日本臨牀 82/増刊1 ロボット支援手術

出版社: 日本臨牀社
発行日: 2024-01-31
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: ロボット支援手術
電子書籍版: 2024-01-31 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

24,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

24,200 円(税込)

目次

  • 特集 ロボット支援手術
       ―標準治療としてのさらなる普及を目指して―

    序 文

    I.総 論
     1.本邦におけるロボット支援手術の歴史的変遷:医療DX黎明期
     2.ロボット支援手術の特徴
     3.ロボット支援手術の教育システム
     4.ロボット支援手術の費用対効果とは?

    II.泌尿器科領域のロボット支援手術
     1.泌尿器科領域のロボット支援手術の現況と展望
     2.前立腺全摘除術
      (1)標準的手術手技
      (2)ロボット支援下前立腺全摘除術(RARP)の制癌性と術後機能面への影響に関する最近の知見
      (3)機能的成績の改善を目指した手技上の工夫
     3.腎部分切除術
      (1)経腹膜アプローチロボット支援腎部分切除術
      (2)ロボット支援腎部分切除術 後腹膜アプローチ
      (3)ロボット支援手術のアウトカム
      (4)複雑性腫瘍に対するアプローチ
      (5)手術ナビゲーションシステムの進歩
     4.膀胱全摘除術
      (1)標準的手術手技
      (2)ロボット支援完全体腔内回腸導管造設術
      (3)非失禁型尿路変向術
      (4)拡大リンパ節郭清術
      (5)女性に対する膀胱全摘除術
     5.根治的腎摘除術
      (1)標準的手術手技
      (2)静脈腫瘍塞栓随伴症例に対する手術
     6.腎尿管全摘除術
     7.ロボット支援腹腔鏡下副腎摘除術の現状と今後の展望1
     8.腎盂形成術

    III.消化器外科領域のロボット支援手術
     1.消化器外科領域のロボット支援手術の現況と展望
     2.食道切除術
      (1)ロボット支援下胸腔鏡下食道切除の手術手技
      (2)合併症軽減化を目指した手技上の工夫~上縦隔リンパ節郭清~
      (3)胸腔鏡手術との比較
     3.胃切除術
      (1)ロボット支援幽門側胃切除術 D2リンパ節郭清の手術手技
      (2)進行胃癌に対するロボット支援手術の役割-医療技術の進歩をいかに臨床に応用するか―
      (3)残胃癌に対するロボット支援手術
     4.結腸切除術
     5.直腸切除術
      (1)ロボット支援下直腸手術に対する標準的手術手技
      (2)機能温存を目指した手技上の工夫
      (3)直腸癌に対するロボット支援下側方リンパ節郭清
      (4) ロボット支援下TME
     6.肝臓切除術
      (1)ロボット支援下肝切除の標準手技
      (2)ロボット支援高難度肝切除
     7.膵臓切除術
      (1)ロボット支援下膵体尾部切除―より安全なロボット手術実現にむけた創意工夫―
      (2)低侵襲膵切除術―ロボット支援下膵頭十二指腸切除術の現状と展望―

    IV.呼吸器外科領域のロボット支援手術
     1.呼吸器外科領域のロボット支援手術の現状と展望
     2.縦隔腫瘍に対するロボット手術
     3.胸腺摘出術
     4.ロボット支援下肺葉切除術
     5.肺区域切除術
      (1)標準的手術手技
      (2)当院におけるロボット支援下肺区域切除術の方法と工夫
    Stapler placement technique and lung rotation method

    V.婦人科領域のロボット支援手術
     1.婦人科領域のロボット支援手術の現況と展望
     2.良性疾患に対する子宮全摘出術
      (1)標準的手術手技
      (2)腹腔鏡手術との比較
     3.子宮体癌に対する子宮全摘出術
      (1)標準的手術手技
      (2)子宮体癌でのリンパ節郭清手技
      (3)合併症対策

    VI.その他の領域のロボット支援手術
     1.僧帽弁形成術
      (1)ロボット支援下心臓外科手術―僧帽弁形成術―
      (2)MICSとの比較
     2.総胆管拡張症手術
     3.頭頸部領域の経口的手術
     4.仙骨腟固定術

    VII.保険収載を目指すロボット支援手術の現況
     1.鼠径ヘルニアに対するロボット支援手術(R-TAPP)の現状と課題
     2.ロボット支援下甲状腺手術
     3.子宮頸癌に対する広汎子宮全摘術
     4.ロボット支援下経口頭蓋底手術の展望
     5.人工関節置換術

    VIII.新規手術支援ロボット
     1.新規手術支援ロボット開発の動向
     2.hinotori
      (1)研究開発の歴史とその特徴
      (2)前立腺全摘除術への導入
      (3)腎領域手術への導入
      (4)消化器外科領域(胃)への導入
     3.da Vinci SP
     4.Hugo RAS System
     5.センハンス・デジタル・ラパロスコピー ―大腸癌手術を中心に―
     6.大学発ベンチャーでの手術支援ロボット開発

    IX.特 論
     1.遠隔手術システムの開発
     2.脊椎手術ロボット開発に向けた国内での取り組み
     3.骨盤リンパ節郭清術標準化への領域横断的検討
     4.XR(VR/AR/MR)技術と仮想力覚再現による胸腹腔鏡ロボット手術支援
     5.ロボット支援蛍光ナビゲーション手術―肝臓外科手術を中心に―
     6.AI による画像認識技術の応用
     7.スマート治療室から広がる遠隔医療・手術ロボット

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I 総論

P.13 掲載の参考文献
1) Goto T, Hongo K, Kakizawa Y, et al: Clinical application of robotic telemanipulation system in neurosurgery. Case report. J Neurosurg 99: 1082-1084, 2003.
3) 橋爪 誠: 先端外科治療機器の技能トレーニングと学会認定. 医学のあゆみ 280: 219-225, 2022.
4) Hashizume M, Shimada M, Tomikawa M, et al: Early experiences of endoscopic procedures in general surgery assisted by a computer-enhanced surgical system. Surg Endosc 16: 1187-1191, 2002.
5) Hashizume M, Sugimachi K: Robot-assisted gastric surgery. Surg Clin North Am 83: 1429-1444, 2003.
6) Hashizume M, Yasunaga T, Tanoue K, et al: New real-time MR image-guided surgical robotic system for minimally invasive precision surgery. Int J Comput Assist Radiol Surg 2: 317-325, 2008.
7) Arata J, Takahashi H, Pitakwatchara P, et al: Telesurgery experiment between Japan-Thailand using high-speed Internet. Int J Comput Assist Radiol Surg 2(Suppl): S196-S198, 2007.
8) Nakadate R, Nakamura S, Moriyama T, et al: Gastric endoscopic submucosal dissection using novel 2.6-mm articulating devices: an ex vivo comparative and in vivo feasibility study. Endoscopy 47: 820-824, 2015.
9) Maier-Hein L, Vedula SS, Speidel S, et al: Surgical data science for next-generation interventions. Nat Biomed Eng 1: 691-696, 2017.
10) Multidisciplinary Computational Anatomy-Toward Integration of Artificial Intelligence with MCA-based Medicine(ed by Makoto Hashizume), Springer, 2021.
11) 多元計算解剖学の基礎と臨床への応用(橋爪 誠 編著), 誠文堂新光社, 2018.
12) 橋爪 誠: 本邦におけるロボット支援手術の歩み-MCA-based Medicineの提唱. 日本医師会雑誌 149: 1741-1745, 2021.
P.18 掲載の参考文献
1) Leal Ghezzi T, Campos Corleta O: 30 Years of Robotic Surgery. World J Surg 40: 2550-2557, 2016.
2) Chahal B, Aydin A, Amin MSA, et al: The learning curves of major laparoscopic and robotic procedures in urology: a systematic review. Int J Surg 109: 2037-2057, 2023.
3) Chan KS, Oo AM: Establishing the Learning Curve of Laparoscopic and Robotic Distal Gastrectomy: a Systematic Review and Meta-Regression Analysis. J Gastrointest Surg, 2023. (DOI: 10.1007/s11605-023-05812-8)
4) Shibasaki S, Suda K, Obama K, et al: Should robotic gastrectomy become a standard surgical treatment option for gastric cancer? Surg Today 50: 955-965, 2020.
5) 刑部弘哲, 永川裕一, 小薗真吾, ほか: 腹腔鏡下, ロボット支援胆管空腸吻合における狭窄予防法. 胆と膵 42: 639-645, 2021.
6) Ojima T, Nakamura M, Hayata K, et al: Short-term Outcomes of Robotic Gastrectomy vs Laparoscopic Gastrectomy for Patients With Gastric Cancer: A Randomized Clinical Trial. JAMA Surg 156: 954-963, 2021.
7) Suda K, Sakai M, Obama K, et al: Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer: a multi-institutional retrospective comparative study. Surg Endosc 37: 2858-2872, 2023.
8) Liu H, Kinoshita T, Tonouchi A, et al: What are the reasons for a longer operation time in robotic gastrectomy than in laparoscopic gastrectomy for stomach cancer? Surg Endosc 33: 192-198, 2019.
9) 須田康一, 柴崎 晋, 田中 毅, ほか: ロボット手術の現状と将来展望-上部消化管外科医の立場から-. 現代医学 69: 66-73, 2022.
P.24 掲載の参考文献
1) 日本内視鏡外科学会 : ロボット支援内視鏡手術導入に関する指針(全領域共通). [https://www.jses.or.jp/uploads/files/robot/shishin/robot_assisted_endoscopic_surgery202209.pdf]
2) 日本泌尿器内視鏡・ロボティクス学会 : 泌尿器科領域におけるロボット支援手術を行うに当たってのガイドライン. [https://www.jsee.jp/davinci/guideline/]
3) 日本泌尿器内視鏡・ロボティクス学会 : 泌尿器科ロボット支援手術教育プログラム. [https://www.jsee.jp/davinci/program/]
4) 日本内視鏡外科学会 : 消化器外科領域ロボット支援内視鏡手術導入に関する指針(改訂). [https://www.jses.or.jp/uploads/files/robot/shishin/guidelines_for_introduction_robot_assisted_surgery20230328.pdf]
P.31 掲載の参考文献
1) Suda K, Sakai M, Obama K, et al: Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer: a multi-institutional retrospective comparative study. Surg Endosc 37: 2858-2872, 2023.
2) 五十嵐 中: 内視鏡外科手術の費用対効果とは? 2022.12.9, 第35回日本内視鏡外科学会総会, 名古屋, パネルディスカッション8「医療経済から考える最適な内視鏡外科手術とは?」(oral presentation).
3) Yoshihara H, Igarashi A, D'Attilio D, et al: Analysis of Healthcare Resource Use of the Robotic Surgery System for Rectal Cancer in Japan. Value in Health 25(12 Suppl): S84-S85, 2022.
4) Yoshihara H, Igarashi A, D'Attilio D, et al: Analysis of Healthcare Resource Use of the Robotic Surgery System for Lung Cancer in Japan. Value in Health 25(12 Suppl): S179, 2022.
5) Kajimoto Y, Honda K, Suzuki S, et al: Association between financial toxicity and health-related quality of life of patients with gynecologic cancer. Int J Clin Oncol 28: 454-467, 2023.
6) Ezura M, Sawada K, Takushima Y, et al: A systematic review of the characteristics of data assessment tools to measure medical doctors' work-related quality of life. J Mark Access Health Policy 11: 2234139, 2023.

II 泌尿器科領域のロボット支援手術

P.40 掲載の参考文献
1) Cao L, Yang Z, Qi L, et al: Robot-assisted and laparoscopic vs open radical prostatectomy in clinically localized prostate cancer: perioperative, functional, and oncological outcomes: A Systematic review and meta-analysis. Medicine(Baltimore) 98: e15770, 2019.
2) CQ6 前立腺全摘除術(RP)における拡大リンパ節郭清は推奨されるか? 前立腺癌診療ガイドライン2023年版(日本泌尿器科学会 編), p72-79, メディカルレビュー社, 2023.
3) Thompson JE, Egger S, Bohm M, et al: Superior quality of life and improved surgical margins are achievable with robotic radical prostatectomy after a long learning curve: a prospective single-surgeon study of 1552 consecutive cases. Eur Urol 65: 521-531, 2014.
4) Yumioka T, Honda M, Kimura Y, et al: Influence of multinerve-sparing, robot-assisted radical prostatectomy on the recovery of erection in Japanese patients. Reprod Med Biol 17: 36-43, 2018.
5) CQ3 腹腔鏡手術で腎部分切除困難な腫瘍に対するロボット支援腎部分切除術は推奨されるか? 腎癌診療ガイドライン2017年版(日本泌尿器科学会 編), p48-50, メディカルレビュー社, 2017.
6) Miyake H, Hinata N, Imai S, et al: Partial nephrectomy for hilar tumors: comparison of conventional open and robot-assisted approaches. Int J Clin Oncol 20: 808-813, 2015.
7) Komninos C, Shin TY, Tuliao P, et al: Robotic partial nephrectomy for completely endophytic renal tumors: complications and functional and oncologic outcomes during a 4-year median period of follow-up. Urology 84: 1367-1373, 2014.
8) Iwamoto H, Morizane S, Koie T, et al: Peri-operative efficacy and long-term survival benefit of robotic-assisted radical cystectomy in septuagenarian patients compared with younger patients: a nationwide multi-institutional study in Japan. Int J Clin Oncol 24: 1588-1595, 2019.
9) Morizane S, Nakane K, Tanaka T, et al: Comparison of perioperative outcomes and complications between intracorporeal, extracorporeal, and hybrid ileal conduit urinary diversion during robot-assisted radical cystectomy: a comparative propensity score-matched analysis from nationwide multi-institutional study in Japan. Int J Clin Oncol, 2023. (DOI: 10.1007/s10147-023-02425-8)
10) Parekh DJ, Reis IM, Castle EP, et al: Robot-assisted Radical Cystectomy Versus Open Radical Cystectomy in Patients With Bladder Cancer(RAZOR): An Open-Label, Randomised, Phase 3, Non-Inferiority Trial. Lancet 391: 2525-2536, 2018.
11) Iwamoto H, Yumioka T, Yamaguchi N, et al: Robot-assisted radical cystectomy is a promising alternative to open surgery in the Japanese population with a high rate of octogenarians. Int J Clin Oncol 21: 756-763, 2016.
12) Gu L, Ma X, Gao Y, et al: Robotic versus Open Level I-II Inferior Vena Cava Thrombectomy: A Matched Group Comparative Analysis. J Urol 198: 1241-1246, 2017.
13) Rose KM, Navaratnam AK, Faraj KS, et al: Comparison of Open and Robot Assisted Radical Nephrectomy With Level I and II Inferior Vena Cava Tumor Thrombus: The Mayo Clinic Experience. Urology 136: 152-157, 2020.
14) Gill IS, Metcalfe C, Abreu A, et al: Robotic Level III Inferior Vena Cava Tumor Thrombectomy: Initial Series. J Urol 194: 929-938, 2015.
15) Veccia A, Carbonara U, Djaladat H, et al: Robotic vs Laparoscopic Nephroureterectomy for Upper Tract Urothelial Carcinoma: A Multicenter Propensity-Score Matched Pair "tetrafecta" Analysis(ROBUUST Collaborative Group). J Endourol 36: 752-759, 2022.
16) Brandao LF, Autorino R, Laydner H, et al: Robotic versus laparoscopic adrenalectomy: a systematic review and meta-analysis. Eur Urol 65: 1154-1161, 2014.
17) Morelli L, Tartaglia D, Bronzoni J, et al: Robotic assisted versus pure laparoscopic surgery of the adrenal glands: a case-control study comparing surgical techniques. Langenbecks Arch Surg 401: 999-1006, 2016.
18) Xia Z, Li J, Peng L, et al: Comparison of Perioperative Outcomes of Robotic-Assisted vs Laparoscopic Adrenalectomy for Pheochromocytoma: A Meta-Analysis. Front Oncol 11: 724287, 2021.
P.52 掲載の参考文献
1) Bill-Axelson A, Holmberg L, Garmo H, et al : Radical prostatectomy or watchful waiting in prostate cancer-29-year follow-up. N Eng J Med 379 : 2319-2329, 2018.
2) 森實修一, 武中 篤 : 前立腺全摘において克服すべきTrifectaにかかわる手術解剖と術中に最低限行うべき手術手技. Jpn J of Endourology 31 : 1-21, 2018.
3) 三宅秀明, 藤澤正人 : ロボット支援前立腺全摘除術. 日本臨牀(増刊 : 新前立腺癌学) 74 : 445-449, 2016.
4) Fujimura T, Fukuhara H, Taguchi S, et al : Robot-assisted radical prostatectomy significantly reduced biochemical recurrence compared to retro pubic radical prostatectomy. BMC Cancer 17 : 454, 2017.
5) Haese A, Knipper S, Isbarn H, et al : A comparative study of robot-assisted and open radical prostatectomy in 10 790 men treated by highly trained surgeons for both procedures. BJU Int 123 : 1031-1040, 2019.
6) Coughlin GD, Yaxley JW, Chambers SK, et al : Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy : 24-month outcomes from a randomised controlled study. Lancet Oncol 19 : 1051-1060, 2018.
7) Lantz A, Bock D, Akre O, et al : Functional and Oncological Outcomes After Open Versus Robot-assisted Laparoscopic Radical Prostatectomy for Localised Prostate Cancer : 8-Year Follow-up. Eur Urol 80 : 650-660, 2021.
8) Wang J, Hu K, Wang Y, et al : Robot-assisted versus open radical prostatectomy : a systematic review and meta-analysis of prospective studies. J Robot Surg 17 : 2617-2631, 2023.
9) Du Y, Long Q, Guan B, et al : Robot-Assisted Radical Prostatectomy Is More Beneficial for Prostate Cancer Patients : A System Review and Meta-Analysis. Med Sci Monit 24 : 272-287, 2018.
10) Cao L, Yang Z, Qi L, et al : Robot-assisted and laparoscopic vs open radical prostatectomy in clinically localized prostate cancer : perioperative, functional, and oncological outcomes : A Systematic review and meta-analysis. Medicine(Baltimore) 98 : e15770, 2019.
11) Stolzenburg JU, Holze S, Neuhaus P, et al : Robotic-assisted Versus Laparoscopic Surgery : Outcomes from the First Multicentre, Randomised, Patient-blinded Controlled Trial in Radical Prostatectomy(LAP-01). Eur Urol 79 : 750-759, 2021.
12) Moretti TBC, Magna LA, Reis LO : Continence criteria of 193 618 patients after open, laparoscopic, and robot-assisted radical prostatectomy. BJU Int, 2023. (doi : 10. 1111/bju. 16180)
13) Wallerstedt A, Nyberg T, Carlsson S, et al : Quality of Life After Open Radical Prostatectomy Compared with Robot-assisted Radical Prostatectomy. Eur Urol Focus 5 : 389-398, 2019.
14) Bill-Axelson A, Garmo H, Lambe M, et al : Suicide risk in men with prostate-specific antigen-detected early prostate cancer : a nationwide population-based cohort study from PCBaSe Sweden. Eur Urol 57 : 390-395, 2010.
P.58 掲載の参考文献
1) Salomon L, Saint F, Anastasiadis AG, et al : Combined reporting of cancer control and functional results of radical prostatectomy. Eur Urol 44 : 656-660, 2003.
2) Paparel P, Akin O, Sandhu JS, et al : Recovery of urinary continence after radical prostatectomy : association with urethral length and urethral fibrosis measured by preoperative and postoperative endorectal magnetic resonance imaging. Eur Urol 55 : 629-637, 2009.
3) Haga N, Ogawa S, Yabe M, et al : Factors Contributing to Early Recovery of Urinary Continence Analyzed by Pre-and Postoperative Pelvic Anatomical Features at Robot-Assisted Laparoscopic Radical Prostatectomy. J Endourol 29 : 683-690, 2015.
4) Walz J, Epstein JI, Ganzer R, et al : A Critical Analysis of the Current Knowledge of Surgical Anatomy of the Prostate Related to Optimisation of Cancer Control and Preservation of Continence and Erection in Candidates for Radical Prostatectomy : An Update. Eur Urol 70 : 301-311, 2016.
5) Ma X, Tang K, Yang C, et al : Bladder neck preservation improves time to continence after radical prostatectomy : a systematic review and meta-analysis. Oncotarget 7 : 67463-67475, 2016.
6) Sayyid RK, Madi R : The Untold Advantages of Retzius-Sparing Robotic Radical Prostatectomy. J Endourol 32 : 671-672, 2018.
7) Ratanapornsompong W, Pacharatakul S, Sangkum P, et al : Effect of puboprostatic ligament preservation during robotic-assisted laparoscopic radical prostatectomy on early continence : Randomized controlled trial. Asian J Urol 8 : 260-268, 2021.
8) Tewari AK, Srivastava A, Huang MW, et al : Anatomical grades of nerve sparing : a risk-stratified approach to neural-hammock sparing during robot-assisted radical prostatectomy(RARP). BJU Int 108 : 984-992, 2011.
9) Suardi N, Moschini M, Gallina A, et al : Nerve-sparing approach during radical prostatectomy is strongly associated with the rate of postoperative urinary continence recovery. BJU Int 111 : 717-722, 2013.
10) Rocco B, Gregori A, Stener S, et al : Posterior reconstruction of the rhabdosphincter allows a rapid recovery of continence after transperitoneal videolaparoscopic radical prostatectomy. Eur Urol 51 : 996-1003, 2007.
11) O'Connor-Cordova MA, Macias AGO, Sancen-Herrera JP, et al : Surgical and functional outcomes of Retzius-sparing robotic-assisted radical prostatectomy versus conventional robotic-assisted radical prostatectomy in patients with biopsy-confirmed prostate cancer. Are outcomes worth it? Systematic review and meta-analysis. Prostate 83 : 1395-1414, 2023.
12) Takenaka A, Murakami G, Soga H, et al : Anatomical analysis of the neurovascular bundle supplying penile cavernous tissue to ensure a reliable nerve graft after radical prostatectomy. J Urol 172 : 1032-1035, 2004.
13) Steineck G, Bjartell A, Hugosson J, et al : Degree of preservation of the neurovascular bundles during radical prostatectomy and urinary continence 1 year after surgery. Eur Urol 67 : 559-568, 2015.
14) Hung AJ, Abreu AL, Shoji S, et al : Robotic transrectal ultrasonography during robot-assisted radical prostatectomy. Eur Urol 62 : 341-348, 2012.
15) Shoji S, Aron M, de Castro Abreu AL, et al : Intraoperative ultrasonography with a surgeon-manipulated microtransducer during robotic radical prostatectomy. Int J Urol 21 : 736-739, 2014.
P.62 掲載の参考文献
1) Bertolo R, Bove P, Sandri M, et al : Randomized Clinical Trial Comparing On-clamp Versus Off-clamp Laparoscopic Partial Nephrectomy for Small Renal Masses(CLOCK II Laparoscopic Study) : A Intention-to-treat Analysis of Perioperative Outcomes. Eur Urol Open Sci 46 : 75-81, 2022.
2) Tachibana H, Kobari Y, Fukuda H, et al : Higher risk of intraoperative bleeding in right-sided renal tumors compared to left-sided tumors in robot-assisted partial nephrectomy. Asian J Endosc Surg 16 : 432-440, 2023.
3) Ishiyama Y, Kondo T, Tachibana H, et al : Greater Renal Function Benefit from Enucleation Technique for More Complex Renal Tumors in Robot-Assisted Partial Nephrectomy. J Endourol 35 : 1512-1519, 2021.
4) Minoda R, Takagi T, Yoshida K, et al : Comparison of Surgical Outcomes Between Enucleation and Standard Resection in Robot-Assisted Partial Nephrectomy for Completely Endophytic Renal Tumors Through a 1 : 1 Propensity Score-Matched Analysis. J Endourol 35 : 1779-1784, 2021.
P.66 掲載の参考文献
1) Choo SH, Lee SY, Sung HH, et al : Transperitoneal versus retroperitoneal robotic partial nephrectomy : matched-pair comparisons by nephrometry scores. World J Urol 32 : 1523-1529, 2014.
2) Dell'Oglio P, De Naeyer G, Xiangjun L, et al : The Impact of Surgical Strategy in Robot-assisted Partial Nephrectomy : Is It Beneficial to Treat Anterior Tumours with Transperitoneal Access and Posterior Tumours with Retroperitoneal Access? Eur Urol Oncol 4 : 112-116, 2021.
3) Choi CI, Kang M, Sung HH, et al : Comparison by Pentafecta Criteria of Transperitoneal and Retroperitoneal Robotic Partial Nephrectomy for Large Renal Tumors. J Endourol 34 : 175-183, 2020.
P.73 掲載の参考文献
1) Leow JJ, Heah NH, Chang SL, et al : Outcomes of Robotic versus Laparoscopic Partial Nephrectomy : an Updated Meta-Analysis of 4,919 Patients. J Urol 196 : 1371-1377, 2016.
2) Hung AJ, Cai J, Simmons MN, et al : "Trifecta" in partial nephrectomy. J Urol 189 : 36-42, 2013.
3) Buffi N, Lista G, Larcher A, et al : Margin, ischemia, and complications(MIC) score in partial nephrectomy : a new system for evaluating achievement of optimal outcomes in nephron-sparing surgery. Eur Urol 62 : 617-618, 2012.
4) Zargar H, Allaf ME, Bhayani S, et al : Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses : a multi-institutional study. BJU Int 116 : 407-414, 2015.
5) Carbonara U, Simone G, Capitanio U, et al : Robot-assisted partial nephrectomy : 7-year outcomes. Minerva Urol Nephrol 73 : 540-543, 2021.
6) Otaola-Arca H, Krebs A, Bermudez H, et al : Long-Term Oncological and Functional Outcomes After Robot-Assisted Partial Nephrectomy for Clinically Localized Renal Cell Carcinoma. Ann Surg Oncol 29 : 2484-2494, 2022.
7) Furukawa J, Hinata N, Teisima J, et al : Robot-assisted partial nephrectomy with minimum follow-up of 5 years : A multi-center prospective study in Japan. Int J Urol 29 : 1038-1045, 2022.
8) Wahba BM, Chow AK, Du K, et al : Positive Surgical Margins After Robot-Assisted Partial Nephrectomy Predict Long-Term Oncologic Outcomes for Clinically Localized Renal Masses. J Endourol 35 : 814-820, 2021.
9) Marszalek M, Carini M, Chlosta P, et al : Positive surgical margins after nephron-sparing surgery. Eur Urol 61 : 757-763, 2012.
10) Motoyama D, Matsushita Y, Watanabe H, et al : Improved perioperative outcomes by early unclamping prior to renorrhaphy compared with conventional clamping during robot-assisted partial nephrectomy : a propensity score matching analysis. J Robot Surg 14 : 47-53, 2020.
11) Thompson RH, Lane BR, Lohse CM, et al : Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol 58 : 340-345, 2010.
12) Antonelli A, Cindolo L, Sandri M, et al : Is off-clamp robot-assisted partial nephrectomy beneficial for renal function? Data from the CLOCK trial. BJU Int 129 : 217-224, 2022.
13) Kowalewski KF, Neuberger M, Sidoti Abate MA, et al : Randomized Controlled Feasibility Trial of Robot-assisted Versus Conventional Open Partial Nephrectomy : The ROBOCOP II Study. Eur Urol Oncol, 2023. (DOI : 10. 1016/j. euo. 2023. 05. 011)
14) Calpin GG, Ryan FR, McHugh FT, et al : Comparing the outcomes of open, laparoscopic and robot-assisted partial nephrectomy : a network meta-analysis. BJU Int 132 : 353-364, 2023.
P.79 掲載の参考文献
2) Ficarra V, Novara G, Secco S, et al : Preoperative aspects and dimensions used for an anatomical(PADUA)classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur Urol 56 : 786-793, 2009.
3) Sharma G, Sharma AP, Tyagi S, et al : Robot-assisted partial nephrectomy for moderate to highly complex renal masses. A systematic review and meta-analysis. Indian J Urol 38 : 174-183, 2022.
4) Kim JK, Lee H, Oh JJ, et al : Comparison of robotic and open partial nephrectomy for highly complex renal tumors(RENAL nephrometry score>-10). PLoS One 14 : e0210413, 2019.
5) Furukawa J, Kanayama H, Azuma H, et al : 'Trifecta' outcomes of robot-assisted partial nephrectomy : a large Japanese multicenter study. Int J Clin Oncol 25 : 347-353, 2020.
6) Porpiglia F, Mari A, Bertolo R, et al : Partial Nephrectomy in Clinical T1b Renal Tumors : Multicenter Comparative Study of Open, Laparoscopic and Robot-assisted Approach(the RECORd Project). Urology 89 : 45-51, 2016.
7) Bertolo R, Autorino R, Simone G, et al : Outcomes of Robot-assisted Partial Nephrectomy for Clinical T2 Renal Tumors : A Multicenter Analysis(ROSULA Collaborative Group). Eur Urol 74 : 226-232, 2018.
8) Autorino R, Khalifeh A, Laydner H, et al : Robot-assisted partial nephrectomy(RAPN) for completely endophytic renal masses : a single institution experience. BJU Int 113 : 762-768, 2014.
9) Kara O, Maurice MJ, Malkoc E, et al : Comparison of robot-assisted and open partial nephrectomy for completely endophytic renal tumours : a single centre experience. BJU Int 118 : 946-951, 2016.
10) Dulabon LM, Kaouk JH, Haber GP, et al : Multi-institutional analysis of robotic partial nephrectomy for hilar versus nonhilar lesions in 446 consecutive cases. Eur Urol 59 : 325-330, 2011.
11) Sagalovich D, Dagenais J, Bertolo R, et al : Trifecta Outcomes in Renal Hilar Tumors : A Comparison Between Robotic and Open Partial Nephrectomy. J Endourol 32 : 831-836, 2018.
12) Hinata N, Shiroki R, Tanabe K, et al : Robot-assisted partial nephrectomy versus standard laparoscopic partial nephrectomy for renal hilar tumor : A prospective multi-institutional study. Int J Urol 28 : 382-389, 2021.
13) Srivastava A, Patel HD, Joice GA, et al : Incidence of T3a up-staging and survival after partial nephrectomy : Size-stratified rates and implications for prognosis. Urol Oncol 36 : 12. e7-12. e13, 2018.
14) Russell CM, Lebastchi AH, Chipollini J, et al : Multi-institutional Survival Analysis of Incidental Pathologic T3a Upstaging in Clinical T1 Renal Cell Carcinoma Following Partial Nephrectomy. Urology 117 : 95-100, 2018.
15) Chung DY, Kang DH, Kim JW, et al : Comparison of oncologic outcomes between partial nephrectomy and radical nephrectomy in patients who were upstaged from cT1 renal tumor to pT3a renal cell carcinoma : an updated systematic review and meta-analysis. Ther Adv Urol 12 : 1756287220981508, 2020.
P.85 掲載の参考文献
1) 医療に活かす生体医工学(日本生体医工学会 編), p82-90, コロナ社, 2020.
2) 洪 在成 : 手術ナビゲーションの有益性と危険性. 生体医工 49 : 656-660, 2011.
3) 志賀淑之, 杉本真樹, 安部光洋, ほか : 複合現実MR, 拡張現実AR, 仮想現実VRを応用した泌尿器ナピゲーション手術の検討. 日本泌尿器内視鏡学会雑誌 31 : 253-259, 2018.
4) Hu HZ, Feng XB, Shao ZW, et al : Application and Prospect of Mixed Reality Technology in Medical Field. Curr Med Sci 39 : 1-6, 2019.
5) Porpiglia F, Checcucci E, Amparore D, et al : Three-dimensional Elastic Augmented-reality Robot-assisted Radical Prostatectomy Using Hyperaccuracy Three-dimensional Reconstruction Technology : A Step Further in the Identification of Capsular Involvement. Eur Urol 76 : 505-514, 2019.
6) Porpiglia F, Checcucci E, Amparore D, et al : Three-dimensional Augmented Reality Robot-assisted Partial Nephrectomy in Case of Complex Tumours(PADUA>=10) : A New Intraoperative Tool Overcoming the Ultrasound Guidance. Eur Urol 78 : 229-238, 2020.
7) Chen L, Deng W, Luo Y, et al : Comparison of Robot-Assisted and Laparoscopic Partial Nephrectomy for Renal Hilar Tumors : Results from a Tertiary Referral Center. J Endourol 36 : 941-946, 2022.
8) Carbonara U, Simone G, Minervini A, et al : Outcomes of robot-assisted partial nephrectomy for completely endophytic renal tumors : A multicenter analysis. Eur J Surg Oncol 47 : 1179-1186, 2021.
9) Kobayashi S, Cho B, Huaulme A, et al : Assessment of surgical skills by using surgical navigation in robot-assisted partial nephrectomy. Int J Comput Assist Radiol Surg 14 : 1449-1459, 2019.
10) Kobayashi S, Cho B, Mutaguchi J, et al : Surgical Navigation Improves Renal Parenchyma Volume Preservation in Robot-Assisted Partial Nephrectomy : A Propensity Score Matched Comparative Analysis. J Urol 204 : 149-156, 2020.
P.89 掲載の参考文献
1) 膀胱癌診療ガイドライン2019年版(日本泌尿器科学会 編), p66, 医学図書出版, 2019.
2) 北村 寛 : 腹腔鏡下膀胱全摘除術(男性)+リンパ節郭清術. Urologic Surgery Next 1 腹腔鏡手術(荒井陽一, 高橋 悟, 山本新吾, ほか 編), p154-165, メジカルビュー社, 2018.
3) 柴森康介, 田中俊明, 小笠原卓音, ほか : インシデントレポートを用いた術中positioning injuryに関する後ろ向き観察研究. Jpn J Urol 114 : 116-121, 2023.
4) Tabata H, Tanaka T, Shindo T, et al : Urethrectomy via parapenile incision to complete robot-assisted radical cystectomy in a spine position for male patients. Int J Urol 30 : 936-938, 2023.
5) 石田 勝, 高松公晴, 荻原広一郎, ほか : Parallel side dockingによるロボット支援腹腔鏡下前立腺全摘除術. Jpn J Endourol 29 : 125-130, 2016.
6) 村中貴之, 小林 皇, 前田俊浩, ほか : 札幌医科大学附属病院における腹腔鏡下根治的膀胱摘除術の検討. Jpn J Endourol 30 : 228-232, 2017.
P.93 掲載の参考文献
1) Fujimura T : Current status and future perspective of robot-assisted radical cystectomy for invasive bladder cancer. Int J Urol 26 : 1033-1042, 2019.
2) Chen W, Yokoyama M, Kobayashi M, et al : Trends of radical cystectomy and comparisons of surgical outcomes among surgical approaches focusing on robot-assisted radical cystectomy : A Japanese nationwide database study. Int J Urol 30 : 258-263, 2023.
P.99 掲載の参考文献
1) Burns R, Speir R, Kern SQ, et al : Early and Midterm Complications of the Continent Catheterizable Indiana Pouch Urinary Diversion : A 7-year Experience. Urology 167 : 229-233, 2022.
2) Chen W, Yokoyama M, Kobayashi M, et al : Trends of radical cystectomy and comparisons of surgical outcomes among surgical approaches focusing on robot-assisted radical cystectomy : A Japanese nationwide database study. Int J Urol 30 : 258-263, 2023.
3) Kumada N, Nakane K, Yamada T, et al : Utility and safety of robot-assisted radical cystectomy in older patients with bladder cancer. Minim Invasive Ther Allied Technol, 2023. [DOI : 10. 1080/13645706. 2023. 2249986]
4) Nakane K, Yamada T, Tomioka-Inagawa R, et al : Efficacy and Safety of the "Trisection Method" Training System for Robot-Assisted Radical Cystectomy at a Single Institution in Japan. Curr Oncol 29 : 9294-9304, 2022.
5) Hussein AA, Elsayed AS, Aldhaam NA, et al : A comparative propensity score-matched analysis of perioperative outcomes of intracorporeal vs extracorporeal urinary diversion after robot-assisted radical cystectomy : results from the International Robotic Cystectomy Consortium. BJU Int 126 : 265-272, 2020.
6) Bricker EM : Substitution for the urinary bladder by the use of isolated ileal segments. Surg Clin North Am 36 : 1117-1130, 1956.
7) Lombardo R, Mastroianni R, Tuderti G, et al : Benchmarking PASADENA Consensus along the Learning Curve of Robotic Radical Cystectomy with Intracorporeal Neobladder : CUSUM Based Assessment. J Clin Med 10 : 5969, 2021.
8) Koie T, Ohyama C, Yoneyama T, et al : Robotic cross-folded U-configuration intracorporeal ileal neobladder for muscle-invasive bladder cancer : Initial experience and functional outcomes. Int J Med Robot 14 : e1955, 2018.
9) Chopra S, de Castro Abreu AL, Berger AK, et al : Evolution of robot-assisted orthotopic ileal neobladder formation : a step-by-step update to the University of Southern California(USC) technique. BJU Int 119 : 185-191, 2017.
10) Koie T, Hatakeyama S, Yoneyama T, et al : Uterus-, fallopian tube-, ovary-, and vagina-sparing cystectomy followed by U-shaped ileal neobladder construction for female bladder cancer patients : oncological and functional outcomes. Urology 75 : 1499-1503, 2010.
11) Koie T, Ohyama C, Yamamoto H, et al : Minimum incision endoscopic radical cystectomy in patients with malignant tumors of the urinary bladder : clinical and oncological outcomes at a single institution. Eur J Surg Oncol 38 : 1101-1105, 2012.
P.104 掲載の参考文献
1) 膀胱癌診療ガイドライン 2019年版[増補版](日本泌尿器科学会 編), 医学図書出版, 2023.
2) National Comprehensive Cancer Network : Bladder Cancer version 3. 2023-May 25, 2023. [https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1417]
3) Witjes JA, Bruins'HM, Carrion A, et al : EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer, 2023. [https://uroweb.org/guidelines/muscle-invasive-and-metastatic-bladder-cancer]
4) Wallmeroth A, Wagner U, Moch H, et al : Patterns of metastasis in muscle-invasive bladder cancer(pT2-4) : An autopsy study on 367 patients. Urol Int 62 : 69-75, 1999.
5) Bi L, Huang H, Fan X, et al : Extended vs non-extended pelvic lymph node dissection and their influence on recurrence-free survival in patients undergoing radical cystectomy for bladder cancer : a systematic review and meta-analysis of comparative studies. BJU Int 113 : E39-E48, 2014.
7) Vazina A, Dugi D, Shariat SF, et al : Stage specific lymph node metastasis mapping in radical cystectomy specimens. J Urol 171 : 1830-1834, 2004.
8) Dorin RP, Daneshmand S, Eisenberg MS, et al : Lymph node dissection technique is more important than lymph node count in identifying nodal metastases in radical cystectomy patients : a comparative mapping study. Eur Urol 60 : 946-952, 2011.
9) Davies JD, Simons CM, Ruhotina N, et al : Anatomic basis for lymph node counts as measure of lymph node dissection extent : a cadaveric study. Urology 81 : 358-363, 2013.
10) Bruins HM, Veskimae E, Hernandez V, et al : The impact of the extent of lymphadenectomy on oncologic outcomes in patients undergoing radical cystectomy for bladder cancer : a systematic review. Eur Urol 66 : 1065-1077, 2014.
11) Gschwend JE, Heck MM, Lehmann J, et al : Extended Versus Limited Lymph Node Dissection in Bladder Cancer Patients Undergoing Radical Cystectomy : Survival Results from a Prospective, Randomized Trial. Eur Urol 75 : 604-611, 2019.
12) Lerner SP, Tangen C, Svatek RS, et al : SWOG S1011 : A PhaseIII surgical trial to evaluate the benefit of standard versus an extended lymphadenectomy performed at time of radical cystectomy for muscle invasive urothelial cancer. ASCO 2023. J Clin Oncol 41(16_suppl) : 4508, 2023.
P.112 掲載の参考文献
1) Bai S, Yao Z, Zhu X, et al : The Feasibility and Safety of Reproductive Organ Preserving Radical Cystectomy for Elderly Female Patients With Muscle-Invasive Bladder Cancer : A Retrospective Propensity Score-matched Study. Urology 125 : 138-145, 2019.
2) Avulova S, Chang SS : Role and Indications of Organ-Sparing "Radical" Cystectomy : The Importance of Careful Patient Selection and Counseling. Urol Clin North Am 45 : 199-214, 2018.
3) Sussman RD, Han CJ, Marchalik D, et al : To oophorectomy or not to oophorectomy : Practice patterns among urologists treating bladder cancer. Urol Oncol 36 : 90. e1-90. e7, 2018.
4) Niver BE, Daneshmand S, Satkunasivam R : Female reproductive organ-sparing radical cystectomy : contemporary indications, techniques and outcomes. Curr Opin Urol 25 : 105-110, 2015.
5) 究める鏡視下膀胱全摘術・尿路変向術 Level up LRC, RARC(三木 淳, 古家琢也 編, 頴川 晋, 大山 力 監), メジカルビュー社, 2020.
P.117 掲載の参考文献
1) Klingler DW, Hemstreet GP, Balaji KC : Feasibility of robotic radical nephrectomy-initial results of single-institution pilot study. Urology 65 : 1086-1089, 2005.
2) Li J, Peng L, Cao D, et al : Comparison of Perioperative Outcomes of Robot-Assisted vs. Laparoscopic Radical Nephrectomy : A Systematic Review and Meta-Analysis. Front Oncol 10 : 551052, 2020.
3) Anele UA, Marchioni M, Yang B, et al : Robotic versus laparoscopic radical nephrectomy : a large multi-institutional analysis(ROSULA Collaborative Group). World J Urol 37 : 2439-2450, 2019.
4) Jeong IG, Khandwala YS, Kim JH, et al : Association of Robotic-Assisted vs Laparoscopic Radical Nephrectomy With Perioperative Outcomes and Health Care Costs, 2003 to 2015. JAMA 318 : 1561-1568, 2017.
5) Abaza R : Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol 59 : 652-656, 2011.
6) Motoyama D, Ito T, Sugiyama T, et al : Robot-assisted radical nephrectomy and inferior vena cava tumor thrombectomy : Initial experience in Japan. IJU Case Rep 5 : 145-148, 2022.
P.123 掲載の参考文献
1) Blute ML, Leibovich BC, Lohse CM, et al : The Mayo Clinic experience with surgical management, complications and outcome for patients with renal cell carcinoma and venous tumour thrombus. BJU Int 94 : 33-41, 2004.
2) Al Otaibi M, Abou Youssif T, Alkhaldi A, et al : Renal cell carcinoma with inferior vena caval extention : impact of tumour extent on surgical outcome. BJU Int 104 : 1467-1470, 2009.
3) Abaza R : Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur Urol 59 : 652-656, 2011.
4) Gill IS, Metcalfe C, Abreu A, et al : Robotic Level III Inferior Vena Cava Tumor Thrombectomy : Initial Series. J Urol 194 : 929-938, 2015.
5) Bratslavsky G, Cheng JS : Robotic-assisted Radical Nephrectomy With Retrohepatic Vena Caval Tumor Thrombectomy(Level III) Combined With Extended Retroperitoneal Lymph Node Dissection. Urology 86 : 1235-1240, 2015.
6) Palma-Zamora I, Dalela D, Barod R, et al : Initial robotic assistance in the surgical management of renal cell carcinoma with level 4 cavoatrial thrombus. J Robot Surg 12 : 737-740, 2018.
7) Garg H, Psutka SP, Hakimi AA, et al : A Decade of Robotic-Assisted Radical Nephrectomy with Inferior Vena Cava Thrombectomy : A Systematic Review and Meta-Analysis of Perioperative Outcomes. J Urol 208 : 542-560, 2022.
8) Haferkamp A, Bastian PJ, Jakobi H, et al : Renal cell carcinoma with tumor thrombus extension into the vena cava : prospective long-term followup. J Urol 177 : 1703-1708, 2007.
9) Wang B, Li H, Ma X, et al : Robot-assisted Laparoscopic Inferior Vena Cava Thrombectomy : Different Sides Require Different Techniques. Eur Urol 69 : 1112-1119, 2016.
10) Chopra S, Simone G, Metcalfe C, et al : Robot-assisted Level II-III Inferior Vena Cava Tumor Thrombectomy : Step-by-Step Technique and 1-Year Outcomes. Eur Urol 72 : 267-274, 2017.
P.130 掲載の参考文献
1) Terakawa T, Miyake H, Hara I, et al : Retroperitoneoscopic nephroureterectomy for upper urinary tract cancer : a comparative study with conventional open retroperitoneal nephroureterectomy. J Endourol 22 : 1693-1699, 2008.
2) Gill IS, Sung GT, Hobart MG, et al : Laparoscopic radical nephroureterectomy for upper tract transitional cell carcinoma : the Cleveland Clinic experience. J Urol 164 : 1513-1522, 2000.
3) Simone G, Papalia R, Guaglianone S, et al : Laparoscopic versus open nephroureterectomy : perioperative and oncologic outcomes from a randomised prospective study. Eur Urol 56 : 520-526, 2009.
4) Kenigsberg AP, Smith W, Meng X, et al : Robotic Nephroureterectomy vs Laparoscopic Nephroureterectomy : Increased Utilization, Rates of Lymphadenectomy, Decreased Morbidity Robotically. J Endourol 35 : 312-318, 2021.
5) Roupret M, Babjuk M, Burger M, et al : European Association of Urology Guidelines on Upper Urinary Tract Urothelial Carcinoma : 2020 Update. Eur Urol 79 : 62-79, 2021.
6) Trudeau V, Gandaglia G, Shiffmann J, et al : Robot-assisted versus laparoscopic nephroureterectomy for upper-tract urothelial cancer : A population-based assessment of costs and perioperative outcomes. Can Urol Assoc J 8 : E695-E701, 2014.
7) Peyronnet B, Seisen T, Dominguez-Escrig JL, et al : Oncological Outcomes of Laparoscopic Nephroureterectomy Versus Open Radical Nephroureterectomy for Upper Tract Urothelial Carcinoma : An European Association of Urology Guidelines Systematic Review. Eur Urol Focus 5 : 205-223, 2019.
8) Veccia A, Carbonara U, Djaladat H, et al : Robotic vs Laparoscopic Nephroureterectomy for Upper Tract Urothelial Carcinoma : A Multicenter Propensity-Score Matched Pair "tetrafecta" Analysis(ROBUUST Collaborative Group). J Endourol 36 : 752-759, 2022.
9) Veccia A, Antonelli A, Francavilla S, et al : Robotic versus other nephroureterectomy techniques : a systematic review and meta-analysis of over 87,000 cases. World J Urol 38 : 845-852, 2020.
11) Inokuchi J, Kuroiwa K, Nishiyama H, et al : Significance of the timing of ureteral ligation on prognosis during radical nephroureterectomy for upper urinary tract urothelial cancer. Int J Urol 28 : 208-214, 2021.
12) Morizane S, Yumioka T, Iwamoto H, et al : Initial Experience of Robot-Assisted Laparoscopic Nephroureterectomy in Japan : A Useful Technique Using a Vessel Sealing Device for Securing a Good Surgical Field and Efficient Sealing. Asian J Endosc Surg 15 : 458-462, 2022.
14) Sparwasser P, Epple S, Thomas A, et al : First completely robot-assisted retroperitoneal nephroureterectomy with bladder cuff : a step-by-step technique. World J Urol 40 : 1019-1026, 2022.
P.135 掲載の参考文献
1) Economopoulos KP, Mylonas KS, Stamou AA, et al : Laparoscopic versus robotic adrenalectomy : A comprehensive meta-analysis. Int J Surg 38 : 95-104, 2017.
2) Heger P, Probst P, Huttner FJ, et al : Evaluation of Open and Minimally Invasive Adrenalectomy : A Systematic Review and Network Meta-analysis. World J Surg 41 : 2746-2757, 2017.
3) Agrusa A, Romano G, Navarra G, et al : Innovation in endocrine surgery : robotic versus laparoscopic adrenalectomy. Meta-analysis and systematic literature review. Oncotarget 8 : 102392-102400, 2017.
4) Perivoliotis K, Baloyiannis I, Sarakatsianou C, et al : Comparing the efficacy and safety of laparoscopic and robotic adrenalectomy : a meta-analysis and trial sequential analysis. Langenbecks Arch Surg 405 : 125-135, 2020.
5) Greilsamer T, Nomine-Criqui C, Thy M, et al : Robotic-assisted unilateral adrenalectomy : risk factors for perioperative complications in 303 consecutive patients. Surg Endosc 33 : 802-810, 2019.
6) Hemal AK, Singh A, Gupta NP : Whether adrenal mass more than 5 cm can pose problem in laparoscopic adrenalectomy? An evaluation of 22 patients. World J Urol 26 : 505-508, 2008.
7) Feng Z, Feng MP, Feng DP, et al : A cost-conscious approach to robotic adrenalectomy. J Robot Surg 12 : 607-611, 2018.
8) Motoyama D, Matsushita Y, Watanabe H, et al : Robot-assisted adrenalectomy using a hinotori surgical robot system : Report of first series of six cases. Asian J Endosc Surg 16 : 489-495, 2023.
9) Soputro NA, Olivares R : Current urological applications of the Hugo(TM) RAS system. World J Urol 41 : 2555-2561, 2023.
10) Lee IA, Kim JK, Kim K, et al : Robotic Adrenalectomy Using the da Vinci SP Robotic System : Technical Feasibility Comparison with Single-Port Access Using the da Vinci Multi-arm Robotic System. Ann Surg Oncol 29 : 3085-3092, 2022.
11) Fang AM, Fazendin JM, Rais-Bahrami S, et al : Comparison of Perioperative Outcomes Between Single-Port and Multi-Port Robotic Adrenalectomy. Am Surg 89 : 1668-1672, 2023.
12) Sengun B, Iscan Y, Tataroglu Ozbulak GA, et al : Artificial Intelligence in Minimally Invasive Adrenalectomy : Using Deep Learning to Identify the Left Adrenal Vein. Surg Laparosc Endosc Percutan Tech 33 : 327-331, 2023.
P.140 掲載の参考文献
1) Gettman MT, Neururer R, Bartsch G, et al : Anderson-Hynes dismembered pyeloplasty performed using the da Vinci robotic system. Urology 60 : 509-513, 2002.
2) Gettman MT, Peschel R, Neururer R, et al : A comparison of laparoscopic pyeloplasty performed with the da Vinci robotic system versus standard laparoscopic techniques : initial clinical results. Eur Urol 42 : 453-457 ; discussion 457-458, 2002.
3) Sukumar S, Sun M, Karakiewicz PI, et al : National trends and disparities in the use of minimally invasive adult pyeloplasty. J Urol 188 : 913-918, 2012.
4) 小林泰之, 荒木元朗, 倉橋寛明, ほか : 腎盂尿管移行部狭窄症に対するAnderson-Hynes法によるロボット支援腹腔鏡下腎盂形成術. Jpn J Endourol 27 : 162-168, 2014.
5) Andolfi C, Adamic B, Oommen J, et al : Robot-assisted laparoscopic pyeloplasty in infants and children : is it superior to conventional laparoscopy? World J Urol 38 : 1827-1833, 2020.
6) Esposito C, Cerulo M, Lepore B, et al : Robotic-assisted pyeloplasty in children : a systematic review of the literature. J Robot Surg 17 : 1239-1246, 2023.
7) Autorino R, Eden C, El-Ghoneimi A, et al : Robot-assisted and laparoscopic repair of ureteropelvic junction obstruction : a systematic review and meta-analysis. Eur Urol 65 : 430-452, 2014.
8) McAleer IM, Kaplan GW : Renal function before and after pyeloplasty : does it improve? J Urol 162(3 Pt 2) : 1041-1044, 1999.
9) Li Y, He Y, Zhang W, et al : Factors predicting improvement of differential renal function after pyeloplasty in children of ureteropelvic junction obstruction. J Pediatr Urol 18 : 504. e1-504. e6, 2022.
10) Han JH, Song SH, Lee JS, et al : Best ultrasound parameter for prediction of adverse renal function outcome after pyeloplasty. Int J Urol 27 : 775-782, 2020.
11) 森 亘平, 西 盛宏, 平野修平, ほか : 当院におけるロボット支援腎盂形成術の初期成績と腹腔鏡下手術との比較検討. Jpn J Endourol 34 : 323-327, 2021.
12) 小林泰之 : ロボット支援腎盂形成術. 臨床泌尿器科 72 : 128-133, 2018.

III 消化器外科領域のロボット支援手術

P.149 掲載の参考文献
1) Uyama I, Suda K, Nakauchi M, et al : Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer : a multi-institutional prospective single-arm study. Gastric Cancer 22 : 377-385, 2019.
2) Suda K, Sakai M, Obama K, et al : Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer : a multi-institutional retrospective comparative study. Surg Endosc 37 : 2858-2872, 2023.
3) Intuitive Surgical Inc : Annual Report 2022. [https://isrg.intuitive.com/static-files/0cb4f097-4e55-47b2-bfb8-dd4f9d45182b]
4) Suda K, Man-I M, Ishida Y, et al : Potential advantages of robotic radical gastrectomy for gastric adenocarcinoma in comparison with conventional laparoscopic approach : a single institutional retrospective comparative cohort study. Surg Endosc 29 : 673-685, 2015.
5) Medtronic : Hugo(TM) RAS System. [https://www.medtronic.com/covidien/en-gb/robotic-assisted-surgery/hugo-ras-system.html]
6) Shibasaki S, Suda K, Hisamori S, et al : Robotic gastrectomy for gastric cancer : systematic review and future directions. Gastric Cancer 26 : 325-338, 2023.
7) Riverfield : Saroa. [https://www.riverfieldinc.com/products/p04/]
8) Marescaux J, Leroy J, Gagner M, et al : Transatlantic robot-assisted telesurgery. Nature 413 : 379-380, 2001.
9) Nakauchi M, Suda K, Nakamura K, et al : Establishment of a new practical telesurgical platform using the hinotori(TM) Surgical Robot System : a preclinical study. Langenbecks Arch Surg 407 : 3783-3791, 2022.
P.154 掲載の参考文献
1) Kajiwara Y, Takahashi A, Ueno H, et al : Annual report on National Clinical Database 2020 for gastroenterological surgery in Japan. Ann Gastroenterol Surg 7 : 367-406, 2023.
2) Yang Y, Li B, Yi J, et al : Robot-assisted Versus Conventional Minimally Invasive Esophagectomy for Resectable Esophageal Squamous Cell Carcinoma : Early Results of a Multicenter Randomized Controlled Trial : the RAMIE Trial. Ann Surg 275 : 646-653, 2022.
3) Kimura Y, Oki E, Nakanoko T, et al : Evolution of Treatment Outcomes and Prognostic Factors in Esophageal Cancer Surgery : A Retrospective Analysis of 1500 Consecutive Esophagostomies. Annals of Surgery Open 4 : e347, 2023.
4) 日本内視鏡外科学会 : 消化器外科領域ロボット支援内視鏡手術導入に関する指針(改訂) 令和5年3月28日, 2023. [https://www.jses.or.jp/uploads/files/robot/shishin/guidelines_for_introduction_robot_assisted_surgery20230328.pdf]
5) American Society of Anesthesiologists Task Force on Perioperative Visual Loss ; North American Neuro-Ophthalmology Society ; Society for Neuroscience in Anesthesiology and Critical Care : Practice Advisory for Perioperative Visual Loss Associated with Spine Surgery 2019 : An Updated Report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss, the North American Neuro-Ophthalmology Society, and the Society for Neuroscience in Anesthesiology and Critical Care. Anesthesiology 130 : 12-30, 2019.
6) Suda K, Nakauchi M, Inaba K, et al : Robotic surgery for upper gastrointestinal cancer : Current status and future perspectives. Dig Endosc 28 : 701-713, 2016.
7) Nakanoko T, Kimura Y, Natsugoe K, et al : Left recurrent nerve lymph node dissection in robotic esophagectomy for esophageal cancer without esophageal traction. World J Surg Oncol 21 : 223, 2023.
8) Zhang Y, Dong D, Cao Y, et al : Robotic Versus Conventional Minimally Invasive Esophagectomy for Esophageal Cancer : A Meta-analysis. Ann Surg 278 : 39-50, 2023.
P.162 掲載の参考文献
1) Fujiwara H, Kanamori J, Nakajima Y, et al : An anatomical hypothesis : a "concentric-structured model" for the theoretical understanding of the surgical anatomy in the upper mediastinum required for esophagectomy with radical mediastinal lymph node dissection. Dis Esophagus 32 : doy119, 2019.
2) 大幸宏幸, 小熊潤也, 藤田武郎, ほか : Leading instituteにおけるロボット支援下食道癌手術の実際 国立がん研究センター方式-セッティングとロボットによる腹部操作. 手術 76 : 1459-1464, 2022.
P.169 掲載の参考文献
1) Kitagawa Y, Ishihara R, Ishikawa H, et al : Esophageal cancer practice guidelines 2022 edited by the Japan esophageal society : part 1. Esophagus 20 : 343-372, 2023.
3) Kinugasa S, Tachibana M, Yoshimura H, et al : Postoperative pulmonary complications are associated with worse short- and long-term outcomes after extended esophagectomy. J Surg Oncol 88 : 71-77, 2004.
4) Oshikiri T, Takiguchi G, Hasegawa H, et al : Postoperative recurrent laryngeal nerve palsy is associated with pneumonia in minimally invasive esophagectomy for esophageal cancer. Surg Endosc 35 : 837-844, 2021.
5) Oshikiri T, Goto H, Kato T, et al : Improvement effect of upper mediastinal lymphadenectomy during minimally invasive esophagectomy on the prognosis in squamous cell carcinoma : efficacy index and propensity score-matching analyses. J Am Coll Surg 237 : 762-770, 2023.
6) Kajiwara Y, Takahashi A, Ueno H, et al : Annual report on National Clinical Database 2020 for gastroenterological surgery in Japan. Ann Gastroenterol Surg 7 : 367-406, 2023.
7) Otsubo D, Nakamura T, Yamamoto M, et al : Prone position in thoracoscopic esophagectomy improves postoperative oxygenation and reduces pulmonary complications. Surg Endosc 31 : 1136-1141, 2017.
8) 押切太郎, 後藤裕信, 加藤 喬, ほか : 5. Leading instituteにおけるロボット支援下食道癌手術の実際 4) 神戸大学方式. 手術 76 : 1475-1488, 2022.
9) Shirakawa Y, Noma K, Kunitomo T, et al : Initial introduction of robot-assisted, minimally invasive esophagectomy using the microanatomy-based concept in the upper mediastinum. Surg Endosc 35 : 6568-6576, 2021.
10) Motoyama S, Sato Y, Wakita A, et al : Lower local recurrence rate after robot-assisted thoracoscopic esophagectomy than conventional thoracoscopic surgery for esophageal cancer. Sci Rep 11 : 6774, 2021.
11) Tsunoda S, Obama K, Hisamori S, et al : Lower Incidence of Postoperative Pulmonary Complications Following Robot-Assisted Minimally Invasive Esophagectomy for Esophageal Cancer : Propensity Score-Matched Comparison to Conventional Minimally Invasive Esophagectomy. Ann Surg Oncol 28 : 639-647, 2021.
13) Morimoto Y, Kawakubo H, Ishikawa A, et al : Short-term outcomes of robot-assisted minimally invasive esophagectomy with extended lymphadenectomy for esophageal cancer compared with video-assisted minimally invasive esophagectomy : A single-center retrospective study. Asian J Endosc Surg 15 : 270-278, 2022.
14) Fujita T, Sato K, Ozaki A, et al : Propensity-Matched Analysis of the Short-Term Outcome of Robot-Assisted Minimally Invasive Esophagectomy Versus Conventional Thoracoscopic Esophagectomy in Thoracic Esophageal Cancer. World J Surg 46 : 1926-1933, 2022.
15) Matsunaga T, Shishido Y, Saito H, et al : Impact of Robot-Assisted Minimally Invasive Esophagectomy for Esophageal Cancer : A Propensity Score-Matched Short-Term Analysis. Yonago Acta Med 66 : 239-245, 2023.
P.178 掲載の参考文献
1) Shibasaki S, Suda K, Hisamori S, et al : Robotic gastrectomy for gastric cancer : systematic review and future directions. Gastric Cancer 26 : 325-338, 2023.
2) Kikuchi K, Suda K, Shibasaki S, et al : Challenges in improving the minimal invasiveness of the surgical treatment for gastric cancer using robotic technology. Ann Gastroenterol Surg 5 : 604-613, 2021.
3) Shibasaki S, Suda K, Nakauchi M, et al : Non-robotic minimally invasive gastrectomy as an independent risk factor for postoperative intra-abdominal infectious complications : A single-center, retrospective and propensity score-matched analysis. World J Gastroenterol 26 : 1172-1184, 2020.
4) Nakauchi M, Suda K, Shibasaki S, et al : Prognostic factors of minimally invasive surgery for gastric cancer : Does robotic gastrectomy bring oncological benefit? World J Gastroenterol 27 : 6659-6672, 2021.
5) Uyama I, Suda K, Nakauchi M, et al : Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer : a multi-institutional prospective single-arm study. Gastric Cancer 22 : 377-385, 2019.
6) Suda K, Sakai M, Obama K, et al : Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer : a multi-institutional retrospective comparative study. Surg Endosc 37 : 2858-2872, 2023.
7) FUJITA'S TEXT2 ロボット支援下幽門側胃切除 D1+ -セットアップの基本から実際の手術手技のコツまで-(宇山一朗(監), 柴崎 晋, 須田康一, 菊地健司, 中内雅也(編著)), 金原出版, p1-121, 2019.
8) Shibasaki S, Suda K, Nakauchi M, et al : Outermost layer-oriented medial approach for infrapyloric nodal dissection in laparoscopic distal gastrectomy. Surg Endosc 32 : 2137-2148, 2018.
P.183 掲載の参考文献
1) Hyung WJ, Yang HK, Park YK, et al : Long-Term Outcomes of Laparoscopic Distal Gastrectomy for Locally Advanced Gastric Cancer : The KLASS-02-RCT Randomized Clinical Trial. J Clin Oncol 38 : 3304-3313, 2020.
2) Huang C, Liu H, Hu Y, et al : Laparoscopic vs Open Distal Gastrectomy for Locally Advanced Gastric Cancer : Five-Year Outcomes From the CLASS-01 Randomized Clinical Trial. JAMA Surg 157 : 9-17, 2022.
3) Etoh T, Ohyama T, Sakuramoto S, et al : Five-Year Survival Outcomes of Laparoscopy-Assisted vs Open Distal Gastrectomy for Advanced Gastric Cancer : The JLSSG0901 Randomized Clinical Trial. JAMA Surg 158 : 445-454, 2023.
4) 【速報】進行胃癌に対する幽門側胃切除における腹腔鏡下手術と開腹手術のランダム化 III 相試験(JLSSG0901)に関する日本胃癌学会ガイドライン委員会のコメント, 日本胃癌学会, 2023.[https://www.jgca.jp/wp-content/uploads/2023/08/JLSSG0901_202304.pdf]
5) Hisamori S, Okabe H, Tsunoda S, et al : Long-Term Outcomes of Laparoscopic Radical Gastrectomy for Highly Advanced Gastric Cancer : Final Report of a Prospective Phase II Trial(KUGC04). Ann Surg Oncol 28 : 8962-8972, 2021.
6) Okabe H, Tsunoda S, Obama K, et al : Feasibility of Laparoscopic Radical Gastrectomy for Gastric Cancer of Clinical Stage II or Higher : Early Outcomes in a Phase II Study(KUGC04). Ann Surg Oncol 23 : 516-523, 2016.
7) Kinoshita T, Uyama I, Terashima M, et al : Long-term Outcomes of Laparoscopic Versus Open Surgery for Clinical Stage II/III Gastric Cancer : A Multicenter Cohort Study in Japan(LOC-A Study). Ann Surg 269 : 887-894, 2019.
8) Kanaya S, Haruta S, Kawamura Y, et al : Video : laparoscopy distinctive technique for suprapancreatic lymph node dissection : medial approach for laparoscopic gastric cancer surgery. Surg Endosc 25 : 3928-3929, 2011.
9) Noshiro H, Nagai E, Shimizu S, et al : Laparoscopically assisted distal gastrectomy with standard radical lymph node dissection for gastric cancer. Surg Endosc 19 : 1592-1596, 2005.
10) Okabe H, Obama K, Tsunoda S, et al : Feasibility of robotic radical gastrectomy using a monopolar device for gastric cancer. Surg Today 49 : 820-827, 2019.
11) Uyama I, Suda K, Nakauchi M, et al : Clinical advantages of robotic gastrectomy for clinical stage I/II gastric cancer : a multi-institutional prospective single-arm study. Gastric Cancer 22 : 377-385, 2019.
12) Suda K, Sakai M, Obama K, et al : Three-year outcomes of robotic gastrectomy versus laparoscopic gastrectomy for the treatment of clinical stage I/II gastric cancer : a multi-institutional retrospective comparative study. Surg Endosc 37 : 2858-2872, 2023.
13) Kim MS, Kim WJ, Hyung WJ, et al : Comprehensive Learning Curve of Robotic Surgery : Discovery From a Multicenter Prospective Trial of Robotic Gastrectomy. Ann Surg 273 : 949-956, 2021.
14) Zheng-Yan L, Feng Q, Yan S, et al : Learning curve of robotic distal and total gastrectomy. Br J Surg 108 : 1126-1132, 2021.
15) Shimoike N, Nishigori T, Yamashita Y, et al : Safety assessment of robotic gastrectomy and analysis of surgical learning process : a multicenter cohort study. Gastric Cancer 25 : 817-826, 2022.
16) Shibasaki S, Suda K, Hisamori S, et al : Robotic gastrectomy for gastric cancer : systematic review and future directions. Gastric Cancer 26 : 325-338, 2023.
17) Ojima T, Nakamura M, Hayata K, et al : Short-term Outcomes of Robotic Gastrectomy vs Laparoscopic Gastrectomy for Patients With Gastric Cancer : A Randomized Clinical Trial. JAMA Surg 156 : 954-963, 2021.
18) Lu J, Zheng CH, Xu BB, et al : Assessment of Robotic Versus Laparoscopic Distal Gastrectomy for Gastric Cancer : A Randomized Controlled Trial. Ann Surg 273 : 858-867, 2021.
19) Guerrini GP, Esposito G, Magistri P, et al : Robotic versus laparoscopic gastrectomy for gastric cancer : The largest meta-analysis. Int J Surg 82 : 210-228, 2020.
20) Kinoshita T, Sato R, Akimoto E, et al : Reduction in postoperative complications by robotic surgery : a case-control study of robotic versus conventional laparoscopic surgery for gastric cancer. Surg Endosc 36 : 1989-1998, 2022.
21) Okabe H, Sunagawa H, Saji M, et al : Comparison of short-term outcomes between robotic and laparoscopic gastrectomy for gastric cancer : a propensity score-matching analysis. J Robot Surg 15 : 803-811, 2021.
22) Deng C, Zhang Z, Qi H, et al : Safety and efficacy of indocyanine green near-infrared fluorescent imaging-guided lymph nodes dissection during radical gastrectomy for gastric cancer : A systematic review and meta-analysis. Front Oncol 12 : 917541, 2022.
23) Chen QY, Zhong Q, Liu ZY, et al : Surgical Outcomes, Technical Performance, and Surgery Burden of Robotic Total Gastrectomy for Locally Advanced Gastric Cancer : A Prospective Study. Ann Surg 276 : e434-e443, 2022.
P.191 掲載の参考文献
1) 石田善敬, 稲葉一樹, 須田康一, ほか : 残胃癌に対する腹腔鏡下手術. 胃がん perspective 8 : 14-18, 2015.
2) 角谷慎一, 辻 敏克, 高橋 徹, ほか : 残胃癌に対する腹腔鏡下残胃全摘術. 手術 73 : 1715-1719, 2019.
3) 石田洋樹, 布部創也 : 残胃癌に対する腹腔鏡手術. 手術 75 : 1911-1916, 2021.
4) 瀧口修司, 佐川弘之, 伊藤 直, ほか : ロボット支援下手術の現況と展望<胃>. 日本外科学会雑誌 123 : 525-530, 2022.
5) 中川 登, 山根哲郎, 安川林良 : 残胃のリンパ流からみた残胃癌のリンパ節郭清範囲の注意点. 手術 74 : 1479-1485, 2020.
6) Honda S, Bando E, Makuuchi R, et al : Effects of initial disease status on lymph flow following gastrectomy in cases of carcinoma in the remnant stomach. Gastric Cancer 20 : 457-464, 2017.
7) 胃癌治療ガイドライン医師用 2021年7月改訂 第6版(日本胃癌学会 編), 金原出版, 2021.
8) 岩槻政晃, 吉田直矢, 馬場秀夫 : 脾門部リンパ節郭清の今後-JCOG0110を踏まえて. 臨床外科 73 : 1209-1214, 2018.
9) Sano T, Sasako M, Mizusawa J, et al : Randomized Controlled Trial to Evaluate Splenectomy in Total Gastrectomy for Proximal Gastric Carcinoma. Ann Surg 265 : 277-283, 2017.
11) Goto H, Kanaji S, Otsubo D, et al : Comparison of total versus subtotal gastrectomy for remnant gastric cancer. Langenbeck's Arch Surg 404 : 753-760, 2019.
12) 八木泰佑, 寺島雅典 : 残胃癌に対する残胃全摘術. 消化器外科 44 : 1333-1341, 2021.
P.202 掲載の参考文献
1) Yamaguchi T, Kinugasa Y, Shiomi A, et al : Short-and long-term outcomes of robotic-assisted laparoscopic surgery for rectal cancer : results of a single high-volume center in Japan. Int J Colorectal Dis 33 : 1755-1762, 2018.
2) 日本内視鏡外科学会学術委員会 : 内視鏡外科手術に関するアンケート調査(第16回集計結果報告), 日本内視鏡外科学会, 2022. [https://www.jses.or.jp/]
3) Matsuyama T, Endo H, Yamamoto H, et al : Outcomes of robot-assisted versus conventional laparoscopic low anterior resection in patients with rectal cancer : propensity-matched analysis of the National Clinical Database in Japan. BJS Open 5 : zrab083, 2021.
4) Yamaguchi T, Kinugasa Y, Shiomi A, et al : Learning curve for robotic-assisted surgery for rectal cancer : use of the cumulative sum method. Surg Endosc 29 : 1679-1685, 2015.
5) Hiyoshi Y, Yamaguchi T, Matsuura N, et al : Advantages of the umbilical minilaparotomy-first approach in robotic rectal cancer surgery. Tech Coloproctol 27 : 71-74, 2023.
6) Stelzner S, Heinze T, Nikolouzakis TK, et al : Perirectal Fascial Anatomy : New Insights Into an Old Problem. Dis Colon Rectum 64 : 91-102, 2021.
10) Kinugasa Y, Sugihara K : Topology of the fascial structures in rectal surgery : complete cancer resection and the importance for avoiding autonomic nerve injury. Seminars in Colon and Rectal Surgery 21 : 95-101, 2010.
P.210 掲載の参考文献
1) 佐藤健次, 佐藤達夫 : 下腸間膜動脈周囲のリンパ系ならびに上下腹神経叢(仙骨前神経)の構造について. 日本大腸肛門病会誌 42 : 1178-1192, 1989.
2) 佐藤健次, 佐藤達夫 : 陰部神経叢と骨盤神経叢の構成と分布. 日本大腸肛門病会誌 34 : 515-529, 1981.
3) Takenaka A, Murakami G, Matsubara A, et al : Variation in course of cavernous nerve with special reference to details of topographic relationships near prostatic apex : histologic study using male cadavers. Urology 65 : 136-142, 2005.
6) 絹笠祐介 : 直腸癌手術に必要な骨盤内外科解剖. 消化器外科 30 : 1303-1310, 2007.
7) 絹笠祐介 : 機能温存直腸癌手術のための骨盤内解剖の検討. Japanese Journal of Endourology 25 : 11-15, 2012.
8) Kinugasa Y, Arakawa T, Abe H, et al : Female longitudinal anal muscles or conjoint longitudinal coats extend into the subcutaneous tissue along the vaginal vestibule : a histological study using human fetuses. Yonsei Med J 54 : 778-784, 2013.
9) 松山貴俊, 絹笠祐介 : 特集 先進施設に学ぶ! 進行直腸癌の治療方針東京医科歯科大学消化管外科学分野. 消化管外科 42 : 1187-1193, 2019.
10) 絹笠式 静岡がんセンター大腸癌手術(絹笠祐介 編), 南江堂, 2017.
11) 絹笠式 TMDU 大腸癌手術(絹笠祐介 編), 南江堂, 2023.
P.216 掲載の参考文献
2) 大腸癌治療ガイドライン 医師用 2022年版(大腸癌研究会 編), 金原出版, 2022.
P.221 掲載の参考文献
1) Nagtegaal ID, Marijnen CA, Kranenbarg EK, et al : Circumferential margin involvement is still an important predictor of local recurrence in rectal carcinoma : not one millimeter but two millimeters is the limit. Am J Surg Pathol 26 : 350-357, 2002.
2) Heald RJ, Husband EM, Ryall RD : The mesorectum in rectal cancer surgery-the clue to pelvic recurrence? Br J Surg 69 : 613-616, 1982.
P.227 掲載の参考文献
1) Chong CC, Fuks D, Lee KF, et al : Propensity Score-Matched Analysis Comparing Robotic and Laparoscopic Right and Extended Right Hepatectomy. JAMA Surg 157 : 436-444, 2022.
2) Kinoshita M, Kawaguchi T, Tanaka S, et al : Application of Indocyanine Green Fluorescence Imaging for Tumor Localization during Robot-Assisted Hepatectomy. Cancers(Basel) 15 : 4205, 2023.
3) Tanaka T, Takatsuki M, Hidaka M, et al : Is a fluorescence navigation system with indocyanine green effective enough to detect liver malignancies? J Hepatobiliary Pancreat Sci 21 : 199-204, 2014.
4) Felli E, Ishizawa T, Cherkaoui Z, et al : Laparoscopic anatomical liver resection for malignancies using positive or negative staining technique with intraoperative indocyanine green-fluorescence imaging. HPB(Oxford) 23 : 1647-1655, 2021.
5) Sakaguchi T, Suzuki A, Unno N, et al : Bile leak test by indocyanine green fluorescence images after hepatectomy. Am J Surg 200 : e19-23, 2010.
6) Kikuchi K, Suda K, Shibasaki S, et al : Challenges in improving the minimal invasiveness of the surgical treatment for gastric cancer using robotic technology. Ann Gastroenterol Surg 5 : 604-613, 2021.
7) Sugioka A, Kato Y, Tanahashi Y : Systematic extrahepatic Glissonean pedicle isolation for anatomical liver resection based on Laennec's capsule : proposal of a novel comprehensive surgical anatomy of the liver. J Hepatobiliary Pancreat Sci 24 : 17-23, 2017.
P.235 掲載の参考文献
1) Ban D, Tanabe M, Ito H, et al : A novel difficulty scoring system for laparoscopic liver resection. J Hepatobiliary Pancreat Sci 21 : 745-753, 2014.
2) 渡邊祐介 : FUSE資格者が教える電気メス-使いこなすための原理と意外と知らないリスク-, メジカルビュー社, 2022.
3) Morimoto M, Tomassini F, Berardi G, et al : Glissonean approach for hepatic inflow control in minimally invasive anatomic liver resection : A systematic review. J Hepatobiliary Pancreat Sci 29 : 51-65, 2022.
4) Morimoto M, Matsuo Y, Ueda G, et al : Exploring the fine-layer structure around a Glissonean pedicle in cadaveric models. Surg Gastroenterol Oncol 25 : 67-72, 2020.
5) Morimoto M, Matsuo Y, Nonoyama K, et al : Glissonean Pedicle Isolation Focusing on the Laennec's Capsule for Minimally Invasive Anatomical Liver Resection. J Pers Med 13 : 1154, 2023.
6) Sugioka A, Kato Y, Tanahashi Y : Systematic extrahepatic Glissonean pedicle isolation for anatomical liver resection based on Laennec's capsule : proposal of a novel comprehensive surgical anatomy of the liver. J Hepatobiliary Pancreat Sci 24 : 17-23, 2017.
P.243 掲載の参考文献
1) Strasberg SM, Fields R : Left-sided pancreatic cancer : distal pancreatectomy and its variants : radical antegrade modular pancreatosplenectomy and distal pancreatectomy with celiac axis resection. Cancer J 18 : 562-570, 2012.
2) van Erning FN, Mackay TM, van der Geest LGM, et al : Association of the location of pancreatic ductal adenocarcinoma(head, body, tail) with tumor stage, treatment, and survival : a population-based analysis. Acta Oncol 57 : 1655-1662, 2018.
3) Li P, Zhang H, Chen L, et al : Robotic versus laparoscopic distal pancreatectomy on perioperative outcomes : a systematic review and meta-analysis. Updates Surg 75 : 7-21, 2023.
4) Peters BS, Armijo PR, Krause C, et al : Review of emerging surgical robotic technology. Surg Endosc 32 : 1636-1655, 2018.
5) Zwart MJW, Jones LR, Fuente I, et al : Performance with robotic surgery versus 3D- and 2D- laparoscopy during pancreatic and biliary anastomoses in a biotissue model : pooled analysis of two randomized trials. Surg Endosc 36 : 4518-4528, 2022.
6) Inoue Y, Sato T, Kato T, et al : How Can We Optimize Surgical View During Robotic-Assisted Pancreaticoduodenectomy? Feasibility of Multiple Scope Transition Method. J Am Coll Surg 235 : e1-e7, 2022.
P.251 掲載の参考文献
1) 池永直樹, 仲田興平, 阿部俊也, ほか : 膵切除後膵液瘻に対するマネージメント. 胆と膵 43 : 857-862, 2022.
2) 鈴木俊一 : 診療報酬算定のための施設基準等の事務手引 令和4年4月版, p1280-1282, 社会保険研究所, 2022.
3) 日本内視鏡外科学会学術委員会 : 内視鏡外科手術に関するアンケート調査-第16回集計結果報告-, p61-65, 一般社団法人日本内視鏡外科学会, 2022.
4) Liu R, Wakabayashi G, Palanivelu C, et al : International consensus statement on robotic pancreatic surgery. Hepatobiliary Surg Nutr 8 : 345-360, 2019.
5) Palanivelu C, Senthilnathan P, Sabnis SC, et al : Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg 104 : 1443-1450, 2017.
6) Poves I, Burdio F, Morato O, et al : Comparison of Perioperative Outcomes Between Laparoscopic and Open Approach for Pancreatoduodenectomy : The PADULAP Randomized Controlled Trial. Ann Surg 268 : 731-739, 2018.
7) van Hilst J, de Rooij T, Bosscha K, et al : Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours(LEOPARD-2) : a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol 4 : 199-207, 2019.
8) Wang M, Li D, Chen R, et al : Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours : a multicentre, open-label, randomised controlled trial. Lancet Gastroenterol Hepatol 6 : 438-447, 2021.
9) Nickel F, Haney CM, Kowalewski KF, et al : Laparoscopic Versus Open Pancreaticoduodenectomy : A Systematic Review and Meta-analysis of Randomized Controlled Trials. Ann Surg 271 : 54-66, 2020.
10) Khachfe HH, Nassour I, Hammad AY, et al : Robotic pancreaticoduodenectomy : Increased adoption and improved outcomes : Is laparoscopy still justified? Ann Surg 278 : e563-e569, 2023.
12) Weng Y, Shen Z, Gemenetzis G, et al : Oncological outcomes of robotic pancreatectomy in patients with pancreatic cancer who receive adjuvant chemotherapy : A propensity score-matched retrospective cohort study. Int J Surg 104 : 106801, 2022.
13) Nagakawa Y, Watanabe Y, Kozono S, et al : Surgical approaches to the superior mesenteric artery during minimally invasive pancreaticoduodenectomy : A systematic review. J Hepatobiliary Pancreat Sci 29 : 114-123, 2022.
14) Nakata K, Abe T, Ideno N, et al : A left-sided approach for wide mobilization of the pancreas with complete dissection of the Treitz ligament(with video). Surg Endosc 37 : 4982-4989, 2023.

IV 呼吸器外科領域のロボット支援手術

P.259 掲載の参考文献
1) Nakamura H, Taniguchi Y : Robot-assisted thoracoscopic surgery : current status and prospects. Gen Thorac Cardiovasc Surg 61 : 127-132, 2013.
2) Rocha Junior E, Terra RM : Robotic lung resection : a narrative review of the current role on primary lung cancer treatment. J Thorac Dis 14 : 5039-5055, 2022.
3) Zhang J, Feng Q, Huang Y, et al : Updated Evaluation of Robotic- and Video-Assisted Thoracoscopic Lobectomy or Segmentectomy for Lung Cancer : A Systematic Review and Meta-Analysis. Front Oncol 12 : 853530, 2022.
4) Kent MS, Hartwig MG, Vallieres E, et al : Pulmonary Open, Robotic, and Thoracoscopic Lobectomy(PORTaL) Study : An Analysis of 5721 Cases. Ann Surg 277 : 528-533, 2023.
5) Veronesi G, Abbas AE, Muriana P, et al : Perioperative Outcome of Robotic Approach Versus Manual Videothoracoscopic Major Resection in Patients Affected by Early Lung Cancer : Results of a Randomized Multicentric Study(ROMAN Study). Front Oncol 11 : 726408, 2021.
6) Jin R, Zheng Y, Yuan Y, et al : Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy : Short-term Results of a Randomized Clinical Trial(RVlob Trial). Ann Surg 275 : 295-302, 2022.
7) Huang J, Li C, Li H, et al : Robot-assisted thoracoscopic surgery versus thoracotomy for c-N2 stage NSCLC : short-term outcomes of a randomized trial. Transl Lung Cancer Res 8 : 951-958, 2019.
8) Huang J, Tian Y, Li C, et al : Robotic-assisted thoracic surgery reduces perioperative complications and achieves a similar long-term survival profile as posterolateral thoracotomy in clinical N2 stage non-small cell lung cancer patients : a multicenter, randomized, controlled trial. Transl Lung Cancer Res 10 : 4281-4292, 2021.
9) Nakamura H, Suda T, Ikeda N, et al : Initial results of robot-assisted thoracoscopic surgery in Japan. Gen Thorac Cardiovasc Surg 62 : 720-725, 2014.
10) Haruki T, Kubouchi Y, Takagi Y, et al : Comparison of medium-term survival outcomes between robot-assisted thoracoscopic surgery and video-assisted thoracoscopic surgery in treating primary lung cancer. Gen Thorac Cardiovasc Surg 68 : 984-992, 2020.
11) Shen C, Li J, Li J, et al : Robot-assisted thoracic surgery versus video-assisted thoracic surgery for treatment of patients with thymoma : A systematic review and meta-analysis. Thorac Cancer 13 : 151-161, 2022.
12) Kneuertz PJ, Kamel MK, Stiles BM, et al : Robotic Thymectomy Is Feasible for Large Thymomas : A Propensity-Matched Comparison. Ann Thorac Surg 104 : 1673-1678, 2017.
13) Cao C, Cerfolio RJ, Louie BE, et al : Incidence, Management, and Outcomes of Intraoperative Catastrophes During Robotic Pulmonary Resection. Ann Thorac Surg 108 : 1498-1504, 2019.
14) Mattioni G, Palleschi A, Mendogni P, et al : Approaches and outcomes of Robotic-Assisted Thoracic Surgery(RATS) for lung cancer : a narrative review. J Robot Surg 17 : 797-809, 2023.
15) Gonzalez-Rivas D, Bosinceanu M, Motas N, et al : Uniportal robotic-assisted thoracic surgery for lung resections. Eur J Cardiothorac Surg 62 : ezac410, 2022.
P.263 掲載の参考文献
1) 肺癌診療ガイドライン-悪性胸膜中皮腫・胸腺腫瘍含む2022年版(日本肺癌学会 編), p446, 金原出版, 2022.
2) Inoue M, Yamamoto H, Okada Y, et al : Perioperative outcomes of minimally invasive surgery for large malignant thymic epithelial tumors and for total thymectomy. Surg Today 53 : 1089-1099, 2023.
3) 神崎正人 : 呼吸器外科ロボット手術の現状. 東京女子医科大学雑誌 91 : 102-108, 2021.
4) Xu JX, Qian K, Deng Y, et al : Complications of robot-assisted thymectomy : A single-arm meta-analysis and systematic review. Int J Med Robot 17 : e2333, 2021.
5) Suda T, Nagano H, Kawai H, et al : Subxiphoid Robot-Assisted Thymectomy with vascular prosthetic replacement. Semin Thorac Cardiovasc Surg 32 : 1133-1134, 2020.
6) Hashimoto K, Sakamaki H : The technical aspects of a midline robotic thymectomy. JTCVS Tech 4 : 368-370, 2020.
7) Li XK, Xu Y, Cong ZZ, et al : Comparison of the progression-free survival between robot-assisted thymectomy and video-assisted thymectomy for thymic epithelial tumors : a propensity score matching study. J Thorac Dis 12 : 4033-4043, 2020.
8) Meacci E, Nachira D, Congedo MT, et al : Learning Curve of Robot-Assisted Thymectomy : Single Surgeon's 7-Year Experience. Front Surg 9 : 860899, 2022.
9) Yang B, Chen R, Li C, et al : Initial experience with robotic-assisted thoracic surgery for superior mediastinal masses. Front Surg 9 : 1043525, 2022.
10) Wang F, Zhang H, Qiu G, et al : Robot-assisted thoracic surgery for apex-located neurogenic tumors. Asian J Surg 45 : 662-663, 2022.
11) Shidei H, Maeda H, Isaka T, et al : Mediastinal paraganglioma successfully resected by robot-assisted thoracoscopic surgery with en bloc chest wall resection : a case report. BMC Surg 20 : 45, 2020.
12) Fukui M, Watanabe Y, Matsunaga T, et al : Port placement in robotic thoracic surgery for inferior mediastinal tumors. Ann Thorac Surg 113 : e145-e148, 2022.
13) Mitsuboshi S, Maeda H, Kanzaki M : Application of pelvic-style docking in robotic surgery for lower-middle mediastinal tumors. Asian Cardiovasc Thorac Ann 29 : 440-442, 2021.
14) Okazaki M, Takigawa T, Suzawa K, et al : Robot-assisted intrathoracic procedure for dumbbell tumour in the prone position. Interact Cardiovasc Thorac Surg 33 : 643-645, 2021.
15) 中村廣繁, 春木朋広, 窪内康晃, ほか : ロボット支援下手術の現状と展望<肺・縦隔>. 日本外科学会雑誌 123 : 546-552, 2022.
P.270 掲載の参考文献
1) Chen-Yoshikawa TF, Fukui T, Nakamura S, et al : Current trends in thoracic surgery. Nagoya J Med Sci 82 : 161-174, 2020.
2) 須田 隆 : 胸腺摘出術 : 剣状突起下アプローチ. 呼吸器外科ロボット支援手術実践マニュアル(日本呼吸器外科学会 呼吸器外科ロボット支援手術検討部会 編), p87-97, メジカルビュー社, 2019.
3) 縦隔疾患に対する手術手技を学ぶ. 呼吸器外科ロボット支援手術~達人への道~(中村廣繁 編著/春木朋広 著), p50-57, メジカルビュー社, 2023.
4) Park JH, Na KJ, Kang CH, et al : Robotic subxiphoid thymectomy versus lateral thymectomy : a propensity score-matched comparison. Eur J Cardiothorac Surg 62 : ezac288, 2022.
5) 中村彰太, 中西慶太, 門松由佳, ほか : 重症筋無力症に対する両側アプローチによるロボット支援下拡大胸腺全摘の術後成績. 胸部外科 76 : 523-527, 2023.
6) Ruckert JC, Swierzy M, Ismail M : Comparison of robotic and nonrobotic thoracoscopic thymectomy : a cohort study. J Thorac Cardiovasc Surg 141 : 673-677, 2011.
7) Marulli G, Rea F, Melfi F, et al : Robot-aided thoracoscopic thymectomy for early-stage thymoma : a multicenter European study. J Thorac Cardiovasc Surg 144 : 1125-1130, 2012.
8) Suda T, Kaneda S, Hachimaru A, et al : Thymectomy via a subxiphoid approach : single-port and robot-assisted. J Thorac Dis 8 : S265-S271, 2016.
9) Shimomura M, Ishihara S, Okada S, et al : Robotic subxiphoid-optical thymectomy. Interact Cardiovasc Thorac Surg 35 : ivac104, 2022.
10) Wolfe GI, Kaminski HJ, Aban IB, et al : Randomized Trial of Thymectomy in Myasthenia Gravis. N Engl J Med 375 : 511-522, 2016.
11) Goldstein SD, Yang SC : Assessment of robotic thymectomy using the Myasthenia Gravis Foundation of America Guidelines. Ann Thorac Surg 89 : 1080-1086, 2010.
12) Rea F, Marulli G, Bortolotti L, et al : Experience with the "da Vinci" robotic system for thymectomy in patients with myasthenia gravis : report of 33 cases. Ann Thorac Surg 81 : 455-459, 2006.
13) Cakar F, Werner P, Augustin F, et al : A comparison of outcomes after robotic open extended thymectomy for myasthenia gravis. Eur J Cardiothorac Surg 31 : 501-505, 2007.
14) Zahid I, Sharif S, Routledge T, et al : Video-assisted thoracoscopic surgery or transsternal thymectomy in the treatment of myasthenia gravis? Interact Cardiovasc Thorac Surg 12 : 40-46, 2011.
15) Kawaguchi K, Fukui T, Nakamura S, et al : A bilateral approach to extended thymectomy using the da Vinci Surgical System for patients with myasthenia gravis. Surg Today 48 : 195-199, 2018.
P.277 掲載の参考文献
1) Jin R, Zheng Y, Yuan Y, et al : Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy : Short-term Results of a Randomized Clinical Trial(RVlob Trial). Ann Surg 275 : 295-302, 2022.
2) Veronesi G, Abbas AE, Muriana P, et al : Perioperative Outcome of Robotic Approach Versus Manual Videothoracoscopic Major Resection in Patients Affected by Early Lung Cancer : Results of a Randomized Multicentric Study(ROMAN Study). Front Oncol 11 : 726408, 2021.
3) Zhang J, Feng Q, Huang Y, et al : Updated Evaluation of Robotic- and Video-Assisted Thoracoscopic Lobectomy or Segmentectomy for Lung Cancer : A Systematic Review and Meta-Analysis. Front Oncol 12 : 853530, 2022.
4) Ma J, Li X, Zhao S, et al : Robot-assisted thoracic surgery versus video-assisted thoracic surgery for lung lobectomy or segmentectomy in patients with non-small cell lung cancer : a meta-analysis. BMC Cancer 21 : 498, 2021.
5) Ramadan OI, Wei B, Cerfolio RJ : Robotic surgery for lung resections-total port approach : advantages and disadvantages. J Vis Surg 3 : 22, 2017.
6) Dylewski MR, Ohaeto AC, Pereira JF : Pulmonary resection using a total endoscopic robotic video-assisted approach. Semin Thorac Cardiovasc Surg 23 : 36-42, 2011.
7) Sakakura N, Nakada T, Shirai S, et al : Robotic open-thoracotomy-view approach using vertical port placement and confronting monitor setting. Interact Cardiovasc Thorac Surg 33 : 60-67, 2021.
8) Gonzalez-Rivas D, Manolache V, Bosinceanu ML, et al : Uniportal pure robotic-assisted thoracic surgery-technical aspects, tips and tricks. Ann Transl Med 11 : 362, 2023.
9) Cheng C, Tagkalos E, Wu CF, et al : Single-port robotic right upper lobe lobectomy : A case report. JTCVS Tech 20 : 162-165, 2023.
P.283 掲載の参考文献
1) Saji H, Okada M, Tsuboi M, et al : Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer(JCOG0802/WJOG4607L) : a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 399 : 1607-1617, 2022.
2) Aokage K, Suzuki K, Saji H, et al : Segmentectomy for ground-glass-dominant lung cancer with a tumour diameter of 3 cm or less including ground-glass opacity(JCOG1211) : a multicentre, single-arm, confirmatory, phase 3 trial. Lancet Respir Med 11 : 540-549, 2023.
3) Altorki N, Wang X, Kozono D, et al : Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer. N Engl J Med 388 : 489-498, 2023.
4) Haruki T, Kubouchi Y, Kidokoro Y, et al : A comparative study of robot-assisted thoracoscopic surgery and conventional approaches for short-term outcomes of anatomical segmentectomy. Gen Thorac Cardiovasc Surg, 2023.(DOI : 10. 1007/s11748-023-01983-y)
5) Kneuertz PJ, Abdel-Rasoul M, D'Souza DM, et al : Segmentectomy for clinical stage I non-small cell lung cancer : National benchmarks for nodal staging and outcomes by operative approach. Cancer 128 : 1483-1492, 2022.
6) Haruki T, Nakamura H : Surgical simulation in robot-assisted thoracoscopic surgery : future strategy. Video-assist Thorac Surg 3 : 44, 2018.
7) Geraci TC, Ferrari-Light D, Kent A, et al : Technique, Outcomes With Navigational Bronchoscopy Using Indocyanine Green for Robotic Segmentectomy. Ann Thorac Surg 108 : 363-369, 2019.
P.289 掲載の参考文献
1) Saji H, Okada M, Tsuboi M, et al : Segmentectomy versus lobectomy in small-sized peripheral non-small-cell lung cancer(JCOG0802/WJOG4607L) : a multicentre, open-label, phase 3, randomised, controlled, non-inferiority trial. Lancet 399 : 1607-1617, 2022.
2) Altorki N, Wang X, Kozono D, et al : Lobar or Sublobar Resection for Peripheral Stage IA Non-Small-Cell Lung Cancer. N Engl J Med 388 : 489-498, 2023.
3) 肺癌診療ガイドライン 2023年版(日本肺癌学会 編), 2023.
4) Dylewski MR, Ohaeto AC, Pereira JF : Pulmonary resection using a total endoscopic robotic video-assisted approach. Semin Thorac Cardiovasc Surg 23 : 36-42, 2011.
5) Sato M, Omasa M, Chen F, et al : Use of virtual assisted lung mapping(VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J Thorac Cardiovasc Surg 147 : 1813-1819, 2014.
6) Kojima F, Sato T, Takahata H, et al : A novel surgical marking system for small peripheral lung nodules based on radio frequency identification technology : Feasibility study in a canine model. J Thorac Cardiovasc Surg 147 : 1384-1389, 2014.
7) Iwata H, Shirahashi K, Mizuno Y, et al : Surgical technique of lung segmental resection with two intersegmental planes. Interact Cardiovasc Thorac Surg 16 : 423-425, 2013.
8) Yazawa T, Igai H, Numajiri K, et al : Comparison of stapler and electrocautery for division of the intersegmental plane in lung segmentectomy. J Thorac Dis 13 : 6331-6342, 2021.
9) Matsumoto M, Shirahashi K, Yamamoto H, et al : Division of the intersegmental plane using electrocautery for segmentectomy in clinical stage I non-small cell lung cancer. J Thorac Dis 10 : S1215-S1221, 2018.
10) Zhang J, Feng Q, Huang Y, et al : Updated Evaluation of Robotic- and Video-Assisted Thoracoscopic Lobectomy or Segmentectomy for Lung Cancer : A Systematic Review and Meta-Analysis. Front Oncol 12 : 853530, 2022.
11) Bulgarelli Maqueda L, Garcia-Perez A, Minasyan A, et al : Uniportal VATS for non-small cell lung cancer. Gen Thorac Cardiovasc Surg 68 : 707-715, 2020.
12) Gonzalez-Rivas D, Manolache V, Bosinceanu ML, et al : Uniportal pure robotic-assisted thoracic surgery-technical aspects, tips and tricks. Ann Transl Med 11 : 362, 2023.

V 婦人科領域のロボット支援手術

P.297 掲載の参考文献
1) Komatsu H, Hiraike O, Fukuhara R, et al : Is there a need for a technical certification system for gynecological robotic surgery? Questionnaire survey of members of the Japan Society of Gynecologic and Obstetric Endoscopy and Minimally Invasive Therapy. J Robot Surg 17 : 1125-1131, 2023.
P.303 掲載の参考文献
1) 小林裕明 : ポート位置の設定, トロカーの挿入・装置. OGS(Obstetric and Gynecologic Surgery) NOW 21 婦人科ロボット支援手術 その準備と実践, p42-47, メジカルビュー社, 2015.
2) Togami S, Kobayashi H, Tokudome A, et al : The first report of surgery for gynecological diseases using the hinotori(TM) surgical robot system. Jpn J Clin Oncol 53 : 1034-1037, 2023.
3) 小林裕明 : ロボット手術に用いる器具と基本操作法. OGS(Obstetric and Gynecologic Surgery) NOW 21 婦人科ロボット支援手術 その準備と実践, p26-35, メジカルビュー社, 2015.
4) 小林裕明 : 単純子宮全摘出術 (3)ロボット手術. OGS(Obstetric and Gynecologic Surgery) NOW basic 4 明日からできる良性腫瘍の手術 初心者と指導者のために, p102-111, メジカルビュー社, 2020.
P.309 掲載の参考文献
1) 西澤春紀, 廣田 穰, 安江 朗, ほか : 婦人科ロボット支援手術コンパクトマニュアル 良性疾患の子宮全摘術. 産科と婦人科 87 : 293-298, 2020.
2) 西澤春紀 : 当施設における婦人科疾患に対するロボット手術の現状と手技の工夫. 東海産婦人科内視鏡手術研究会雑誌 9 : 38-43, 2021.
3) 廣田 穰, 小川千紗, 本多真澄, ほか : 婦人科良性疾患手術でのトロカール配置-単孔からロボット支援下手術まで. 東海産婦人科内視鏡手術研究会雑誌 3 : 39-46, 2015.
4) 廣田 穰, ほか : ロボット支援下腹腔鏡下子宮亜全摘術. OGS NOW No. 21 婦人科ロボット支援手術その準備と実践(平松祐司, 小西郁生, 櫻木範明, ほか編), p52-59, メディカルビュー社, 2015.
5) 宇山一朗, 金谷誠一郎, 石田善敬, ほか : ロボット手術におけるエネルギーデバイスの使用方法のコツ. 消化器外科 35 : 465-471, 2012.
6) Suda K, Man-I M, Ishida Y, et al : Potential advantages of robotic radical gastrectomy for gastric adenocarcinoma in comparison with conventional laparoscopic approach : a single institutional retrospective comparative cohort study. Surg Endosc 29 : 673-685, 2015.
7) 西澤春紀 : 腹腔鏡とロボット手術の相違点. 産婦の実際 69 : 337-342, 2020.
8) Lawrie TA, Liu H, Lu D, et al : Robot-assisted surgery in gynaecology. Cochrane Database Syst Rev 4 : CD011422, 2019.
9) Davila HH, Gallo T, Bruce L, et al : Robotic and laparoendoscopic single-site utero-sacral ligament suspension for apical vaginal prolapse : evaluation of our technique and perioperative outcomes. J Robot Surg 11 : 171-177, 2017.
10) Gardella B, Dominoni M, Gritti A, et al : Comparison between Robotic Single-Site and Laparoendoscopic Single-Site Hysterectomy : Multicentric Analysis of Surgical Outcomes. Medicina(Kaunas) 59 : 122, 2023.
11) Noh JJ, Jeon JE, Jung JH, et al : Feasibility and Surgical Outcomes of Hybrid Robotic Single-Site Hysterectomy Compared with Single-Port Access Total Laparoscopic Hysterectomy. J Pers Med 13 : 1178, 2023.
12) Lim PC, Kang E, Park DH : A comparative detail analysis of the learning curve and surgical outcome for robotic hysterectomy with lymphadenectomy versus laparoscopic hysterectomy with lymphadenectomy in treatment of endometrial cancer : a case-matched controlled study of the first one hundred twenty two patients. Gynecol Oncol 120 : 413-418, 2011.
P.315 掲載の参考文献
1) 日本産科婦人科学会 : 「婦人科領域におけるロボット手術に関する指針」の改訂について, 2022年6月25日, 2022年12月12日一部改訂. [https://www.jsog.or.jp/modules/committee/index.php?content_id=246]
P.320 掲載の参考文献
1) Walker JL, Piedmonte MR, Spirtos NM, et al : Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer : Gynecologic Oncology Group Study LAP2. J Clin Oncol 27 : 5331-5336, 2009.
2) Wright JD, Burke WM, Tergas AI, et al : Comparative Effectiveness of Minimally Invasive Hysterectomy for Endometrial Cancer. J Clin Oncol 34 : 1087-1096, 2016.
3) Bixel K, Barrington DA, Vetter MH, et al : Determinants of Surgical Approach and Survival Among Women with Endometrial Carcinoma. J Minim Invasive Gynecol 29 : 219-230, 2022.
4) Borgfeldt C, Holmberg E, Marcickiewicz J, et al : Survival in endometrial cancer in relation to minimally invasive surgery or open surgery-a Swedish Gynecologic Cancer Group(SweGCG) study. BMC Cancer 21 : 658, 2021.
5) Wang J, Li X, Wu H, et al : A Meta-Analysis of Robotic Surgery in Endometrial Cancer : Comparison with Laparoscopy and Laparotomy. Dis Markers 2020 : 2503753, 2020.
6) Salehi S, Avall-Lundqvist E, Legerstam B, et al : Robot-assisted laparoscopy versus laparotomy for infrarenal paraaortic lymphadenectomy in women with high-risk endometrial cancer : A randomised controlled trial. Eur J Cancer 79 : 81-89, 2017.
7) Corrado G, Vizza E, Cela V, et al : Laparoscopic versus robotic hysterectomy in obese and extremely obese patients with endometrial cancer : A multi-institutional analysis. Eur J Surg Oncol 44 : 1935-1941, 2018.
8) Cusimano MC, Simpson AN, Dossa F, et al : Laparoscopic and robotic hysterectomy in endometrial cancer patients with obesity : a systematic review and meta-analysis of conversions and complications. Am J Obstet Gynecol 221 : 410-428. e19, 2019.
9) Gracia M, Garcia-Santos J, Ramirez M, et al : Value of robotic surgery in endometrial cancer by body mass index. Int J Gynaecol Obstet 150 : 398-405, 2020.
P.325 掲載の参考文献
1) Walker JL, Piedmonte MR, Spirtos NM, et al : Laparoscopy compared with laparotomy for comprehensive surgical staging of uterine cancer : Gynecologic Oncology Group Study LAP2. J Clin Oncol 27 : 5331-5336, 2009.
2) Handa VL, Le LV : Te Linde's Operative Gynecology, 12th ed, Wolters Kluwer, 2001 Market Street, Philadelphia, 2019.
3) Yoshida K, Kondo E, Nimura R, et al : Laparoscopic Versus Robotic Hysterectomy in Obese Patients With Early-stage Endometrial Cancer : A Single-centre Analysis. Anticancer Res 41 : 4163-4167, 2021.
4) Deimling TA, Eldridge JL, Riley KA, et al : Randomized controlled trial comparing operative times between standard ad robot-assisted laparoscopic hysterectomy. Int J Gynecol Obstet 136 : 64-69, 2017.
5) Liu H, Cao Y, Li L, et al : Effectiveness of robotic surgery for endometrial cancer : a systematic review and meta-analysis. Arch Gynecol Obstet 305 : 837-850, 2022.
6) Lightfoot MDS, Felix AS, Bishop EE, et al : Who will be readmitted? Evaluation of the laparoscopic hysterectomy readmission score in a gynecologic oncology population undergoing robotic-assisted hysterectomy. Gynecol Oncol 164 : 628-638, 2022.
7) Jennings AJ, Spencer RJ, Medlin E, et al : Predictors of 30-day readmission and impact of same-day discharge in laparoscopic hysterectomy. Am J Obstet Gynecol 213 : 344. e1-344. e7, 2015.
8) Tymon-Rosario JR, Miller DT, Novetsky AP, et al : Risk factors associated with delayed discharge following robotic assisted surgery for gynecologic malignancy. Gynecol Oncol 157 : 723-728, 2020.
9) Davidson BA, Weber JM, Monuzsko KA, et al : Evaluation of Surgical Morbidity After Hysterectomy During an Obesity Epidemic. Obstet Gynecol 139 : 589-596, 2022.
10) Hwang JH, Lim MC, Joung JY, et al : Urologic complications of laparoscopic radical hysterectomy and lymphadenectomy. Int Urogynecol J 23 : 1605-1611, 2012.
11) Lynch TH, Martinez-Pineiro L, Plas E, et al : EAU guidelines on urological trauma. Eur Urol 47 : 1-15, 2005.
12) Okumura A, Kondo E, Nii M, et al : Comparison of surgical outcomes between robot-assisted laparoscopic hysterectomy and conventional total laparoscopic hysterectomy in gynecologic benign disease : a single-center cohort study. J Robot Surg 17 : 2221-2228, 2023.
13) Uccella S, Zorzato PC, Kho RM : Incidence and Prevention of Vaginal Cuff Dehiscence after Laparoscopic and Robotic Hysterectomy : A Systematic Review and Meta-analysis. J Minim Invasive Gynecol 28 : 710-720, 2021.
14) Clark LH, Soliman PT, Odetto D, et al : Incidence of trocar site herniation following robotic gynecologic surgery. Gynecol Oncol 131 : 400-403, 2013.
15) Kondo E, Kubo-Kaneda M, Mori K, et al : Efficacy of a portable interface pressure sensor for robotic surgery in preventing compartment syndrome. Asian J Surg 46 : 3575-3580, 2023.

VI その他の領域のロボット支援手術

P.333 掲載の参考文献
1) Watanabe G : Successful intracardiac robotic surgery : initial results from Japan. Innovations(Phila) 5 : 48-50, 2010.
2) Tarui T, Ishikawa N, Horikawa T, et al : First Major Clinical Outcomes of Totally Endoscopic Robotic Mitral Valve Repair in Japan-A Single-Center Experience. Circ J 83 : 1668-1673, 2019.
3) Ishikawa N, Watanabe G, Tarui T : No-touch aorta robot-assisted atrial septal defect repair via two ports. Interact Cardiovasc Thorac Surg 83 : 721-724, 2018.
6) Ishikawa N, Watanabe G : Robotic mitral valve repair in Japan and keyhole cardiac surgery in NewHeart Watanabe Institute. Ann Cardiothorac Surg 11 : 538-539, 2022.
7) 渡邊 剛, 石川紀彦 : 本邦におけるロボット支援下心臓手術の創始と現況. 胸部外科 75 : 489-495, 2022.
8) Ishikawa N, Watanabe G, Koakutsu T, et al : Robotic Surgery for Triple Valve Insufficiency : A Case Report. Innovations(Phila) 18 : 380-383, 2023.
9) Watanabe G, Ishikawa N : Use of barbed suture in robot-assisted mitral valvuloplasty. Ann Thorac Surg 99 : 343-345, 2015.
10) Watanabe G, Ishikawa N : Alternative method for cardioplegia delivery during totally endoscopic robotic intracardiac surgery. Ann Thorac Surg 98 : 1129-1131, 2014.
11) Ishikawa N, Watanabe G : Figure 4 Knot : Simple Tying Technique for Robotic and Endoscopic Sutures. Innovations(Phila) 12 : 152-153, 2017.
12) Seguchi R, Ishikawa N, Tarui T, et al : A Novel Shape-Memory Monofilament Suture for Minimally Invasive Thoracoscopic Cardiac Surgery. Innovations(Phila) 14 : 55-59, 2019.
13) Ishikawa N, Watanabe G, Tomita S, et al : Japan's first robot-assisted totally endoscopic mitral valve repair with a novel atrial retractor. Artif Organs 33 : 864-866, 2009.
14) Miyata K, Watanabe G, Shigematsu S, et al : A routine de-airing method for total endoscopic robot-assisted mitral valve repair. Gen Thorac Cardiovasc Surg 71 : 145-148, 2023.
P.338 掲載の参考文献
1) Nishi H, Miyata H, Motomura N, et al : Propensity-matched analysis of minimally invasive mitral valve repair using a nationwide surgical database. Surg Today 45 : 1144-1152, 2015.
2) 高本眞一 : 患者中心の医療を病院でいかに行うか 医療事故の判断. 日本心臓血管外科学会雑誌 51 : 259-264, 2022.
3) Fujita T, Kakuta T, Kawamoto N, et al : Benefits of robotically-assisted surgery for complex mitral valve repair. Interact Cardiovasc Thorac Surg 32 : 417-425, 2021.
4) Mori M, Parsons N, Krane M, et al : Robotic Mitral Valve Repair for Degenerative Mitral Regurgitation. Ann Thorac Surg, 2023. (DOI : 10.1016/j.athoracsur.2023.07.047)
P.344 掲載の参考文献
1) Woo R, Le D, Albanese CT, et al : Robot-assisted laparoscopic resection of a type I choledochal cyst in a child. J Laparoendosc Adv Surg Tech A 16 : 179-183, 2006.
2) Koga H, Okawada M, Doi T, et al : Refining the intraoperative measurement of the distal intrapancreatic part of a choledochal cyst during laparoscopic repair allows near total excision. Pediatr Surg Int 31 : 991-994, 2015.
3) Miyano G, Koga H, Shimotakahara A, et al : Intralaparoscopic endoscopy : its value during laparoscopic repair of choledochal cyst. Pediatr Surg Int 27 : 463-466, 2011.
4) Yamataka A, Kobayashi H, Shimotakahara A, et al : Recommendations for preventing complications related to Roux-en-Y hepatico-jejunostomy performed during excision of choledochal cyst in children. J Pediatr Surg 38 : 1830-1832, 2003.
5) Koga H, Ochi T, Murakami H, et al : Everting the Jejunal Mucosa Ensures a Secure Hepaticojejunostomy Anastomosis During Laparoscopic Repair of Choledochal Cyst in Children. J Laparoendosc Adv Surg Tech A 29 : 1345-1348, 2019.
6) Miyano T, Yamataka A, Kato Y, et al : Choledochal cysts : special emphasis on the usefulness of intraoperative endoscopy. J Pediatr Surg 30 : 482-484, 1995.
7) Takahashi T, Shimotakahara A, Okazaki T, et al : Intraoperative endoscopy during choledochal cyst excision : extended long-term follow-up compared with recent cases. J Pediatr Surg 45 : 379-382, 2010.
8) Yamada S, Koga H, Seo S, et al : Comparison of robotic assistance and laparoscopy for pediatric choledochal cyst : advantages of robotic assistance. Pediatr Surg Int 40 : 1, 2023.
P.350 掲載の参考文献
1) Tateya I, Shiotani A, Satou Y, et al : Transoral surgery for laryngo-pharyngeal cancer-The paradigm shift of the head and cancer treatment. Auris Nasus Larynx 43 : 21-32, 2016.
2) 楯谷一郎 : 耳鼻咽喉科・頭頸部外科領域. 日本医師会雑誌 149 : 1778-1781, 2021.
3) Steiner W : Experience in endoscopic laser surgery of malignant tumours of the upper aero-digestive tract. Adv Otorhinolaryngol 39 : 135-144, 1988.
4) Nguyen AT, Luu M, Clair JM, et al : Comparison of Survival After Transoral Robotic Surgery vs Nonrobotic Surgery in Patients With Early-Stage Oropharyngeal Squamous Cell Carcinoma. JAMA 6 : 1555-1562, 2020.
5) Richmon JD, Quon H, Gourin CG : The effect of transoral robotic surgery on short-term outcomes and cost of care after oropharyngeal cancer surgery. Laryngoscope 124 : 165-171, 2014.
6) Cracchiolo JR, Baxi SS, Morris LG, et al : Increase in primary surgical treatment of T1 and T2 oropharyngeal squamous cell carcinoma and rates of adverse pathologic features : National Cancer Data Base. Cancer 122 : 1523-1532, 2016.
7) 日本頭頸部外科学会 頭頸部ロボット支援手術運営委員会 : 耳鼻咽喉科・頭頸部外科におけるロボット支援手術の実施に関するご案内(2023年4月3日更新). [https://www.jshns.org/modules/about/index.php?content_id=10]
8) Sano D, Shimizu A, Tateya I, et al : Treatment outcomes of transoral robotic and non-robotic surgeries to treat oropharyngeal, hypopharyngeal, and supraglottic squamous cell carcinoma : A multi-center retrospective observational study in Japan. Auris Nasus Larynx 48 : 502-510, 2021.
9) Sano D, Tateya I, Hori R, et al : Transoral robotic surgery(TORS) in Japan : procedures, advantages and current status. Jpn J Clin Oncol, 2023. (DOI : 10. 1093/jjco/hyad168)
10) Tateya I, Koh YW, Tsang RK, et al : Flexible next-generation robotic surgical system for transoral endoscopic hypopharyngectomy : A comparative preclinical study. Head Neck 40 : 16-23, 2018.
P.357 掲載の参考文献
1) Vergeldt TF, Weemhoff M, IntHout J, et al : Risk factors for pelvic organ prolapse and its recurrence : a systematic review. Int Urogynecol J 26 : 1559-1573, 2015.
2) Iglesia CB, Smithling KR : Pelvic Organ Prolapse. Am Fam Physician 96 : 179-185, 2017.
3) Illiano E, Ditonno P, Giannitsas K, et al : Robot-assisted Vs Laparoscopic Sacrocolpopexy for High-stage Pelvic Organ Prolapse : A Prospective, Randomized, Single-center Study. Urology 134 : 116-123, 2019.
4) 産婦人科診療ガイドライン-婦人科外来編 2020(日本産科婦人科学会, 日本産婦人科医会 編), 日本産科婦人科学会事務局, 2020.
5) 腹腔鏡下仙骨腟固定術(laparoscopic sacrocolpopexy ; LSC)を安全に施行するための指針(2021年6月改訂), 日本骨盤臓器脱手術学会. [https://jpops.jp/pdf/2021-lsc-shishin-ver2.pdf]
6) 竹中政史, 佐々木ひと美, 全並賢二, ほか : 当院におけるロボット支援下仙骨腟固定術の経験. Japanese Journal of Endourology 34 : 231-236, 2021.
7) 佐々木ひと美, 市野 学, 竹中政史, ほか : ロボット支援下仙骨腟固定術(RASC). Japanese Journal of Endourology 34 : 90-95, 2021.
8) Yang J, He Y, Zhang X, et al : Robotic and laparoscopic sacrocolpopexy for pelvic organ prolapse : a systematic review and meta-analysis. Ann Transl Med 9 : 449, 2021.
9) Illiano E, Ditonno P, Giannitsas K, et al : Robot-assisted Vs Laparoscopic Sacrocolpopexy for High-stage Pelvic Organ Prolapse : A Prospective, Randomized, Single-center Study. Urology 134 : 116-123, 2019.
10) Anger JT, Mueller ER, Tarnay C, et al : Robotic compared with laparoscopic sacrocolpopexy : a randomized controlled trial. Obstet Gynecol 123 : 5-12, 2014.
11) Akl MN, Long JB, Giles DL, et al : Robotic-assisted sacrocolpopexy : technique and learning curve. Surg Endosc 23 : 2390-2394, 2009.
12) Geller EJ, Lin FC, Matthews CA : Analysis of robotic performance times to improve operative efficiency. J Minim Invasive Gynecol 20 : 43-48, 2013.
13) Seror J, Yates DR, Seringe E, et al : Prospective comparison of short-term functional outcomes obtained after pure laparoscopic and robot-assisted laparoscopic sacrocolpopexy. World J Urol 30 : 393-398, 2012.

VII 保険収載を目指すロボット支援手術の現況

P.365 掲載の参考文献
1) Takuya S, Yasuyuki F, Tairin U, et al : Preliminary results of robotic inguinal hernia repair following its introduction in a single-center trial. Ann Gastroenterol Surg 4 : 441-447, 2020.
2) Bittner R, Leibl BJ, Jager C, et al : TAPP-Stuttgart technique and result of a large single center series. J Minim Access Surg 2 : 155-159, 2006.
3) Shiroshita, H, Inomata, M, Akira, S, et al. Current Status of Endoscopic Surgery in Japan : The 15th National Survey of Endoscopic Surgery. Asian J Endosc Surg 15 : 415-426, 2022.
P.370 掲載の参考文献
1) Shimizu K, Akira S, Jasmi AY, et al : Video-assisted neck surgery : endoscopic resection of thyroid tumors with a very minimal neck wound. J Am Coll Surg 188 : 697-703, 1999.
2) Ikeda Y, Takami H, Sasaki Y, et al : Endoscopic neck surgery by the axillary approach. J Am Coll Surg 191 : 336-340, 2000.
3) Yamashita H, Watanabe S, Koike E, et al : Video-assisted thyroid lobectomy through a small wound in the submandibular area. Am J Surg 183 : 286-289, 2002.
4) Lombardi CP, Raffaelli M, Princi P, et al : Safety of video-assisted thyroidectomy versus conventional surgery. Head Neck 27 : 58-64, 2005.
5) Dobrinja C, Trevisan G, Makovac P, et al : Minimally invasive video-assisted thyroidectomy compared with conventional thyroidectomy in a general surgery department. Surg Endosc 23 : 2263-2267, 2009.
6) Sephton BM : Extracervical Approaches to Thyroid Surgery : Evolution and Review. Minim Invasive Surg 2019 : 5961690, 2019.
7) Liu P, Zhang Y, Qi X, et al : Unilateral Axilla-Bilateral Areola Approach for Thyroidectomy by da Vinci Robot : 500 Cases Treated by the Same Surgeon. J Cancer 10 : 3851-3859, 2019.
8) Kim MJ, Nam KH, Lee SG, et al : Yonsei Experience of 5000 Gasless Transaxillary Robotic Thyroidectomies. World J Surg 42 : 393-401, 2018.
9) Chang YW, Lee HY, Ji WB, et al : Detailed comparison of robotic and endoscopic transaxillary thyroidectomy. Asian J Surg 43 : 234-239, 2020.
10) Anuwong A, Sasanakietkul T, Jitpratoom P, et al : Transoral endoscopic thyroidectomy vestibular approach(TOETVA) : indications, techniques and results. Surg Endosc 32 : 456-465, 2018.
11) Ishikawa N, Kawaguchi M, Moriyama H, et al : First robot-assisted thyroidectomy in Japan performed using a standard da Vinci surgical system. Artif Organs 36 : 496-498, 2012.
12) Lee SG, Lee J, Kim MJ, et al : Long-term oncologic outcome of robotic versus open total thyroidectomy in PTC : a case-matched retrospective study. Surg Endosc 30 : 3474-3479, 2016.
13) Lee J, Chung WY : Robotic thyroidectomy and neck dissection : past, present, and future. Cancer J 19 : 151-161, 2013.
14) Sutton PA, Awad S, Perkins AC, et al : Comparison of lateral thermal spread using monopolar and bipolar diathermy, the Harmonic Scalpel and the Ligasure. Br J Surg 97 : 428-433, 2010.
15) Ishikawa N, Kawaguchi M, Moriyama H, et al : Robot-assisted thyroidectomy with novel camera-port retractor. Innovations(Phila) 8 : 384-388, 2013.
P.377 掲載の参考文献
1) Cantrell LA, Mendivil A, Gehrig PA, et al : Survival outcomes for women undergoing type III robotic radical hysterectomy for cervical cancer : a 3-year experience. Gynecol Oncol 117 : 260-265, 2010.
2) 小阪謙三, 寒河江悠介, 山西優紀夫, ほか : 当科における子宮頸癌に対するロボット支援下手術導入初期10例の検討-術中術後合併症と短期予後-. 日本産科婦人科内視鏡学会雑誌 35 : 60-67, 2019.
3) 藤堂幸治, 山崎博之, 嶋田知紗, ほか : 子宮頸癌T1b1または2a1, N0症例におけるロボット支援下広汎子宮全摘術の実施妥当性. 日本産科婦人科内視鏡学会雑誌 35 : 53-59, 2019.
4) Ramirez PT, Frumovitz M, Pareja R, et al : Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer. N Engl J Med 379 : 1895-1904, 2018.
5) Nitecki R, Ramirez PT, Frumovitz M, et al : Survival After Minimally Invasive vs Open Radical Hysterectomy for Early-Stage Cervical Cancer : A Systematic Review and Meta-analysis. JAMA Oncol 6 : 1019-1027, 2020.
6) Ohta T, Nagase S, Okui Y, et al : Surveillance of radical hysterectomy for early-stage cervical cancer in the early experienced period of minimally invasive surgery in Japan. Int J Clin Oncol 26 : 2318-2330, 2021.
7) Kohler C, Hertel H, Herrmann J, et al : Laparoscopic radical hysterectomy with transvaginal closure of vaginal cuff-a multicenter analysis. Int J Gynecol Cancer 29 : 845-850, 2019.
8) Kanao H, Matsuo K, Aoki Y, et al : Feasibility and outcome of total laparoscopic radical hysterectomy with no-look no-touch technique for FIGO IB1 cervical cancer. J Gynecol Oncol 30 : e71, 2019.
9) Chiva L, Zanagnolo V, Querleu D, et al : SUCCOR study : an international European cohort observational study comparing minimally invasive surgery versus open abdominal radical hysterectomy in patients with stage IB1 cervical cancer. Int J Gynecol Cancer 30 : 1269-1277, 2020.
10) Matsuo K, Shimada M, Yamaguchi S, et al : Association of Radical Hysterectomy Surgical Volume and Survival for Early-Stage Cervical Cancer. Obstet Gynecol 133 : 1086-1098, 2019.
11) Aviki EM, Chen L, Dessources K, et al : Impact of hospital volume on surgical management and outcomes for early-stage cervical cancer. Gynecol Oncol 157 : 508-513, 2020.
12) Kobayashi E, Nakatani E, Tanaka T, et al : Surgical skill and oncological outcome of laparoscopic radical hysterectomy : JGOG1081s-A1, an ancillary analysis of the Japanese Gynecologic Oncology Group Study JGOG1081. Gynecol Oncol 165 : 293-301, 2022.
13) Kanno K, Andou M, Yanai S, et al : Long-term oncological outcomes of minimally invasive radical hysterectomy for early-stage cervical cancer : A retrospective, single-institutional study in the wake of the LACC trial. J Obstet Gynaecol Res 45 : 2425-2434, 2019.
14) Jin YM, Liu SS, Chen J, et al : Robotic radical hysterectomy is superior to laparoscopic radical hysterectomy and open radical hysterectomy in the treatment of cervical cancer. PLoS One 13 : e0193033, 2018.
15) Oyama K, Kanno K, Kojima R, et al : Short-term outcomes of robotic-assisted versus conventional laparoscopic radical hysterectomy for early-stage cervical cancer : A single-center study. J Obstet Gynaecol Res 45 : 405-411, 2019.
P.385 掲載の参考文献
1) Gonzalez-Martinez J, Bulacio J, Thompson S, et al : Technique, Results, and Complications Related to Robot-Assisted Stereoelectroencephalography. Neurosurgery 78 : 169-180, 2016.
2) Goto T, Hongo K, Yako T, et al : The concept and feasibility of EXPERT : intelligent armrest using robotics technology. Neurosurgery 72(Suppl 1) : 39-42, 2013.
3) Goto T, Hongo K, Ogiwara T, et al : Intelligent Surgeon's Arm Supporting System iArmS in Microscopic Neurosurgery Utilizing Robotic Technology. World Neurosurg 119 : e661-665, 2018.
4) Sutherland GR, Latour I, Greer AD, et al : An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62 : 286-293, 2008.
5) Sutherland GR, Wolfsberger S, Lama S, et al : The evolution of neuroArm. Neurosurgery 72(Suppl 1) : 27-32, 2013.
6) Morita A, Sora S, Mitsuishi M, et al : Microsurgical robotic system for the deep surgical field : development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg 103 : 320-327, 2005.
7) Marinho MM, Harada K, Morita A, et al : SmartArm : Integration and validation of a versatile surgical robotic system for constrained workspaces. Int J Med Robot 16 : e2053, 2020.
8) Hongo K, Goto T, Miyahara T, et al : Telecontrolled micromanipulator system(NeuRobot) for minimally invasive neurosurgery. Acta Neurochir Suppl 98 : 63-66, 2006
P.390 掲載の参考文献
1) Honl M, Dierk O, Gauck C, et al : Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am 85 : 1470-1478, 2003.
2) Nawabi DH, Conditt MA, Ranawat AS, et al : Haptically guided robotic technology in total hip arthroplasty : a cadaveric investigation. Proc Inst Mech Eng H 227 : 302-309, 2013.
3) Tsai TY, Dimitriou D, Li JS, et al : Does haptic robot-assisted total hip arthroplasty better restore native acetabular and femoral anatomy? Int J Med Robot 12 : 288-295, 2016.
4) Nodzo SR, Chang CC, Carroll KM, et al : Intraoperative placement of total hip arthroplasty components with robotic-arm assisted technology correlates with postoperative implant position : a CT-based study. Bone Joint J 100-B : 1303-1309, 2018.
5) Domb BG, Redmond JM, Louis SS, et al : Accuracy of Component Positioning in 1980 Total Hip Arthroplasties : A Comparative Analysis by Surgical Technique and Mode of Guidance. J Arthroplasty 30 : 2208-2218, 2015.
6) Ando W, Takao M, Hamada H, et al : Comparison of the accuracy of the cup position and orientation in total hip arthroplasty for osteoarthritis secondary to developmental dysplasia of the hip between the Mako robotic arm-assisted system and computed tomography-based navigation. Int Orthop 45 : 1719-1725, 2021.
7) Bukowski BR, Anderson P, Khlopas A, et al : Improved Functional Outcomes with Robotic Compared with Manual Total Hip Arthroplasty. Surg Technol Int 29 : 303-308, 2016.
8) Han PF, Chen CL, Zhang ZL, et al : Robotics-assisted versus conventional manual approaches for total hip arthroplasty : A systematic review and meta-analysis of comparative studies. Int J Med Robot 15 : e1990, 2019.
9) Shibanuma N, Ishida K, Matsumoto T, et al : Early postoperative clinical recovery of robotic arm-assisted vs. image-based navigated Total hip Arthroplasty. BMC Musculoskelet Disord 22 : 314, 2021.
10) Hampp EL, Sodhi N, Scholl L, et al : Less iatrogenic soft-tissue damage utilizing robotic-assisted total knee arthroplasty when compared with a manual approach : A blinded assessment. Bone Joint Res 8 : 495-501, 2019.
11) Kayani B, Konan S, Ayuob A, et al : Robotic technology in total knee arthroplasty : a systematic review. EFORT Open Rev 4 : 611-617, 2019.
12) Ishida K, Shibanuma N, Hayashi S, et al : Robotic arm-assisted posterior-stabilised total knee arthroplasty reduces the amount of tibial bone resection thickness without increasing the rate of postoperative flexion contracture in varus knees in the short term : Comparison with image-free navigated total knee arthroplasty. Int J Med Robot 18 : e2370, 2022.
13) Marchand RC, Sodhi N, Khlopas A, et al : Patient Satisfaction Outcomes after Robotic Arm-Assisted Total Knee Arthroplasty : A Short-Term Evaluation. J Knee Surg 30 : 849-853, 2017.
14) Kayani B, Konan S, Tahmassebi J, et al : Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty : a prospective cohort study. Bone Joint J 100-B : 930-937, 2018.
15) Pearle AD, van der List JP, Lee L, et al : Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. Knee 24 : 419-428, 2017.

VIII 新規手術支援ロボット

P.399 掲載の参考文献
1) Fichtinger G, Troccaz J, Haidegger T : Image-Guided Interventional Robotics : Lost in Translation? Proceedings of the IEEE 110 : 932-950, 2022.
2) Nakadate R, Nakamura S, Moriyama T, et al : Gastric endoscopic submucosal dissection using novel 2.6-mm articulating devices : an ex vivo comparative and in vivo feasibility study. Endoscopy 47 : 820-824, 2015.
3) Okamoto Y, Nakadate R, Nakamura S, et al : Colorectal endoscopic submucosal dissection using novel articulating devices : a comparative study in a live porcine model. Surg Endosc 33 : 651-657, 2019.
4) Nakadate R, Iwasa T, Onogi S, et al : Surgical Robot for Intraluminal Access : An Ex Vivo Feasibility Study. Cyborg Bionic Syst 2020 : 8378025, 2020.
5) Fu Z, Jin Z, Zhang C, et al : The Future of Endoscopic Navigation : A Review of Advanced Endoscopic Vision Technology. IEEE Access 9 : 41144-41167, 2021.
6) Kobayashi S, Cho B, Mutaguchi J, et al : Surgical Navigation Improves Renal Parenchyma Volume Preservation in Robot-Assisted Partial Nephrectomy : A Propensity Score Matched Comparative Analysis. J Urol 204 : 149-156, 2020.
7) Long JA, Lee BH, Guillotreau J, et al : Real-time robotic transrectal ultrasound navigation during robotic radical prostatectomy : initial clinical experience. Urology 80 : 608-613, 2012.
8) Yip M, Salcudean S, Goldberg K, et al : Artificial intelligence meets medical robotics. Science 381 : 141-146, 2023.
9) Saeidi H, Opfermann JD, Kam M, et al : Autonomous robotic laparoscopic surgery for intestinal anastomosis. Sci Robot 7 : eabj2908, 2022.
10) Chiu ZY, Liao AZ, Richter F, et al : Markerless Suture Needle 6D Pose Tracking with Robust Uncertainty Estimation for Autonomous Minimally Invasive Robotic Surgery. in proc of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems 5286-5292, 2022.
11) 植村宗則, ほか : 医療機器から得られるデータの二次利用に関する倫理・法制・社会課題(ELSI)側面からの論点提起. 日本コンピュータ外科学会誌(accepted), 2023.
12) 中楯 龍 : 海外における手術ロボットの実用化の動向. 日本ロボット学会誌 39 : 213-217, 2021.
P.405 掲載の参考文献
1) Hinata N, Yamaguchi R, Kusuhara Y, et al : Hinotori Surgical Robot System, a novel robot-assisted surgical platform : Preclinical and clinical evaluation. Int J Urol 29 : 1213-1220, 2022.
2) Hinata N, Miyake H, Kurahashi T, et al : Novel telementoring system for robot-assisted radical prostatectomy : impact on the learning curve. Urology 83 : 1088-1092, 2014.
P.410 掲載の参考文献
2) 古川順也, 藤澤正人 : 国産手術支援ロボットの導入. 日本臨牀(増刊 : 臨床前立腺癌学) 81 : 221-225, 2023.
3) Hinata N, Yamaguchi R, Kusuhara Y, et al : Hinotori Surgical Robot System, a novel robot-assisted surgical platform : Preclinical and clinical evaluation. Int J Urol 29 : 1213-1220, 2022.
4) Dobbs RW, Halgrimson WR, Madueke I, et al : Single-port robot-assisted laparoscopic radical prostatectomy : initial experience and technique with the da Vinci SP platform. BJU Int 124 : 1022-1027, 2019.
5) Sarchi L, Mottaran A, Bravi CA, et al : Robot-assisted radical prostatectomy feasibility and setting with the Hugo(TM) robot-assisted surgery system. BJU Int 130 : 671-675, 2022.
6) Bravi CA, Paciotti M, Sarchi L, et al : Robot-assisted Radical Prostatectomy with the Novel Hugo Robotic System : Initial Experience and Optimal Surgical Set-up at a Tertiary Referral Robotic Center. Eur Urol 82 : 233-237, 2022.
P.415 掲載の参考文献
1) Hinata N, Yamaguchi R, Kusuhara Y, et al : Hinotori Surgical Robot System, a novel robot-assisted surgical platform : Preclinical and clinical evaluation. Int J Urol 29 : 1213-1220, 2022.
2) Motoyama D, Matsushita Y, Watanabe H, et al : Improved perioperative outcomes by early unclamping prior to renorrhaphy compared with conventional clamping during robot-assisted partial nephrectomy : a propensity score matching analysis. J Robot Surg 14 : 47-53, 2020.
3) Motoyama D, Sato R, Watanabe K, et al : Perioperative outcomes in patients undergoing robot-assisted partial nephrectomy : Comparative assessments between complex and non-complex renal tumors. Asian J Endosc Surg 14 : 379-385, 2021.
4) Miyake H, Motoyama D, Matsushita Y, et al : Initial Experience of Robot-Assisted Partial Nephrectomy Using Hinotori Surgical Robot System : Single Institutional Prospective Assessment of Perioperative Outcomes in 30 Cases. J Endourol 37 : 531-534, 2023.
5) Motoyama D, Matsushita Y, Watanabe H, et al : Perioperative outcomes of robot-assisted partial nephrectomy using hinotori versus da Vinci surgical robot system : a propensity score-matched analysis. J Robot Surg 17 : 2435-2440, 2023.
6) Miyake H, Motoyama D, Kawakami A, et al : Initial experience of robot-assisted radical nephrectomy in Japan : Single institutional study of 12 cases. Asian J Endosc Surg 15 : 162-167, 2022.
7) Motoyama D, Matsushita Y, Watanabe H, et al : Robot-assisted radical nephrectomy using novel surgical robot platform, hinotori : Report of initial series of 13 cases. Int J Urol, 2023. (DOI : 10. 1111/iju. 15292)
8) Motoyama D, Matsushita Y, Watanabe H, et al : Robot-assisted adrenalectomy using a hinotori surgical robot system : Report of first series of six cases. Asian J Endosc Surg 16 : 489-495, 2023.
P.421 掲載の参考文献
1) 藤澤正人, 日向信之 : 各領域におけるロボット支援手術 泌尿器科領域と国産手術支援ロボット開発. 日本医師会雑誌 149 : 1768-1772, 2021.
2) 田中 毅, 宇山一朗 : 国産手術支援ロボット vs da Vinci. 新DS NOW11あすへの膵胆道ロボット支援下手術(北川裕久, 白石憲男, 新田浩幸, ほか編), p11-20, メジカルビュー社, 2021.
3) 田中 毅, 須田康一, 中村謙一, ほか : 消化器外科領域における国産手術支援ロボット「hinotori(TM)」の現状と今後の展望. 臨床外科 76 : 898-904, 2021.
4) 中内雅也, 芹澤朗子, 田中 毅, ほか : hinotoriの特徴とトレーニングシステム. 臨床外科 78 : 916-920, 2023.
5) 一般社団法人日本内視鏡外科学会 : 消化器外科領域ロボット支援内視鏡手術導入に関する指針(改訂), 令和5年3月28日. [https://www.jses.or.jp/uploads/files/robot/shishin/guidelines_for_introduction_robot_assisted_surgery20230328.pdf]
6) Suda K, Nakauchi M, Inaba K, et al : Robotic surgery for upper gastrointestinal cancer : Current status and future perspectives. Dig Endosc 28 : 701-713, 2016.
7) 須田康一, 柴崎 晋, 宇山一朗 : 各領域におけるロボット支援手術 上部消化管外科領域. 日本医師会雑誌 149 : 1754-1758, 2021.
8) Nakauchi M, Suda K, Nakamura K, et al : Establishment of a new practical telesurgical platform using the hinotori(TM) Surgical Robot System : a preclinical study. Langenbecks Arch Surg 407 : 3783-3791, 2022.
P.428 掲載の参考文献
1) Nelson RJ, Chavali JSS, Yerram N, et al : Current status of robotic single-port surgery. Urol Ann 9 : 217-222, 2017.
3) Abou Zeinab M, Beksac AT, Ferguson E, et al : Single-port Extraperitoneal and Transperitoneal Radical Prostatectom : A Multi-Institutional Propensity-Score Matched Study. Urology 171 : 140-145, 2023.
4) Okhawere KE, Beksac AT, Wilson MP, et al : A Propensity-Matched Comparison of the Perioperative Outcomes Between Single-Port and Multi-Port Robotic Assisted Partial Nephrectomy : A Report from the Single Port Advanced Research Consortium(SPARC). J Endourol 36 : 1526-1531, 2022.
5) Steinberg RL, Johnson BA, Cadeddu JA : Ureteral Reconstruction using the DaVinci SP Robotic Platform : An Initial Case Series. J Endourol Case Rep 5 : 60-63, 2019.
6) Abou Zeinab M, Kaviani A, Ferguson E, et al : Single-port transvesical versus open simple prostatectomy : a perioperative comparative study. Prostate Cancer Prostatic Dis 26 : 538-542, 2023.
7) Bianco FM, Dreifuss NH, Chang B, et al : Robotic single-port surgery : Preliminary experience in general surgery. Int J Med Robot 18 : e2453, 2022.
8) Salem JF, Agarwal S, Schoonyoung H, et al : Initial clinical experience with Single-Port robotic(SP r)left colectomy using the SP surgical system : description of the technique. Surg Endosc 35 : 4022-4027, 2021.
9) Marks JH, Salem JF, Adams P, et al : SP rTaTME : initial clinical experience with single-port robotic transanal total mesorectal excision(SP rTaTME). Tech Coloproctol 25 : 721-726, 2021.
10) Go J, Ahn JH, Park JM, et al : Analysis of robot-assisted nipple-sparing mastectomy using the da Vinci SP system. J Surg Oncol 126 : 417-424, 2022.
11) Capozzi VA, Armano G, Rosati A, et al : The robotic single-port platform for gynecologic surgery : a systematic review of the literature and meta-analysis. Updates Surg 73 : 1155-1167, 2021.
12) Park YM, Kim DH, Kang MS, et al : The First Human Trial of Transoral Robotic Surgery Using a Single-Port Robotic System in the Treatment of Laryngo-Pharyngeal Cancer. Ann Surg Oncol 26 : 4472-4480, 2019.
13) Park YM, Kim DH, Moon YM, et al : Gasless transoral robotic thyroidectomy using the DaVinci SP system : Feasibility, safety, and operative technique. Oral Oncol 95 : 136-142, 2019.
14) Park YM, Choi EC, Kim SH, et al : Recent progress of robotic head and neck surgery using a flexible single port robotic system. J Robot Surg 16 : 353-360, 2022.
15) Park SY, Lee JH, Stein H, et al : Initial experience with and surgical outcomes of da Vinci single-port system in general thoracic surgery. J Thorac Dis 14 : 1933-1940, 2022.
P.432 掲載の参考文献
2) Menon M, Shrivastava A, Tewari A, et al : Laparoscopic and robot assisted radical prostatectomy : establishment of a structured program and preliminary analysis of outcomes. J Urol 168 : 945-949, 2002.
3) Bravi CA, Balestrazzi E, De Loof M, et al : Robot-assisted Radical Prostatectomy Performed with Different Robotic Platforms : First Comparative Evidence Between Da Vinci and HUGO Robot-assisted Surgery Robots. Eur Urol Focus, 2023. (DOI : 10. 1016/j. euf. 2023. 08. 001)
4) Olsen RG, Karas V, Bjerrum F, et al : Skills transfer from the DaVinci(R) system to the Hugo(TM)RAS system. Int Urol Nephrol, 2023. (DOI : 10. 1007/s11255-023-03807-7)
5) Gallioli A, Uleri A, Gaya JM, et al : Initial experience of robot-assisted partial nephrectomy with Hugo(TM)RAS system : implications for surgical setting. World J Urol 41 : 1085-1091, 2023.
6) Raffaelli M, Gallucci P, Voloudakis N, et al : The new robotic platform Hugo(TM) RAS for lateral transabdominal adrenalectomy : a first world report of a series of five cases. Updates Surg 75 : 217-225, 2023.
7) Elorrieta V, Villena J, Kompatzki A, et al : ROBOT Assisted Laparoscopic Surgeries For Nononcological Urologic Disease : Initial Experience With Hugo Ras System. Urology 174 : 118-125, 2023.
8) Bianchi PP, Salaj A, Rocco B, et al : First worldwide report on Hugo RAS(TM) surgical platform in right and left colectomy. Updates Surg 75 : 775-780, 2023.
9) Mintz Y, Pikarsky A, Brodie R, et al : Robotic inguinal hernia repair with the new Hugo RAS(TM) system : first worldwide case series report. Minim Invasive Ther Allied Technol 32 : 300-306, 2023.
10) Monterossi G, Pedone Anchora L, Gueli Alletti S, et al : The first European gynaecological procedure with the new surgical robot Hugo(TM) RAS. A total hysterectomy and salpingo-oophorectomy in a woman affected by BRCA-1 mutation. Facts Views Vis Obgyn 14 : 91-94, 2022.
11) Campagna G, Panico G, Vacca L, et al : Robotic sacrocolpopexy plus ventral rectopexy as combined treatment for multicompartment pelvic organ prolapse using the new Hugo RAS system. Tech Coloproctol 27 : 499-500, 2023.
12) Panico G, Mastrovito S, Campagna G, et al : Robotic docking time with the Hugo(TM)RAS system in gynecologic surgery : a procedure independent learning curve using the cumulative summation analysis(CUSUM). J Robot Surg 17 : 2547-2554, 2023.
P.440 掲載の参考文献
1) Jayne DG, Thorpe HC, Copeland J, et al : Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open surgery for colorectal cancer. Br J Surg 97 : 1638-1645, 2010.
2) van der Pas MH, Haglind E, Cuesta MA, et al : Laparoscopic versus open surgery for rectal cancer(COLOR II) : short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 14 : 210-218, 2013.
3) 大腸癌治療ガイドライン医師用2022年版(大腸癌研究会 編), p59-60, 金原出版, 2022.
4) Lin YC, Yuan LH, Tseng CS, et al : Comparison of senhance and da vinci robotic radical prostatectomy : short-term outcomes, learning curve, and cost analysis. Prostate Cancer Prostatic Dis, 2023. (DOI : 10. 1038/s41391-023-00717-8)
5) Glass Clark S, Shepherd JP, Sassani JC, et al : Surgical cost of robotic-assisted sacrocolpopexy : a comparison of two robotic platforms. Int Urogynecol J 34 : 87-91, 2023.
6) Fanfani F, Restaino S, Alletti SG, et al : TELELAP ALF-X Robotic-assisted Laparoscopic Hysterectomy : Feasibility and Perioperative Outcomes. J Minim Invasive Gynecol 22 : 1011-1017, 2015.
7) Schmitz R, Willeke F, Barr J, et al : Robotic Inguinal Hernia Repair(TAPP) First Experience with the New Senhance Robotic System. Surg Technol Int 34 : 243-249, 2019.
8) Spinelli A, David G, Gidaro S, et al : First experience in colorectal surgery with a new robotic platform with haptic feedback. Colorectal Dis 20 : 228-235, 2018.
9) Stephan D, Salzer H, Willeke F : First Experiences with the New Senhance Telerobotic System in Visceral Surgery. Visc Med 34 : 31-36, 2018.
10) Samalavicius NE, Janusonis V, Siaulys R, et al : Robotic surgery using Senhance robotic platform : single center experience with first 100 cases. J Robot Surg 14 : 371-376, 2020.
11) Lin CC, Huang SC, Lin HH, et al : An early experience with the Senhance surgical robotic system in colorectal surgery : a single-institute study. Int J Med Robot 17 : e2206, 2021.
12) McKechnie T, Khamar J, Daniel R, et al : The Senhance Surgical System in Colorectal Surgery : A Systematic Review. J Robot Surg 17 : 325-334, 2023.
13) Kondo H, Yamaguchi S, Hirano Y, et al : A first case of ileocecal resection using a Senhance Surgical System in Japan. Surg Case Rep 6 : 95, 2020.
14) Hirano Y, Kondo H, Yamaguchi S : Robot-assisted surgery with Senhance robotic system for colon cancer : our original single-incision plus 2-port procedure and a review of the literature. Tech Coloproctol 25 : 467-471, 2021.
15) Sasaki M, Hirano Y, Yonezawa H, et al : Short-term results of robot-assisted colorectal cancer surgery using Senhance Digital Laparoscopy System. Asian J Endosc Surg 15 : 613-618, 2022.
P.446 掲載の参考文献
1) Okamura AM : Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 19 : 102-107, 2009.
2) Tadano K, Kawashima K, Kojima K, et al : Development of a pneumatic surgical manipulator IBIS IV. J Robot Mechatronics 22 : 179-187, 2010.
3) Tadano K, Kawashima K : Development of a Master Slave-System with Force-Sensing Abilities Using Pneumatic Actuators for Laparoscopic Surgery. Advanced Robotics 24 : 1763-1783, 2010.
4) Haraguchi D, Kanno T, Tadano K, et al : A Pneumatically-Driven Surgical Manipulator with a Flexible Distal Joint Capable of Force Sensing. IEEE/ASME Transactions on Mechatronics 20 : 2950-2961, 2015.
5) Marescaux J, Leroy J, Gagner M, et al : Transatlantic robot-assisted telesurgery. Nature 413 : 379-380, 2001.
6) Nankaku A, Tokunaga M, Yonezawa H, et al : Maximum acceptable communication delay for the realization of telesurgery. PLOS ONE 17 : e0274328, 2022.
7) Morohashi H, Hakamada K, Kanno T, et al : Social implementation of a remote surgery system in Japan : a field experiment using a newly developed surgical robot via a commercial network. Surg Today 52 : 705-714, 2022.
8) Morohashi H, Hakamada K, Kanno T, et al : Construction of redundant communications to enhance safety against communication interruptions during robotic remote surgery. Sci Rep 13 : 10831, 2023.
9) Kawashima K, Kanno T, Tadano K : Robots in laparoscopic surgery : Current and future status. BMC Biomedical Engineering 1 : 12, 2019.
10) Attanasio A, Scaglioni B, De Momi E, et al : Autonomy in Surgical Robotics. Annu Rev Control Robot Auton System 4 : 651-679, 2021.

IX 特論

P.453 掲載の参考文献
1) 総務省 : 令和5年度版 情報通信白書. [https://www.soumu.go.jp/johotsusintokei/whitepaper/index.html]
2) 厚生労働省 : オンライン手術(遠隔手術)について. [https://www.mhlw.go.jp/content/10803000/000495289.pdf]
3) 遠隔手術ガイドライン(一般社団法人日本外科学会 遠隔手術実施推進委員会 編)2022年6月22日公開版. [https://jp.jssoc.or.jp/uploads/files/info/info20220622.pdf]
4) 株式会社メディカロイド : リリース. [https://www.medicaroid.com/release/]
5) 一般社団法人日本泌尿器内視鏡・ロボティクス学会 : 泌尿器科領域におけるロボット支援手術を行うに当たってのガイドライン. [https://www.jsee.jp/davinci/guideline/]
6) 一般社団法人日本内視鏡外科学会 : 消化器外科領域ロボット支援内視鏡手術導入に関する指針(改訂), 令和5年3月28日. [https://www.jses.or.jp/uploads/files/robot/shishin/guidelines_for_in-troduction_robot_assisted_surgery20230328.pdf]
7) 公益社団法人日本産科婦人科学会 : 「婦人科領域におけるロボット手術に関する指針」の改訂について. [https://www.jsog.or.jp/modules/committee/index.php?content_id=246]
8) 株式会社メディカロイド : サービスサポート. [https://www.medicaroid.com/product/hinotori/service.html]
9) 経済産業省 商務・サービスグループ 医療・福祉機器産業室 : 医療機器産業を取り巻く課題について, 令和5年5月25日. [https://www.meti.go.jp/shingikai/mono_info_service/medical_device/pdf/001_06_00.pdf]
10) 経済産業省 : 経済産業省におけるヘルスケア産業政策について. [https://www.meti.go.jp/policy/mono_info_service/healthcare/01metihealthcarepolicy.pdf]
P.459 掲載の参考文献
1) Chen Y, Squires A, Seifabadi R, et al : Robotic System for MRI-guided Focal Laser Ablation in the Prostate. IEEE ASME Trans Mechatron 22 : 107-114, 2017.
2) Galetta MS, Leider JD, Divi SN, et al : Robotics in spinal surgery. Ann Transl Med 7 : S165, 2019.
3) Tian W, Fan M, Zeng C, et al : Telerobotic Spinal Surgery Based on 5G Network : The First 12 Cases. Neurospine 17 : 114-120, 2020.
4) Kitahama Y, Shizuka H, Kimura R, et al : Fluid Lubrication and Cooling Effects in Diamond Grinding of Human Iliac Bone. Medicina(Kaunas) 57 : 71, 2021.
5) Caspar W : A new surgical procedure for lumbar disc herniation causing less tissue damage through a microsurgical approach. In : Lumbar disc adult hydrocephalus. Advances in Neurosurgery, vol 4(ed by Wullenweber R, Brock M, Hamer J, et al), p74-80, Springer, 1977.
6) Foley KT, Smith MM : Microendoscopic discectomy. Tech Neurosurg 3 : 301-307, 1997.
7) Yeung AT, Yeung CA : Minimally invasive techniques for the management of lumbar disc herniation. Orthop Clin North Am 38 : 363-372, 2007.
8) 北浜義博 : 脊椎内視鏡手術に関わる開発事業. 脊椎脊髄ジャーナル 32 : 851-859, 2019.
9) 北浜義博, 静 弘生, 本山大輔 : 内視鏡手術・ロボット手術における位置情報の現状と未来. 脊椎脊髄ジャーナル 36 : 413-421, 2023.
10) Shizuka H, Sakai K, Kitahama Y, et al : Experimental analysis of human bone grinding methods by a skilled surgeon in microsurgery, euspen's 21st International Conference & Exhibition, Copenhagen, DK, June 2021.
11) Mitsuishi M, Warisawa S, Tajima F, et al : Development of a 9 Axes Machine Tool for Bone Cutting. CIRP Annals 52 : 323-328, 2003.
12) 安富賢人, 酒井克彦, 静 弘生 : (セッション A35)マイクロボールエンドミル加工における工具傾斜角が切削特性に及ぼす影響. 第13回生産加工・工作機械部門講演会講演論文集, p98-99, 日本機械学会, 2019.
13) Kitahama Y, Ohashi H, Namba H, et al : Finite element method for nerve root decompression in minimally invasive endoscopic spinal surgery. Asian J Endosc Surg 14 : 628-635, 2021.
14) Kitahama Y, Koga H, Kawaoka T, et al : Posterolateral Percutaneous Endoscopic Discectomy with Partial Pediculotomy for the L1-L2 High-Grade Downward Migrated Disc Herniation. J Head Neck Spine Surg 2 : 555596, 2018.
15) Kitahama Y, Matsui G, Minami M, et al : Posterolateral percutaneous endoscopic discectomy with free-running electromyography monitoring under general anesthesia. Mini-invasive Surg 1 : 109-114, 2017.
16) 北浜義博 : 経皮的内視鏡下腰椎椎間孔拡大術(percutaneous endoscopic lumbar foraminotomy). 脊椎脊髄ジャーナル 30 : 1037-1045, 2017.
17) Kitahama Y, Sairyo K, Dezawa A : Percutaneous endoscopic transforaminal approach to decompress the lateral recess in an elderly patient with spinal canal stenosis, herniated nucleus pulposus and pulmonary comorbidities. Asian J Endosc Surg 6 : 130-133, 2013.
P.465 掲載の参考文献
1) Takemasa I, Hamabe A, Takenaka A, et al : Standardization of Robot-Assisted Pelvic Lymph Node Dissection-Development of a common understanding of regional anatomy and surgical technique based on cross-disciplinary discussion among colorectal surgery, urology, and gynecology. Asian J Endosc Surg 17 : e13274, 2024.
3) Ogura A, Konishi T, Cunningham C, et al : Neoadjuvant(Chemo) radiotherapy With Total Mesorectal Excision Only Is Not Sufficient to Prevent Lateral Local Recurrence in Enlarged Nodes : Results of the Multicenter Lateral Node Study of Patients With Low cT3/4 Rectal Cancer. J Clin Oncol 37 : 33-43, 2019.
4) Kobayashi H, Mochizuki H, Kato T, et al : Outcomes of surgery alone for lower rectal cancer with and without pelvic sidewall dissection. Dis Colon Rectum 52 : 567-576, 2009.
5) Mottet N, Bellmunt J, Bolla M, et al : EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1 : Screening, Diagnosis, and Local Treatment with Curative Intent. Eur Urol 71 : 618-629, 2017.
6) Saika T, Miura N, Fukumoto T, et al : Role of robot-assisted radical prostatectomy in locally advanced prostate cancer. Int J Urol 25 : 30-35, 2018.
7) Preisser F, Bandini M, Marchioni M, et al : Extent of lymph node dissection improves survival in prostate cancer patients treated with radical prostatectomy without lymph node invasion. Prostate 78 : 469-475, 2018.
8) Lestingi JFP, Guglielmetti GB, Trinh QD, et al : Extended Versus Limited Pelvic Lymph Node Dissection During Radical Prostatectomy for Intermediate- and High-risk Prostate Cancer : Early Oncological Outcomes from a Randomized Phase 3 Trial. Eur Urol 79 : 595-604, 2021.
9) Bando Y, Hinata N, Terakawa T, et al : Diagnostic and therapeutic value of pelvic lymph node dissection in the fossa of Marcille in patients with clinically localized high-risk prostate cancer : Histopathological and molecular analyses. Prostate 80 : 345-351, 2020.
10) Harter P, Sehouli J, Lorusso D, et al : A Randomized Trial of Lymphadenectomy in Patients with Advanced Ovarian Neoplasms. N Engl J Med 380 : 822-832, 2019.
11) Huang H, Liu J, Li Y, et al : Metastasis to deep obturator and para-aortic lymph nodes in 649 patients with cervical carcinoma. Eur J Surg Oncol 37 : 978-983, 2011.
12) ASTEC study group ; Kitchener H, Swart AM, Qian Q, et al : Efficacy of systematic pelvic lymphadenectomy in endometrial cancer(MRC ASTEC trial) : a randomised study. Lancet 373 : 125-136, 2009.
P.473 掲載の参考文献
1) Sugimoto M, Sueyoshi T : Development of Holoeyes Holographic Image-Guided Surgery and Telemedicine System : Clinical Benefits of Extended Reality(Virtual Reality, Augmented Reality, Mixed Reality), The Metaverse, and Artificial Intelligence in Surgery with a Systematic Review. Medical Research Archives 11 : 2023. (DOI : 10. 18103/mra. v11i7. 1. 4045)
2) Tokunaga T, Sugimoto M, Saito Y, et al : Transanal lateral lymph node dissection with intraoperative hologram support in low rectal cancer. Surg Endosc 37 : 5414-5420, 2023.
3) Sueyoshi T, Sugimoto M : Feasibility of A Multimodal Image-Assisted 3D Endoscopic Surgical Training System Using VR-HMD for Robotic-Assisted Endoscopic Radical Prostatectomy. J Surg 8 : 1799, 2023.
4) Ryu S, Kitagawa T, Goto K, et al : Intraoperative Holographic Guidance Using Virtual Reality and Mixed Reality Technology During Laparoscopic Colorectal Cancer Surgery. Anticancer Res 42 : 4849-4856, 2022.
5) Saito Y, Shimada M, Morine Y, et al : Essential updates 2020/2021 : Current topics of simulation and navigation in hepatectomy. Ann Gastroenterol Surg 6 : 190-196, 2022.
6) Kitagawa M, Sugimoto M, Haruta H, et al : Intraoperative holography navigation using a mixed-reality wearable computer during laparoscopic cholecystectomy. Surgery 171 : 1006-1013, 2022.
7) Saito Y, Sugimoto M, Morine Y, et al : Intraoperative support with three-dimensional holographic cholangiography in hepatobiliary surgery. Langenbecks Arch Surg 407 : 1285-1289, 2022.
8) Aoki T, Koizumi T, Sugimoto M, et al : Holography-guided percutaneous puncture technique for selective near-infrared fluorescence-guided laparoscopic liver resection using mixed-reality wearable spatial computer. Surg Oncol 35 : 476-477, 2020.
9) Sato Y, Sugimoto M, Tanaka Y, et al : Holographic image-guided thoracoscopic surgery : possibility of usefulness for esophageal cancer patients with abnormal artery. Esophagus 17 : 508-511, 2020.
10) Saito Y, Sugimoto M, Imura S, et al : Intraoperative 3D Hologram Support With Mixed Reality Techniques in Liver Surgery. Ann Surg 271 : e4-e7, 2020.
11) 杉本真樹, 末吉巧弥 : XR(仮想現実VR・拡張現実AR・複合現実MR)画像支援とMetaverseによるInterventional radiology. 日本インターベンショナルラジオロジー学会雑誌 36 : 326-334, 2022.
12) 杉本真樹, 末吉巧弥 : XR (VR, AR, MR), Hologram, Metaverse, Tele-surgery, Tele-medicine. 日本コンピュータ外科学会誌 24 : 173-176, 2022.
13) 杉本真樹, 末吉巧弥 : Metaverse と XR(Extended reality)による空間動作追従型遠隔手術支援・手技追体験トレーニング・シミュレーション・ナビゲーション. 日本コンピュータ外科学会誌 24 : 89-90, 2022.
14) 杉本真樹 : XR(Extended reality : VR・AR・MR)とテレプレゼンスによる遠隔医療・手術ナビゲーション・ロボット支援手術. 日本コンピュータ外科学会誌 22 : 159-163, 2020.
15) 医用画像3D・VR・AR OsiriXパーフェクトマニュアル(杉本真樹 著), p288, エクスナレッジページ, 2023.
16) Holoeyes社WEBサイト. [https://holoeyes.jp]
P.479 掲載の参考文献
1) Dip F, Lo Menzo E, Bouvet M, et al : Intraoperative fluorescence imaging in different surgical fields : First step to consensus guidelines. Surgery 172 : S3-S5, 2022.
2) Ciria R, Berardi G, Alconchel F, et al : The impact of robotics in liver surgery : A worldwide systematic review and short-term outcomes meta-analysis on 2,728 cases. J Hepatobiliary Pancreat Sci 27 : 181-197, 2022.
4) Makuuchi M, Hasegawa H, Yamazaki S : Ultrasonically guided subsegmentectomy. Surg Gynecol Obstet 161 : 346-350, 1985.
5) Takasaki K : Glissonean pedicle transection method for hepatic resection : a new concept of liver segmentation. J Hepatobiliary Pancreat Surg 5 : 286-291, 1998.
6) Aoki T, Yasuda D, Shimizu Y, et al : Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 32 : 1763-1767, 2008.
7) Cusin F, Fernandes Azevedo L, Bonnaventure P, et al : Hepatocyte Concentrations of Indocyanine Green Reflect Transfer Rates Across Membrane Transporters. Basic Clin Pharmacol Toxicol 120 : 171-178, 2017.
8) Ishizawa T, Fukushima N, Shibahara J, et al : Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115 : 2491-2504, 2009.
9) Ishizawa T, Masuda K, Urano Y, et al : Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol 21 : 440-448, 2014.
10) Wakabayashi T, Cacciaguerra AB, Abe Y, et al : Indocyanine Green Fluorescence Navigation in Liver Surgery : A Systematic Review on Dose and Timing of Administration. Ann Surg 275 : 1025-1034, 2022.
11) 日本蛍光ガイド手術研究会 術中蛍光イメージングガイドライン Ver.1(2023年4月公開). [http://plaza.umin.ac.jp/jsfgs/GuidelineMokuji.html]
12) Nishino H, Hatano E, Seo S, et al : Real-time Navigation for Liver Surgery Using Projection Mapping With Indocyanine Green Fluorescence : Development of the Novel Medical Imaging Projection System. Ann Surg 267 : 1134-1140, 2018.
13) Terasawa M, Ishizawa T, Mise Y, et al : Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc 31 : 5111-5118, 2017.
14) Marino MV, Di Saverio S, Podda M, et al : The Application of Indocyanine Green Fluorescence Imaging During Robotic Liver Resection : A Case-Matched Study. World J Surg 43 : 2595-2606, 2019.
P.485 掲載の参考文献
1) Hashimoto DA, Rosman G, Witkowski ER, et al : Computer Vision Analysis of Intraoperative Video : Automated Recognition of Operative Steps in Laparoscopic Sleeve Gastrectomy. Ann Surg 270 : 414-421, 2019.
2) Ward TM, Hashimoto DA, Ban Y, et al : Automated operative phase identification in peroral endoscopic myotomy. Surg Endosc 35 : 4008-4015, 2021.
3) Kitaguchi D, Takeshita N, Matsuzaki H, et al : Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach. Surg Endosc 34 : 4924-4931, 2020.
4) Kitaguchi D, Takeshita N, Matsuzaki H, et al : Automated laparoscopic colorectal surgery workflow recognition using artificial intelligence : Experimental research. Int J Surg 79 : 88-94, 2020.
5) Kitaguchi D, Takeshita N, Matsuzaki H, et al : Deep learning-based automatic surgical step recognition in intraoperative videos for transanal total mesorectal excision. Surg Endosc 36 : 1143-1151, 2022.
6) Sasaki K, Ito M, Kobayashi S, et al : Automated surgical workflow identification by artificial intelligence in laparoscopic hepatectomy : Experimental research. Int J Surg 105 : 106856, 2022.
7) Hassan C, Spadaccini M, Mori Y, et al : Real-Time Computer-Aided Detection of Colorectal Neoplasia During Colonoscopy : A Systematic Review and Meta-analysis. Ann Intern Med 176 : 1209-1220, 2023.
8) Mangas-Sanjuan C, de-Castro L, Cubiella J, et al : Role of Artificial Intelligence in Colonoscopy Detection of Advanced Neoplasias : A Randomized Trial. Ann Intern Med 176 : 1145-1152, 2023.
9) Karsenti D, Tharsis G, Perrot B, et al : Effect of real-time computer-aided detection of colorectal adenoma in routine colonoscopy(COLO-GENIUS) : a single-centre randomised controlled trial. Lancet Gastroenterol Hepatol 8 : 726-734, 2023.
10) Yamazaki Y, Kanaji S, Matsuda T, et al : Automated Surgical Instrument Detection from Laparoscopic Gastrectomy Video Images Using an Open Source Convolutional Neural Network Platform. J Am Coll Surg 230 : 725-732. e1, 2020.
11) Igaki T, Kitaguchi D, Kojima S, et al : Artificial Intelligence-Based Total Mesorectal Excision Plane Navigation in Laparoscopic Colorectal Surgery. Dis Colon Rectum 65 : e329-e333, 2022.
12) Kumazu Y, Kobayashi N, Kitamura N, et al : Automated segmentation by deep learning of loose connective tissue fibers to define safe dissection planes in robot-assisted gastrectomy. Sci Rep 11 : 21198, 2021.
13) Kojima S, Kitaguchi D, Igaki T, et al : Deep-learning-based semantic segmentation of autonomic nerves from laparoscopic images of colorectal surgery : an experimental pilot study. Int J Surg 109 : 813-820, 2023.
14) Kitaguchi D, Lee Y, Hayashi K, et al : Development and Validation of a Model for Laparoscopic Colorectal Surgical Instrument Recognition Using Convolutional Neural Network-Based Instance Segmentation and Videos of Laparoscopic Procedures. JAMA Netw Open 5 : e2226265, 2022.
15) Davidoff AM, Pappas TN, Murray EA, et al : Mechanisms of major biliary injury during laparoscopic cholecystectomy. Ann Surg 215 : 196-202, 1992.
16) Hugh TB : New strategies to prevent laparoscopic bile duct injury-surgeons can learn from pilots. Surgery 132 : 826-835, 2002.
17) Madani A, Namazi B, Altieri MS, et al : Artificial Intelligence for Intraoperative Guidance : Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy. Ann Surg 276 : 363-369, 2022.
18) Mascagni P, Vardazaryan A, Alapatt D, et al : Artificial Intelligence for Surgical Safety : Automatic Assessment of the Critical View of Safety in Laparoscopic Cholecystectomy Using Deep Learning. Ann Surg 275 : 955-961, 2022.
19) Kitaguchi D, Takeshita N, Matsuzaki H, et al : Real-time vascular anatomical image navigation for laparoscopic surgery : experimental study. Surg Endosc 36 : 6105-6112, 2022.
20) Kitaguchi D, Takeshita N, Matsuzaki H, et al : Computer-assisted real-time automatic prostate segmentation during TaTME : a single-center feasibility study. Surg Endosc 35 : 2493-2499, 2021.
21) Sato K, Fujita T, Matsuzaki H, et al : Real-time detection of the recurrent laryngeal nerve in thoracoscopic esophagectomy using artificial intelligence. Surg Endosc 36 : 5531-5539, 2022.
22) Takeshita N, Sakamoto S, Kitaguchi D, et al : Deep Learning-Based Seminal Vesicle and Vas Deferens Recognition in the Posterior Approach of Robot-Assisted Radical Prostatectomy. Urology 173 : 98-103, 2023.
23) Zhu S, Gilbert M, Chetty I, et al : The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices : An analysis of the characteristics and intended use. Int J Med Inform 165 : 104828, 2022.
24) Liu X, Faes L, Kale AU, et al : A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging : a systematic review and meta-analysis. Lancet Digit Health 1 : e271-e297, 2019.
25) Nagendran M, Chen Y, Lovejoy CA, et al : Artificial intelligence versus clinicians : systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368 : m689, 2020.
26) Nakanuma H, Endo Y, Fujinaga A, et al : An intraoperative artificial intelligence system identifying anatomical landmarks for laparoscopic cholecystectomy : a prospective clinical feasibility trial(J-SUMMIT-C-01). Surg Endosc 37 : 1933-1942, 2023.
27) Checcucci E, De Cillis S, Amparore D, et al : Artificial Intelligence alert systems during robotic surgery : a new potential tool to improve the safety of the intervention. Urology Video Journal 18 : 100221, 2023.
28) Kitaguchi D, Harai Y, Kosugi N, et al : Artificial intelligence for the recognition of key anatomical structures in laparoscopic colorectal surgery. Br J Surg 110 : 1355-1358, 2023.
29) Birkmeyer JD, Finks JF, O'Reilly A, et al : Surgical skill and complication rates after bariatric surgery. N Engl J Med 369 : 1434-1442, 2013.
30) Curtis NJ, Foster JD, Miskovic D, et al : Association of Surgical Skill Assessment With Clinical Outcomes in Cancer Surgery. JAMA Surg 155 : 590-598, 2020.
31) Stulberg JJ, Huang R, Kreutzer L, et al : Association Between Surgeon Technical Skills and Patient Outcomes. JAMA Surg 155 : 960-968, 2020.
32) Brajcich BC, Stulberg JJ, Palis BE, et al : Association Between Surgical Technical Skill and Long-term Survival for Colon Cancer. JAMA Oncol 7 : 127-129, 2021.
33) Martin JA, Regehr G, Reznick R, et al : Objective structured assessment of technical skill(OSATS)for surgical residents. Br J Surg 84 : 273-278, 1997.
34) Vassiliou MC, Feldman LS, Andrew CG, et al : A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 190 : 107-113, 2005.
35) Miskovic D, Ni M, Wyles SM, et al : Is competency assessment at the specialist level achievable? A study for the national training programme in laparoscopic colorectal surgery in England. Ann Surg 257 : 476-482, 2013.
36) Igaki T, Takenaka S, Watanabe Y, et al : Universal meta-competencies of operative performances : a literature review and qualitative synthesis. Surg Endosc 37 : 835-845, 2023.
37) Sasaki S, Kitaguchi D, Takenaka S, et al : Machine learning-based Automatic Evaluation of Tissue Handling Skills in Laparoscopic Colorectal Surgery : A Retrospective Experimental Study. Ann Surg 278 : e250-e255, 2023.
38) Igaki T, Kitaguchi D, Matsuzaki H, et al : Automatic Surgical Skill Assessment System Based on Concordance of Standardized Surgical Field Development Using Artificial Intelligence. JAMA Surg 158 : e231131, 2023.
39) Kitaguchi D, Takeshita N, Matsuzaki H, et al : Development and Validation of a 3-Dimensional Convolutional Neural Network for Automatic Surgical Skill Assessment Based on Spatiotemporal Video Analysis. JAMA Netw Open 4 : e2120786, 2021.
40) Kitaguchi D, Teramura K, Matsuzaki H, et al : Automatic purse-string suture skill assessment in transanal total mesorectal excision using deep learning-based video analysis. BJS Open 7 : zrac176, 2023.
P.492 掲載の参考文献
1) Muragaki Y, Iseki H, Murayama T, et al : Information-guided surgical management of gliomas using low-field-strength intraoperative MRI. Acta Neurochir Suppl 109 : 67-72, 2011.
2) Muragaki Y, Iseki H, Maruyama T, et al : Usefulness of intraoperative magnetic resonance imaging for glioma surgery. Acta Neurochir Suppl 98 : 67-75, 2006.
3) Tsuzuki S, et al : Information-guided Surgery Centered on Intraoperative Magnetic Resonance Imaging Ensures Surgical Quality and Safety with Low Mortality. Neurol Med Chir(Tokyo)(in press).
4) 岡本 淳, 正宗 賢, 伊関 洋, ほか : 次世代手術室SCOT(Smart Cyber Operating Thater)の開発. MEDIX 66 : 4-8, 2017.
5) 村垣善浩, 岡本 淳, 正宗 賢 : 進化する手術室「スマート治療室SCOT」. 日本医師会雑誌 147 : 1614-1618, 2018.
6) Weerakkody RA, Cheshire NJ, Riga C, et al : Surgical technology and operating-room safety failures : a systematic review of quantitative studies. BMJ Qual Saf 22 : 710-718, 2013.
7) 岡本 淳, 伊関 洋, 正宗 賢, ほか : スマート治療室プロジェクト-産業ロボット用ネットワークを応用した治療室のインテグレーション-. 人工臓器 47 : 58-61, 2018.
8) 吉光喜太郎, 堀瀬友貴, 青木祐也, ほか : 5G を活用した手術支援戦略に対する取組みの実際. 電子情報通信学会誌 105 : 314-319, 2022.
9) Muragaki Y, Akimoto J, Maruyama T, et al : Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg 119 : 845-852, 2013.
10) Horise Y, Maeda M, Konishi Y, et al : Sonodynamic Therapy With Anticancer Micelles and High-Intensity Focused Ultrasound in Treatment of Canine Cancer. Front Pharmacol 10 : 545, 2019.
11) AI-driven Robot for Embrace and Care : AIREC 一人に一台一生寄り沿うスマートロボット. [https://airec-waseda.jp/]
12) Niki C, Kumada T, Maruyama T, et al : Primary Cognitive Factors Impaired after Glioma Surgery and Associated Brain Regions. Behav Neurol 2020 : 7941689, 2020.
13) Yamaguchi T, Kuwano A, Koyama T, et al : Construction of brain area risk map for decision making using surgical navigation and motor evoked potential monitoring information. Int J Comput Assist Radiol Surg 18 : 269-278, 2023.

最近チェックした商品履歴

Loading...