献
1) 厚生労働省 : 平成30年 国民健康・栄養調査結果の概要
2) 龍野一郎, 白井厚治 : 肥満, 「新臨床栄養学 (第二版) 」 (馬場忠雄, 山城雄一郎編). p360-366, 医学書院, 東京, 2012
3) 龍野一郎 : 肥満症の集学的治療. 日本医事新報 2014 ; 4698 : 20-28
4) Rubino F, Puhl RM, Cummings DE, et al. : Joint international consensus statement for ending stigma of obesity. Nat Med 2020 ; 26 : 485-497.
5) 日本肥満症治療学会治療メンタル部会編 : 肥満症治療に必須な心理的背景の把握と対応~内科的・外科的治療の効果を上げるために~. 2016
6) 川村功 : 日本における肥満症外科治療法のあゆみ-手術手技を中心に-. 日臨外会誌 2011 ; 72 : 537-549
7) Saiki A, Yamaguchi T, Tanaka S, et al. : Japanese Survey of Morbid and Treatment-Resistant Obesity Group (J-SMART Group). Background characteristics and postoperative outcomes of insufficient weight loss after laparoscopic sleeve gastrectomy in Japanese patients. Ann Gastroenterol Surg 2019 ; 3 : 638-647
8) The 2nd Diabetes Surgery Summit (DSS-II) : an International Consensus Conference, London, 2017
9) Saiki A, Yamaguchi T, Sasaki A, et al. : Background characteristics and diabetes remission after laparoscopic sleeve gastrectomy in Japanese patients with type 2 diabetes stratified by BMI : subgroup analysis of J-SMART. Diabetol Int 2021 ; 12 : 303-312.
10) Schauer PR, Bhatt DL, Kirwan JP, et al. : STAMPEDE Investigators. Bariatric surgery versus intensive medical therapy for diabetes-5-year outcomes. N Engl J Med 2017 ; 376 : 641-651
11) Romeo S, Maglio C, Burza MA, et al. : Cardiovascular events after bariatric surgery in obese subjects with type 2 diabetes. Diabetes Care 2012 ; 35 : 2613-2617.
12) Carlsson LMS, Sjoholm K, Jacobson P, et al. : Life Expectancy after Bariatric Surgery in the Swedish Obese Subjects Study. N Engl J Med 2020 ; 383 : 1535-1543.
13) Syn NL, Cummings DE, Wang LZ, et al. : Association of metabolic-bariatric surgery with long-term survival in adults with and without diabetes : a one-stage meta-analysis of matched cohort and prospective controlled studies with 174 772 participants. Lancet 2021 ; 397 : 1830-1841.
14) Ohira M, Watanabe Y, Yamaguchi T, et al. : Determinants of type 2 diabetes remission after bariatric surgery in obese Japanese patients : A retrospective cohort study. Diabetology International 2021 ; 12 : 379-388
15) Ohira M, Abe K, Yamaguchi T, et al. : Preoperative plasma aldosterone predicts complete remission of type 2 diabetes after bariatric surgery. Obes Facts. 2022.
16) Lee WJ, Hur KY, Lakadawala M, et al. : Predicting success of metabolic surgery : age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis 2013 ; 9 : 379-384.
17) Naitoh T, Kasama K, Seki Y, et al. : Efficacy of sleeve gastrectomy with duodenal-jejunal bypass for the treatment of obese severe diabetes patients in Japan : a retrospective multicenter study. Obes Surg 2018 ; 28 : 497-505
18) Aminian A, Vidal J, Salminen P, et al. : Late relapse of diabetes after bariatric surgery : not rare, but not a failure. Diabetes Care 2020 ; 43 : 534-540
19) Sever O, Horozoglu F. : Bariatric surgery might aggravate proliferative diabetic retinopathy. Acta Ophthalmol, 2020.
20) Akerblom H, Franzen S, Zhou C, et al. : Association of Gastric Bypass Surgery With Risk of Developing Diabetic Retinopathy Among Patients With Obesity and Type 2 Diabetes in Sweden : An Observational Study. JAMA Ophthalmol 2021 ; 139 : 200-205.
21) 龍野一郎 : 肥満2型糖尿病と肥満外科 (減量・代謝改善手術). 医学のあゆみ 2021 ; 276 : 353-358
22) Yoshino M, Kayser BD, Yoshino J, et al. : Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N Engl J Med 2021 ; 383 : 721-732.
23) Ohira M, Yamaguchi T, Saiki A, et al. : Laparoscopic sleeve gastrectomy significantly increases serum lipoprotein lipase level in obese patients Obes Facts 2019 ; 12 : 357-368.
24) 日本人の肥満2 型糖尿病患者に対する減量・代謝改善手術の適応基準に関する3 学会合同委員会 「日本人の肥満2型糖尿病患者に対する減量・代謝改善手術に関するコンセンサスステートメント」 監修 : 日本肥満症治療学会・日本糖尿病学会・日本肥満学会 第一版 東京 : コンパス出版, 2021年6月
25) Sasaki A, Yokote K, Naitoh T, et al. : Joint Committee in the Japanese Society for Treatment of Obesity, the Japan Diabetes Society, the Japan Society for the Study of Obesity. Metabolic surgery in treatment of obese Japanese patients with type 2 diabetes : a joint consensus statement from the Japanese Society for Treatment of Obesity, the Japan Diabetes Society, and the Japan Society for the Study of Obesity. Diabetol Int 2021 ; 13 : 1-30.

最近チェックした商品履歴

Loading...