下肢と体幹の筋がよくわかる基礎ノート

出版社: 杏林書院
著者:
発行日: 2022-06-20
分野: 臨床医学:外科  >  スポーツ医学
ISBN: 9784764412309
電子書籍版: 2022-06-20 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

3,300 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

3,300 円(税込)

商品紹介

本書は,介護予防,フレイル,サルコペニア予防,つまり加齢の変化に対応しつつ「健康寿命」を延ばすためのトレーニングの観点と,誰もが筋力トレーニングを行うにあたって知っておきたい背景と最新情報を含めて,その基礎となる内容をトレーニング科学の観点から体系的にまとめています.
サルコペニアやフレイルを研究対象とする医学,看護学,健康科学関連分野の研究者や学生はもとより,現場で活躍する高齢者のサポートを担っている方々,健康運動指導士,保健師,理学療法士,介護士,セラピスト,そしてトレーニング指導者,さらには一般の読者,すべての方々にとって,下肢・体幹筋の基礎,最新知見,トレーニング法を理解するためのガイドブックです.

目次

  • 1章 データでみる骨格筋と健康寿命の関係
     はじめに
     1.超高齢社会
     2.要介護等認定
      1)介護保険制度
      2)要介護等認定者および介護給付費の推移
      3)介護が必要となる要因
     3.加齢に伴う体力の変化
      1)高齢者における体力の重要性
      2)高齢者に適応可能な体力評価方法
      3)地域在住高齢者の体力
     4.フレイル
      1)フレイルとは
      2)フレイルの多面性
      3)フレイルの判定
      4)地域におけるフレイル該当者の割合
      5)フレイルの可逆性
     5.サルコペニア
      1)サルコペニアとは
      2)サルコペニアの特徴
      3)サルコペニアの判定
      4)サルコペニアの有症率
      5)フレイル,サルコペニア,ロコモティブシンドロームの整理
     6.健康寿命延伸に向けたフレイル・サルコペニアへの対策

    2章 骨格筋量増減の生理学的根拠
     1.骨格筋の生理学
      1)骨格筋の構造
      2)筋収縮のしくみ
      3)筋線維のタイプ
      4)筋線維組成
      5)骨格筋の神経支配
      6)運動強度と運動単位の動員パターン
      7)筋収縮のためのエネルギー
     2.骨格筋量と筋力の関係
      1)筋収縮のデジタル制御
      2)最大筋力の要因
     3.骨格筋量増加の生理学的エビデンス
      1)筋タンパク質の合成と分解
      2)トレーニングによる骨格筋肥大のメカニズム
      3)レジスタンストレーニングプログラムへの示唆
      4)栄養摂取による筋タンパク質合成刺激
     4.骨格筋量減少の生理学的エビデンス
      1)サルコペニアの分子メカニズム
      2)加齢性筋萎縮と廃用性筋萎縮の相違
      3)加齢性筋萎縮の発生機序

    3章 体幹部の機能評価
     1.体幹部の解剖学的な理解
      1)体幹を構成する骨
      2)椎間関節
      3)体幹部の筋
      4)体幹部の機能障害
     2.体幹部の筋群の加齢変化
      1)腹筋群および脊柱起立筋群の加齢変化
      2)大腰筋の加齢変化
     3.体幹を含む身体機能の評価
      1)総合的な体幹機能の評価指標
      2)体幹部のトレーニング

    4章 骨格筋評価の新たな視点
     1.身体組成の評価
      1)身体組成評価の意義
      2)除脂肪量や骨格筋量の推定方法
     2.高齢者の骨格筋量評価における諸問題
      1)骨格筋量と骨格筋細胞量の相違(骨格筋量≠骨格筋細胞量)
      2)従来法による骨格筋量評価の限界
      3)骨格筋量と筋力の加齢変化の差異
     3.新たな骨格筋指標の可能性
      1)筋細胞量の推定
      2)超音波画像から算出する筋輝度

    5章 レジスタンストレーニングの効果とエビデンス
     1.体力トレーニングの基礎
      1)トレーニングの基本的な指針
      2)トレーニングの原理-トレーニングに対する身体適応の基本原理
     2.レジスタンストレーニングの基礎的理解
      1)レジスタンストレーニング
      2)レジスタンストレーニングによってもたらされる利益
      3)レジスタンストレーニングの効果に関連する要因
      4)レジスタンストレーニングの分類
      5)レジスタンストレーニング種目の選択と配列
      6)トレーニングプログラム変数
     3.高齢者を対象としたレジスタンストレーニングの効果
      1)高齢者におけるレジスタンストレーニングの有効性
     4.トレーニングの中断による影響
      1)一般的なディトレーニングの理解
      2)高齢者におけるディトレーニング
      3)レジスタンストレーニングの継続の重要性

    6章 からだにやさしいトレーニング
     1.高負荷レジスタンストレーニングが抱える問題点
      1)運動器へのリスク
      2)循環器系へのリスク
      3)汎用性の問題
     2.低負荷レジスタンストレーニングの可能性
     3.低負荷レジスタンストレーニングのエビデンス
      1)血流制限レジスタンストレーニング
      2)スロートレーニング
      3)大容量レジスタンストレーニング
      4)その他の低負荷運動プログラム介入
     4.筋発揮張力維持スロー法(スロー法)
      1)筋発揮張力維持スロー法(スロー法)の動作様式
      2)血中乳酸ならびにホルモン応答
      3)トレーニングによる筋肥大・筋力増強効果
      4)スロー法が筋肥大をもたらすメカニズム
      5)循環器系への影響
      6)筋活動パターンへの影響
      7)高齢者を対象とした健康支援の現場への応用
     5.からだにやさしいトレーニングの地域展開(亀岡スタディ)

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1章 データでみる骨格筋と健康寿命の関係

P.38 掲載の参考文献
1) 厚生労働省 : 令和2年簡易生命表の概況. 2021. https://www.mhlw.go.jp/toukei/saikin/hw/life/life20/dl/life18-15.pdf
2) 国立社会保障・人口問題研究所 : 日本の将来推計人口 (平成29年推計). 2017. http://www.ipss.go.jp/pp-zenkoku/j/zenkoku2017/pp29_gaiyou.pdf
3) 内閣府 : 令和元年版高齢社会白書 (全体版) (PDF版). 2019. https://www8.cao.go.jp/kourei/whitepaper/w-2019/zenbun/01pdf_index.html
4) 厚生労働省 : 介護保険制度をめぐる状況について. 2019. https://www.mhlw.go.jp/content/12601000/000482328.pdf
5) 厚生労働省 : 平成28年 国民生活基礎調査の概況. 2016. https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa16/
6) 池上晴夫 : 運動生理学. p5, 朝倉書店, 1987.
7) Cooper R, Kuh D, Hardy R et al. : Objectively measured physical capability levels and mortality : systematic review and meta-analysis. BMJ, 341 : c4467, 2010.
8) Leong DP, Teo KK, Rangarajan S et al. : Prognostic value of grip strength : findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet, 386 : 266-273, 2015.
9) 木村みさか, 平川和文, 奥野直ほか : 体力診断バッテリーテストからみた高齢者の体力測定値の分布および年齢との関連. 体力科学, 38 : 175-185, 1989.
10) 木村みさか, 岡山寧子, 田中靖人ほか : 高齢者のための簡便な持久性評価法の提案シャトル・スタミナ・ウオークテストの有用性について. 体力科学, 47 : 401-410, 1998.
11) Kimura M, Mizuta C, Yamada Y et al. : Constructing an index of physical fitness age for Japanese elderly based on 7-year longitudinal data : sex differences in estimated physical fitness age. Age, 34 : 203-214, 2012.
12) Yoshida T, Kimura M, Yamada Y et al. : Fitness age score and the risk of long-term care insurance certification - The Kyoto-Kameoka longitudinal study. Open J Epidemiol, 7 : 190-200, 2017.
13) 渡邊裕也 : 要介護等認定高齢者における下肢骨格筋の量および質と運動機能の関係. 同志社スポーツ健康科学, 11 : 16-23, 2019.
14) 木村みさか : 高齢者への運動負荷と体力の加齢変化および運動習慣. J J Sport Sci, 10 : 722-728, 1991.
15) 木村みさか, 森本好子, 寺田光世 : 都市在住高齢者の運動習慣と体力診断バッテリーテストによる体力. 体力科学, 40 : 455-464, 1991.
16) Kimura M, Arai T, Okayama Y : Ten-year longitudinal evaluation of physical fitness in the elderly. In : Yabe K, Kusano K, Nakata H eds., Adapted Physical Activity : Health and Fitness, pp239-242, Springer-Verlag. 1994.
17) 日本老年医学会 : フレイルに関する日本老年医学会からのステートメント. 2014. https://www.jpn-geriat-soc.or.jp/info/topics/pdf/20140513_01_01.pdf
18) 葛谷雅文 : フレイルティとは. 臨床栄養, 119 : 755-760, 2011.
19) Clegg A, Young J, Iliffe S et al. : Frailty in elderly people. Lancet, 381 : 752-762, 2013.
20) Kelaiditi E, Cesari M, Canevelli M et al. : Cognitive frailty : rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging, 17 : 726-734, 2013.
21) Fried LP, Tangen CM, Walston J et al. : Frailty in older adults : evidence for a phenotype. J Gerontol A Biol Sci Med Sci, 56 : M146-M156, 2001.
22) Satake S, Shimada H, Yamada M et al. : Prevalence of frailty among community-dwellers and outpatients in Japan as defined by the Japanese version of the Cardiovascular Health Study criteria. Geriatr Gerontol Int, 17 : 2629-2634, 2017.
23) Yamada M, Arai H : Predictive value of frailty scores for healthy life expectancy in community-dwelling older Japanese adults. J Am Med Dir Assoc, 16 : 1002.e7-1002.e11, 2015.
24) Mitnitski AB, Mogilner AJ, Rockwood K : Accumulation of deficits as a proxy measure of aging. ScientificWorldJournal, 1 : 323-336, 2001.
25) Rockwood K, Mitnitski A : Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci, 62 : 722-727, 2007.
26) Rockwood K, Mitnitski A, Song X et al. : Long-term risks of death and institutionalization of elderly people in relation to deficit accumulation at age 70. J Am Geriatr Soc, 54 : 975-979, 2006.
27) Song X, Mitnitski A, Rockwood K : Prevalence and 10-year outcomes of frailty in older adults in relation to deficit accumulation. J Am Geriatr Soc, 58 : 681-687, 2010.
28) Satake S, Senda K, Hong YJ et al. : Validity of the Kihon Checklist for assessing frailty status. Geriatr Gerontol Int, 16 : 709-715, 2016.
29) Satake S, Shimokata H, Senda K et al. : Validity of Total Kihon Checklist score for predicting the incidence of 3-year dependency and mortality in a community-dwelling older population. J Am Med Dir Assoc, 18 : 552.e1-552.e6, 2017.
30) Yamada Y, Nanri H, Watanabe Y et al. : Prevalence of frailty assessed by Fried and Kihon Checklist Indexes in a prospective cohort s : design and demographics of the Kyoto-Kameoka longitudinal study. J Am Med Dir Assoc 18 : 733.e7-733.e15, 2017.
31) Collard RM, Boter H, Schoevers RA et al. : Prevalence of frailty in community-dwelling older persons : a systematic review. J Am Geriatr Soc, 60 : 1487-1492, 2012.
32) Choi J, Ahn A, Kim S et al. : Global prevalence of physical frailty by fried's criteria in community-dwelling elderly with national population-based surveys. J Am Med Dir Assoc, 16 : 548-550, 2015.
33) Rosenberg IH : Summary comments : epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr, 50 : 1231-1233, 1989.
34) Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al. : Sarcopenia : European consensus on definition and diagnosis : Report of the European Working Group on Sarcopenia in Older People. Age Ageing, 39 : 412-423, 2010.
35) Chen LK, Liu LK, Woo J et al. : Sarcopenia in Asia : consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc, 15 : 95-101, 2014.
36) Volpato S, Romagnoni F, Soattin L et al. : Body mass index, body cell mass, and 4-year all-cause mortality risk in older nursing home residents. J Am Geriatr Soc, 52 : 886-891, 2004.
37) Park SW, Goodpaster BH, Lee JS et al. : Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care, 32 : 1993-1997, 2009.
38) 日本サルコペニア・フレイル学会 : サルコペニア診療ガイドライン 2017年版. 2017.
39) Pedersen BK : Muscles and their myokines. J Exp Biol, 214 : 337-346, 2011.
40) Lexell J, Taylor CC, Sjostrom M : What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci, 84 : 275-294, 1988.
41) 山田陽介 : 骨格筋量・サルコペニアの定義を再考する-機能的骨格筋細胞量・筋内組成に着目して-. 体力科学, 64 : 461-472, 2015.
42) Rice CL, Cunningham DA, Paterson DH et al. : Arm and leg composition determined by computed tomography in young and elderly men. Clin Physiol, 9 : 207-220, 1989.
43) Overend TJ, Cunningham DA, Paterson DH et al. : Thigh composition in young and elderly men determined by computed tomography. Clin Physiol, 12 : 629-640, 1992.
44) Yamada Y, Schoeller DA, Nakamura E et al. : Extracellular water may mask actual muscle atrophy during aging. J Gerontol A Biol Sci Med Sci, 65 : 510-516, 2010.
45) Janssen I, Heymsfield SB, Wang ZM et al. : Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol, 89 : 81-88, 2000.
46) Israel S : Age-related changes in strength and special groups. In : Komi PV ed, Strength and Power in sport, pp319-328, Blackwell Scientific Publications, 1992.
47) Cruz-Jentoft AJ, Bahat G, Bauer J et al. : Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing, 48 : 601, 2019. doi : 10.1093/ageing/afz046.
48) Chen LK, Woo J, Assantachai P et al. : Asian working group for sarcopenia : 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc, 21 : 300-307.e2, 2020. doi : 10.1016/j.jamda.2019.12.012.
49) Tanaka T, Takahashi K, Akishita M et al. : "Yubi-wakka" (finger-ring) test : A practical self-screening method for sarcopenia, and a predictor of disability and mortality among Japanese community-dwelling older adults. Geriatr Gerontol Int, 18 : 224-232, 2018.
50) Barbosa-Silva TG, Menezes AMB, Bielemann RM et al. : Enhancing SARC-F : improving sarcopenia screening in the clinical practice. J Am Med Dir Assoc, 17 : 1136-1141, 2016.
51) Malmstrom TK, Morley JE : SARC-F : a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc, 14 : 531-532, 2013.
52) Ida S, Murata K, Nakadachi D et al. : Development of a Japanese version of the SARC-F for diabetic patients : an examination of reliability and validity. Aging Clin Exp Res, 29 : 935-942, 2017.
53) Lim WS, Chew J, Lim JP et al. : Letter to the editor : Case for validated instead of standard cut-offs for SARC-CalF. J Nutr Health Aging, 23 : 393-395, 2019.
54) Nishimura T, Arima K, Okabe T et al. : Usefulness of chair stand time as a surrogate of gait speed in diagnosing sarcopenia. Geriatr Gerontol Int, 17 : 668-669, 2017.
55) Guralnik JM, Simonsick EM, Ferrucci L et al. : A short physical performance battery assessing lower extremity function : association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol, 49 : M85-M94, 1994. doi : 10.1093/geronj/49.2.m85.
56) Yamada M, Nishiguchi S, Fukutani N et al. : Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc, 14 : 911-915, 2013.
57) Ishii S, Tanaka T, Akishita M et al. : Metabolic syndrome, sarcopenia and role of sex and age : cross-sectional analysis of Kashiwa cohort study. PLoS One, 9 : e112718, 2014.
58) 厚生労働省 : 介護予防マニュアル改訂版. 2012. https://www.mhlw.go.jp/topics/2009/05/dl/tp0501-1_1.pdf
59) 渡邊裕也, 吉田司, 吉中康子ほか (2019) 軽費老人ホーム利用者における5年間の身体機能の変化-自立維持者と要支援・要介護認定者の比較-. 応用老年学, 13 : 44-53.

2章 骨格筋量増減の生理学的根拠

P.72 掲載の参考文献
1) Hunter GR : Muscle physiology. In : Beachle TR, Earle RW eds., Essentials of Strength Training and Conditioning. pp3-13, Human Kinetics, 2000.
2) 石井直方 : 筋肉学入門-ヒトはなぜトレーニングが必要なのか? -. 講談社, 2009.
3) Johnson MA, Polgar J, Weightman D et al. : Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci, 18 : 111-129, 1973.
4) 福永哲夫 : ヒトの絶対筋力-超音波による体肢組成・筋力分析-. p89, 杏林書院, 1978.
5) 石井直方 : 第7章 身体運動に伴う生体機能適応を支える分子機構-骨格筋系-. 熊谷秋三, 田中茂穂, 藤井宣晴編, 身体活動・座位行動の科学-疫学・分子生物学から探る健康-, p175, 杏林書院, 2016.
6) Ishii N, Ogasawara R, Kobayashi K et al. : Roles played by protein metabolism and myogenic progenitor cells in exercise-induced muscle hypertrophy and their relation to resistance training regimens. J Phys Fitness Sports Med, 1 : 83-94, 2012.
7) Chaillou T, Kirby TJ, McCarthy JJ : Ribosome biogenesis : emerging evidence for a central role in the regulation of skeletal muscle mass. J Cell Physiol, 229 : 1584-1594, 2014.
8) Nakada S, Ogasawara R, Kawada S et al. : Correlation between ribosome biogenesis and the magnitude of hypertrophy in overloaded skeletal muscle. PLoS One, 11 : e0147284, 2016.
9) Figueiredo VC, Caldow MK, Maasie V et al. : Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hyper trophy. Am J Physiol Endocrinol Metab, 309 : E72-E83, 2015.
10) Phillips SM, Tipton KD, Aarsland A et al. : Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol, 273 : E99-E107, 1997.
11) Allen DL, Roy RR, Edgerton VR : Myonuclear domains in muscle adaptation and disease. Muscle Nerve, 22 : 1350-1360, 1999.
12) Bruusgaard JC, Johansen IB, Egner IM et al. : Myonuclei acquired by overload exercise precede hypertrophy and are not lost on detraining. Proc Natl Acad Sci USA, 107 : 15111-15116, 2010.
13) Begue G, Douillard A, Galbes O et al. : Early activation of rat skeletal muscle IL-6/STAT1/STAT3 dependent gene expression in resistance exercise linked to hypertrophy. PLoS One, 8 : e57141, 2013.
14) Burd NA, Holwerda AM, Selby KC et al. : Resistance exercise volume af fects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol, 588 : 3119-3130, 2010.
15) Ogasawara R, Loenneke JP, Thiebaud RS et al. : Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med, 4 : 114-121, 2013.
16) Takarada Y, Takazawa H, Sato Y et al. : Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol, 88 : 2097-2106, 2000.
17) Tanimoto M, Ishii N : Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol, 100 : 1150-1157, 2006.
18) 藤田聡 : 加齢に伴う筋量・筋機能維持に有効なアミノ酸摂取. 体育の科学, 65 : 807-811, 2015.
19) Drummond MJ, Rasmussen BB : Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis. Curr Opin Clin Nutr Metab Care, 11 : 222-226, 2008.
20) Volpi E, Sheffield-Moore M, Rasmussen BB et al. : Basal muscle amino acid kinetics and protein synthesis in healthy young and older men. JAMA. 286 : 1206-1212, 2001.
21) Katsanos CS, Kobayashi H, Sheffield-Moore M et al. : A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab, 291 : E381-E387, 2006.
22) Moore DR, Churchward-Venne TA, Witard O et al. : Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci, 70 : 57-62, 2015.
23) 小林久峰 : サルコペニア対策としてのアミノ酸栄養. 薬学雑誌, 138 : 1277-1283, 2018.
24) 厚生労働省 : 日本人の食事摂取基準 (2020年版). 2020. https://www.mhlw.go.jp/stf/newpage_08517.html
25) 日本サルコペニア・フレイル学会 : サルコペニア診療ガイドライン 2017年版. 2017.
26) Bollwein J, Diekmann R, Kaiser MJ et al. : Distribution but not amount of protein intake is associated with frailty : a cross-sectional investigation in the region of Nurnberg. Nutr J, 12 : 109, 2013.
27) Fujita S, Volpi E : Nutrition and sarcopenia of ageing. Nutr Res Rev, 17 : 69-76, 2004.
28) Rasmussen BB, Fujita S, Wolfe RR et al. : Insulin resistance of muscle protein metabolism in aging. FASEB J, 20 : 768-769, 2006.
29) Baylis D, Bartlett DB, Patel HP et al. : Understanding how we age : insights into inflammaging. Longev Healthspan, 2 : 8, 2013.
30) Schaap LA, Pluijm SM, Deeg DJ et al. : Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med, 119 : 526.e9-526.e17, 2006.
31) Schaap LA, Pluijm SM, Deeg DJ et al. : Higher inflammatory marker levels in older persons : associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci, 64 : 1183-1189, 2009.
32) Verdijk LB, Koopman R, Schaart G et al. : Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab, 292 : E151-E157, 2007.
33) Garcia-Prat L, Martinez-Vicente M, Perdiguero E et al. : Autophagy maintains stemness by preventing senescence. Nature, 529 : 37-42, 2016.
34) Thomason DB, Booth FW : Atrophy of the soleus muscle by hindlimb unweighting. J Appl Physiol, 68 : 1-12, 1990.
35) 町田修一 : 筋線維タイプの発現をタンパク質・遺伝子レベルで探る. 柳原大, 内藤久士編, 運動とタンパク質・遺伝子. ナップ, 2004.
36) Larsson L : Histochemical characteristics of human skeletal muscle during aging. Acta Physiol Scand, 117 : 469-471, 1983.
37) Lexell J, Taylor CC, Sjostrom M : What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci, 84 : 275-294, 1988.
38) Ezaki T, Oki S, Matsuda Y et al. : Age changes of neuromuscular junctions in the extensor digitorum longus muscle of spontaneous thymoma BUF/Mna rats. A scanning and transmission electron microscopic study. Virchows Arch, 437 : 388-395, 2000.
39) Nishimune H, Badawi Y, Mori S et al. : Dual-color STED microscopy reveals a sandwich structure of Bassoon and Piccolo in active zones of adult and aged mice. Sci Rep, 6 : 27935, 2016.
40) 東京都健康長寿医療センター : 加齢により神経筋接合部の分子構造が変化することを発見-加齢による筋肉減少の機序解明が大きく前進-. 2016. https://www.tmghig.jp/research/release/cms_upload/press20160630.pdf.
41) Valdez G, Tapia JC, Kang H et al. : Attenuation of age-related changes in mouse neuromuscular synapses by caloric restriction and exercise. Proc Natl Acad Sci USA, 107 : 14863-14868, 2010.

3章 体幹部の機能評価

P.102 掲載の参考文献
1) 三井但夫, 嶋井和世, 安田健次郎ほか改訂 : 新版 岡嶋解剖学. 杏林書院, 1993.
2) Augustus AW, Manohar MP : Clinical Biomechanics of the Spine. Lippincott, 1990.
3) Yoshio M, Murakami G, Sato T et al. : The function of the psoas major muscle : passive kinetics and morphological studies using donated cadavers. J Orthop Sci, 7 : 199-207, 2002.
4) Matsubayashi T, Kubo J, Matsuo A et al. : Ultrasonographic measurement of tendon displacement caused by active force generation in the psoas major muscle. J Physiol Sci, 58 : 323-332, 2008.
5) Johnson MA, Polgar J, Weightman D et al. : Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J Neurol Sci, 18 : 111-129, 1973.
6) Yoshimura N, Muraki S, Oka H et al. : Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women ; the research on osteoarthritis osteoporosis against disability study. J Bone Miner Metab, 27 : 620-628, 2009.
7) 安部孝, 福永哲夫 : 日本人の体脂肪と筋肉分布. 杏林書院, 1995.
8) Miyatani M, Kanehisa H, Azuma K et al. : A Cross-sectional Survey On The Muscle Thickness in Japanese Men Aged 20 to 79 Years. Int J Sport and Science, 1 : 34-40, 2003.
9) Kanehisa H, Miyatani M, Azuma K et al. : Influences of age and sex on abdominal muscle and subcutaneous fat thickness. Eur J Appl Physiol, 91 : 534-537, 2004.
10) Tanaka N, Yamada M, Tanaka Y et al. : Difference in abdominal muscularity at the umbilicus level between young and middle-aged men. J Physiol Anthropol, 26 : 527-532, 2007.
11) Ikezoe T, Mori N, Nakamura M et al. : Effects of age and inactivity due to prolonged bed rest on atrophy of trunk muscles. Eur J Appl Physiol, 112 : 43-48, 2012.
12) Stokes M, Rankin G, Newham DJ : Ultrasound imaging of lumbar multifidus muscle : normal reference ranges for measurements and practical guidance on the technique. Man Ther, 10 : 116-126, 2005.
13) 久野譜也 : 高齢者の筋力トレーニング. 体育の科学, 52 : 617-625, 2002.
14) 金俊東, 久野譜也, 相馬りか : 加齢による下肢筋量の低下が歩行能力に及ぼす影響. 体力科学, 49 : 589-596, 2000.
15) Ikezoe T, Mori N, Nakamura M et al. : Atrophy of the lower limbs in elderly women : is it related to walking ability? Eur J Appl Physiol, 111 : 989-995, 2011.
16) Lexell J, Taylor CC, Sjostrom M : What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci, 84 : 275-294, 1988.
17) Guimaraes RM, Isaacs B : Characteristics of the gait in old people who fall. Int Rehabil Med, 2 : 177-180, 1980.
18) Cesari M, Pahor M, Lauretani F et al. : Skeletal muscle and mortality results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci, 64 : 377-384, 2009.
19) 文部科学省 : 新体力テスト実施要項 (65歳~79歳対象). https://www.mext.go.jp/component/a_menu/sports/detail/__icsFiles/afieldfile/2010/07/30/1295079_04.pdf
20) Hurvitz EA, Richardson JK, Werner RA et al. : Unipedal stance testing as an indicator of fall risk among older outpatients. Arch Phys Med Rehabil, 81 : 587-591, 2000.
21) 渡邊裕也, 吉田司, 吉中康子ほか : 軽費老人ホーム利用者における5年間の身体機能の変化-自立維持者と要支援・要介護認定者の比較-. 応用老年学, 13 : 44-53, 2019.
22) Duncan PW, Weiner DK, Chandler J et al. : Functional reach : a new clinical measure of balance. J Gerontol, 45 : M192-M197, 1990.
23) Duncan PW, Studenski S, Chandler J et al. : Functional reach : Predictive validity in a sample of elderly male veterans. J Gerontol, 47 : M93-M98, 1992.
24) 渡邊裕也, 山縣恵美, 木村みさか : 自立高齢者と要支援・要介護認定高齢者における下肢骨格筋の量, 質, 運動機能の比較. 応用老年学, 14 : 58-68, 2020.
25) 村永信吾 : 疾病予防施設における現状 亀田メディカルセンター (千葉県鴨川市). 臨床スポーツ医学, 22 : 394-398, 2005.
26) ロコモ ONLINE : https://locomo-joa.jp/check/test/
27) Podsiadlo D, Richardson S : The timed "Up & Go" : a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc, 39 : 142-148, 1991.
28) Jones CJ, Rikli RE, Beam WC : A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport, 70 : 113-119, 1999.

4章 骨格筋評価の新たな視点

P.134 掲載の参考文献
1) 山田陽介 : 骨格筋量・筋力の評価法. 医学のあゆみ, 248 : 670-678, 2014.
2) Watanabe Y, Ikenaga M, Yoshimura E et al. : Association between echo intensity and attenuation of skeletal muscle in young and older adults : a comparison between ultrasonography and computed tomography. Clin Interv Aging, 13 : 1871-1878, 2018.
3) Goodpaster BH, Kelley DE, Thaete FL et al. : Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol, 89 : 104-110, 2000.
4) Kent-Braun JA, Ng AV, Young K : Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol, 88 : 662-668, 2000.
5) Goodpaster BH, Stenger VA, Boada F et al. : Skeletal muscle lipid concentration quantified by magnetic resonance imaging. Am J Clin Nutr, 79 : 748-754, 2004.
6) Nakagawa Y, Hattori M, Harada K et al. : Age-related changes in intramyocellular lipid in humans by in vivo H-MR spectroscopy. Gerontology, 53 : 218-223, 2007.
7) 安部孝, 福永哲夫 : 日本人の体脂肪と筋肉分布. 杏林書院, 1995.
8) Janssen I, Heymsfield SB, Baumgartner RN et al. : Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol, 89 : 465-471, 2000.
9) Yamada M, Yamada Y, Arai H : Comparability of two representative devices for bioelectrical impedance data acquisition. Geriatr Gerontol Int, 16 : 1087-1088, 2016.
10) Yoshida D, Shimada H, Park H et al. : Development of an equation for estimating appendicular skeletal muscle mass in Japanese older adults using bioelectrical impedance analysis. Geriatr Gerontol Int, 14 : 851-857, 2014.
11) Yamada Y, Nishizawa M, Uchiyama T et al. : Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int J Environ Res Public Health, 14 : 809, 2017.
12) Yamada Y, Schoeller DA, Nakamura E et al. : Extracellular water may mask actual muscle atrophy during aging. J Gerontol A Biol Sci Med Sci, 65 : 510-516, 2010.
13) Hunt LC, Demontis F : Chapter2 Intertissue/interorgan networks regulating aging and lngevity The control of organismal aging by skeletal muscle. Experimental Medicine Vol.31 No.20. 2013. https://www.yodosha.co.jp/yodobook/book/9784758103350/
14) Lexell J, Taylor CC, Sjostrom M : What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci, 84 : 275-294, 1988.
15) 山田陽介 : 骨格筋量・サルコペニアの定義を再考する-機能的骨格筋細胞量・筋内組成に着目して-. 体力科学, 64 : 461-472, 2015.
16) Lauretani F, Russo CR, Bandinelli S et al. : Age-associated changes in skeletal muscles and their effect on mobility : an operational diagnosis of sarcopenia. J Appl Physiol, 95 : 1851-1860, 2003.
17) Visser M, Goodpaster BH, Kritchevsky SB et al. : Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci, 60 : 324-333, 2005.
18) Newman AB, Kupelian V, Visser M et al. : Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci, 61 : 72-77, 2006.
19) Clark BC, Manini TM : Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci, 63 : 829-834, 2008.
20) Proctor DN, O'Brien PC, Atkinson EJ et al. : Comparison of techniques to estimate total body skeletal muscle mass in people of different age groups. Am J Physiol, 277 : E489-E495, 1999.
21) Mitchell WK, Williams J, Atherton P et al. : Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength ; a quantitative review. Front Physiol, 3 : 260, 2012.
22) Clark BC, Manini TM : What is dynapenia? Nutrition, 28 : 495-503, 2012.
23) Morley JE : Frailty and sarcopenia : the new geriatric giants. Rev Invest Clin, 68 : 59-67, 2016.
24) Mingrone G, Bertuzzi A, Capristo E et al. : Unreliable use of standard muscle hydration value in obesity. Am J Physiol Endocrinol Metab, 280 : E365-E371, 2001.
25) 山田陽介 : 身体組成研究の新たな展開-組織・器官・細胞レベルのアプローチ, 脂肪から骨格筋へ-. 体育の科学, 64 : 149-155, 2014.
26) Miyatani M, Kanehisa H, Masuo Y et al. : Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol, 91 : 386-394, 2001.
27) Yamada Y, Watanabe Y, Ikenaga M et al. : Comparison of single- or multifrequency bioelectrical impedance analysis and spectroscopy for assessment of appendicular skeletal muscle in the elderly. J Appl Physiol, 115 : 812-818, 2013.
28) Yamada Y, Ikenaga M, Takeda N et al. : Nakagawa Study. Estimation of thigh muscle cross sectional area by single- and multifrequency segmental bioelectrical impedance analysis in the elderly. J Appl Physiol, 116 : 176-182, 2014.
29) Cole KS : Membranes, Ions and Impulses : A Chapter of Classical Biophysics. University of California Press, 1968.
30) De Lorenzo A, Andreoli A, Matthie J et al. : Predicting body cell mass with bioimpedance by using theoretical methods : a technological review. J Appl Physiol, 96 : 161-166, 1997.
31) Bartels EM, Sorensen ER, Harrison AP : Multi-frequency bioimpedance in human muscle assessment. Physiol Rep, 3 : e12354, 2015.
32) Yamada Y, Matsuda K, Bjorkman MP et al. : Application of segmental bioelectrical impedance spectroscopy to the assessment of skeletal muscle cell mass in elderly men. Geriatr Gerontol Int, 14 Suppl 1 : 129-134, 2014.
33) 佐々木明 : Bモード法の原理と最近の装置. Medicina, 44 : 12-19, 2007.
34) 福元喜啓, 池添冬芽, 山田陽介ほか : 超音波画像診断装置を用いた骨格筋の量的・質的評価. 理学療法学, 42 : 65-71, 2015.
35) Overend TJ, Cunningham DA, Paterson DH et al. : Thigh composition in young and elderly men determined by computed tomography. Clin Physiol, 12 : 629-640, 1992.
36) Kragstrup TW, Kjaer M, Mackey AL : Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand J Med Sci Sports, 21 : 749-757, 2011.
37) Galban CJ, Maderwald S, Stock F et al. : Age-related changes in skeletal muscle as detected by diffusion tensor magnetic resonance imaging. J Gerontol A Biol Sci Med Sci, 62 : 453-458, 2007.
38) Reimers K, Reimers CD, Wagner S et al. : Skeletal muscle sonography : a correlative study of echogenicity and morphology. J Ultrasound Med, 12 : 73-77, 1993.
39) Pillen S, Tak RO, Zwarts MJ et al. : Skeletal muscle ultrasound : correlation between fibrous tissue and echo intensity. Ultrasound Med Biol, 35 : 443-446, 2009.
40) Young HJ, Jenkins NT, Zhao Q et al. : Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve, 52 : 963-971, 2015.
41) Akima H, Hioki M, Yoshiko A et al. : Intramuscular adipose tissue determined by T1-weighted MRI at 3T primarily reflects extramyocellular lipids. Magn Reson Imaging, 34 : 397-403, 2016.
42) Watanabe Y, Yamada Y, Fukumoto Y et al. : Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging, 8 : 993-998, 2013.
43) Fukumoto Y, Ikezoe T, Yamada Y et al. : Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur J Appl Physiol, 112 : 1519-1525, 2012.
44) Cadore EL, Izquierdo M, Conceicao M et al. : Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp Gerontol, 47 : 473-478, 2012.
45) Rech A, Radaelli R, Goltz FR et al. : Echo intensity is negatively associated with functional capacity in older women. Age, 36 : 9708, 2014.
46) Wilhelm EN, Rech A, Minozzo F et al. : Radaelli R, Botton CE, Pinto RS. Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age, 36 : 9625, 2014.
47) 渡邊裕也 : 要介護等認定高齢者における下肢骨格筋の量および質と運動機能の関係. 同志社スポーツ健康科学, 11 : 16-23, 2019.
48) 渡邊裕也, 山田陽介, 吉田司ほか : 地域在住高齢者の日常の歩数と下肢骨格筋の量および質, 運動機能との関連. 同志社スポーツ健康科学, 12 : 29-36, 2020.
49) Sipila S, Suominen H : Effects of strength and endurance training on thigh and leg muscle mass and composition in elderly women. J Appl Physiol, 78 : 334-340, 1995.
50) Fukumoto Y, Tateuchi H, Ikezoe T et al. : Effects of high-velocity resistance training on muscle function, muscle properties, and physical performance in individuals with hip osteoarthritis : a randomized controlled trial. Clin Rehabil, 28 : 48-58, 2014.
51) Yoshiko A, Kaji T, Sugiyama H et al. : Effect of 12-month resistance and endurance training on quality, quantity, and function of skeletal muscle in older adults requiring long-term care. Exp Gerontol, 98 : 230-237, 2017.
52) Taniguchi M, Yamada Y, Fukumoto Y et al. : Increase in echo intensity and extracellular-to-intracellular water ratio is independently associated with muscle weakness in elderly women. Eur J Appl Physiol, 117 : 2001-2007, 2017.

5章 レジスタンストレーニングの効果とエビデンス

P.172 掲載の参考文献
1) Borst SE : Interventions for sarcopenia and muscle weakness in older people. Age Ageing, 33 : 548-555, 2004.
2) Peterson MD, Rhea MR, Sen A et al. : Resistance exercise for muscular strength in older adults : a meta-analysis. Ageing Res Rev, 9 : 226-237, 2010.
3) Peterson MD, Sen A, Gordon PM : Influence of resistance exercise on lean body mass in aging adults : a meta-analysis. Medicine Sci Sports Exerc, 43 : 249-258, 2011.
4) 勝田茂編著, 和田正信, 松永智著 : 入門運動生理学 第4版. 杏林書院, 2015.
5) Nardone A, Romano C, Schieppati M : Selective recruitment of high-threshold human motor units during voluntary isotonic lengthening of active muscles. J Physiol, 409 : 451-471, 1989.
6) Fleck FS, Kraemer WJ : Designing Resistance Training Programs 2nd ed. Human Kinetics, 1987.
7) Sooneste H, Tanimoto M, Kakigi R, et al. : Effects of training volume on strength and hypertrophy in young men. J Strength Cond Res, 27 : 8-13, 2013.
8) Krieger JW : Single vs. multiple sets of resistance exercise for muscle hypertrophy : a meta-analysis. J Strength Cond Res, 24 : 1150-1159, 2010.
9) Burd NA, Holwerda AM, Selby KC et al. : Resistance exercise volume af fects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol, 588 : 3119-3130, 2010.
10) Ogasawara R, Arihara Y, Takegaki J et al. : Relationship between exercise volume and muscle protein synthesis in a rat model of resistance exercise. J Appl Physiol, 123 : 710-716, 2017.
11) Kraemer WJ, Marchitelli L, Gordon SE et al. : Hormonal and growth factor responses to heavy resistance exercise protocols. J Appl Physiol, 69 : 1442-1450, 1990.
12) Schoenfeld BJ, Pope ZK, Benik FM et al. : Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res, 30 : 1805-1812, 2016.
13) McKendr y J, Perez-Lopez A, McLeod M et al. : Shor t inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Exp Physiol, 101 : 866-882, 2016.
14) Grgic J, Schoenfeld BJ, Davies TB et al. : Effect of resistance training frequency on gains in muscular strength : A systematic review and meta-analysis. Sports Med, 48 : 1207-1220, 2018.
15) Saric J, Lisica D, Orlic I et al. : Resistance training frequencies of 3 and 6 times per week produce similar muscular adaptations in resistance-trained men. J Strength Cond Res, 33 Supple 1 : S122-S129, 2019.
16) Takegaki J Ogasawara R, Kotani T et al. : Influence of shortened recovery between resistance exercise sessions on muscle-hypertrophic effect in rat skeletal muscle. Physiol Rep, 7 : e14155, 2019.
17) Takegaki J, Ogasawara R, Kouzaki K et al. : The distribution of eukaryotic initiation factor 4E after bouts of resistance exercise is altered by shortening of recovery periods. J Physiol Sci, 70 : 54, 2020.
18) Klitgaard H, Mantoni M, Schiaf fino S et al. : Function, morphology and protein expression of ageing skeletal muscle : a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand, 140 : 41-54, 1990.
19) Frontera WR, Meredith CN, O'Reilly KP et al. : Strength conditioning in older men : skeletal muscle hypertrophy and improved function. J Appl Physiol, 64 : 1038-1044, 1988.
20) Fiatarone MA, Marks EC, Ryan ND et al. : High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA, 263 : 3029-3034, 1990.
21) Churchward-Venne TA, Tieland M, Verdijk LB et al. : There are no nonresponders to resistance-type exercise training in older men and women. J Am Med Dir Assoc, 16 : 400-411, 2015.
22) 日本サルコペニア・フレイル学会 : サルコペニア診療ガイドライン 2017年版. 2017.
23) Piercy KL, Troiano RP, Ballard RM et al. : The physical activity guidelines for Americans. JAMA, 320 : 2020-2028, 2018.
24) Kamada M, Shiroma EJ, Buring JE et al. : Strength training and all-cause, cardiovascular disease, and cancer mortality in older women : a cohort study. J Am Heart Assoc, 6 : e007677, 2017.
25) Stamatakis E, Lee IM, Bennie J et al. : Does strength-promoting exercise confer unique health benefits? A pooled analysis of data on 11 population cohorts with allcause, cancer, and cardiovascular mortality endpoints. Am J Epidemiol, 187 : 1102-1112, 2018.
26) 小笠原理紀, 安部孝 : 筋力トレーニングにおけるディトレーニングとリトレーニングの効果. Strength & Conditioning Journal, 17 : 2-9, 2010.
27) Jespersen JG, Nedergaard A, Andersen LL et al. : Myostatin expression during human muscle hypertrophy and subsequent atrophy : increased myostatin with detraining. Scand J Med Sci Sports, 21 : 215-223, 2009.
28) 山田実 : イラストでわかる高齢者の生活機能向上支援-地域ケアでの実践と手法の活用-. pp104-105, 文光堂, 2017.
29) Watanabe Y, Yamada Y, Yoshida T et al. : Comprehensive geriatric inter vention program with and without weekly class-style exercise : research protocol of a cluster randomized controlled trial in Kyoto-Kameoka Study. Clin Interv Aging, 13 : 1019-1033, 2018.
30) Watanabe Y, Yamada Y, Yokoyama K et al. : Comprehensive geriatric intervention in community-dwelling older adults : a cluster-randomized controlled trial. J Cachexia Sarcopenia Muscle, 11 : 26-37, 2020.
31) 日本レクリエーション協会 : 平成29年度スポーツ医・科学等を活用した健康増進プロジェクト (スポーツ・レクリエーション活動を通じた健康寿命延伸事業) 報告書, 2018.

6章 からだにやさしいトレーニング

P.210 掲載の参考文献
1) Pollock ML, Carroll JF, Graves JE et al. : Injuries and adherence to walk/jog and resistance training programs in the elderly. Med Sci Sports Exerc, 23 : 1194-1200, 1991.
2) Hatzaras I, Tranquilli M, Coady M et al. : Weight lifting and aortic dissection : more evidence for a connection. Cardiology, 107 : 103-106, 2007.
3) MacDougall JD, Tuxen D, Sale DG et al. : Arterial blood pressure response to heavy resistance exercise. J Appl Physiol, 58 : 785-790, 1985.
4) Bermon S, Rama D, Dolisi C : Cardiovascular tolerance of healthy elderly subjects to weight-lifting exercises. Med Sci Sports Exerc, 32 : 1845-1848, 2000.
5) 鰺坂隆一 : 運動の安全基準. 松田光生他編, 地域における高齢者の健康づくりハンドブック, pp46-49, ナップ, 2001.
6) ACSM : ACSM's Guidelines for Exercise Testing and Prescription 9th ed. Lippincott Williams & Wilkins, 2013.
7) 厚生労働省 : 介護予防マニュアル改訂版. 2012. https://www.mhlw.go.jp/topics/2009/05/dl/tp0501-1_1.pdf
8) Garber CE, Blissmer B, Deschenes MR et al. : American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults : guidance for prescribing exercise. Med Sci Sports Exerc, 43 : 1334-1359, 2011.
9) 渡邊裕也, 山田陽介, 三宅基子ほか : 高齢者向けの運動教室が参加者の身体機能と医療費に及ぼす効果. 厚生の指標, 60 : 26-32, 2013.
10) Meijer EP, Goris AH, Wouters L et al. : Physical inactivity as a determinant of the physical activity level in the elderly. Int J Obes Relat Metab Disord, 25 : 935-939, 2001.
11) Csapo R, Alegre LM : Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly : A meta-analysis. Scand J Med Sci Sports, 26 : 995-1006, 2016.
12) 山田実 : サルコペニア予防のための運動・身体活動. 介護福祉・健康づくり, 3 : 29-32, 2016.
13) 山田実 : フレイル・サ ルコペニアの予防と対策. 内科, 121 : 697-701, 2018.
14) Takarada Y, Takazawa H, Sato Y et al. : Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol, 88 : 2097-2106, 2000.
15) Takarada Y, Sato Y, Ishii N : Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol, 86 : 308-314, 2002.
16) Ozaki H, Sakamaki M, Yasuda T et al. : Increases in thigh muscle volume and strength by walk training with leg blood flow reduction in older participants. J Gerontol A Biol Sci Med Sci, 66 : 257-263, 2011.
17) Takarada Y, Nakamura Y, Aruga S et al. : Rapid increase in plasma growth hormone after lowintensityresistance exercise with vascular occlusion. J Appl Physiol, 88 : 61-65, 2000.
18) 太田晴康, 黒澤尚, 桜庭景植ほか : 萎縮筋に対する血流制限下での低負荷筋力訓練の有効性について-前十字靱帯再建術後のトレーニングでの検討-. 日本臨床スポーツ医学会誌, 10 : 282-289, 2002.
19) Yasuda T, Abe T, Sato Y et al. : Muscle fiber cross-sectional area is increased after two weeks of twice daily KAATSU-resistance training. Int J KAATSU Training Res, 1 : 65-70, 2005.
20) Mukaimoto T, Han I, Naka T et al. : Effects of low-intensity and low-velocity resistance training on lower limb muscular strength and body composition in elderly adults. Jpn J Phys Fitness Sports Med, 55 : S209-S212, 2006.
21) Tanimoto M, Ishii N : Effects of low-intensity resistance exercise with slow movement and tonic force generation on muscular function in young men. J Appl Physiol, 100 : 1150-1157, 2006.
22) Bonde-Petersen F, Mork AL, Nielsen E : Local muscle blood flow and sustained contractions of human arm and back muscles. Eur J Appl Physiol Occup Physiol, 34 : 43-50, 1975.
23) Holm L, Reitelseder S, Pedersen TG et al. : Changes in muscle size and MHC composition in response to resistance exercise with heavy and light loading intensity. J Appl Physiol, 105 : 1454-1461, 2008.
24) Mitchell CJ, Churchward-Venne TA, West DW et al. : Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol, 113 : 71-77, 2012.
25) Ogasawara R, Loenneke JP, Thiebaud RS et al. : Low-load bench press training to fatigue results in muscle hypertrophy similar to high-load bench press training. Int J Clin Med, 4 : 114-121, 2013.
26) Van Roie E, Delecluse C, Coudyzer W et al. : Strength training at high versus low external resistance in older adults : effects on muscle volume, muscle strength, and force-velocity characteristics. Exp Gerontol, 48 : 1351-1361, 2013.
27) Yoo EJ, Jun TW, Hawkins SA : The effects of a walking exercise program on fall-related fitness, bone metabolism, and fall-related psychological factors in elderly women. Res Sports Med, 18 : 236-250, 2010.
28) 池永昌弘, 山田陽介, 三原里佳子ほか : 中敷に重量負荷した靴の運動介入が高齢者の下肢筋量および歩容に及ぼす影響. 体力科学, 61 : 467-477, 2012.
29) Hortobagyi T, Mizelle C, Beam S et al. : Old adults perform activities of daily living near their maximal capabilities. J Gerontol A Biol Sci Med Sci, 58 : M453-M460, 2003.
30) ACSM : American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc, 30 : 975-991, 1998.
31) Yamada M, Mori S, Nishiguchi S et al. : Pedometer-based behavioral change program can improve dependency in sedentary older adults : a randomized controlled trial. J Frailty Aging, 1 : 39-44, 2012.
32) Yamada M, Nishiguchi S, Fukutani N et al. : Mail-Based intervention for sarcopenia prevention increased anabolic hormone and skeletal muscle mass in community-dwelling Japanese older adults : the INE (intervention by nutrition and exercise) study. J Am Med Dir Assoc, 16 : 654-660, 2015.
33) Watanabe D, Yoshida T, Watanabe Y et al. : Objectively measured daily step counts and prevalence of frailty in 3616 older adults. J Am Geriatr Soc, 68 : 2310-2318, 2020.
34) Ikenaga M, Yamada Y, Kose Y et al. : Effects of a 12-week, short-interval, intermittent, low-intensity, slow-jogging program on skeletal muscle, fat infiltration, and fitness in older adults : randomized controlled trial. Eur J Appl Physiol, 117 : 7-15, 2017.
35) Tanimoto M, Madarame H, Ishii N : Muscle oxygenation and plasma growth hormone concentration during and after resistance exercise : comparison between "Kaatsu" and other types of regimen. Int J Kaatsu Training Res, 1 : 51-56, 2005.
36) Tanimoto M, Sanada K, Yamamoto K et al. : Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men. J Strength Cond Res, 22 : 1926-1938, 2008.
37) Watanabe Y, Tanimoto M, Ohgane A et al. : Increased muscle size and strength from slowmovement, low-intensity resistance exercise and tonic force generation. J Aging Phys Act, 21 : 71-84, 2013.
38) Watanabe Y, Madarame H, Ogasawara R et al. : Effect of very low-intensity resistance training with slow movement on muscle size and strength in healthy older adults. Clin Physiol Funct Imaging, 34 : 463-470, 2014.
39) Burd NA, Andrews RJ, West DW et al. : Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol, 590 : 351-362, 2012.
40) Tanimoto M, Kawano H, Gando Y et al. : Low intensity resistance training with slow movement and tonic force generation increases basal limb blood flow. Clin Physiol Funct Imaging, 29 : 128-135, 2009.
41) Tanimoto M, Arakawa H, Sanada K et al. : Changes in muscle activation and force generation patterns during cycling movements because of low intensity squat training with slow movement and tonic force generation. J Strength Cond Res, 23 : 2367-2376, 2009.
42) Watanabe Y, Tanimoto M, Oba N et al. : Effect of resistance training using bodyweight in the elderly : Comparison of resistance exercise movement between slow and normal speed movement. Geriatr Gerontol Int, 15 : 1270-1277, 2015.
43) 渡邊裕也, 来田宣幸, 谷本道哉ほか : 筋発揮張力維持スロー法を応用した自体重運動の筋活動動態および乳酸応答. 体力・栄養・免疫学雑誌, 30 : 36-45, 2020.
44) Tsuzuku S, Kajioka T, Sakakibara H et al. : Slow movement resistance training using body weight improves muscle mass in the elderly : A randomized controlled trial. Scand J Med Sci Sports, 28 : 1339-1344, 2018.
45) Tsuzuku S, Kajioka T, Endo H et al. : Favorable effects of non-instrumental resistance training on fat distribution and metabolic profiles in healthy elderly people. Eur J Appl Physiol, 99 : 549-555, 2007.
46) Kanda K, Yoda T, Suzuki H et al. : Effects of low-intensity bodyweight training with slow movement on motor function in frail elderly patients : a prospective observational study. Environ Health Prev Med, 23 : 4, 2018.
47) Takenami E, Iwamoto S, Shiraishi N et al. : Effects of low-intensity resistance training on muscular function and glycemic control in older adults with type 2 diabetes. J Diabetes Investig, 10 : 331-338, 2019.
48) Watanabe Y, Yamada Y, Yokoyama K et al. : Comprehensive geriatric intervention program with and without weekly class-style exercise : research protocol of a cluster randomized controlled trial in Kyoto-Kameoka Study. Clin Interv Aging, 13 : 1019-1033, 2018.
49) 京都府立医科大学, 亀岡市, 京都地域包括ケア推進機構 : 京都式介護予防総合プログラム構築事業 地域資源を活用した総合型介護予防プログラム実施マニュアル. 2014.
50) Watanabe Y, Yamada Y, Yokoyama K et al. : Comprehensive geriatric intervention in community-dwelling older adults : A cluster-randomized controlled trial. J Cachexia Sarcopenia Muscle, 11 : 26-37, 2020.
51) 渡邊裕也, 山田陽介, 三宅基子ほか : 幅広い高齢者に適応可能なサルコペニア予防法. デサントスポーツ科学, 35 : 78-86, 2019.

最近チェックした商品履歴

Loading...