日本臨牀 82/増刊2 腫瘍循環器学

出版社: 日本臨牀社
発行日: 2024-04-30
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: 腫瘍循環器学―新しい学際領域の最新知見―
電子書籍版: 2024-04-30 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

24,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

24,200 円(税込)

目次

  • 特集 腫瘍循環器学
       ―新しい学際領域の最新知見―

    序 文

    I.総 論
     1.腫瘍循環器学とは
     2.わが国のOnco-Cardiology の進化
     3.腫瘍循環器学の海外の動向~医療機関におけるチーム医療から国や学会レベルの動きまで~
     4.腫瘍循環器における診療ガイドライン
     5.抗悪性腫瘍薬開発の変遷と今後

    II.CTR-CVTの病態と機序
     1.最新のがん診療―総論
     2.抗がん薬の分類と心血管有害事象(CTR-CVT)総論
     3.アントラサイクリン心筋症の病態と機序
     4.アントラサイクリン心筋症におけるER-phagy
     5.アントラサイクリン心筋症とフェロトーシス
     6.代謝拮抗薬(ピリミジン拮抗薬)の心血管毒性の病態と機序
     7.シクロホスファミドによる心毒性の病態と機序
     8.分子標的薬によるCTR-CVT   
      (1)VEGF阻害薬による心血管毒性の病態と機序
      (2)BCR::ABL 阻害薬による心血管毒性の病態と機序
       (3) BTK 阻害薬の心血管有害事象の病態と機序
      (4)プロテアソーム阻害薬の心血管毒性の病態と機序
      (5)EGFR 阻害薬の心臓血管障害の病態と機序
      (6)ALK 阻害薬による心血管障害の病態と機序
      (7)BRAF阻害薬/MEK阻害薬の心血管障害の病態と機序
     9.がん免疫療法
      (1)免疫チェックポイント阻害薬
        1)がん免疫と免疫チェックポイント阻害薬の作用機序
        2)免疫チェックポイント阻害薬関連心筋炎の病態と機序
      (2)CAR-T細胞療法に伴う心血管有害事象の病態と機序
     10.前立腺がんに対するアンドロゲン除去療法に伴う心血管有害事象の病態と機序
     11.造血細胞移植に伴う心血管有害事象
     12.放射線治療に伴う心血管障害の病態と機序
     13.放射線治療による冠動脈疾患、弁膜症

    III.がんに合併する心血管病の機序と病態、疫学
     1.がんと心血管疾患のshared risk factor
     2.クローン性造血
      (1)遺伝子変異とゲノムコピー数異常から見た日本人集団におけるクローン性造血
      (2)クローン性造血と心血管疾患
      (3)がんと心血管疾患の新しいつながり:がん治療関連クローン性造血
     3.血液やがんにおける後天的Y 染色体喪失
     4.がんと心臓病の共通する治療戦略
     5.心不全
      (1)がん患者の心不全のリスク因子,原因,疫学,予後
      (2)最近の臨床の話題
         1)がんと心不全の共有するメカニズム,クロストーク
            ~がんと心不全の相互関係「がん心臓連関」~
         2)右心不全が肝がんをpromoteする
         3)悪液質とcardiac wasting
     6.虚血性心疾患
      (1)がんと虚血性心疾患―慢性炎症の視点からの考察―
      (2)がんと冠動脈プラーク,冠攣縮
     7.AF(心房細動)
      (1)がん患者のAF の危険因子,原因,疫学,予後
     (2)がん患者の心房細動のメカニズム
     8.QT 延長,VT/VF,原因とメカニズム
     9.心膜炎,心タンポナーデ,原因とメカニズム
     10.Pulmonary tumor thrombotic microangiopathy
        ~原因とメカニズム,危険因子,疫学,治療,予後~
     11.VTE(静脈血栓塞栓症)
      (1)がん患者のVTE の危険因子,原因,疫学,予後
      (2)がん患者のVTE の発症機序,トルソー症候群
     12.AL アミロイドーシスの心病変

    IV.検 査
     1.心臓バイオマーカー・凝固線溶系バイオマーカー
     2.心電図,ABI,血管機能検査
     3.心エコー図検査
     4.CT/MRI
     5.心内膜心筋生検
     6.CTRCDと遺伝子変異

    V.リスク評価・モニタリング・予防・早期治療介入の有用性
     1.リスク評価
      (1)がんサバイバーにおける心血管病予防を目指した修正可能危険因子の管理
      (2)がん薬物療法開始前のリスク評価総論
      (3)VTEのリスク評価と予防
     2.CTRCDのモニタリング
     3.CTRCDの一次予防
     4.CTRCDの早期治療介入
     5.ICI関連心筋炎のスクリーニング

    VI.診断・治療
     1.CTRCDの治療
     2.虚血性心疾患の治療
     3.心筋炎の診断・治療
     4.AFの管理
     5.脳梗塞の治療
     6.悪性腫瘍に関連した心膜炎・心タンポナーデの診断と治療
     7.静脈血栓塞栓症(VTE)の治療
     8.全身性ALアミロイドーシスの治療

    VII.外来診療、がんサバイバーシップ
     1.腫瘍循環器患者の外来診療
     2.がんサバイバーの晩期心血管毒性
     3.小児がんサバイバーの長期フォローアップ
     4.AYA世代,周産期の腫瘍循環器
     5.腫瘍循環器リハビリテーション

    VIII.多職種連携、施設間連携、施設内連携
     1.腫瘍循環器診療における医療連携とチーム医療
     2.腫瘍循環器診療における看護師の役割
     3.腫瘍循環器診療における臨床検査技師の役割
     4.腫瘍循環器診療における薬剤師の役割
     5.腫瘍循環器診療における理学療法士の役割

    IX.心臓病患者のがん
     1.心疾患患者のがん発生リスク
     2.心臓病を有する患者のがん治療と予後

    X.心臓腫瘍
     1.原発性心臓腫瘍・続発性心臓腫瘍:総論
     2.診断、治療

    XI.新しい学際領域の発展
     1.Onconephrology 腫瘍腎臓病学
     2.Stroke oncology 腫瘍脳卒中学
     3.Onco-hypertension 腫瘍高血圧学
     4.Psycho-oncology 精神腫瘍学
     5.Immuno-oncology がん免疫学
     6.Exercise oncology 運動腫瘍学

    XII.特 論
     1.ヒトiPS細胞技術を活用した抗がん薬の心毒性評価法の開発
     2.ゼブラフィッシュ腫瘍循環器学の新しい展開
     3.ドラッグ・ラグ ドラッグ・ロスについて
     4.腫瘍循環器におけるAIの活用

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

序文

P.8 掲載の参考文献
1) がんの統計 2022(がんの統計編集委員会 編), がん研究振興財団, 2022.[https://ganjoho.jp/public/qa_links/report/statistics/pdf/cancer_statistics_2022.pdf](2024年4月閲覧)
2) 日本腫瘍循環器学会ホームページ. [https://j-onco-cardiology.or.jp/](2024年4月閲覧)
3) 第7回日本腫瘍循環器学会学術集会ホームページ. [https://www.jocs2024.org/](2024年4月閲覧)

I 総論

P.17 掲載の参考文献
1) Patnaik JL, Byers T, DiGuiseppi C, et al:Cardiovascular disease competes with breast cancer as the leading cause of death for older females diagnosed with breast cancer:a retrospective cohort study. Breast Cancer Res 13:R64, 2011.
2) Sakamoto M, Hasegawa T, Asakura M, et al:Does the pathophysiology of heart failure prime the incidence of cancer? Hypertens Res 40:831-836, 2017.
3) Sturgeon KM, Deng L, Bluethmann SM, et al:A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 40:3889-3897, 2019.
4) Suskin N, Sheth T, Negassa A, et al:Relationship of current and past smoking to mortality and morbidity in patients with left ventricular dysfunction. J Am Coll Cardiol 37:1677-1682, 2001.
5) Lotan K, Goldbourt U, Gerber Y:Smoking Status and Incidence of Cancer After Myocardial Infarction:A Follow-Up Study of over 20 Years. Am J Med 130:1084-1091, 2017.
6) Goncalves A, Claggett B, Jhund PS, et al:Alcohol consumption and risk of heart failure:the Atherosclerosis Risk in Communities Study. Eur Heart J 36:939-945, 2015.
7) Shield KD, Parry C, Rehm J:Chronic diseases and conditions related to alcohol use. Alcohol Res 35:155-173, 2013.
9) Ballotari P, Vicentini M, Manicardi V, et al:Diabetes and risk of cancer incidence:results from a population-based cohort study in northern Italy. BMC Cancer 17:703, 2017.
10) Kenchaiah S, Evans JC, Levy D, et al:Obesity and the risk of heart failure. N Engl J Med 347:305-313, 2002.
11) Lauby-Secretan B, Scoccianti C, Loomis D, et al:Body Fatness and Cancer-Viewpoint of the IARC Working Group. N Engl J Med 375:794-798, 2016.
12) Ikeda A, Iso H, Yamagishi K, et al:Blood pressure and the risk of stroke, cardiovascular disease, and all-cause mortality among Japanese:the JPHC Study. Am J Hypertens 22:273-280, 2009.
13) Stocks T, Van Hemelrijck M, Manjer J, et al:Blood pressure and risk of cancer incidence and mortality in the Metabolic Syndrome and Cancer Project. Hypertension 59:802-810, 2012.
15) Rinde LB, Smabrekke B, Hald EM, et al:Myocardial infarction and future risk of cancer in the general population-the Tromso Study. Eur J Epidemiol 32:193-201, 2017.
16) Hasin T, Gerber Y, Weston SA, et al:Heart Failure After Myocardial Infarction Is Associated With Increased Risk of Cancer. J Am Coll Cardiol 68:265-271, 2016.
17) Jones SE, Durie BG, Salmon SE:Combination chemotherapy with adriamycin and cyclophosphamide for advanced breast cancer. Cancer 36:90-97, 1975.
19) Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al:2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768-2801, 2016.
20) Armenian SH, Lacchetti C, Barac A, et al:Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers:American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 35:893-911, 2017.
21) Onco-cardiology ガイドライン(日本臨床腫瘍学会, 日本腫瘍循環器学会 編), 南江堂, 2023.
22) Zhang S, Liu X, Bawa-Khalfe T, et al:Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639-1642, 2012.
23) Curigliano G, Cardinale D, Dent S, et al:Cardiotoxicity of anticancer treatments:Epidemiology, detection, and management. CA Cancer J Clin 66:309-325, 2016.
24) Hudis CA:Trastuzumab-mechanism of action and use in clinical practice. N Engl J Med 357:39-51, 2007.
25) Ewer MS, Lippman SM:Type II chemotherapy-related cardiac dysfunction:time to recognize a new entity. J Clin Oncol 23:2900-2902, 2005.
26) Bringhen S, Milan A, Ferri C, et al:Cardiovascular adverse events in modern myeloma therapy-Incidence and risks. A review from the European Myeloma Network (EMN) and Italian Society of Arterial Hypertension (SIIA). Haematologica 103:1422-1432, 2018.
27) Palumbo A, Rajkumar SV, Dimopoulos MA, et al:Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia 22:414-423, 2008.
28) Salem JE, Manouchehri A, Moey M, et al:Cardiovascular toxicities associated with immune checkpoint inhibitors:an observational, retrospective, pharmacovigilance study. Lancet Oncol 19:1579-1589, 2018.
29) Economopoulou P, Kotsakis A, Kapiris I, et al:Cancer therapy and cardiovascular risk:focus on bevacizumab. Cancer Manag Res 7:133-143, 2015.
30) Totzeck M, Mincu RI, Mrotzek S, et al:Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity:A meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol 25:482-494, 2018.
31) Cortes JE, Kim DW, Pinilla-Ibarz J, et al:A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369:1783-1796, 2013.
32) Cortes JE, Kim DW, Pinilla-Ibarz J, et al:Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia:final 5-year results of the phase 2 PACE trial. Blood 132:393-404, 2018.
33) Moslehi JJ, Deininger M:Tyrosine Kinase Inhibitor-Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. J Clin Oncol 33:4210-4218, 2015.
34) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
35) Agnelli G, Becattini C, Meyer G, et al:Apixaban for the Treatment of Venous Thromboembolism Associated with Cancer. N Engl J Med 382:1599-1607, 2020.
36) Imamura Y, Otsui K, Mori K, et al:Apixaban in Japanese patients with cancer-associated venous thromboembolism:a multi-center phase II trial. Int J Hematol 115:499-507, 2022.
37) Ueshima S, Hira D, Kimura Y, et al:Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. Br J Clin Pharmacol 84:1301-1312, 2018.
38) Smith LA, Cornelius VR, Plummer CJ, et al:Cardiotoxicity of anthracycline agents for the treatment of cancer:systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10:337, 2010.
P.24 掲載の参考文献
1) Herrmann J:Adverse cardiac effects of cancer therapies:cardiotoxicity and arrhythmia. Nat Rev Cardiol 17:474-502, 2020.
2) Shelburne N, Simonds NI, Adhikari B, et al:Changing Hearts and Minds:Improving Outcomes in Cancer Treatment-Related Cardiotoxicity. Curr Oncol Rep 21:9, 2019.
3) Force T, Kolaja KL:Cardiotoxicity of kinase inhibitors:the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 10:111-126, 2011.
4) Force T:Double-edged sword of the new cancer therapeutics. Ciruclation 125:2057-2058, 2012.
5) Oka T, Akazawa H, Sase K, et al:Cardio-Oncology in Japan:The Rapidly Rising Sun. JACC CardioOncol 2:815-818, 2020.
7) Lenihan DJ, Hartlage G, DeCara J, et al:Cardio-oncology training:A proposal from the international cardioncology society and Canadian cardiac oncology network for a new multidisciplinary specialty. J Card Fail 22:465-471, 2016.
8) Alvarez-Cardona JA, Ray J, Carver J, et al:Cardio-Oncology Education and Training:JACC Council Perspectives. J Am Coll Cardiol 76:2267-2281, 2020.
9) Lancellotti P, Suter TM, Lopez-Fernandez T, et al:Cardio-Oncology Services:rationale, organization, and implementation. Eur Heart J 40:1756-1763, 2019.
10) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
11) Bellinger AM, Arteaga CL, Force T, et al:Cardio-Oncology:How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery. Circulation 132:2248-2258, 2015.
P.31 掲載の参考文献
1) Mayer DK, Nasso SF, Earp JA:Defining cancer survivors, their needs, and perspectives on survivorship health care in the USA. Lancet Oncol 18:e11-e18, 2017.
2) Armenian SH, Armstrong GT, Aune G, et al:Cardiovascular Disease in Survivors of Childhood Cancer:Insights Into Epidemiology, Pathophysiology, and Prevention. J Clin Oncol 36:2135-2144, 2018.
3) Abdel-Qadir H, Austin PC, Lee DS, et al:A Population-Based Study of Cardiovascular Mortality Following Early-Stage Breast Cancer. JAMA Cardiol 2:88-93, 2017.
4) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
5) Cardinale D:[A new frontier:cardio-oncology]. Cardiologia 41:887-891, 1996.
6) Yeh ET:Onco-cardiology:the time has come. Tex Heart Inst J 38:246-247, 2011.
7) Snipelisky D, Park JY, Lerman A, et al:How to Develop a Cardio-Oncology Clinic. Heart Fail Clin 13:347-359, 2017.
8) Herrmann J, Loprinzi C, Ruddy K:Building a Cardio-Onco-Hematology Program. Curr Oncol Rep 20:81, 2018.
9) Lenihan DJ, Cardinale D, Cipolla CM:The compelling need for a cardiology and oncology partnership and the birth of the International CardiOncology Society. Prog Cardiovasc Dis 53:88-93, 2010.
10) Shelburne N, Adhikari B, Brell J, et al:Cancer treatment-related cardiotoxicity:current state of knowledge and future research priorities. J Natl Cancer Inst 106:dju232, 2014.
11) NIH VideoCast-Cancer Treatment Related Cardiotoxicity (Day 1)[https://videocast.nih.gov/watch=11985](2024年4月閲覧)
12) NIH VideoCast-Cancer Treatment Related Cardiotoxicity (Day 2)[https://videocast.nih.gov/watch=11987](2024年4月閲覧)
13) Force T, Wang Y:Mechanism-based engineering against anthracycline cardiotoxicity. Circulation 128:98-100, 2013.
14) Moslehi JJ, Lal H, Lenihan DJ, et al:Tom Force (1951-2020):Our Dearest Friend, Our Mentor, and a Brilliant Cardiovascular Scientist. JACC CardioOncol 3:167-169, 2021.
15) Moslehi J, Cheng S:Cardio-oncology:it takes two to translate. Sci Transl Med 5:187fs20, 2013.
16) Moslehi JJ:Cardiovascular Toxic Effects of Targeted Cancer Therapies. N Engl J Med 375:1457-1467, 2016.
17) Johnson DB, Balko JM, Compton ML, et al:Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N Engl J Med 375:1749-1755, 2016.
18) Moslehi J, Fujiwara K, Guzik T:Cardio-oncology:a novel platform for basic and translational cardiovascular investigation driven by clinical need. Cardiovasc Res 115:819-823, 2019.
19) National Institute of Health:A Decade of NIH Cardio-Oncology Research Collaboration:Continued Funding Opportunities, 2022. [https://prevention.cancer.gov/major-programs/supportive-care-and-symptom-management/cardiotoxicity](2024年4月閲覧)
20) Minasian LM, Adhikari BB, Dimond EP, et al:The Impact of the Cancer Moonshot on Cardio-Oncology Science. JACC CardioOncol 4:413-416, 2022.
21) Shelburne N, Simonds NI, Adhikari B, et al:Changing Hearts and Minds:Improving Outcomes in Cancer Treatment-Related Cardiotoxicity. Curr Oncol Rep 21:9, 2019.
22) Adhikari BB, Shi S, Dimond EP, et al:Spectrum of National Institutes of Health-Funded Research in Cardio-Oncology:A Basic, Clinical, and Observational Science Perspective. Heart Fail Clin 18:515-528, 2022.
23) Minasian L, Dimond E, Davis M, et al:The Evolving Design of NIH-Funded Cardio-Oncology Studies to Address Cancer Treatment-Related Cardiovascular Toxicity. JACC CardioOncol 1:105-113, 2019.
24) Barac A, Mayer EL:Future Clinical and Professional Directions in Cardio-oncology. In:Cardio-Oncology:The Clinical Overlap of Cancer and Heart Disease (ed by Kimmick GG, Lenihan DJ, Sawyer DB, et al), p303-310, Springer, Cham, 2017.
25) Ky B:JACC:CardioOncology:Poised to Serve a Maturing, Collaborative Field. JACC CardioOncol 1:131-132, 2019.
26) Lenihan DJ, Fradley MG, Dent S, et al:Proceedings From the Global Cardio-Oncology Summit:The Top 10 Priorities to Actualize for CardioOncology. JACC CardioOncol 1:256-272, 2019.
27) Salloum FN, Tocchetti CG, Ameri P, et al:Priorities in Cardio-Oncology Basic and Translational Science:GCOS 2023 Symposium Proceedings:JACC:CardioOncology State-of-the-Art Review. JACC CardioOncol 5:715-731, 2023.
28) Teske AJ, Moudgil R, Lopez-Fernandez T, et al:Global Cardio Oncology Registry (G-COR):Registry Design, Primary Objectives, and Future Perspectives of a Multicenter Global Initiative. Circ Cardiovasc Qual Outcomes 16:e009905, 2023.
29) Leong DP, Lenihan DJ:Clinical Practice Guidelines in Cardio-Oncology. Heart Fail Clin 18:489-501, 2022.
30) Levis BE, Binkley PF, Shapiro CL:Cardiotoxic effects of anthracycline-based therapy:what is the evidence and what are the potential harms? Lancet Oncol 18:e445-e456, 2017.
31) Armenian SH, Lacchetti C, Barac A, et al:Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers:American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 35:893-911, 2017.
32) Curigliano G, Lenihan D, Fradley M, et al:Management of cardiac disease in cancer patients throughout oncological treatment:ESMO consensus recommendations. Ann Oncol 31:171-190, 2020.
33) Sase K, Mukai M, Fujiwara Y:Clinical Practice Guidelines in Cardio-Oncology:A Sea of Opportunity. JACC CardioOncol 5:145-148, 2023.
34) Lancellotti P, Suter TM, Lopez-Fernandez T, et al:Cardio-Oncology Services:rationale, organization, and implementation. Eur Heart J 40:1756-1763, 2019.
P.37 掲載の参考文献
1) 厚生労働省:令和4年簡易生命表の概況. [https://www.mhlw.go.jp/toukei/saikin/hw/life/life22/dl/life22-15.pdf](2024年4月閲覧)
2) 厚生労働省:令和4年(2022)人口動態統計月報年計(概数)の概況.
3) Bell CF, Lei X, Haas A, et al:Risk of Cancer After Diagnosis of Cardiovascular Disease. JACC CardioOncol 5:431-440, 2023.
4) Sturgeon KM, Deng L, Bluethmann SM, et al:A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 40:3889-3897, 2019.
5) Armenian SH, Xu L, Ky B, et al:Cardiovascular Disease Among Survivors of Adult-Onset Cancer:A Community-Based Retrospective Cohort Study. J Clin Oncol 34:1122-1130, 2016.
6) Cardinale D:A new frontier:cardio-oncology. Cardiologia 41:887-891, 1996.
7) Felker GM, Thompson RE, Hare JM, et al:Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077-1084, 2000.
8) Perez IE, Taveras Alam S, Hernandez GA, et al:Cancer Therapy-Related Cardiac Dysfunction:An Overview for the Clinician. Clin Med Insights Cardiol 13:1179546819866445, 2019.
9) Armenian SH, Lacchetti C, Barac A, et al:Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers:American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 35:893-911, 2017.
10) Curigliano G, Lenihan D, Fradley M, et al:Management of cardiac disease in cancer patients throughout oncological treatment:ESMO consensus recommendations. Ann Oncol 31:171-190, 2020.
11) Zamorano JL, Lancellotti P, Rodriguez Munoz D, et al:2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines:The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J 37:2768-2801, 2016.
12) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
13) 腫瘍循環器診療ハンドブック(小室一成 監, 日本腫瘍循環器学会編集委員会 編), メジカルビュー社, 2020.
14) Onco-cardiology ガイドライン(日本臨床腫瘍学会, 日本腫瘍循環器学会 編), 南江堂, 2023.
P.44 掲載の参考文献
1) Druker BJ, Talpaz M, Resta DJ, et al:Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031-1037, 2001.
4) Drilon A, Oxnard GR, Tan DSW, et al:Efficacy of Selpercatinib in RET Fusion-Positive Non-Small Cell Lung Cancer. N Engl J Med 383:813-824, 2020.
5) Sunami K, Naito Y, Saigusa Y, et al:A Learning Program for Treatment Recommendations by Molecular Tumor Boards and Artificial Intelligence. JAMA Oncol 10:95-102, 2024.
6) Wolchok JD, Kluger H, Callahan MK, et al:Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369:122-133, 2013.
7) Reck M, Rodriguez-Abreu D, Robinson AG, et al:Pembrolizumab versus Chemotherapy for PD-L1- Positive Non-Small-Cell Lung Cancer. N Engl J Med 375:1823-1833, 2016.
8) Andre T, Shiu KK, Kim TW, et al:Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer. N Engl J Med 383:2207-2218, 2020.
9) Postow MA, Sidlow R, Hellmann MD:Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med 378:158-168, 2018.
10) Shitara K, Bang YJ, Iwasa S, et al:Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N Engl J Med 382:2419-2430, 2020.
11) Powles T, Rosenberg JE, Sonpavde GP, et al:Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N Engl J Med 384:1125-1135, 2021.
12) Strosberg J, El-Haddad G, Wolin E, et al:Phase 3 Trial of 177 Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med 376:125-135, 2017.
13) Modi S, Jacot W, Yamashita T, et al:Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N Engl J Med 387:9-20, 2022.
14) Skoulidis F, Li BT, Dy GK, et al:Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N Engl J Med 384:2371-2381, 2021.
15) Andre T, Lonardi S, Wong KYM, et al:Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer:4-year follow-up from CheckMate 142. Ann Oncol 33:1052-1060, 2022.

II CTR - CVTの病態と機序

P.51 掲載の参考文献
1) 水上民夫:承認されたがん分子標的治療薬一覧 2022.JAMTTC News Lett 26:8-12, 2022.
2) Hodi FS, O'Day SJ, McDermott DF, et al:Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711-723, 2010.
3) Robert C, Thomas L, Bondarenko I, et al:Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517-2526, 2011.
4) Brahmer JR, Tykodi SS, Chow LQ, et al:Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366:2455-2465, 2012.
5) Maemondo M, Inoue A, Kobayashi K, et al:Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362:2380-2388, 2010.
6) Hida T, Nokihara H, Kondo M, et al:Alectinib versus crizotinib in patients with ALK-positive non small-cell lung cancer (J-ALEX):an open-label, randomised phase 3 trial. Lancet 390:29-39, 2017.
7) Fukano R, Mori T, Sekimizu M, et al:Alectinib for relapsed or refractory anaplastic lymphoma kinase-positive anaplastic large cell lymphoma:An open-label phase II trial. Cancer Sci 111:4540-4547, 2020.
8) Long GV, Stroyakovskiy D, Gogas H, et al:Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma:a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386:444-451, 2015.
9) Planchard D, Smit EF, Groen HJM, et al:Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer:an open-label, phase 2 trial. Lancet Oncol 18:1307-1316, 2017.
10) Kopetz S, Grothey A, Yaeger R, et al:Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med 381:1632-1643, 2019.
11) Wolf J, Seto T, Han JY, et al:Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer. N Engl J Med 383:944-957, 2020.
12) Paik PK, Felip E, Veillon R, et al:Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med 383:931-943, 2020.
13) Drilon A, Oxnard GR, Tan DSW, et al:Efficacy of selpercatinib in RET fusion-positive non-small-cell lung cancer. N Engl J Med 383:813-824, 2020.
15) Morschhauser F, Tilly H, Chaidos A, et al:Tazemetostat for patients with relapsed or refractory follicular lymphoma:an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol 21:1433-1442, 2020.
16) Drilon A, Laetsch TW, Kummar S, et al:Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N Engl J Med 378:731-739, 2018.
17) Doebele RC, Drilon A, Paz-Ares L, et al:Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours:integrated analysis of three phase 1-2 trials. Lancet Oncol 21:271-282, 2020.
18) Sunami K, Ichikawa H, Kubo T, et al:Feasibility and utility of a panel testing for 114 cancer associated genes in a clinical setting:A hospital-based study. Cancer Sci 110:1480-1490, 2019.
19) Kondo T, Matsubara J, Quy PN, et al:Comprehensive genomic profiling for patients with chemotherapy-naive advanced cancer. Cancer Sci 112:296-304, 2021.
20) Ida H, Koyama T, Mizuno T, et al:Clinical utility of comprehensive genomic profiling tests for advanced or metastatic solid tumor in clinical practice. Cancer Sci 113:4300-4310, 2022.
21) Shirota H, Komine K, Takahashi M, et al:Clinical decisions by the molecular tumor board on comprehensive genomic profiling tests in Japan:A retrospective observational study. Cancer Med 12:6170-6181, 2023.
22) Onco-cardiology ガイドライン(日本臨床腫瘍学会, 日本腫瘍循環器学会 編), 南江堂, 2023.
P.58 掲載の参考文献
1) Herrmann J, Lenihan D, Armenian S, et al:Defining cardiovascular toxicities of cancer therapies:an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J 43:280-299, 2022.
2) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
3) Celutkiene J, Pudil R, Lopez-Fernandez T, et al:Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies:a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail 22:1504-1524, 2020.
5) Chu TF, Rupnick MA, Kerkela R, et al:Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet 370:2011-2019, 2007.
6) Barber MC, Mauro MJ, Moslehi J:Cardiovascular care of patients with chronic myeloid leukemia (CML) on tyrosine kinase inhibitor (TKI) therapy. Hematology Am Soc Hematol Educ Program 2017:110-114, 2017.
7) Glen C, Tan YY, Waterston A, et al:Mechanistic and Clinical Overview Cardiovascular Toxicity of BRAF and MEK Inhibitors:JACC:CardioOncology State-of-the-Art Review. JACC CardioOncol 4:1-18, 2022.
8) Salem JE, Manouchehri A, Bretagne M, et al:Cardiovascular Toxicities Associated With Ibrutinib. J Am Coll Cardiol 74:1667-1678, 2019.
9) Dolladille C, Akroun J, Morice PM, et al:Cardiovascular immunotoxicities associated with immune checkpoint inhibitors:a safety meta-analysis. Eur Heart J 42:4964-4977, 2021.
10) Hu JR, Duncan MS, Morgans AK, et al:Cardiovascular Effects of Androgen Deprivation Therapy in Prostate Cancer:Contemporary Meta-Analyses. Arterioscler Thromb Vasc Biol 40:e55-e64, 2020.
11) Okwuosa TM, Morgans A, Rhee JW, et al:Impact of Hormonal Therapies for Treatment of Hormone-Dependent Cancers (Breast and Prostate) on the Cardiovascular System:Effects and Modifications:A Scientific Statement From the American Heart Association. Circ Genom Precis Med 14:e000082, 2021.
12) Hortobagyi GN, Stemmer SM, Burris HA, et al:Ribociclib as First-Line Therapy for HR-Positive, Advanced Breast Cancer. N Engl J Med 375:1738-1748, 2016.
13) Wang L, Wang W:Safety and efficacy of anaplastic lymphoma kinase tyrosine kinase inhibitors in non-small cell lung cancer (Review). Oncol Rep 45:13-28, 2021.
14) Morcos PN, Bogman K, Hubeaux S, et al:Effect of alectinib on cardiac electrophysiology:results from intensive electrocardiogram monitoring from the pivotal phase II NP28761 and NP28673 studies. Cancer Chemother Pharmacol 79:559-568, 2017.
15) Anand K, Ensor J, Trachtenberg B, et al:Osimertinib-Induced Cardiotoxicity:A Retrospective Review of the FDA Adverse Events Reporting System (FAERS). JACC CardioOncol 1:172-178, 2019.
P.64 掲載の参考文献
1) Sawicki KT, Sala V, Prever L, et al:Preventing and Treating Anthracycline Cardiotoxicity:New Insights. Annu Rev Pharmacol Toxicol 61:309-332, 2021.
2) Wallace KB, Sardao VA, Oliveira PJ:Mitochondrial Determinants of Doxorubicin-Induced Cardiomyopathy. Circ Res 126:926-941, 2020.
3) Hortobagyi GN:Anthracyclines in the treatment of cancer. An overview. Drugs 54(Suppl 4):1-7, 1997.
4) Kitakata H, Endo J, Ikura H, et al:Therapeutic Targets for DOX-Induced Cardiomyopathy:Role of Apoptosis vs. Ferroptosis. Int J Mol Sci 23:1414, 2022.
5) Vejpongsa P, Yeh ET:Topoisomerase 2β:a promising molecular target for primary prevention of anthracycline-induced cardiotoxicity. Clin Pharmacol Ther 95:45-52, 2014.
6) Zhang S, Liu X, Bawa-Khalfe T, et al:Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639-1642, 2012.
7) Jiang J, Mohan N, Endo Y, et al:Type IIB DNA topoisomerase is downregulated by trastuzumab and doxorubicin to synergize cardiotoxicity. Oncotarget 9:6095-6108, 2018.
8) Cole MP, Chaiswing L, Oberley TD, et al:The protective roles of nitric oxide and superoxide dismutase in adriamycin-induced cardiotoxicity. Cardiovasc Res 69:186-197, 2006.
9) Chen Y, Daosukho C, Opii WO, et al:Redox proteomic identification of oxidized cardiac proteins in adriamycin-treated mice. Free Radic Biol Med 41:1470-1477, 2006.
10) Gao J, Xiong Y, Ho YS, et al:Glutathione peroxidase 1-deficient mice are more susceptible to doxorubicin-induced cardiotoxicity. Biochim Biophys Acta 1783:2020-2029, 2008.
11) Burridge PW, Li YF, Matsa E, et al:Human induced pluripotent stem cell-derived cardiomyocytes recapitulate the predilection of breast cancer patients to doxorubicin-induced cardiotoxicity. Nat Med 22:547-556, 2016.
12) Arafa MH, Mohammad NS, Atteia HH, et al:Protective effect of resveratrol against doxorubicin induced cardiac toxicity and fibrosis in male experimental rats. J Physiol Biochem 70:701-711, 2014.
13) Abe J, Yamada Y, Takeda A, et al:Cardiac progenitor cells activated by mitochondrial delivery of resveratrol enhance the survival of a doxorubicin-induced cardiomyopathy mouse model via the mitochondrial activation of a damaged myocardium. J Control Release 269:177-188, 2018.
14) Wagner EF, Nebreda AR:Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9:537-549, 2009.
15) Spallarossa P, Altieri P, Garibaldi S, et al:Matrix metalloproteinase-2 and -9 are induced differently by doxorubicin in H9c2 cells:The role of MAP kinases and NAD(P)H oxidase. Cardiovasc Res 69:736-745, 2006.
16) George SA, Kiss A, Obaid SN, et al:p38δ genetic ablation protects female mice from anthracycline cardiotoxicity. Am J Physiol Heart Circ Physiol 319:H775-H786, 2020.
17) Azijli K, Weyhenmeyer B, Peters GJ, et al:Non-canonical kinase signaling by the death ligand TRAIL in cancer cells:discord in the death receptor family. Cell Death Differ 20:858-868, 2013.
18) Zhang X, Hu C, Kong CY, et al:FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ 27:540-555, 2020.
19) Wen SY, Tsai CY, Pai PY, et al:Diallyl trisulfide suppresses doxorubicin-induced cardiomyocyte apoptosis by inhibiting MAPK/NF-κB signaling through attenuation of ROS generation. Environ Toxicol 33:93-103, 2018.
20) Hu YH, Liu J, Lu J, et al:sFRP1 protects H9c2 cardiac myoblasts from doxorubicin-induced apoptosis by inhibiting the Wnt/PCP-JNK pathway. Acta Pharmacol Sin 41:1150-1157, 2020.
21) Chua CC, Liu X, Gao J, et al:Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606-H2613, 2006.
22) Zhang C, Feng Y, Qu S, et al:Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc Res 90:538-545, 2011.
23) McSweeney KM, Bozza WP, Alterovitz WL, et al:Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discov 5:102, 2019.
24) Saleme B, Das SK, Zhang Y, et al:p53-Mediated Repression of the PGC1A (PPARG Coactivator 1α) and APLNR (Apelin Receptor) Signaling Pathways Limits Fatty Acid Oxidation Energetics:Implications for Cardio-oncology. J Am Heart Assoc 9:e017247, 2020.
25) Feridooni T, Hotchkiss A, Remley-Carr S, et al:Cardiomyocyte specific ablation of p53 is not sufficient to block doxorubicin induced cardiac fibrosis and associated cytoskeletal changes. PLoS One 6:e22801, 2011.
27) Li M, Sala V, De Santis MC, et al:Phosphoinositide 3-Kinase Gamma Inhibition Protects From Anthracycline Cardiotoxicity and Reduces Tumor Growth. Circulation 138:696-711, 2018.
28) Lee KH, Cho H, Lee S, et al:Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int J Cardiol 232:40-47, 2017.
29) Wang X, Wang XL, Chen HL, et al:Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem Pharmacol 88:334-350, 2014.
30) Wang Y, Lu X, Wang X, et al:atg7-Based Autophagy Activation Reverses Doxorubicin-Induced Cardiotoxicity. Circ Res 129:e166-e182, 2021.
31) Dhingra A, Jayas R, Afshar P, et al:Ellagic acid antagonizes Bnip3-mediated mitochondrial injury and necrotic cell death of cardiac myocytes. Free Radic Biol Med 112:411-422, 2017.
32) Ong ALC, Ramasamy TS:Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 43:64-80, 2018.
33) Zhang C, Qu S, Wei X, et al:HSP25 down-regulation enhanced p53 acetylation by dissociation of SIRT1 from p53 in doxorubicin-induced H9c2 cell apoptosis. Cell Stress Chaperones 21:251-260, 2016.
34) Ruan Y, Dong C, Patel J, et al:SIRT1 suppresses doxorubicin-induced cardiotoxicity by regulating the oxidative stress and p38MAPK pathways. Cell Physiol Biochem 35:1116-1124, 2015.
35) Kim DS, Woo ER, Chae SW, et al:Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation. Life Sci 80:314-323, 2007.
36) Dhingra R, Guberman M, Rabinovich-Nikitin I, et al:Impaired NF-κB signalling underlies cyclophilin D-mediated mitochondrial permeability transition pore opening in doxorubicin cardiomyopathy. Cardiovasc Res 116:1161-1174, 2020.
37) Heineke J, Auger-Messier M, Xu J, et al:Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J Clin Invest 117:3198-3210, 2007.
38) Kim Y, Ma AG, Kitta K, et al:Anthracycline-induced suppression of GATA-4 transcription factor:implication in the regulation of cardiac myocyte apoptosis. Mol Pharmacol 63:368-377, 2003.
39) Kobayashi S, Volden P, Timm D, et al:Transcription factor GATA4 inhibits doxorubicin-induced autophagy and cardiomyocyte death. J Biol Chem 285:793-804, 2010.
40) Chen B, Zhong L, Roush SF, et al:Disruption of a GATA4/Ankrd1 signaling axis in cardiomyocytes leads to sarcomere disarray:implications for anthracycline cardiomyopathy. PLoS One 7:e35743, 2012.
41) Karhu ST, Kinnunen SM, Tolli M, et al:GATA4-targeted compound exhibits cardioprotective actions against doxorubicin-induced toxicity in vitro and in vivo:establishment of a chronic cardiotoxicity model using human iPSC-derived cardiomyocytes. Arch Toxicol 94:2113-2130, 2020.
42) Dixon SJ, Lemberg KM, Lamprecht MR, et al:Ferroptosis:an iron-dependent form of nonapoptotic cell death. Cell 149:1060-1072, 2012.
P.72 掲載の参考文献
1) Nakagama S, Maejima Y, Fan Q, et al:Endoplasmic Reticulum Selective Autophagy Alleviates Anthracycline-Induced Cardiotoxicity. JACC CardioOncol 5:656-670, 2023.
2) Maejima Y, Adachi S, Ito H, et al:Induction of premature senescence in cardiomyocytes by doxorubicin as a novel mechanism of myocardial damage. Aging Cell 7:125-136, 2008.
3) Fu HY, Sanada S, Matsuzaki T, et al:Chemical Endoplasmic Reticulum Chaperone Alleviates Doxorubicin-Induced Cardiac Dysfunction. Circ Res 118:798-809, 2016.
4) Okada K, Minamino T, Tsukamoto Y, et al:Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction:possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110:705-712, 2004.
5) Kerkela R, Grazette L, Yacobi R, et al:Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908-916, 2006.
6) Frakes AE, Dillin A:The UPRER:Sensor and Coordinator of Organismal Homeostasis. Mol Cell 66:761-771, 2017.
7) Chino H, Mizushima N:ER-Phagy:Quality Control and Turnover of Endoplasmic Reticulum. Trends Cell Biol 30:384-398, 2020.
8) Sciarretta S, Maejima Y, Zablocki D, et al:The Role of Autophagy in the Heart. Annu Rev Physiol 80:1-26, 2018.
9) Mochida K, Oikawa Y, Kimura Y, et al:Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522:359-362, 2015.
10) Khaminets A, Heinrich T, Mari M, et al:Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522:354-358, 2015.
11) Grumati P, Morozzi G, Holper S, et al:Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. Elife 6:e25555, 2017.
12) Chen Q, Xiao Y, Chai P, et al:ATL3 Is a Tubular ER-Phagy Receptor for GABARAP-Mediated Selective Autophagy. Curr Biol 29:846-855.e6, 2019.
13) Chino H, Hatta T, Natsume T, et al:Intrinsically Disordered Protein TEX264 Mediates ER-phagy. Mol Cell 74:909-921.e6, 2019.
14) Smith MD, Harley ME, Kemp AJ, et al:CCPG1 Is a Non-canonical Autophagy Cargo Receptor Essential for ER-Phagy and Pancreatic ER Proteostasis. Dev Cell 44:217-232.e11, 2018.
15) Fumagalli F, Noack J, Bergmann TJ, et al:Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery. Nat Cell Biol 18:1173-1184, 2016.
16) Kumar N, Leonzino M, Hancock-Cerutti W, et al:VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J Cell Biol 217:3625-3639, 2018.
17) Kurth I, Pamminger T, Hennings JC, et al:Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41:1179-1181, 2009.
18) Islam F, Gopalan V, Lam AK:RETREG1 (FAM134B):A new player in human diseases:15 years after the discovery in cancer. J Cell Physiol 233:4479-4489, 2018.
19) Lennemann NJ, Coyne CB:Dengue and Zika viruses subvert reticulophagy by NS2B3-mediated cleavage of FAM134B. Autophagy 13:322-332, 2017.
20) Wu MJ, Ke PY, Hsu JT, et al:Reticulon 3 interacts with NS4B of the hepatitis C virus and negatively regulates viral replication by disrupting NS4B self-interaction. Cell Microbiol 16:1603-1618, 2014.
P.79 掲載の参考文献
1) Rinehart JJ, Lewis RP, Balcerzak SP:Adriamycin cardiotoxicity in man. Ann Intern Med 81:475-478, 1974.
2) Felker GM, Thompson RE, Hare JM, et al:Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077-1084, 2000.
3) Nishi M, Wang PY, Hwang PM:Cardiotoxicity of Cancer Treatments:Focus on Anthracycline Cardiomyopathy. Arterioscler Thromb Vasc Biol 41:2648-2660, 2021.
4) Dixon SJ, Lemberg KM, Lamprecht MR, et al:Ferroptosis:an iron-dependent form of nonapoptotic cell death. Cell 149:1060-1072, 2012.
5) Tadokoro T, Ikeda M, Ide T, et al:Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5:e132747, 2020.
6) Abe K, Ikeda M, Ide T, et al:Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis. Sci Signal 15:eabn8017, 2022.
7) Yang WS, SriRamaratnam R, Welsch ME, et al:Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317-331, 2014.
8) Galluzzi L, Vitale I, Aaronson SA, et al:Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486-541, 2018.
9) Sugioka K, Nakano M:Mechanism of phospholipid peroxidation induced by ferric ion-ADP adriamycin-co-ordination complex. Biochim Biophys Acta 713:333-343, 1982.
10) Miura T, Muraoka S, Ogiso T:Lipid peroxidation of rat erythrocyte membrane induced by adriamycin-Fe3+. Pharmacol Toxicol 69:296-300, 1991.
11) Marty M, Espie M, Llombart A, et al:Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Ann Oncol 17:614-622, 2006.
12) Ichikawa Y, Ghanefar M, Bayeva M, et al:Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 124:617-630, 2014.
13) Jawad B, Poudel L, Podgornik R, et al:Molecular mechanism and binding free energy of doxorubicin intercalation in DNA. Phys Chem Chem Phys 21:3877-3893, 2019.
14) Dimauro S, Davidzon G:Mitochondrial DNA and disease. Ann Med 37:222-232, 2005.
15) D'Erchia AM, Atlante A, Gadaleta G, et al:Tissue-specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion 20:13-21, 2015.
16) Hasinoff BB, Patel D, Wu X:The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radic Biol Med 35:1469-1479, 2003.
17) Jirkovsky E, Jirkovska A, Bavlovic-Piskackova H, et al:Clinically Translatable Prevention of Anthracycline Cardiotoxicity by Dexrazoxane Is Mediated by Topoisomerase II Beta and Not Metal Chelation. Circ Heart Fail 14:e008209, 2021.
18) Zhang S, Liu X, Bawa-Khalfe T, et al:Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nat Med 18:1639-1642, 2012.
20) Tadokoro T, Ikeda M, Abe K, et al:Ethoxyquin is a Competent Radical-Trapping Antioxidant for Preventing Ferroptosis in Doxorubicin Cardiotoxicity. J Cardiovasc Pharmacol 80:690-699, 2022.
P.81 掲載の参考文献
1) Aprile G, Mazzer M, Moroso S, et al:Pharmacology and therapeutic efficacy of capecitabine:focus on breast and colorectal cancer. Anticancer Drugs 20:217-229, 2009.
2) Khan MF, Gottesman S, Boyella R, et al:Gemcitabine-induced cardiomyopathy:a case report and review of the literature. J Med Case Rep 8:220, 2014.
3) Kinhult S, Albertsson M, Eskilsson J, et al:Antithrombotic treatment in protection against thrombogenic effects of 5-fluorouracil on vascular endothelium:a scanning microscopy evaluation. Scanning 23:1-8, 2001.
4) Meyer CC, Calis KA, Burke LB, et al:Symptomatic cardiotoxicity associated with 5-fluorouracil. Pharmacotherapy 17:729-736, 1997.
5) Ng M, Cunningham D, Norman AR:The frequency and pattern of cardiotoxicity observed with capecitabine used in conjunction with oxaliplatin in patients treated for advanced colorectal cancer (CRC). Eur J Cancer 41:1542-1546, 2005.
6) Petrelli F, Barni S, Bertocchi P, et al:TAS-102, the first "cardio-gentle" fluoropyrimidine in the colorectal cancer landscape? BMC Cancer 16:386, 2016.
7) Jensen SA, Sorensen JB:5-fluorouracil-based therapy induces endovascular injury having potential significance to development of clinically overt cardiotoxicity. Cancer Chemother Pharmacol 69:57-64, 2012.
8) Jensen SA, Sorensen JB:Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol 58:487-493, 2006.
9) Koca D, Salman T, Unek IT, et al:Clinical and electrocardiography changes in patients treated with capecitabine. Chemotherapy 57:381-387, 2011.
10) Polk A, Vaage-Nilsen M, Vistisen K, et al:Cardiotoxicity in cancer patients treated with 5-fluorouracil or capecitabine:a systematic review of incidence, manifestations and predisposing factors. Cancer Treat Rev 39:974-984, 2013.
11) Polk A, Vistisen K, Vaage-Nilsen M, et al:A systematic review of the pathophysiology of 5-fluorouracil-induced cardiotoxicity. BMC Pharmacol Toxicol 15:47, 2014.
12) Alter P, Herzum M, Soufi M, et al:Cardiotoxicity of 5-fluorouracil. Cardiovasc Hematol Agents Med Chem 4:1-5, 2006.
13) Kosmas C, Kallistratos MS, Kopterides P, et al:Cardiotoxicity of fluoropyrimidines in different schedules of administration:a prospective study. J Cancer Res Clin Oncol 134:75-82, 2008.
14) Van Cutsem E, Hoff PM, Blum JL, et al:Incidence of cardiotoxicity with the oral fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil. Ann Oncol 13:484-485, 2002.
15) Lamberti M, Porto S, Zappavigna S, et al:A mechanistic study on the cardiotoxicity of 5-fluorouracil in vitro and clinical and occupational perspectives. Toxicol Lett 227:151-156, 2014.
16) Van Cutsem E, Bajetta E, Valle J, et al:Randomized, placebo-controlled, phase III study of oxaliplatin, fluorouracil, and leucovorin with or without PTK787/ZK 222584 in patients with previously treated metastatic colorectal adenocarcinoma. J Clin Oncol 29:2004-2010, 2011.
17) Lestuzzi C, Vaccher E, Talamini R, et al:Effort myocardial ischemia during chemotherapy with 5- fluorouracil:an underestimated risk. Ann Oncol 25:1059-1064, 2014.
18) Lestuzzi C, Tartuferi L, Corona G:Capecitabine (and 5 fluorouracil) cardiotoxicity. Metabolic considerations. Breast J 17:564-565; author reply 566-567, 2011.
19) Miura K, Kinouchi M, Ishida K, et al:5-FU metabolism in cancer and orally-administrable 5-FU drugs. Cancers (Basel) 2:1717-1730, 2010.
20) Cianci G, Morelli MF, Cannita K, et al:Prophylactic options in patients with 5-fluorouracil-associated cardiotoxicity. Br J Cancer 88:1507-1509, 2003.
22) Shoemaker LK, Arora U, Rocha Lima CM:5-fluorouracil-induced coronary vasospasm. Cancer Control 11:46-49, 2004.
23) Nishimura H, Okazaki T, Tanaka Y, et al:Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319-322, 2001.
24) Fontanella C, Aita M, Cinausero M, et al:Capecitabine-induced cardiotoxicity:more evidence or clinical approaches to protect the patients' heart? Onco Targets Ther 7:1783-1791, 2014.
25) Tsibiribi P, Bui-Xuan C, Bui-Xuan B, et al:Cardiac lesions induced by 5-fluorouracil in the rabbit. Hum Exp Toxicol 25:305-309, 2006.
P.87 掲載の参考文献
1) Omole JG, Ayoka OA, Alabi QK, et al:Protective Effect of Kolaviron on Cyclophosphamide-Induced Cardiac Toxicity in Rats. J Evid Based Integr Med 23:2156587218757649, 2018.
2) Iqubal A, Iqubal MK, Sharma S, et al:Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity:Old drug with a new vision. Life Sci 218:112-131, 2019.
3) Henning RJ, Johnson GT, Coyle JP, et al:Acrolein Can Cause Cardiovascular Disease:A Review. Cardiovasc Toxicol 17:227-236, 2017.
4) Goldberg MA, Antin JH, Guinan EC, et al:Cyclophosphamide cardiotoxicity:an analysis of dosing as a risk factor. Blood 68:1114-1118, 1986.
5) Xu ZL, Xu LP, Zhang YY, et al:Incidence and predictors of severe cardiotoxicity in patients with severe aplastic anaemia after haploidentical haematopoietic stem cell transplantation. Bone Marrow Transplant 54:1694-1700, 2019.
6) Ishida S, Doki N, Shingai N, et al:The clinical features of fatal cyclophosphamide-induced cardiotoxicity in a conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo HSCT). Ann Hematol 95:1145-1150, 2016.
7) Yeh J, Whited L, Saliba RM, et al:Cardiac toxicity after matched allogeneic hematopoietic cell transplant in the posttransplant cyclophosphamide era. Blood Adv 5:5599-5607, 2021.
8) Dulery R, Mohty R, Labopin M, et al:Early Cardiac Toxicity Associated With Post-Transplant Cyclophosphamide in Allogeneic Stem Cell Transplantation. JACC CardioOncol 3:250-259, 2021.
9) 造血細胞移植ガイドライン-真菌感染症の予防と治療(第2版), p7-9, 日本造血・免疫細胞療法学会, 2021.
10) Marr KA, Leisenring W, Crippa F, et al:Cyclophosphamide metabolism is affected by azole antifungals. Blood 103:1557-1559, 2004.
11) Marumo A, Omori I, Tara S, et al:Cyclophosphamide-induced cardiotoxicity at conditioning for allogeneic hematopoietic stem cell transplantation would occur among the patients treated with 120 mg/kg or less. Asia Pac J Clin Oncol 18:e507-e514, 2022.
12) Snowden JA, Hill GR, Hunt P, et al:Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide. Bone Marrow Transplant 26:309-313, 2000.
13) Orvain C, Beloncle F, Hamel JF, et al:Allogeneic stem cell transplantation recipients requiring intensive care:time is of the essence. Ann Hematol 97:1601-1609, 2018.
14) Ayza MA, Zewdie KA, Tesfaye BA, et al:The role of antioxidants in ameliorating Cyclophosphamide-induced cardiotoxicity. Oxid Med Cell Longev 2020:4965171, 2020.
P.92 掲載の参考文献
1) Hicklin DJ, Ellis LM:Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011-1027, 2005.
2) Shaw P, Dwivedi SKD, Bhattacharya R, et al:VEGF signaling:Role in angiogenesis and beyond. Biochim Biophys Acta Rev Cancer 1879:189079, 2024.
3) Dobbin SJH, Petrie MC, Myles RC, et al:Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond) 135:71-100, 2021.
4) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
5) Zelmat Y, Conte C, Noize P, et al:Incidence of heart failure following exposure to a protein kinase inhibitor, a French population-based study. Br J Clin Pharmacol 89:1338-1348, 2023.
6) Crocetto F, Ferro M, Buonerba C, et al:Comparing cardiovascular adverse events in cancer patients:A meta-analysis of combination therapy with angiogenesis inhibitors and immune checkpoint inhibitors versus angiogenesis inhibitors alone. Crit Rev Oncol Hematol 188:104059, 2023.
7) Hahn VS, Zhang KW, Sun L, et al:Heart Failure With Targeted Cancer Therapies:Mechanisms and Cardioprotection. Circ Res 128:1576-1593, 2021.
8) Zentilin L, Puligadda U, Lionetti V, et al:Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J 24:1467-1478, 2010.
9) Kivela R, Hemanthakumar KA, Vaparanta K, et al:Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling. Circulation 139:2570-2584, 2019.
10) Woitek F, Zentilin L, Hoffman NE, et al:Intracoronary Cytoprotective Gene Therapy:A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy. J Am Coll Cardiol 66:139-153, 2015.
11) O'Farrell AC, Evans R, Silvola JMU, et al:A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic Pathway Remodeling in Response to Sunitinib Malate. PLoS One 12:e0169964, 2017.
12) Chintalgattu V, Ai D, Langley RR, et al:Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 120:472-484, 2010.
13) Moslehi JJ:Cardiovascular Toxic Effects of Targeted Cancer Therapies. N Engl J Med 375:1457-1467, 2016.
14) Neves KB, Rios FJ, van der Mey L, et al:VEGFR (Vascular Endothelial Growth Factor Receptor) Inhibition Induces Cardiovascular Damage via Redox-Sensitive Processes. Hypertension 71:638-647, 2018.
15) Winnik S, Lohmann C, Siciliani G, et al:Systemic VEGF inhibition accelerates experimental atherosclerosis and disrupts endothelial homeostasis--implications for cardiovascular safety. Int J Cardiol 168:2453-2461, 2013.
16) Li Y, Zhu Y, Deng Y, et al:The therapeutic effect of bevacizumab on plaque neovascularization in a rabbit model of atherosclerosis during contrast-enhanced ultrasonography. Sci Rep 6:30417, 2016.
17) Celletti FL, Waugh JM, Amabile PG, et al:Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med 7:425-429, 2001.
18) Ropert S, Vignaux O, Mir O, et al:VEGF pathway inhibition by anticancer agent sunitinib and susceptibility to atherosclerosis plaque disruption. Invest New Drugs 29:1497-1499, 2011.
19) Pantaleo MA, Mandrioli A, Saponara M, et al:Development of coronary artery stenosis in a patient with metastatic renal cell carcinoma treated with sorafenib. BMC Cancer 12:231, 2012.
20) Thijs AM, van Herpen CM, Verweij V, et al:Impaired endothelium-dependent vasodilation does not initiate the development of sunitinib-associated hypertension. J Hypertens 33:2075-2082, 2015.
21) Kandabashi T, Shimokawa H, Miyata K, et al:Inhibition of myosin phosphatase by upregulated rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1β. Circulation 101:1319-1323, 2000.
22) Hennenberg M, Trebicka J, Stark C, et al:Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br J Pharmacol 157:258-270, 2009.
23) Abdel-Qadir H, Ethier JL, Lee DS, et al:Cardiovascular toxicity of angiogenesis inhibitors in treatment of malignancy:A systematic review and meta-analysis. Cancer Treat Rev 53:120-127, 2017.
24) Ohashi Y, Ikeda M, Kunitoh H, et al:Venous thromboembolism in cancer patients:report of baseline data from the multicentre, prospective Cancer-VTE Registry. Jpn J Clin Oncol 50:1246-1253, 2020.
25) Sayegh N, Yirerong J, Agarwal N, et al:Cardiovascular Toxicities Associated with Tyrosine Kinase Inhibitors. Curr Cardiol Rep 25:269-280, 2023.
26) Lee HA, Hyun SA, Byun B, et al:Electrophysiological mechanisms of vandetanib-induced cardiotoxicity:Comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell derived cardiomyocytes. PLoS One 13:e0195577, 2018.
27) Lai X, Wan Q, Jiao SF, et al:Cardiovascular toxicities following the use of tyrosine kinase inhibitors in hepatocellular cancer patients:a retrospective, pharmacovigilance study. Expert Opin Drug Saf 23:287-296, 2024.
28) Pretorius L, Du XJ, Woodcock EA, et al:Reduced phosphoinositide 3-kinase (p110α) activation increases the susceptibility to atrial fibrillation. Am J Pathol 175:998-1009, 2009.
P.99 掲載の参考文献
1) Kimura S, Imagawa J, Murai K, et al:Treatment-free remission after first-line dasatinib discontinuation in patients with chronic myeloid leukaemia (first-line DADI trial):a single-arm, multicentre, phase 2 trial. Lancet Haematol 7:e218-e225, 2020.
2) Rea D, Mauro MJ, Boquimpani C, et al:A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood 138:2031-2041, 2021.
3) Hoffmann VS, Baccarani M, Hasford J, et al:The EUTOS population-based registry:incidence and clinical characteristics of 2904 CML patients in 20 European Countries. Leukemia 29:1336-1343, 2015.
4) Jain P, Kantarjian H, Boddu PC, et al:Analysis of cardiovascular and arteriothrombotic adverse events in chronic-phase CML patients after frontline TKIs. Blood Adv 3:851-861, 2019.
5) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
6) Hochhaus A, Saglio G, Hughes TP, et al:Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase:5-year update of the randomized ENESTnd trial. Leukemia 30:1044-1054, 2016.
7) Moslehi JJ, Deininger M:Tyrosine Kinase Inhibitor-Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. J Clin Oncol 33:4210-4218, 2015.
8) Hadzijusufovic E, Albrecht-Schgoer K, Huber K, et al:Nilotinib-induced vasculopathy:identification of vascular endothelial cells as a primary target site. Leukemia 31:2388-2397, 2017.
9) Alhawiti N, Burbury KL, Kwa FA, et al:The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res 145:54-64, 2016.
10) Lyon AR, Dent S, Stanway S, et al:Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies:a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail 22:1945-1960, 2020.
11) Caocci G, Mulas O, Abruzzese E, et al:Arterial occlusive events in chronic myeloid leukemia patients treated with ponatinib in the real-life practice are predicted by the Systematic Coronary Risk Evaluation (SCORE) chart. Hematol Oncol 37:296-302, 2019.
12) Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al:2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J 43:3997-4126, 2022.
13) Mulas O, Caocci G, Stagno F, et al:Renin angiotensin system inhibitors reduce the incidence of arterial thrombotic events in patients with hypertension and chronic myeloid leukemia treated with second- or third-generation tyrosine kinase inhibitors. Ann Hematol 99:1525-1530, 2020.
14) Cortes JE, Kim DW, Pinilla-Ibarz J, et al:A phase 2 trial of ponatinib in Philadelphia chromosome positive leukemias. N Engl J Med 369:1783-1796, 2013.
15) Cortes J, Apperley J, Lomaia E, et al:Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia:a randomized, open-label phase 2 clinical trial. Blood 138:2042-2050, 2021.
16) Shah NP, Wallis N, Farber HW, et al:Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol 90:1060-1064, 2015.
17) Minami M, Arita T, Iwasaki H, et al:Comparative analysis of pulmonary hypertension in patients treated with imatinib, nilotinib and dasatinib. Br J Haematol 177:578-587, 2017.
18) Cowie MR, Bax J, Bruining N, et al:e-Health:a position statement of the European Society of Cardiology. Eur Heart J 37:63-66, 2016.
19) Cheng S, Jin P, Li H, et al:Evaluation of CML TKI Induced Cardiovascular Toxicity and Development of Potential Rescue Strategies in a Zebrafish Model. Front Pharmacol 12:740529, 2021.
P.105 掲載の参考文献
1) Fleming MR, Xiao L, Jackson KD, et al:Vascular Impact of Cancer Therapies:The Case of BTK (Bruton Tyrosine Kinase) Inhibitors. Circ Res 128:1973-1987, 2021.
2) Burger JA, Barr PM, Robak T, et al:Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL:5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 34:787-798, 2020.
3) Brown JR, Eichhorst B, Hillmen P, et al:Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N Engl J Med 388:319-332, 2023.
4) Salem JE, Manouchehri A, Bretagne M, et al:Cardiovascular Toxicities Associated With Ibrutinib. J Am Coll Cardiol 74:1667-1678, 2019.
5) Quartermaine C, Ghazi SM, Yasin A, et al:Cardiovascular Toxicities of BTK Inhibitors in Chronic Lymphocytic Leukemia:JACC:CardioOncology State-of-the-Art Review. JACC CardioOncol 5:570-590, 2023.
6) Xiao L, Salem JE, Clauss S, et al:Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 142:2443-2455, 2020.
7) McMullen JR, Boey EJ, Ooi JY, et al:Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood 124:3829-3830, 2014.
8) Jiang L, Li L, Ruan Y, et al:Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium. Heart Rhythm 16:1374-1382, 2019.
9) Tarnowski D, Feder AL, Trum M, et al:Ibrutinib impairs IGF-1-dependent activation of intracellular Ca handling in isolated mouse ventricular myocytes. Front Cardiovasc Med 10:1190099, 2023.
10) Tuomi JM, Bohne LJ, Dorey TW, et al:Distinct effects of ibrutinib and acalabrutinib on mouse atrial and sinoatrial node electrophysiology and arrhythmogenesis. J Am Heart Assoc 10:e022369, 2021.
11) Guha A, Derbala MH, Zhao Q, et al:Ventricular Arrhythmias Following Ibrutinib Initiation for Lymphoid Malignancies. J Am Coll Cardiol 72:697-698, 2018.
12) Chen ST, Azali L, Rosen L, et al:Hypertension and incident cardiovascular events after next generation BTKi therapy initiation. J Hematol Oncol 15:92, 2022.
13) Natarajan G, Terrazas C, Oghumu S, et al:Ibrutinib enhances IL-17 response by modulating the function of bone marrow derived dendritic cells. Oncoimmunology 5:e1057385, 2016.
14) Kamel S, Horton L, Ysebaert L, et al:Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia 29:783-787, 2015.
15) Atkinson BT, Ellmeier W, Watson SP:Tec regulates platelet activation by GPVI in the absence of Btk. Blood 102:3592-3599, 2003.
P.110 掲載の参考文献
1) Manasanch EE, Orlowski RZ:Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417-433, 2017.
2) Tundo GR, Sbardella D, Santoro AM, et al:The proteasome as a druggable target with multiple therapeutic potentialities:Cutting and non-cutting edges. Pharmacol Ther 213:107579, 2020.
3) Nunes AT, Annunziata CM:Proteasome inhibitors:structure and function. Semin Oncol 44:377-380, 2017.
4) Adams J:The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417-421, 2004.
5) Day SM:The ubiquitin proteasome system in human cardiomyopathies and heart failure. Am J Physiol Heart Circ Physiol 304:H1283-H1293, 2013.
6) Harousseau JL, Attal M, Avet-Loiseau H, et al:Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem cell transplantation in newly diagnosed multiple myeloma:results of the IFM 2005-01 phase III trial. J Clin Oncol 28:4621-4629, 2010.
7) Kuhn DJ, Chen Q, Voorhees PM, et al:Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110:3281-3290, 2007.
8) Dimopoulos MA, Moreau P, Palumbo A, et al:Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR):a randomised, phase 3, open-label, multicentre study. Lancet Oncol 17:27-38, 2016.
9) Kupperman E, Lee EC, Cao Y, et al:Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70:1970-1980, 2010.
10) Moreau P, Masszi T, Grzasko N, et al:Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med 374:1621-1634, 2016.
11) Das A, Dasgupta S, Gong Y, et al:Cardiotoxicity as an adverse effect of immunomodulatory drugs and proteasome inhibitors in multiple myeloma:A network meta-analysis of randomized clinical trials. Hematol Oncol 40:233-242, 2022.
12) Gavazzoni M, Vizzardi E, Gorga E, et al:Mechanism of cardiovascular toxicity by proteasome inhibitors:New paradigm derived from clinical and pre-clinical evidence. Eur J Pharmacol 828:80-88, 2018.
13) Nowis D, Maczewski M, Mackiewicz U, et al:Cardiotoxicity of the anticancer therapeutic agent bortezomib. Am J Pathol 176:2658-2668, 2010.
14) Efentakis P, Kremastiotis G, Varela A, et al:Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood 133:710-723, 2019.
15) Georgiopoulos G, Makris N, Laina A, et al:Cardiovascular Toxicity of Proteasome Inhibitors:Underlying Mechanisms and Management Strategies:JACC:CardioOncology State-of-the-Art Review. JACC CardioOncol 5:1-21, 2023.
P.117 掲載の参考文献
1) Waliany S, Zhu H, Wakelee H, et al:Pharmacovigilance Analysis of Cardiac Toxicities Associated With Targeted Therapies for Metastatic NSCLC. J Thorac Oncol 16:2029-2039, 2021.
2) アストラゼネカ株式会社:タグリッソ錠適正使用ガイド, 2023年8月作成.
3) Ewer MS, Tekumalla SH, Walding A, et al:Cardiac Safety of Osimertinib:A Review of Data. J Clin Oncol 39:328-337, 2021.
4) Kunimasa K, Oka T, Hara S, et al:Osimertinib is associated with reversible and dose-independent cancer therapy-related cardiac dysfunction. Lung Cancer 153:186-192, 2021.
5) 腫瘍循環器診療ハンドブック(小室一成 監, 日本腫瘍循環器学会編集委員会 編), メジカルビュー社, 2020.
6) Anand K, Ensor J, Trachtenberg B, et al:Osimertinib-Induced Cardiotoxicity:A Retrospective Review of the FDA Adverse Events Reporting System (FAERS). JACC CardioOncol 1:172-178, 2019.
7) Niessen S, Dix MM, Barbas S, et al:Proteome-wide Map of Targets of T790M-EGFR-Directed Covalent Inhibitors. Cell Chem Biol 24:1388-1400.e7, 2017.
8) Wu YL, Tsuboi M, He J, et al:Osimertinib in Resected EGFR-Mutated Non-Small-Cell Lung Cancer. N Engl J Med 383:1711-1723, 2020.
9) Planchard D, Janne PA, Cheng Y, et al:Osimertinib with or without Chemotherapy in EGFR-Mutated Advanced NSCLC. N Engl J Med 389:1935-1948, 2023.
10) Belani N, Liang K, Fradley M, et al:How to Treat EGFR-Mutated Non-Small Cell Lung Cancer. JACC CardioOncol 5:542-545, 2023.
P.121 掲載の参考文献
1) Shaw AT, Felip E, Bauer TM, et al:Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement:an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol 18:1590-1599, 2017.
2) Hubbeling HG, Lin JJ, Gainor JF, et al:Targeted Therapy in Non-Small Cell Lung Cancer. In:Cancer Chemotherapy, Immunotherapy and Biotherapy:Principles and Practice, 6th ed(ed by Chabner BA, Longo DL), p352-372, Wolters Kluwer, Philadelphia, 2019.
3) 中外製薬株式会社:アレセンサ 医薬品インタビューフォーム, 2020年2月改訂(第11版).
4) ノバルティスファーマ株式会社:ジカディア 医薬品インタビューフォーム, 2021年4月改訂(第7版).
5) 武田薬品工業株式会社:アルンブリグ 医薬品インタビューフォーム, 2022年5月改訂(第3版).
6) ファイザー株式会社:ローブレナ 医薬品インタビューフォーム, 2022年8月改訂(第8版).
7) ファイザー株式会社:ザーコリ 医薬品インタビューフォーム, 2023年4月改訂(第15版).
9) 蒔田直昌:薬剤性 QT 延長症候群と遺伝子変異. 心電図 25:105-109, 2005.
10) Zhang Z, Huang TQ, Nepliouev I, et al:Crizotinib Inhibits Hyperpolarization-activated Cyclic Nucleotide-Gated Channel 4 Activity. Cardiooncology 3:1, 2017.
11) Weickhardt AJ, Rothman MS, Salian-Mehta S, et al:Rapid-onset hypogonadism secondary to crizotinib use in men with metastatic nonsmall cell lung cancer. Cancer 118:5302-5309, 2012.
12) Ou SH, Tong WP, Azada M, et al:Heart rate decrease during crizotinib treatment and potential correlation to clinical response. Cancer 119:1969-1975, 2013.
13) Cirne F, Zhou S, Kappel C, et al:ALK inhibitor-induced bradycardia:A systematic-review and meta-analysis. Lung Cancer 161:9-17, 2021.
14) 武田薬品工業株式会社:アルンブリグ 適正使用の手引き, 2022年7月作成.
P.126 掲載の参考文献
1) Nguyen-Ngoc T, Bouchaab H, Adjei AA, et al:BRAF Alterations as Therapeutic Targets in Non-Small-Cell Lung Cancer. J Thorac Oncol 10:1396-1403, 2015.
2) Glen C, Tan YY, Waterston A, et al:Mechanistic and Clinical Overview Cardiovascular Toxicity of BRAF and MEK Inhibitors:JACC:CardioOncology State-of-the-Art Review. J Am Coll Cardiol CardioOnc 4:1-18, 2022.
3) Davies H, Bignell GR, Cox C, et al:Mutations of the BRAF gene in human cancer. Nature 417:949-954, 2002.
4) Halle BR, Johnson DB:Defining and targeting BRAF mutations in solid tumors. Curr Treat Options Oncol 22:30, 2021.
5) Tiacci E, Trifonov V, Schiavoni G, et al:BRAF mutations in hairy-cell leukemia. N Engl J Med 364:2305-2315, 2011.
6) Robert C, Karaszewska B, Schachter J, et al:Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372:30-39, 2015.
7) Prahallad, Sun C, Huang S, et al:Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100-103, 2012.
9) Purcell NH, Wilkins BJ, York A, et al:Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci USA 104:14074-14079, 2007.
10) Kubin T, Cetinkaya A, Schonburg M, et al:The MEK1 inhibitors UO126 and PD98059 block PDGF-AB induced phosphorylation of threonine 292 in porcine smooth muscle cells. Cytokine 95:51-54, 2017.
11) Mincu RI, Mahabadi AA, Michel L, et al:Cardiovascular Adverse Events Associated With BRAF and MEK Inhibitors:A Systematic Review and Meta-analysis. JAMA Netw Open 2:e198890, 2019.
12) Banks M, Crowell K, Proctor A, et al:Cardiovascular effects of the MEK inhibitor, trametinib:a case report, literature review, and consideration of mechanism. Cardiovasc Toxicol 17:487-493, 2017.
13) Lyon AR, Lopez-Fernandez T, Couch LS, et al; ESC Scientific Document Group:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
14) Bronte E, Bronte G, Novo G, et al:Cardiotoxicity mechanisms of the combination of BRAF-inhibitors and MEK-inhibitors. Pharmacol Ther 192:65-73, 2018.
15) Zhu H, Tan L, Li Y, et al:Increased Apoptosis in the Paraventricular Nucleus Mediated by AT1R/Ras/ERK1/2 Signaling Results in Sympathetic Hyperactivity and Renovascular Hypertension in Rats after Kidney Injury. Front Physiol 8:41, 2017
P.132 掲載の参考文献
1) Schreiber RD, Old LJ, Smyth MJ:Cancer immunoediting:integrating immunity's roles in cancer suppression and promotion. Science 331:1565-1570, 2011.
2) Dunn GP, Bruce AT, Ikeda H, et al:Cancer immunoediting:from immunosurveillance to tumor escape. Nat Immunol 3:991-998, 2002.
5) Mellman I, Chen DS, Powles T, et al:The cancer-immunity cycle:Indication, genotype, and immunotype. Immunity 56:2188-2205, 2023.
6) Tang S, Ning Q, Yang L, et al:Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol 86:106700, 2020.
7) Vinay DS, Ryan EP, Pawelec G, et al:Immune evasion in cancer:Mechanistic basis and therapeutic strategies. Semin Cancer Biol 35(Suppl):S185-S198, 2015.
8) Rui R, Zhou L, He S:Cancer immunotherapies:advances and bottlenecks. Front Immunol 14:1212476, 2023.
10) がん免疫療法ガイドライン[第3版](日本臨床腫瘍学会 編), 金原出版, 2023.
12) Rudd CE, Taylor A, Schneider H:CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 229:12-26, 2009.
13) Sharpe AH, Pauken KE:The diverse functions of the PD1 inhibitory pathway. Nat Rev Immunol 18:153-167, 2018.
14) Chen DS, Mellman I:Elements of cancer immunity and the cancer-immune set point. Nature 541:321-330, 2017.
P.136 掲載の参考文献
1) Tajiri K, Aonuma K, Sekine I:Immune checkpoint inhibitor-related myocarditis. Jpn J Clin Oncol 48:7-12, 2018.
2) Tajiri K, Ieda M:Cardiac Complications in Immune Checkpoint Inhibition Therapy. Front Cardiovasc Med 6:3, 2019.
3) Itzhaki Ben Zadok O, Levi A, Divakaran S, et al:Severe vs Nonsevere Immune Checkpoint Inhibitor-Induced Myocarditis:Contemporary 1-Year Outcomes. JACC CardioOncol 5:732-744, 2023.
4) Nakagomi Y, Tajiri K, Shimada S, et al:Immune Checkpoint Inhibitor-Related Myositis Overlapping With Myocarditis:An Institutional Case Series and a Systematic Review of Literature. Front Pharmacol 13:884776, 2022.
5) Axelrod ML, Meijers WC, Screever EM, et al:T cells specific for α-myosin drive immunotherapy-related myocarditis. Nature 611:818-826, 2022.
6) Champion SN, Stone JR:Immune checkpoint inhibitor associated myocarditis occurs in both high grade and low-grade forms. Mod Pathol 33:99-108, 2020.
7) Xia R, Tomsits P, Loy S, et al:Cardiac Macrophages and Their Effects on Arrhythmogenesis. Front Physiol 13:900094, 2022.
8) Power JR, Alexandre J, Choudhary A, et al:Association of early electrical changes with cardiovascular outcomes in immune checkpoint inhibitor myocarditis. Arch Cardiovasc Dis 115:315-330, 2022.
9) Salem JE, Bretagne M, Abbar B, et al:Abatacept/Ruxolitinib and Screening for Concomitant Respiratory Muscle Failure to Mitigate Fatality of Immune-Checkpoint Inhibitor Myocarditis. Cancer Discov 13:1100-1115, 2023.
10) Ma P, Liu J, Qin J, et al:Expansion of Pathogenic Cardiac Macrophages in Immune Checkpoint Inhibitor Myocarditis. Circulation 149:48-66, 2024.
11) Lv H, Havari E, Pinto S, et al:Impaired thymic tolerance to α-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest 121:1561-1573, 2011.
12) Won T, Kalinoski HM, Wood MK, et al:Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep 41:111611, 2022.
13) Fenioux C, Abbar B, Boussouar S, et al:Thymus alterations and susceptibility to immune checkpoint inhibitor myocarditis. Nat Med 29:3100-3110, 2023.
P.142 掲載の参考文献
1) Horowitz MM, Gale RP, Sondel PM, et al:Graft-versus-leukemia reactions after bone marrow transplantation. Blood 75:555-562, 1990.
2) 吉原 哲:悪性リンパ腫に対するキメラ抗原受容体T細胞療法の現在地と展望. 日本臨牀 81(増刊:新リンパ腫学):491-497, 2023.
3) 吉原 哲, 吉原享子:【多発性骨髄腫と類縁疾患】多発性骨髄腫に対する最新治療戦略と展望. 日本内科学会雑誌 112:1202-1209, 2023.
4) Morris EC, Neelapu SS, Giavridis T, et al:Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol 22:85-96, 2022.
5) Hines MR, Knight TE, McNerney KO, et al:Immune Effector Cell-Associated Hemophagocytic Lymphohistiocytosis-Like Syndrome. Transplant Cell Ther 29:438.e1-438.e16, 2023.
6) Jain MD, Smith M, Shah NN:How I treat refractory CRS and ICANS after CAR T-cell therapy. Blood 141:2430-2442, 2023.
7) Alvi RM, Frigault MJ, Fradley MG, et al:Cardiovascular Events Among Adults Treated With Chimeric Antigen Receptor T-Cells (CAR-T). J Am Coll Cardiol 74:3099-3108, 2019.
8) Yoshihara K, Orihara Y, Hoshiyama T, et al:Severe acute heart failure during or following cytokine release syndrome after CAR T-cell therapy. Leuk Res Rep 18:100338, 2022.
9) Sunayama I, Min KD, Orihara Y, et al:Impact of Cytokine Release Syndrome on Cardiac Function After Chimeric Antigen Receptor-T Cell Therapy. JACC Asia 3:944-946, 2023.
10) Katus HA, Remppis A, Neumann FJ, et al:Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 83:902-912, 1991.
11) Hu JR, Patel A, Huang S, et al:High Sensitivity Troponin T and NT-proBNP in Patients Receiving Chimeric Antigen Receptor (CAR) T-Cell Therapy. Clin Hematol Int 3:96-102, 2021.
12) Pathan N, Hemingway CA, Alizadeh AA, et al:Role of interleukin 6 in myocardial dysfunction of meningococcal septic shock. Lancet 363:203-209, 2004.
13) Zhang Y, Zhou F, Wu Z, et al:Timing of Tocilizumab Administration Under the Guidance of IL-6 in CAR-T Therapy for R/R Acute Lymphoblastic Leukemia. Front Immunol 13:914959, 2022.
14) Garcia-Rivas G, Castillo EC, Gonzalez-Gil AM, et al:The role of B cells in heart failure and implications for future immunomodulatory treatment strategies. ESC Heart Fail 7:1387-1399, 2020.
P.148 掲載の参考文献
1) Potts JE, Iliescu CA, Lopez Mattei JC, et al:Percutaneous coronary intervention in cancer patients:a report of the prevalence and outcomes in the United States. Eur Heart J 40:1790-1800, 2019.
2) Leong DP, Fradet V, Shayegan B, et al:Cardiovascular Risk in Men with Prostate Cancer:Insights from the RADICAL PC Study. J Urol 203:1109-1116, 2020.
3) Nguyen PL, Je Y, Schutz FA, et al:Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer:a meta-analysis of randomized trials. JAMA 306:2359-2366, 2011.
4) Bosco C, Bosnyak Z, Malmberg A, et al:Quantifying observational evidence for risk of fatal and nonfatal cardiovascular disease following androgen deprivation therapy for prostate cancer:a meta analysis. Eur Urol 68:386-396, 2015.
5) O'Farrell S, Garmo H, Holmberg L, et al:Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol 33:1243-1251, 2015.
6) Tanaka A, Node K:The Emerging and Promising Role of Care for Cardiometabolic Syndrome in Prostate Cancer. JACC CardioOncol 1:307-309, 2019.
7) Smith MR, Lee H, Nathan DM:Insulin sensitivity during combined androgen blockade for prostate cancer. J Clin Endocrinol Metab 91:1305-1308, 2006.
8) Wong CHM, Xu N, Lim J, et al:Adverse metabolic consequences of androgen deprivation therapy (ADT) on Asian patients with prostate cancer:Primary results from the real-life experience of ADT in Asia (READT) study. Prostate 83:801-808, 2023.
9) Mohlig M, Arafat AM, Osterhoff MA, et al:Androgen receptor CAG repeat length polymorphism modifies the impact of testosterone on insulin sensitivity in men. Eur J Endocrinol 164:1013-1018, 2011.
10) Perrone V, Degli Esposti L, Giacomini E, et al:Cardiovascular Risk Profile in Prostate Cancer Patients Treated with GnRH Agonists versus Antagonists:An Italian Real-World Analysis. Ther Clin Risk Manag 16:393-401, 2020.
11) Nelson AJ, Lopes RD, Hong H, et al:Cardiovascular Effects of GnRH Antagonists Compared With Agonists in Prostate Cancer:A Systematic Review. JACC CardioOncol 5:613-624, 2023.
12) Awasthi S, Grass GD, Torres-Roca J, et al:Genomic Testing in Localized Prostate Cancer Can Identify Subsets of African Americans With Aggressive Disease. J Natl Cancer Inst 114:1656-1664, 2022.
13) Kachuri L, Hoffmann TJ, Jiang Y, et al:Genetically adjusted PSA levels for prostate cancer screening. Nat Med 29:1412-1423, 2023.
14) Bhatia N, Santos M, Jones LW, et al:Cardiovascular Effects of Androgen Deprivation Therapy for the Treatment of Prostate Cancer:ABCDE Steps to Reduce Cardiovascular Disease in Patients With Prostate Cancer. Circulation 133:537-541, 2016.
P.155 掲載の参考文献
1) Lopez-Fernandez T, Vadillo IS, de la Guia AL, et al:Cardiovascular Issues in Hematopoietic Stem Cell Transplantation (HSCT). Curr Treat Options Oncol 22:51, 2021.
2) Scott JM, Armenian S, Giralt S, et al:Cardiovascular disease following hematopoietic stem cell transplantation:Pathogenesis, detection, and the cardioprotective role of aerobic training. Crit Rev Oncol Hematol 98:222-234, 2016.
3) Alizadehasl A, Ghadimi N, Hosseinifard H, et al:Cardiovascular diseases in patients after hematopoietic stem cell transplantation:Systematic review and Meta-analysis. Curr Res Transl Med 71:103363, 2023.
4) Rhee JW, Pillai R, He T, et al:Clonal Hematopoiesis and Cardiovascular Disease in Patients With Multiple Myeloma Undergoing Hematopoietic Cell Transplant. JAMA Cardiol 9:16-24, 2024.
5) Yanagisawa R, Tamaki M, Tanoshima R, et al:Risk factors for fatal cardiac complications after allogeneic hematopoietic cell transplantation:Japanese Society for Transplantation and Cellular Therapy transplant complications working group. Hematol Oncol 41:535-545, 2023.
6) 前田美穂:心臓. 小児血液・腫瘍学[改訂第2版](日本小児血液・がん学会 編), p283-286, 診断と治療社, 2022.
7) Armenian SH, Lacchetti C, Barac A, et al:Prevention and Monitoring of Cardiac Dysfunction in Survivors of Adult Cancers:American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 35:893-911, 2017.
8) Armenian SH, Sun CL, Mills G, et al:Predictors of late cardiovascular complications in survivors of hematopoietic cell transplantation. Biol Blood Marrow Transplant 16:1138-1144, 2010.
9) Tuzovic M, Mead M, Young PA, et al:Cardiac Complications in the Adult Bone Marrow Transplant Patient. Curr Oncol Rep 21:28, 2019.
10) Ishida S, Doki N, Shingai N, et al:The clinical features of fatal cyclophosphamide-induced cardiotoxicity in a conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo HSCT). Ann Hematol 95:1145-1150, 2016.
11) Rackley C, Schultz KR, Goldman FD, et al:Cardiac manifestations of graft-versus-host disease. Biol Blood Marrow Transplant 11:773-780, 2005.
12) Armenian SH, Sun CL, Vase T, et al:Cardiovascular risk factors in hematopoietic cell transplantation survivors:role in development of subsequent cardiovascular disease. Blood 120:4505-4512, 2012.
13) Aghel N, Lui M, Wang V, et al:Cardiovascular events among recipients of hematopoietic stem cell transplantation-A systematic review and meta-analysis. Bone Marrow Transplant 58:478-490, 2023.
14) Dulery R, Mohty R, Labopin M, et al:Early Cardiac Toxicity Associated With Post-Transplant Cyclophosphamide in Allogeneic Stem Cell Transplantation. JACC CardioOncol 3:250-259, 2021.
15) Yeh J, Whited L, Saliba RM, et al:Cardiac toxicity after matched allogeneic hematopoietic cell transplant in the posttransplant cyclophosphamide era. Blood Adv 5:5599-5607, 2021.
16) Ohmoto A, Fuji S:Cardiac complications associated with hematopoietic stem-cell transplantation. Bone Marrow Transplant 56:2637-2643, 2021.
17) Armenian SH, Yang D, Teh JB, et al:Prediction of cardiovascular disease among hematopoietic cell transplantation survivors. Blood Adv 2:1756-1764, 2018.
18) Chiengthong K, Lertjitbanjong P, Thongprayoon C, et al:Arrhythmias in hematopoietic stem cell transplantation:A systematic review and meta-analysis. Eur J Haematol 103:564-572, 2019.
19) Matin A, Smith BH, Mangaonkar A, et al:Pericardial Effusion as a Purported Manifestation of Graft-versus-Host Disease following Allogeneic Hematopoietic Cell Transplantation. Transplant Cell Ther 29:324.e1-324.e6, 2023.
20) Majhail NS, Rizzo JD, Lee SJ, et al:Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation. Biol Blood Marrow Transplant 18:348-371, 2012.
21) 稲本賢弘, 前田美穂:心血管. 造血細胞移植学会ガイドライン第4巻 移植後長期フォローアップ(日本造血細胞移植学会ガイドライン委員会 編), p63-69, 日本造血・免疫細胞療法学会, 2017.
22) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
23) Chow EJ, Anderson L, Baker KS, et al:Late Effects Surveillance Recommendations among Survivors of Childhood Hematopoietic Cell Transplantation:A Childrens Oncology Group Report. Biol Blood Marrow Transplant 22:782-795, 2016.
24) Armenian SH, Hudson MM, Mulder RL, et al:Recommendations for cardiomyopathy surveillance for survivors of childhood cancer:a report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol 16:e123-136, 2015.
25) 小児がん治療後の長期フォローアップガイド(JCCG 長期フォローアップ委員会長期フォローアップガイドライン作成ワーキンググループ 編), クリニコ出版, 2021.
P.161 掲載の参考文献
1) Sardar P, Kundu A, Chatterjee S, et al:Long-term cardiovascular mortality after radiotherapy for breast cancer:A systematic review and meta-analysis. Clin Cardiol 40:73-81, 2017.
2) van Nimwegen FA, Schaapveld M, Janus CP, et al:Cardiovascular disease after Hodgkin lymphoma treatment:40-year disease risk. JAMA Intern Med 175:1007-1017, 2015.
3) Dess RT, Sun Y, Matuszak MM, et al:Cardiac Events After Radiation Therapy:Combined Analysis of Prospective Multicenter Trials for Locally Advanced Non-Small-Cell Lung Cancer. J Clin Oncol 35:1395-1402, 2017.
4) Wang X, Palaskas NL, Yusuf SW, et al:Incidence and Onset of Severe Cardiac Events After Radiotherapy for Esophageal Cancer. J Thorac Oncol 15:1682-1690, 2020.
5) Bergom C, Bradley JA, Ng AK, et al:Past, Present, and Future of Radiation-Induced Cardiotoxicity:Refinements in Targeting, Surveillance, and Risk Stratification. JACC CardioOncol 3:343-359, 2021.
6) Darby SC, Cutter DJ, Boerma M, et al:Radiation-related heart disease:current knowledge and future prospects. Int J Radiat Oncol Biol Phys 76:656-665, 2010.
7) Jingu K, Umezawa R, Fukui K:Radiation-induced heart disease after treatment for esophageal cancer. Esophagus 14:215-220, 2017.
8) Belzile-Dugas E, Eisenberg MJ:Radiation-Induced Cardiovascular Disease:Review of an Underrecognized Pathology. J Am Heart Assoc 10:e021686, 2021.
9) Umezawa R, Takase K, Jingu K, et al:Evaluation of radiation-induced myocardial damage using iodine-123 β-methyl-iodophenyl pentadecanoic acid scintigraphy. J Radiat Res 54:880-889, 2013.
10) Jingu K, Kaneta T, Nemoto K, et al:The utility of 18F-fluorodeoxyglucose positron emission tomography for early diagnosis of radiation-induced myocardial damage. Int J Radiat Oncol Biol Phys 66:845-851, 2006.
11) Umezawa R, Ota H, Takanami K, et al:MRI findings of radiation-induced myocardial damage in patients with oesophageal cancer. Clin Radiol 69:1273-1279, 2014.
12) Umezawa R, Kadoya N, Ota H, et al:Dose-Dependent Radiation-Induced Myocardial Damage in Esophageal Cancer Treated With Chemoradiotherapy:A Prospective Cardiac Magnetic Resonance Imaging Study. Adv Radiat Oncol 5:1170-1178, 2020.
13) Speirs CK, DeWees TA, Rehman S, et al:Heart Dose Is an Independent Dosimetric Predictor of Overall Survival in Locally Advanced Non-Small Cell Lung Cancer. J Thorac Oncol 12:293-301, 2017.
14) Lin SH, Wang L, Myles B, et al:Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys 84:1078-1085, 2012.
15) Lin SH, Hobbs BP, Verma V, et al:Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. J Clin Oncol 38:1569-1579, 2020.
P.168 掲載の参考文献
1) 新臨床腫瘍学-がん薬物療法専門医のために[改訂第6版](日本臨床腫瘍学会 編), p189-194, 南江堂, 2021.
2) Lee C, Hahn RT:Valvular Heart Disease Associated With Radiation Therapy:A Contemporary Review. Struct Heart 7:100104, 2023.
3) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
4) Drost L, Yee C, Lam H, et al:A Systematic Review of Heart Dose in Breast Radiotherapy. Clin Breast Cancer 18:e819-e824, 2018.
5) Mitchell JD, Cehic DA, Morgia M, et al:Cardiovascular Manifestations From Therapeutic Radiation:A Multidisciplinary Expert Consensus Statement From the International Cardio-Oncology Society. JACC CardioOncol 3:360-380, 2021.
6) Darby SC, Ewertz M, McGale P, et al:Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987-998, 2013.
7) Honaryar MK, Allodji R, Ferrieres J, et al:Early Coronary Artery Calcification Progression over Two Years in Breast Cancer Patients Treated with Radiation Therapy:Association with Cardiac Exposure (BACCARAT Study). Cancers (Basel) 14:5724, 2022.
8) Honaryar MK, Allodji R, Jimenez G, et al:Early Development of Atherosclerotic Plaques in the Coronary Arteries after Radiotherapy for Breast Cancer (BACCARAT Study). J Cardiovasc Dev Dis 10:299, 2023.
9) Heidenreich PA, Hancock SL, Lee BK, et al:Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol 42:743-749, 2003.
10) Rutkovskiy A, Malashicheva A, Sullivan G, et al:Valve Interstitial Cells:The Key to Understanding the Pathophysiology of Heart Valve Calcification. J Am Heart Assoc 6:e006339, 2017.
11) Donnellan E, Masri A, Johnston DR, et al:Long-Term Outcomes of Patients With Mediastinal Radiation-Associated Severe Aortic Stenosis and Subsequent Surgical Aortic Valve Replacement:A Matched Cohort Study. J Am Heart Assoc 6:e005396, 2017.
12) Zhang D, Guo W, Al-Hijji MA, et al:Outcomes of Patients With Severe Symptomatic Aortic Valve Stenosis After Chest Radiation:Transcatheter Versus Surgical Aortic Valve Replacement. J Am Heart Assoc 8:e012110, 2019.
13) Nauffal V, Bay C, Shah PB, et al:Short-Term Outcomes of Transcatheter Versus Isolated Surgical Aortic Valve Replacement for Mediastinal Radiation-Associated Severe Aortic Stenosis. Circ Cardiovasc Interv 14:e010009, 2021.

III がんに合併する心血管病の機序と病態, 疫学

P.174 掲載の参考文献
1) がんの統計 2023(がんの統計編集委員会 編), がん研究振興財団, 2023. [https://ganjoho.jp/public/qa_links/report/statistics/2023_jp.html](2024年4月閲覧)
2) Kadowaki H, Akazawa H, Shindo A, et al:Shared and Reciprocal Mechanisms Between Heart Failure and Cancer-An Emerging Concept of Heart-Cancer Axis. Circ J 88:182-188, 2024.
3) De Wit S, Glen C, De Boer RA, et al:Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 118:3451-3466, 2022.
4) Lau ES, Paniagua SM, Liu E, et al:Cardiovascular Risk Factors are Associated with Future Cancer. JACC CardioOncol 3:48-58, 2021.
5) Jaiswal S, Natarajan P, Silver AJ, et al:Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med 377:111-121, 2017.
6) Stefanou N, Papanikolaou V, Furukawa Y, et al:Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase. BMC Cancer 10:442, 2010.
7) Hou N, Luo JD:Leptin and cardiovascular diseases. Clin Exp Pharmacol Physiol 38:905-913, 2011.
8) Sanaki Y, Nagata R, Kizawa D, et al:Hyperinsulinemia Drives Epithelial Tumorigenesis by Abrogating Cell Competition. Dev Cell 53:379-389.e5, 2020.
9) Liu G, Zhu M, Zhang M, et al:Emerging Role of IGF-1 in Prostate Cancer:A Promising Biomarker and Therapeutic Target. Cancers (Basel) 15:1287, 2023.
10) Chen W, Wang S, Tian T, et al:Phenotypes and genotypes of insulin-like growth factor 1, IGF binding protein-3 and cancer risk:evidence from 96 studies. Eur J Hum Genet 17:1668-1675, 2009.
11) Pinter M, Jain RK:Targeting the renin-angiotensin system to improve cancer treatment:Implications for immunotherapy. Sci Transl Med 9:eaan5616, 2017.
12) Nelson ER, Wardell SE, Jasper JS, et al:27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094-1098, 2013.
13) Leikauf GD, Borchers MT, Prows DR, et al:Mucin apoprotein expression in COPD. Chest 121(5 Suppl):166S-182S, 2002.
14) Stampfer M, Jahn JL:Partnerships for promoting prevention. Circulation 127:1267-1269, 2013.
15) Koene RJ, Prizment AE, Blaes A, et al:Shared Risk Factors in Cardiovascular Disease and Cancer. Circulation 133:1104-1114, 2016.
P.181 掲載の参考文献
1) Busque L, Paquette Y, Provost S, et al:Skewing of X-inactivation ratios in blood cells of aging women is confirmed by independent methodologies. Blood 113:3472-3474, 2009.
2) Busque L, Mio R, Mattioli J, et al:Nonrandom X-inactivation patterns in normal females:lyonization ratios vary with age. Blood 88:59-65, 1996.
3) Laurie CC, Laurie CA, Rice K, et al:Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642-650, 2012.
4) Jaiswal S, Fontanillas P, Flannick J, et al:Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488-2498, 2014.
5) Fuster JJ, MacLauchlan S, Zuriaga MA, et al:Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842-847, 2017.
6) Bolton KL, Koh Y, Foote MB, et al:Clonal hematopoiesis is associated with risk of severe Covid-19. Nat Commun 12:5975, 2021.
7) Saiki R, Momozawa Y, Nannya Y, et al:Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nat Med 27:1239-1249, 2021.
8) Bolton KL, Ptashkin RN, Gao T, et al:Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219-1226, 2020.
P.187 掲載の参考文献
1) Genovese G, Kahler AK, Handsaker RE, et al:Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477-2487, 2014.
2) Jaiswal S, Fontanillas P, Flannick J, et al:Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488-2498, 2014.
3) Xie M, Lu C, Wang J, et al:Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472-1478, 2014.
4) Jaiswal S, Natarajan P, Silver AJ, et al:Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease. N Engl J Med 377:111-121, 2017.
5) Zekavat SM, Viana-Huete V, Matesanz N, et al:TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res 2:144-158, 2023.
6) Bohme M, Desch S, Rosolowski M, et al:Impact of Clonal Hematopoiesis in Patients With Cardiogenic Shock Complicating Acute Myocardial Infarction. J Am Coll Cardiol 80:1545-1556, 2022.
7) Gumuser ED, Schuermans A, Cho SMJ, et al:Clonal Hematopoiesis of Indeterminate Potential Predicts Adverse Outcomes in Patients With Atherosclerotic Cardiovascular Disease. J Am Coll Cardiol 81:1996-2009, 2023.
8) Bhattacharya R, Zekavat SM, Haessler J, et al:Clonal Hematopoiesis Is Associated With Higher Risk of Stroke. Stroke 53:788-797, 2022.
9) Mas-Peiro S, Hoffmann J, Fichtlscherer S, et al:Clonal haematopoiesis in patients with degenerative aortic valve stenosis undergoing transcatheter aortic valve implantation. Eur Heart J 41:933-939, 2020.
10) Yokokawa T, Misaka T, Kimishima Y, et al:Clonal Hematopoiesis and JAK2V617F Mutations in Patients With Cardiovascular Disease. JACC CardioOncol 3:134-136, 2021.
11) Fuster JJ, MacLauchlan S, Zuriaga MA, et al:Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science 355:842-847, 2017.
12) Liu W, Yalcinkaya M, Maestre IF, et al:Blockade of IL-6 signaling alleviates atherosclerosis in Tet2- deficient clonal hematopoiesis. Nat Cardiovasc Res 2:572-586, 2023.
13) Fidler TP, Xue C, Yalcinkaya M, et al:The AIM2 inflammasome exacerbates atherosclerosis in clonal haematopoiesis. Nature 592:296-301, 2021.
14) Yu Z, Fidler TP, Ruan Y, et al:Genetic modification of inflammation- and clonal hematopoiesis associated cardiovascular risk. J Clin Invest 133:e168597, 2023.
15) Dorsheimer L, Assmus B, Rasper T, et al:Association of Mutations Contributing to Clonal Hematopoiesis With Prognosis in Chronic Ischemic Heart Failure. JAMA Cardiol 4:25-33, 2019.
16) Pascual-Figal DA, Bayes-Genis A, Diez-Diez M, et al:Clonal Hematopoiesis and Risk of Progression of Heart Failure With Reduced Left Ventricular Ejection Fraction. J Am Coll Cardiol 77:1747-1759, 2021.
17) Sikking MA, Stroeks SLVM, Henkens MTHM, et al:Clonal hematopoiesis has prognostic value in dilated cardiomyopathy independent of age and clone size. JACC Heart Fail, 2023. (DOI:10.1016/j.jchf.2023.06.037)
18) Cochran JD, Yura Y, Thel MC, et al:Clonal Hematopoiesis in Clinical and Experimental Heart Failure With Preserved Ejection Fraction. Circulation 148:1165-1178, 2023.
19) Yu B, Roberts MB, Raffield LM, et al:Supplemental Association of Clonal Hematopoiesis With Incident Heart Failure. J Am Coll Cardiol 78:42-52, 2021.
20) Sano S, Oshima K, Wang Y, et al:Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β /NLRP3 Inflammasome. J Am Coll Cardiol 71:875-886, 2018.
21) Sano S, Oshima K, Wang Y, et al:CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circ Res 123:335-341, 2018.
22) Abplanalp WT, Schuhmacher B, Cremer S, et al:Cell-intrinsic effects of clonal hematopoiesis in heart failure. Nat Cardiovasc Res 2:819-834, 2023.
23) Kimishima Y, Misaka T, Yokokawa T, et al:Clonal hematopoiesis with JAK2V617F promotes pulmonary hypertension with ALK1 upregulation in lung neutrophils. Nat Commun 12:6177, 2021.
24) Wolach O, Sellar RS, Martinod K, et al:Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms. Sci Transl Med 10:eaan8292, 2018.
25) Svensson EC, Madar A, Campbell CD, et al:TET2-Driven Clonal Hematopoiesis and Response to Canakinumab:An Exploratory Analysis of the CANTOS Randomized Clinical Trial. JAMA Cardiol 7:521-528, 2022.
26) Heyde A, Rohde D, McAlpine CS, et al:Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell 184:1348-1361.e22, 2021.
27) Pasupuleti SK, Ramdas B, Burns SS, et al:Obesity-induced inflammation exacerbates clonal hematopoiesis. J Clin Invest 133:e163968, 2023.
28) 三阪智史, 竹石恭知:クローン性造血と心血管疾患-新しい治療ターゲット-. 循環器内科 91:784-790, 2022.
29) Misaka T, Kimishima Y, Yokokawa T, et al:Clonal hematopoiesis and cardiovascular diseases:role of JAK2V617F. J Cardiol 81:3-9, 2023.
P.193 掲載の参考文献
1) Zamorano JL, Gottfridsson C, Asteggiano R, et al:The cancer patient and cardiology. Eur J Heart Fail 22:2290-2309, 2020.
2) Jaiswal S, Fontanillas P, Flannick J, et al:Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488-2498, 2014.
3) Coombs CC, Zehir A, Devlin SM, et al:Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. Cell Stem Cell 21:374-382.e4, 2017.
4) Bolton KL, Ptashkin RN, Gao T, et al:Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219-1226, 2020.
5) Hsu JI, Dayaram T, Tovy A, et al:PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell 23:700-713.e6, 2018.
6) Hagiwara K, Natarajan S, Wang Z, et al:Dynamics of Age- versus Therapy-Related Clona Hematopoiesis in Long-term Survivors of Pediatric Cancer. Cancer Discov 13:844-857, 2023.
7) Yura Y, Sano S, Walsh K:Clonal Hematopoiesis:A New Step Linking Inflammation to Heart Failure. JACC Basic Transl Sci 5:196-207, 2020.
8) Yura Y, Miura-Yura E, Katanasaka Y, et al:The Cancer Therapy-Related Clonal Hematopoiesis Driver Gene Ppm1d Promotes Inflammation and Non-Ischemic Heart Failure in Mice. Circ Res 129:684-698, 2021.
9) Sano S, Wang Y, Ogawa H, et al:TP53-mediated therapy-related clonal hematopoiesis contributes to doxorubicin-induced cardiomyopathy by augmenting a neutrophil-mediated cytotoxic response. JCI Insight 6:e146076, 2021.
10) Zekavat SM, Viana-Huete V, Matesanz N, et al:TP53-mediated clonal hematopoiesis confers increased risk for incident atherosclerotic disease. Nat Cardiovasc Res 2:144-158, 2023.
11) Arends CM, Liman TG, Strzelecka PM, et al:Associations of clonal hematopoiesis with recurrent vascular events and death in patients with incident ischemic stroke. Blood 141:787-799, 2023.
12) Fairchild L, Whalen J, D'Aco K, et al:Clonal hematopoiesis detection in patients with cancer using cell-free DNA sequencing. Sci Transl Med 15:eabm8729, 2023.
P.200 掲載の参考文献
1) Forsberg LA, Rasi C, Malmqvist N, et al:Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer. Nat Genet 46:624-628, 2014.
2) Dumanski JP, Lambert JC, Rasi C, et al:Mosaic Loss of Chromosome Y in Blood Is Associated with Alzheimer Disease. Am J Hum Genet 98:1208-1219, 2016.
3) Mas-Peiro S, Abplanalp WT, Rasper T, et al:Mosaic loss of Y chromosome in monocytes is associated with lower survival after transcatheter aortic valve replacement. Eur Heart J 44:1943-1952, 2023.
4) Haitjema S, Kofink D, van Setten J, et al:Loss of y Chromosome in Blood Is Associated with Major Cardiovascular Events during Follow-Up in Men after Carotid Endarterectomy. Circ Cardiovasc Genet 10:e001544, 2017.
5) Sano S, Horitani K, Ogawa H, et al:Hematopoietic loss of Y chromosome leads to cardiac fibrosis and heart failure mortality. Science 377:292-297, 2022.
6) Thompson DJ, Genovese G, Halvardson J, et al:Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575:652-657, 2019.
7) Dumanski JP, Rasi C, Lonn M, et al:Smoking is associated with mosaic loss of chromosome Y. Science 347:81-83, 2015.
8) Forsberg LA:Loss of chromosome Y (LOY) in blood cells is associated with increased risk for disease and mortality in aging men. Hum Genet 136:657-663, 2017.
9) Dumanski JP, Halvardson J, Davies H, et al:Immune cells lacking Y chromosome show dysregulation of autosomal gene expression. Cell Mol Life Sci 78:4019-4033, 2021.
10) Abdel-Hafiz HA, Schafer JM, Chen X, et al:Y chromosome loss in cancer drives growth by evasion of adaptive immunity. Nature 619:624-631, 2023.
11) Mattisson J, Halvardson J, Davies H, et al:Loss of chromosome Y in regulatory T cells. MedRxiv, 2023. (DOI:https://doi.org/10.1101/2023.06.17.23291316)
12) Wojcik M, Juhas U, Mohammadi E, et al:Loss of Y in regulatory T lymphocytes in the tumor micro environment of primary colorectal cancers and liver metastases. MedRxiv, 2023. (DOI:https://doi.org/10.1101/2023.06.17.23289722)
13) Qi M, Pang J, Mitsiades I, et al:Loss of chromosome Y in primary tumors. Cell 186:3125-3136.e11, 2023.
14) Shi B, Li W, Song Y, et al:UTX condensation underlies its tumour-suppressive activity. Nature 597:726-731, 2021.
15) Zhang Q, Zhao L, Yang Y, et al:Mosaic loss of chromosome Y promotes leukemogenesis and clonal hematopoiesis. JCI Insight 7:e153768, 2022.
P.206 掲載の参考文献
1) Kahn M, Emami KH, Nguyen C, et al:A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription. PNAS 101:12682-12687, 2004.
2) Sasaki T, Hwang H, Nguyen C, et al:The Small Molecule Wnt Signaling Modulator ICG-001 Improves Contractile Function in Chronically Infarcted Rat Myocardium. PLoS One 8:e75010, 2013.
3) Aizawa T, Suzuki K, Nakamura K, et al:Decrease of α -defensin impairs intestinal metabolite homeostasis via dysbiosis in mouse chronic social defeat stress model. Sci Rep 11:9915, 2021.
4) Aizawa K, Ikeda A, Tomida S, et al:A Potent PDK4 Inhibitor for Treatment of Heart Failure with Reduced Ejection Fraction. Cells 13:87, 2023.
5) Tambe Y, Terado T, Kim CJ, et al:Antitumor activity of potent pyruvate dehydrogenase kinase 4 inhibitors from plants in pancreatic cancer. Mol Carcinog 58:1726-1737, 2019.
6) Nakaya T, Aizawa K, Nagai R, et al:Development of Low-Molecular-Weight Compounds Targeting the Cancer-Associated KLF5 Transcription Factor. ACS Med Chem Lett 13:687-694, 2022.
P.210 掲載の参考文献
1) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
3) Swain SM, Whaley FS, Gerber MC, et al:Delayed administration of dexrazoxane provides cardioprotection for patients with advanced breast cancer treated with doxorubicin-containing therapy. J Clin Oncol 15:1333-1340, 1997.
4) Swain SM, Whaley FS, Gerber MC, et al:Cardioprotection with dexrazoxane for doxorubicin containing therapy in advanced breast cancer. J Clin Oncol 15:1318-1332, 1997.
5) Geissler A, Ryzhov S, Sawyer DB:Neuregulins:protective and reparative growth factors in multiple forms of cardiovascular disease. Clin Sci (Lond) 134:2623-2643, 2020.
6) Sengupta PP, Northfelt DW, Gentile F, et al:Trastuzumab-induced cardiotoxicity:heart failure at the crossroads. Mayo Clin Proc 83:197-203, 2008.
7) Jaworski C, Mariani JA, Wheeler G, et al:Cardiac complications of thoracic irradiation. J Am Coll Cardiol 61:2319-2328, 2013.
8) Masoudkabir F, Mohammadifard N, Mani A, et al:Shared Lifestyle-Related Risk Factors of Cardiovascular Disease and Cancer:Evidence for Joint Prevention. ScientificWorldJournal 2023:2404806, 2023.
9) Johnson CB, Davis MK, Law A, et al:Shared Risk Factors for Cardiovascular Disease and Cancer:Implications for Preventive Health and Clinical Care in Oncology Patients. Can J Cardiol 32:900-907, 2016.
10) Hasin T, Gerber Y, McNallan SM, et al:Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol 62:881-886, 2013.
11) Hasin T, Gerber Y, Weston SA, et al:Heart Failure After Myocardial Infarction Is Associated With Increased Risk of Cancer. J Am Coll Cardiol 68:265-271, 2016.
12) Ameri P, Canepa M, Anker MS, et al:Cancer diagnosis in patients with heart failure:epidemiology, clinical implications and gaps in knowledge. Eur J Heart Fail 20:879-887, 2018.
13) Libby P, Sidlow R, Lin AE, et al:Clonal Hematopoiesis:Crossroads of Aging, Cardiovascular Disease, and Cancer:JACC Review Topic of the Week. J Am Coll Cardiol 74:567-577, 2019.
P.214 掲載の参考文献
1) Kadowaki H, Akazawa H, Shindo A, et al:Shared and Reciprocal Mechanisms Between Heart Failure and Cancer-An Emerging Concept of Heart-Cancer Axis. Circ J 88:182-188, 2024.
2) Mann DL, Felker GM:Mechanisms and Models in Heart Failure:A Translational Approach. Circ Res 128:1435-1450, 2021.
3) Cole SW, Nagaraja AS, Lutgendorf SK, et al:Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer 15:563-572, 2015.
4) Everett BM, Cornel JH, Lainscak M, et al:Anti-Inflammatory Therapy With Canakinumab for the Prevention of Hospitalization for Heart Failure. Circulation 139:1289-1299, 2019.
5) Ridker PM, Macfadyen JG, Thuren T, et al:Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis:exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390:1833-1842, 2017.
6) Jaiswal S, Fontanillas P, Flannick J, et al:Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488-2498, 2014.
7) Sikking MA, Stroeks SLVM, Waring OJ, et al:Clonal Hematopoiesis of Indeterminate Potential From a Heart Failure Specialist's Point of View. J Am Heart Assoc 12:e030603, 2023.
8) Springer J, Tschirner A, Haghikia A, et al:Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J 35:932-941, 2014.
9) Stevens SC, Velten M, Youtz DJ, et al:Losartan treatment attenuates tumor-induced myocardial dysfunction. J Mol Cell Cardiol 85:37-47, 2015.
10) Karlstaedt A, Zhang X, Vitrac H, et al:Oncometabolite D-2-hydroxyglutarate impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci USA 113:10436-10441, 2016.
11) Meijers WC, Maglione M, Bakker SJL, et al:Heart Failure Stimulates Tumor Growth by Circulating Factors. Circulation 138:678-691, 2018.
12) Awwad L, Aronheim A:Cardiac Dysfunction Promotes Cancer Progression via Multiple Secreted Factors. Cancer Res 82:1753-1761, 2022.
13) Koelwyn GJ, Newman AAC, Afonso MS, et al:Myocardial infarction accelerates breast cancer via innate immune reprogramming. Nat Med 26:1452-1458, 2020.
P.220 掲載の参考文献
1) Banke A, Schou M, Videbaek L, et al:Incidence of cancer in patients with chronic heart failure:a long-term follow-up study. Eur J Heart Fail 18:260-266, 2016.
2) Hasin T, Gerber Y, McNallan SM, et al:Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol 62:881-886, 2013.
3) Meijers WC, Maglione M, Bakker SJL, et al:Heart Failure Stimulates Tumor Growth by Circulating Factors. Circulation 138:678-691, 2018.
4) Hasin T, Gerber Y, Weston SA, et al:Heart Failure After Myocardial Infarction Is Associated With Increased Risk of Cancer. J Am Coll Cardiol 68:265-271, 2016.
5) Lemmer A, VanWagner L, Ganger D:Congestive hepatopathy:Differentiating congestion from fibrosis. Clin Liver Dis (Hoboken) 10:139-143, 2017.
6) Asrani SK, Warnes CA, Kamath PS:Hepatocellular carcinoma after the Fontan procedure. N Engl J Med 368:1756-1757, 2013.
7) Rodriguez De Santiago E, Tellez L, Guerrero A, et al:Hepatocellular carcinoma after Fontan surgery:A systematic review. Hepatol Res 51:116-134, 2021.
8) Inuzuka R, Nii M, Inai K, et al:Predictors of liver cirrhosis and hepatocellular carcinoma among perioperative survivors of the Fontan operation. Heart 109:276-282, 2023.
9) Kogiso T, Sagawa T, Taniai M, et al:Risk factors for Fontan-associated hepatocellular carcinoma. PLoS One 17:e0270230, 2022.
10) Ohuchi H, Hayama Y, Nakajima K, et al:Incidence, Predictors, and Mortality in Patients With Liver Cancer After Fontan Operation. J Am Heart Assoc 10:e016617, 2021.
11) Sakamori R, Yamada R, Tahata Y, et al:The absence of warfarin treatment and situs inversus are associated with the occurrence of hepatocellular carcinoma after Fontan surgery. J Gastroenterol 57:111-119, 2022.
12) Ren W, Qi X, Yang Z, et al:Prevalence and risk factors of hepatocellular carcinoma in Budd-Chiari syndrome:a systematic review. Eur J Gastroenterol Hepatol 25:830-841, 2013.
13) Li KS, Guo S, Chen YX, et al:Budd-Chiari syndrome and its associated hepatocellular carcinoma:Clinical risk factors and potential immunotherapeutic benefit analysis. Front Oncol 12:1075685, 2022.
14) Moucari R, Rautou PE, Cazals-Hatem D, et al:Hepatocellular carcinoma in Budd-Chiari syndrome:characteristics and risk factors. Gut 57:828-835, 2008.
15) Komatsu H, Inui A, Kishiki K, et al:Liver disease secondary to congenital heart disease in children. Expert Rev Gastroenterol Hepatol 13:651-666, 2019.
16) Kawai H, Osawa Y, Matsuda M, et al:Sphingosine-1-phosphate promotes tumor development and liver fibrosis in mouse model of congestive hepatopathy. Hepatology 76:112-125, 2022.
P.226 掲載の参考文献
1) Study cancer survivors. Nature 568:143, 2019.
2) Belloum Y, Rannou-Bekono F, Favier FB:Cancer-induced cardiac cachexia:Pathogenesis and impact of physical activity (Review). Oncol Rep 37:2543-2552, 2017.
3) Tichy L, Parry TL:The pathophysiology of cancer-mediated cardiac cachexia and novel treatment strategies:A narrative review. Cancer Med 12:17706-17717, 2023.
4) Tisdale MJ:Cachexia in cancer patients. Nat Rev Cancer 2:862-871, 2002.
5) Lok C:Cachexia:The last illness. Nature 528:182-183, 2015.
6) Fearon K, Strasser F, Anker SD, et al:Definition and classification of cancer cachexia:an international consensus. Lancet Oncol 12:489-495, 2011.
7) Lira FS, Antunes Bde M, Seelaender M, et al:The therapeutic potential of exercise to treat cachexia. Curr Opin Support Palliat Care 9:317-324, 2015.
8) Temel JS, Abernethy AP, Currow DC, et al:Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2):results from two randomised, double-blind, phase 3 trials. Lancet Oncol 17:519-531, 2016.
9) Sturgeon KM, Deng L, Bluethmann SM, et al:A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J 40:3889-3897, 2019.
10) Lena A, Wilkenshoff U, Hadzibegovic S, et al:Clinical and Prognostic Relevance of Cardiac Wasting in Patients With Advanced Cancer. J Am Coll Cardiol 81:1569-1586, 2023.
11) Springer J, Tschirner A, Haghikia A, et al:Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur Heart J 35:932-941, 2014.
12) Soto ME, Perez-Torres I, Rubio-Ruiz ME, et al:Interconnection between Cardiac Cachexia and Heart Failure-Protective Role of Cardiac Obesity. Cells 11:1039, 2022.
13) Terawaki K, Kashiwase Y, Sawada Y, et al:Development of ghrelin resistance in a cancer cachexia rat model using human gastric cancer-derived 85As2 cells and the palliative effects of the Kampo medicine rikkunshito on the model. PLoS One 12:e0173113, 2017.
14) Terawaki K, Sawada Y, Kashiwase Y, et al:New cancer cachexia rat model generated by implantation of a peritoneal dissemination-derived human stomach cancer cell line. Am J Physiol Endocrinol Metab 306:E373-E387, 2014.
15) Kandarian SC, Nosacka RL, Delitto AE, et al:Tumour-derived leukaemia inhibitory factor is a major driver of cancer cachexia and morbidity in C26 tumour-bearing mice. J Cachexia Sarcopenia Muscle 9:1109-1120, 2018.
P.230 掲載の参考文献
2) Moslehi J, Amgalan D, Kitsis RN:Grounding Cardio-Oncology in Basic and Clinical Science. Circulation 136:3-5, 2017.
3) Tabata N, Sueta D, Yamamoto E, et al:Outcome of current and history of cancer on the risk of cardiovascular events following percutaneous coronary intervention:a Kumamoto University Malignancy and Atherosclerosis (KUMA) study. Eur Heart J Qual Care Clin Outcomes 4:290-300, 2018.
4) Tabata N, Sueta D, Yamamoto E, et al:A retrospective study of arterial stiffness and subsequent clinical outcomes in cancer patients undergoing percutaneous coronary intervention. J Hypertens 37:754-764, 2019.
5) Allin KH, Bojesen SE, Nordestgaard BG:Baseline C-reactive protein is associated with incident cancer and survival in patients with cancer. J Clin Oncol 27:2217-2224, 2009.
6) Tabata N, Sueta D, Akasaka T, et al:Helicobacter pylori Seropositivity in Patients with Interleukin 1 Polymorphisms Is Significantly Associated with ST-Segment Elevation Myocardial Infarction. PLoS One 11:e0166240, 2016.
7) Ridker PM, Thuren T, Zalewski A, et al:Interleukin-1β inhibition and the prevention of recurrent cardiovascular events:rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J 162:597-605, 2011.
8) Ridker PM, Everett BM, Thuren T, et al:Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 377:1119-1131, 2017.
9) Ridker PM, MacFadyen JG, Thuren T, et al:Effect of interleukin-1β inhibition with canakinumab on incident lung cancer in patients with atherosclerosis:exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390:1833-1842, 2017.
P.236 掲載の参考文献
1) Fuster V, Badimon L, Badimon JJ, et al:The pathogenesis of coronary artery disease and the acute coronary syndromes (1). N Engl J Med 326:242-250, 1992.
2) Jia H, Abtahian F, Aguirre AD, et al:In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography. J Am Coll Cardiol 62:1748-1758, 2013.
3) Bentzon JF, Otsuka F, Virmani R, et al:Mechanisms of plaque formation and rupture. Circ Res 114:1852-1866, 2014.
4) Al-Hawwas M, Tsitlakidou D, Gupta N, et al:Acute Coronary Syndrome Management in Cancer Patients. Curr Oncol Rep 20:78, 2018.
5) Costa IBSDS, Andrade FTA, Carter D, et al:Challenges and Management of Acute Coronary Syndrome in Cancer Patients. Front Cardiovasc Med 8:590016, 2021.
6) Tanimura K, Otake H, Kawamori H, et al:Morphological plaque characteristics and clinical outcomes in patients with acute coronary syndrome and a cancer history. J Am Heart Assoc 10:e020243, 2021.
7) Wang C, Tian X, Feng X, et al:Pancoronary plaque characteristics and clinical outcomes in acute coronary syndrome patients with cancer history. Atherosclerosis 378:117118, 2023.
8) Taruya A, Nakajima Y, Tanaka A, et al:Cancer-related vulnerable lesions in patients with stable coronary artery disease. Int J Cardiol 335:1-6, 2021.
9) Herrmann J, Yang EH, Iliescu CA, et al:Vascular Toxicities of Cancer Therapies:The Old and the New-An Evolving Avenue. Circulation 133:1272-1289, 2016.
10) Ball S, Ghosh RK, Wongsaengsak S, et al:Cardiovascular Toxicities of Immune Checkpoint Inhibitors:JACC Review Topic of the Week. J Am Coll Cardiol 74:1714-1727, 2019.
11) 日本循環器学会, 日本心血管インターベンション治療学会, 日本心臓病学会, ほか:2023年JCS/CVIT/JCC ガイドライン フォーカスアップデート版 冠攣縮性狭心症と冠微小循環障害の診断と治療, 2023.
12) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA):the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
13) Dimitrova IN:A Case of 5-Fluorouracil-Induced Coronary Artery Vasospasm in a Patient With Salivary Gland Cancer. Cureus 12:e10887, 2020.
14) Matsumoto T, Saito Y, Saito K, et al:Relation Between Cancer and Vasospastic Angina. Adv Ther 38:4344-4353, 2021.
P.240 掲載の参考文献
1) Chao TF, Liu CJ, Tuan TC, et al:Lifetime Risks, Projected Numbers, and Adverse Outcomes in Asian Patients With Atrial Fibrillation:A Report From the Taiwan Nationwide AF Cohort Study. Chest 153:453-466, 2018.
2) Hindricks G, Potpara T, Dagres N, et al:2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS):The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J 42:373-498, 2021.
3) Erichsen R, Christiansen CF, Mehnert F, et al:Colorectal cancer and risk of atrial fibrillation and flutter:a population-based case-control study. Intern Emerg Med 7:431-438, 2012.
4) Conen D, Wong JA, Sandhu RK, et al:Risk of Malignant Cancer Among Women With New-Onset Atrial Fibrillation. JAMA Cardiol 1:389-396, 2016.
5) Jakobsen CB, Lamberts M, Carlson N, et al:Incidence of atrial fibrillation in different major cancer subtypes:A Nationwide population-based 12 year follow up study. BMC Cancer 19:1105, 2019.
6) Onaitis M, D'Amico T, Zhao Y, et al:Risk factors for atrial fibrillation after lung cancer surgery:analysis of the Society of Thoracic Surgeons general thoracic surgery database. Ann Thorac Surg 90:368-374, 2010.
7) Farmakis D, Parissis J, Filippatos G:Insights into onco-cardiology:atrial fibrillation in cancer. J Am Coll Cardiol 63:945-953, 2014.
8) Potter AS, Hulsurkar MM, Wu L, et al:Kinase Inhibitors and atrial fibrillation:Mechanisms of action and clinical implications. JACC Clin Electrophysiol 9:591-602, 2023.
9) Ganatra S, Sharma A, Shah S, et al:Ibrutinib-associated atrial fibrillation. JACC Clin Electrophysiol 4:1491-1500, 2018.
10) Shafaattalab S, Lin E, Christidi E, et al:Ibrutinib Displays Atrial-Specific Toxicity in Human Stem Cell-Derived Cardiomyocytes. Stem Cell Reports 12:996-1006, 2019.
11) Xiao L, Salem JE, Clauss S, et al:Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 142:2443-2455, 2020.
12) Fradley MG, Beckie TM, Brown SA, et al:Recognition, prevention, and management of arrhythmias and autonomic disorders in cardio-oncology:A scientific statement from the American Heart Association. Circulation 144:e41-e55, 2021.
13) Hu YF, Liu CJ, Chang PM, et al:Incident thromboembolism and heart failure associated with new-onset atrial fibrillation in cancer patients. Int J Cardiol 165:355-357, 2013.
14) Raposeiras-Roubin S, Abu-Assi E, Marchan A, et al:Validation of Embolic and Bleeding Risk Scores in Patients With Atrial Fibrillation and Cancer. Am J Cardiol 180:44-51, 2022.
15) Navi BB, Reiner AS, Kamel H, et al:Risk of Arterial Thromboembolism in Patients With Cancer. J Am Coll Cardiol 70:926-938, 2017.
P.246 掲載の参考文献
1) Nattel S, Harada M:Atrial remodeling and atrial fibrillation:recent advances and translational perspectives. J Am Coll Cardiol 63:2335-2345, 2014.
2) Harada M, Nattel S:Implications of Inflammation and Fibrosis in Atrial Fibrillation Pathophysiology. Card Electrophysiol Clin 13:25-35, 2021.
3) Harada M, Van Wagoner DR, Nattel S:Role of inflammation in atrial fibrillation pathophysiology and management. Circ J 79:495-502, 2015.
4) Farmakis D, Parissis J, Filippatos G:Insights into onco-cardiology:atrial fibrillation in cancer. J Am Coll Cardiol 63:945-953, 2014.
5) Vaporciyan AA, Correa AM, Rice DC, et al:Risk factors associated with atrial fibrillation after noncardiac thoracic surgery:analysis of 2588 patients. J Thorac Cardiovasc Surg 127:779-786, 2004.
6) Alexandre J, Boismoreau L, Morice PM, et al:Atrial Fibrillation Incidence Associated With Exposure to Anticancer Drugs Used as Monotherapy in Clinical Trials. JACC CardioOncol 5:216-226, 2023.
7) Leiva O, Bohart I, Ahuja T, et al:Off-Target Effects of Cancer Therapy on Development of Therapy-Induced Arrhythmia:A Review. Cardiology 148:324-334, 2023.
8) Mery B, Guichard JB, Guy JB, et al:Atrial fibrillation in cancer patients:Hindsight, insight and foresight. Int J Cardiol 240:196-202, 2017.
9) Xiao L, Salem JE, Clauss S, et al:Ibrutinib-Mediated Atrial Fibrillation Attributable to Inhibition of C-Terminal Src Kinase. Circulation 142:2443-2455, 2020.
10) Jacobs JEJ, L'Hoyes W, Lauwens L, et al:Mortality and Major Adverse Cardiac Events in Patients With Breast Cancer Receiving Radiotherapy:The First Decade. J Am Heart Assoc 12:e027855, 2023.
P.252 掲載の参考文献
1) 日本循環器学会, 日本不整脈心電学会, 日本心臓病学会:日本循環器学会/日本不整脈心電学会合同ガイドライン. 2022年改訂版 不整脈の診断とリスク評価に関するガイドライン, 2022. [https://www.j-circ.or.jp/cms/wp-content/uploads/2022/03/JCS2022_Takase.pdf](2024年3月閲覧)
2) Kinoshita T, Yuzawa H, Natori K, et al:Early electrocardiographic indices for predicting chronic doxorubicin-induced cardiotoxicity. J Cardiol 77:388-394, 2021.
3) Lenihan DJ, Kowey PR:Overview and management of cardiac adverse events associated with tyrosine kinase inhibitors. Oncologist 18:900-908, 2013.
4) Tamargo J, Caballero R, Delpon E:Cancer chemotherapy and cardiac arrhythmias:a review. Drug Saf 38:129-152, 2015.
5) Herrmann J:Adverse cardiac effects of cancer therapies:cardiotoxicity and arrhythmia. Nat Rev Cardiol 17:474-502, 2020.
6) Glen C, Tan YY, Waterston A, et al:Mechanistic and Clinical Overview Cardiovascular Toxicity of BRAF and MEK Inhibitors:JACC:CardioOncology State-of-the-Art Review. JACC CardioOncol 4:1-18, 2022.
7) Totzeck M, Mincu RI, Mrotzek S, et al:Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity:A meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol 25:482-494, 2018.
8) Rowinsky EK, McGuire WP, Guarnieri T, et al:Cardiac disturbances during the administration of taxol. J Clin Oncol 9:1704-1712, 1991.
9) Roden DM:Proarrhythmia as a pharmacogenomic entity:a critical review and formulation of a unifying hypothesis. Cardiovasc Res 67:419-425, 2005.
10) Pickham D, Helfenbein E, Shinn JA, et al:How many patients need QT interval monitoring in critical care units? Preliminary report of the QT in Practice study. J Electrocardiol 43:572-576, 2010.
11) 日本循環器学会, 日本心臓病学会, 日本不整脈心電学会:遺伝性不整脈の診療に関するガイドライン (2017年改訂版), 2018(2022年2月7日更新). [https://www.j-circ.or.jp/cms/wp-content/uploads/2017/12/JCS2017_aonuma_h.pdf](2024年3月閲覧)
12) Rehammar JC, Johansen JB, Jensen MB, et al:Risk of pacemaker or implantable cardioverter defibrillator after radiotherapy for early-stage breast cancer in Denmark, 1982-2005. Radiother Oncol 122:60-65, 2017.
13) Murata H, Miyauchi Y, Nitta T, et al:Electrophysiological and Histopathological Characteristics of Ventricular Tachycardia Associated With Primary Cardiac Tumors. JACC Clin Electrophysiol 10:43-55, 2024.
P.258 掲載の参考文献
1) Adler Y, Charron P, Imazio M, et al:2015 ESC Guidelines for the diagnosis and management of pericardial diseases:The Task Force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology(ESC) Endorsed by:The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J 36:2921-2964, 2015.
2) Maisch B, Ristic A, Pankuweit S:Evaluation and management of pericardial effusion in patients with neoplastic disease. Prog Cardiovasc Dis 53:157-163, 2010.
3) Chahine J, Shekhar S, Mahalwar G, et al:Pericardial Involvement in Cancer. Am J Cardiol 145:151-159, 2021.
4) Burazor I, Imazio M, Markel G, et al:Malignant pericardial effusion. Cardiology 124:224-232, 2013.
5) Saade A, Mansuet-Lupo A, Arrondeau J, et al:Pericardial effusion under nivolumab:case-reports and review of the literature. J Immunother Cancer 7:266, 2019.
7) Sogaard KK, Farkas DK, Ehrenstein V, et al:Pericarditis as a Marker of Occult Cancer and a Prognostic Factor for Cancer Mortality. Circulation 136:996-1006, 2017.
8) Hu JR, Florido R, Lipson EJ, et al:Cardiovascular toxicities associated with immune checkpoint inhibitors. Cardiovasc Res 115:854-868, 2019.
10) Quint LE:Thoracic complications and emergencies in oncologic patients. Cancer Imaging 9(Special issue A):S75-S82, 2009.
11) Hoit BD:Pericardial Effusion and Cardiac Tamponade Pathophysiology and New Approaches to Treatment. Curr Cardiol Rep 25:1003-1014, 2023.
P.265 掲載の参考文献
1) von Herbay A, Illes A, Waldherr R, et al:Pulmonary tumor thrombotic microangiopathy with pulmonary hypertension. Cancer 66:587-592, 1990.
2) Godbole RH, Saggar R, Kamangar N:Pulmonary tumor thrombotic microangiopathy:a systematic review. Pulm Circ 9:2045894019851000, 2019.
3) Uruga H, Fujii T, Kurosaki A, et al:Pulmonary tumor thrombotic microangiopathy:a clinical analysis of 30 autopsy cases. Intern Med 52:1317-1323, 2013.
4) Yao DX, Flieder DB, Hoda SA:Pulmonary tumor thrombotic microangiopathy:an often missed antemortem diagnosis. Arch Pathol Lab Med 125:304-305, 2001.
5) Minatsuki S, Miura I, Yao A, et al:Platelet-derived growth factor receptor-tyrosine kinase inhibitor, imatinib, is effective for treating pulmonary hypertension induced by pulmonary tumor thrombotic microangiopathy. Int Heart J 56:245-248, 2015.
6) Miyano S, Izumi S, Takeda Y, et al:Pulmonary tumor thrombotic microangiopathy. J Clin Oncol 25:597-599, 2007.
7) Chinen K, Fujino T, Horita A, et al:Pulmonary tumor thrombotic microangiopathy caused by an ovarian cancer expressing tissue factor and vascular endothelial growth factor. Pathol Res Pract 205:63-68, 2009.
8) Wakabayashi Y, Iwaya M, Akita M, et al:Pulmonary Tumor Thrombotic Microangiopathy Caused by Urothelial Carcinoma Expressing Vascular Endothelial Growth Factor, Platelet-derived Growth Factor, and Osteopontin. Intern Med 55:651-656, 2016.
9) Humbert M, Kovacs G, Hoeper MM, et al:2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J 43:3618-3731, 2022.
10) Ogawa A, Yamadori I, Matsubara O, et al:Pulmonary tumor thrombotic microangiopathy with circulatory failure treated with imatinib. Intern Med 52:1927-1930, 2013.
11) Kubota K, Shinozaki T, Imai Y, et al:Imatinib dramatically alleviates pulmonary tumour thrombotic microangiopathy induced by gastric cancer. BMJ Case Rep 2017:bcr2017221032, 2017.
12) Higo K, Kubota K, Takeda A, et al:Successful antemortem diagnosis and treatment of pulmonary tumor thrombotic microangiopathy. Intern Med 53:2595-2599, 2014.
13) Fukada I, Araki K, Minatsuki S, et al:Imatinib alleviated pulmonary hypertension caused by pulmonary tumor thrombotic microangiopathy in a patient with metastatic breast cancer. Clin Breast Cancer 15:e167-e170, 2015.
14) Fukada I, Araki K, Kobayashi K, et al:Imatinib could be a new strategy for pulmonary hypertension caused by pulmonary tumor thrombotic microangiopathy in metastatic breast cancer. Springerplus 5:1582, 2016.
15) Abe K, Toba M, Alzoubi A, et al:Tyrosine kinase inhibitors are potent acute pulmonary vasodilators in rats. Am J Respir Cell Mol Biol 45:804-808, 2011.
16) Kimura A, Yamada A, Oshi M, et al:Dramatic Improvement of Pulmonary Tumor Thrombotic Microangiopathy in a Breast Cancer Patient Treated With Bevacizumab. World J Oncol 14:575-579, 2023.
17) Wang Y, Ning WW, Jin YF, et al:Anlotinib dramatically improved pulmonary hypertension and hypoxia caused by Pulmonary Tumor Thrombotic Microangiopathy (PTTM) associated with gastric carcinoma:a case report. Thromb J 21:33, 2023.
P.271 掲載の参考文献
1) Elyamany G, Alzahrani AM, Bukhary E:Cancer-associated thrombosis:an overview. Clin Med Insights Oncol 8:129-137, 2014.
2) Ohashi Y, Ikeda M, Kunitoh H, et al:Venous thromboembolism in cancer patients:report of baseline data from the multicentre, prospective Cancer-VTE Registry. Jpn J Clin Oncol 50:1246-1253, 2020.
3) Sakuma M, Nakamura M, Takahashi T, et al:Pulmonary embolism is an important cause of death in young adults. Circ J 71:1765-1770, 2007.
4) Nakamura M, Miyata T, Ozeki Y, et al:Current venous thromboembolism management and outcomes in Japan. Circ J 78:708-717, 2014.
5) Nakamura M, Yamada N, Oda E, et al:Predictors of venous thromboembolism recurrence and the bleeding events identified using a Japanese healthcare database. J Cardiol 70:155-162, 2017.
6) Yamashita Y, Morimoto T, Amano H, et al:Anticoagulation Therapy for Venous Thromboembolism in the Real World-From the COMMAND VTE Registry. Circ J 82:1262-1270, 2018.
7) Ohashi Y, Ikeda M, Kunitoh H, et al:One-year incidence of venous thromboembolism, bleeding, and death in patients with solid tumors newly initiating cancer treatment:Results from the Cancer-VTE Registry. Thromb Res 213:203-213, 2022.
8) Kuroiwa M, Morimatsu H, Tsuzaki K, et al:Changes in the incidence, case fatality rate, and characteristics of symptomatic perioperative pulmonary thromboembolism in Japan:Results of the 2002-2011 Japanese Society of Anesthesiologists Perioperative Pulmonary Thromboembolism (JSA PTE) Study. J Anesth 29:433-441, 2015.
9) Khorana AA, Kuderer NM, Culakova E, et al:Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111:4902-4907, 2008.
10) Simanek R, Vormittag R, Ay C, et al:High platelet count associated with venous thromboembolism in cancer patients:results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb Haemost 8:114-120, 2010.
P.276 掲載の参考文献
1) Boccaccio C, Comoglio PM:Genetic link between cancer and thrombosis. J Clin Oncol 27:4827-4833, 2009.
2) Bogdanov VY, Balasubramanian V, Hathcock J, et al:Alternatively spliced human tissue factor:a circulating, soluble, thrombogenic protein. Nat Med 9:458-462, 2003.
3) Rankin EB, Giaccia AJ:Hypoxic control of metastasis. Science 352:175-180, 2016.
4) Rong Y, Hu F, Huang R, et al:Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mecha nisms. Cancer Res 66:7067-7074, 2006.
5) Cui XY, Tinholt M, Stavik B, et al:Effect of hypoxia on tissue factor pathway inhibitor expression in breast cancer. J Thromb Haemost 14:387-396, 2016.
6) Tawil N, Rak J:Blood coagulation and cancer genes. Best Pract Res Clin Haematol 35:101349, 2022.
7) Wahab R, Hasan MM, Azam Z, et al:The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 200:115027, 2023.
8) Davila M, Amirkhosravi A, Coll E, et al:Tissue factor-bearing microparticles derived from tumor cells:impact on coagulation activation. J Thromb Haemost 6:1517-1524, 2008.
9) Geddings JE, Hisada Y, Boulaftali Y, et al:Tissue factor-positive tumor microvesicles activate platelets and enhance thrombosis in mice. J Thromb Haemost 14:153-166, 2016.
10) Morel O, Toti F, Hugel B, et al:Procoagulant microparticles:disrupting the vascular homeostasis equation? Arterioscler Thromb Vasc Biol 26:2594-2604, 2006.
11) Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al:Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113:752-760, 2005.
12) Falanga A, Gordon SG:Isolation and characterization of cancer procoagulant:a cysteine proteinase from malignant tissue. Biochemistry 24:5558-5567, 1985.
13) Kee NL, Krause J, Blatch GL, et al:The proteolytic profile of human cancer procoagulant suggests that it promotes cancer metastasis at the level of activation rather than degradation. Protein J 34:338-348, 2015.
14) Casslen B, Bossmar T, Lecander I, et al:Plasminogen activators and plasminogen activator inhibitors in blood and tumour fluids of patients with ovarian cancer. Eur J Cancer 30A:1302-1309, 1994.
15) Ilich A, Kumar V, Henderson M, et al:Biomarkers in cancer patients at risk for venous thromboembolism:data from the AVERT study. Thromb Res 191(Suppl 1):S31-S36, 2020.
16) Schmidt L, Duh FM, Chen F, et al:Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16:68-73, 1997.
17) Fink T, Kazlauskas A, Poellinger L, et al:Identification of a tightly regulated hypoxia-response element in the promoter of human plasminogen activator inhibitor-1. Blood 99:2077-2083, 2002.
18) Boccaccio C, Sabatino G, Medico E, et al:The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature 434:396-400, 2005.
19) Falanga A, Marchetti M:Cancer-associated thrombosis:enhanced awareness and pathophysiologic complexity. J Thromb Haemost 21:1397-1408, 2023.
20) Riedl J, Preusser M, Nazari PM, et al:Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 129:1831-1839, 2017.
21) Suzuki-Inoue K, Fuller GL, Garcia A, et al:A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107:542-549, 2006.
22) Shirai T, Tsukiji N, Sasaki T, et al:Cancer-associated fibroblasts promote venous thrombosis through podoplanin/CLEC-2 interaction in podoplanin-negative lung cancer mouse model. J Thromb Haemost 21:3153-3165, 2023.
23) Brinkmann V, Reichard U, Goosmann C, et al:Neutrophil extracellular traps kill bacteria. Science 303:1532-1535, 2004.
24) Caudrillier A, Kessenbrock K, Gilliss BM, et al:Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122:2661-2671, 2012.
25) Massberg S, Grahl L, von Bruehl ML, et al:Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16:887-896, 2010.
27) Herre M, Cedervall J, Mackman N, et al:Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiol Rev 103:277-312, 2023.
28) Longstaff C, Varju I, Sotonyi P, et al:Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 288:6946-6956, 2013.
29) Savchenko AS, Martinod K, Seidman MA, et al:Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost 12:860-870, 2014.
30) Fuchs TA, Brill A, Duerschmied D, et al:Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107:15880-15885, 2010.
31) Demers M, Wagner DD:Neutrophil extracellular traps:A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology 2:e22946, 2013.
32) Haerinck J, Goossens S, Berx G:The epithelial-mesenchymal plasticity landscape:principles of design and mechanisms of regulation. Nat Rev Genet 24:590-609, 2023.
33) Wang R, Chadalavada K, Wilshire J, et al:Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829-833, 2010.
34) Labelle M, Begum S, Hynes RO:Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576-590, 2011.
35) Yang X, Ni H, Lu Z, et al:Mesenchymal circulating tumor cells and Ki67:their mutual correlation and prognostic implications in hepatocellular carcinoma. BMC Cancer 23:10, 2023.
36) Labelle M, Hynes RO:The initial hours of metastasis:the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2:1091-1099, 2012.
37) Palumbo JS, Talmage KE, Massari JV, et al:Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105:178-185, 2005.
38) Kim YJ, Borsig L, Varki NM, et al: P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 95: 9325-9330, 1998.
39) Schumacher D, Strilic B, Sivaraj KK, et al: Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24: 130-137, 2013.
40) Varki A: Trousseau' s syndrome: multiple definitions and multiple mechanisms. Blood 110:1723-1729, 2007.
41) Mann DL, Zipes DP, Libby P, et al: Braunwald' s Heart Disease: A Textbook of Cardiovascular Medicine, Single Volume, 10th ed, p1524-1550, Elsevier/Saunders, Philadelphia, 2014.
42) Vlachostergios PJ, Daliani DD, Dimopoulos V, et al: Nonbacterial thrombotic (marantic) endocarditis in a patient with colorectal cancer. Onkologie 33: 456-459, 2010.
43) Graus F, Rogers LR, Posner JB: Cerebrovascular complications in patients with cancer. Medicine (Baltimore) 64: 16-35, 1985.
44) Asopa S, Patel A, Khan OA, et al: Non-bacterial thrombotic endocarditis. Eur J Cardiothorac Surg 32:696-701, 2007.
45) Gonzalez Quintela A, Candela MJ, Vidal C, et al: Non-bacterial thrombotic endocarditis in cancer patients. Acta Cardiol 46: 1-9, 1991.
46) 窓岩清治:がん関連血栓症-がんと血液凝固線溶系のクロストーク. 日本血栓止血学会誌 34:556-565, 2023.
P.284 掲載の参考文献
1) 日本循環器学会, 日本アミロイドーシス学会, 日本血液学会, ほか:2020年版 心アミロイドーシス診療ガイドライン, 2020.
2) Phelan D, Collier P, Thavendiranathan P, et al:Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98:1442-1448, 2012.
3) Shimazaki C, Hata H, Iida S, et al:Nationwide Survey of 741 Patients with Systemic Amyloid Light-chain Amyloidosis in Japan. Intern Med 57:181-187, 2018.
4) Escher F, Senoner M, Doerler J, et al:When and how do patients with cardiac amyloidosis die? Clin Res Cardiol 109:78-88, 2020.
5) Gillmore JD, Maurer MS, Falk RH, et al:Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 133:2404-2412, 2016.
6) Gonzalez-Lopez E, Gagliardi C, Dominguez F, et al:Clinical characteristics of wild-type transthyretin cardiac amyloidosis:disproving myths. Eur Heart J 38:1895-1904, 2017.
7) Ochi Y, Kubo T, Baba Y, et al:Wild-Type Transthyretin Amyloidosis in Female Patients-Consideration of Sex Differences. Circ Rep 3:465-471, 2021.
8) Donnellan E, Wazni O, Kanj M, et al:Atrial fibrillation ablation in patients with transthyretin cardiac amyloidosis. Europace 22:259-264, 2020.
9) Kristen AV, Dengler TJ, Hegenbart U, et al:Prophylactic implantation of cardioverter-defibrillator in patients with severe cardiac amyloidosis and high risk for sudden cardiac death. Heart Rhythm 5:235-240, 2008.
10) Kumar S, Dispenzieri A, Lacy MQ, et al:Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J Clin Oncol 30:989-995, 2012.
11) Staron A, Zheng L, Doros G, et al:Marked progress in AL amyloidosis survival:a 40-year longitudinal natural history study. Blood Cancer J 11:139, 2021.
12) Kastritis E, Palladini G, Minnema MC, et al:Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N Engl J Med 385:46-58, 2021.
13) Bianchi G, Zhang Y, Comenzo RL:AL Amyloidosis:Current Chemotherapy and Immune Therapy Treatment Strategies:JACC:CardioOncology State-of-the-Art Review. JACC CardioOncol 3:467-487, 2021.

IV 検査

P.293 掲載の参考文献
1) Skovgaard D, Hasbak P, Kjaer A:BNP predicts chemotherapy-related cardiotoxicity and death:comparison with gated equilibrium radionuclide ventriculography. PLoS One 9:e96736, 2014.
2) Daugaard G, Lassen U, Bie P, et al:Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail 7:87-93, 2005.
3) Riddell E, Lenihan D:The role of cardiac biomarkers in cardio-oncology. Curr Probl Cancer 42:375-385, 2018.
4) Michel L, Mincu RI, Mahabadi AA, et al:Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients:a meta-analysis. Eur J Heart Fail 22:350-361, 2020.
5) Zardavas D, Suter TM, Van Veldhuisen DJ, et al:Role of Troponins I and T and N-Terminal Prohormone of Brain Natriuretic Peptide in Monitoring Cardiac Safety of Patients With Early-Stage Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Receiving Trastuzumab:A Herceptin Adjuvant Study Cardiac Marker Substudy. J Clin Oncol 35:878-884, 2017.
7) Onco-Cardiology ガイドライン(日本臨床腫瘍学会, 日本腫瘍循環器学会 編), 南江堂, 2023.
8) Delombaerde D, Vervloet D, Franssen C, et al:Clinical implications of isolated troponinemia following immune checkpoint inhibitor therapy. ESMO Open 6:100216, 2021.
9) Mahmood SS, Fradley MG, Cohen JV, et al:Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J Am Coll Cardiol 71:1755-1764, 2018.
10) Ky B, Putt M, Sawaya H, et al:Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J Am Coll Cardiol 63:809-816, 2014.
11) Demissei BG, Hubbard RA, Zhang L, et al:Changes in cardiovascular biomarkers with breast cancer therapy and associations with cardiac dysfunction. J Am Heart Assoc 9:e014708, 2020.
12) Tonry C, Russell-Hallinan A, McCune C, et al:Circulating biomarkers for management of cancer therapeutics-related cardiac dysfunction. Cardiovasc Res 119:710-728, 2023.
13) 家子正裕:凝固線溶系バイオマーカー. 腫瘍循環器診療ハンドブック(小室一成 監, 日本腫瘍循環器学会編集委員会 編), p167-169, メジカルビュー社, 2020.
P.298 掲載の参考文献
1) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
2) Mato AR, Clasen S, Pickens P, et al:Left atrial abnormality (LAA) as a predictor of ibrutinib associated atrial fibrillation in patients with chronic lymphocytic leukemia. Cancer Biol Ther 19:1-2, 2018.
3) Parr SK, Liang J, Schadler KL, et al:Anticancer Therapy-Related Increases in Arterial Stiffness:A Systematic Review and Meta-Analysis. J Am Heart Assoc 9:e015598, 2020.
4) Miyoshi T, Ito H, Shirai K, et al; CAVI-J (Prospective Multicenter Study to Evaluate Usefulness of Cardio-Ankle Vascular Index in Japan) investigators:Predictive Value of the Cardio-Ankle Vascular Index for Cardiovascular Events in Patients at Cardiovascular Risk. J Am Heart Assoc 10:e020103, 2021.
5) Chai-Adisaksopha C, Lam W, Hillis C:Major arterial events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors:a meta-analysis. Leuk Lymphoma 57:1300-1310, 2016.
6) Cirmi S, El Abd A, Letinier L, et al:Cardiovascular Toxicity of Tyrosine Kinase Inhibitors Used in Chronic Myeloid Leukemia:An Analysis of the FDA Adverse Event Reporting System Database (FAERS). Cancers (Basel) 12:826, 2020.
7) Jenei Z, Bardi E, Magyar MT, et al:Anthracycline causes impaired vascular endothelial function and aortic stiffness in long term survivors of childhood cancer. Pathol Oncol Res 19:375-383, 2013.
8) Kaneko T, Miyazaki S, Kurita A, et al:Endothelial function measured by peripheral arterial tonometry in patients with chronic myeloid leukemia on tyrosine kinase inhibitor therapy:a pilot study. Cardiooncology 9:11, 2023.
P.303 掲載の参考文献
1) Felker GM, Thompson RE, Hare JM, et al:Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077-1084, 2000.
3) Lyon AR, Lopez-Fernandez T, Couch LS, et al:2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J 43:4229-4361, 2022.
4) Lang RM, Badano LP, Mor-Avi V, et al:Recommendations for cardiac chamber quantification by echocardiography in adults:an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1-39.e14, 2015.
5