医学と薬学 80/6 2023年6月号

出版社: 自然科学社
発行日: 2023-05-27
分野: 薬学  >  雑誌
ISSN: 03893898
雑誌名:
特集: 多発性骨髄腫の病態解明と治療の進歩
電子書籍版: 2023-05-27 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

2,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,760 円(税込)

目次

  • 特集 多発性骨髄腫の病態解明と治療の進歩

    序文
    多発性骨髄腫の病態と臨床像の多様性
    発症と進展の分子機序
    初発骨髄腫の治療
    再発・難治性多発性骨髄腫に対する治療
    免疫療法の現状と展開
    新規治療薬の開発と展望

    Diagnosis
     Alinity®iシステムCIを用いた(RE)ノルディアN HbA1cの基礎性能評価

    総説
     β-グルカンの免疫調節作用による感染症と癌の予防・治療
     シンバイオティクス研究部門

    Cosmetic
     朝用オールインワンと夜用オールインワンを使い分けて使用した場合の荒れ肌改善効果

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

【特集 多発性骨髄腫の病態解明と治療の進歩】

P.573 掲載の参考文献
1) Reyes CM, Rudinskaya A, Kloss R, et al : Scleroderma-like illness as a presenting feature of multiple myeloma and amyloidosis. J Clin Rheumatol 14 : 161-165, 2008.
2) Paredes-Suarez C, Fernandez-Redondo V, Blanco MV, et al : Multiple myeloma with scleroderma-like changes. J Eur Acad Dermatol Venereol 19 : 500-502, 2005.
3) Bachmeyer C, Georgin-Lavialle S, Wigley F, et al : Case 8-2015 : A Man with Multiple Myeloma, Skin Tightness, Arthralgias, and Edema. N Engl J Med 372 : 2466 2015.
4) Bandinelli F, Saccardi R, Salvadorini G, et al : Stiff skin syndrome and myeloma successfully treated with autologous aematopoietic stem cell transplantation (HSCT). Clin Exp Rheumatol 2 (Suppl 76) : 181-183, 2013.
5) Alpay N, Artim-Esen B, Kamali S, et al : Amyloid arthropathy mimicking seronegative rheumatoid arthritis in multiple myeloma : case reports and review of the literature. Amyloid 16 : 226-231, 2009.
6) Aguiar J, Cubero A, de Pablos P, et al : Myeloma, polyneuropathy, gynecomastia and cutaneous angiomas. Med Clin (Barc) 89 : 441, 1987.
7) GAULT JE : Gynaecomastia and multiple myeloma. Med J Aust 48 : 318-319, 1961.
8) Mourad YA, Shamseddine A, Taher A : Thalidomide-associated gynecomasty in a patient with multiple myeloma. Hematol J 4 : 372, 2003.
9) Myers BM, Miralles GD, Taylor CA, et al : POEMS syndrome with idiopathic flushing mimicking carcinoid syndrome. Am J Med 90 : 646-648, 1991.
10) Lopez-Millan B, Diaz de la Guardia R, Roca-Ho H, et al : IMiDs mobilize acute myeloid leukemia blasts to peripheral blood through downregulation of CXCR4 but fail to potentiate AraC/Idarubicin activity in preclinical models of non del5q/5q-AML Oncoimmunology 7 : e1477460, 2018.
11) Kikuchi J, Kodama N, Miwa A, et al : EMD originates from hyaluronan-induced homophilic interactions of CD44 variant-expressing MM cells under shear stress. Blood Adv 7 : 508-524, 2023.
12) Shintani-Domoto Y, Ishino K, Naiki H, et al : Autopsy case with concurrent transthyretin and immunoglobulin amyloidosis. Pathol Int 72 : 65-71, 2022.
13) Sannier A, Hanouna G, Daugas E, et al : IgA kappa light and heavy chain deposition disease in multiple myeloma. Br J Haematol 183 : 13, 2018.
14) Otaka Y, Nakazato Y, Tsutsui T, et al : Cardiac involvement in heavy and light chain amyloidosis : A case report and literature review. Medicine (Baltimore) 98 : e17999, 2019.
15) Gafumbegete E, Richter S, Jonas L, et al : Nonsecretory multiple myeloma with amyloidosis. A case report and review of the literature. Virchows Arch 445 : 531-536, 2004.
16) Lessi F, Marson P, Colpo A, et al : splenic rupture following stem cell mobilization with G-CSF and plerixafor in AL amyloidosis. Transfus Apher Sci 54 : 256-258, 2016.
17) Tsai SB, Seldin DC, Wu H, et al : Myocardial infarction with "clean coronaries" caused by amyloid light-chain AL amyloidosis : a case report and literature review. Amyloid 18 : 160-164, 2011.
18) Mawet J, Adam J, Errera MH, et al : Vahedi K. Cerebral immunoglobulin light chain amyloid angiopathy-related hemorrhages. Rev Neurol (Paris) 165 : 583-587, 2009.
19) Ericson S, Shah N, Liberman J, et al : Fatal bleeding due to acquired factor IX and X deficiency : a rare complication of primary amyloidosis ; case report and review of the literature. Clin Lymphoma Myeloma Leuk 14 : e81-86, 2014.
20) Uchiba M, Imamura T, Hata H, et al : Excessive fibrinolysis in AL-amyloidosis is induced by urokinae-type plasminogen activator from bone marrow plasma cells. Amyloid 16 : 89-93, 2009.
21) Samanez C, Domingo A, Cibeira MT, et al : Development of rapidly progressive liver light chain deposition under VAD chemotherapy in multiple myeloma. Eur J Haematol 76 : 83-85, 2006.
22) Crosthwaite A, Skene A, Mount P : Rapidly progressive glomerulonephritis complicating primary AL amyloidosis and multiple myeloma. Nephrol Dial Transplant 25 : 2786-2789, 2010.
23) Yagi H, Ozaki S, Sekimoto E, et al : Rapidly progressive AL amyloidosis in a patient with relapsed multiple myeloma after achieving a complete response to tandem autologous PBSCT. Rinsho Ketsueki 54 : 2171-2176, 2013.
24) Finsterer J, Hoftberger R, Stollberger C, et al : Sudden death possibly related to lenalidomide given for cardiac and muscle AL amyloidosis secondary to light chain deposition disease. J Oncol Pharm Pract 19 : 170-174, 2013.
25) Park H, Kim JW, Youk J, et al : Serum Free Light Chain Difference and β2 Microglobulin Levels Are Risk Factors for Thromboembolic Events in Patients With AL Amyloidosis. Clin Lymphoma Myeloma Leuk 18 : 408-414, 2018.
26) sunoda S, Sasaki R, Miwa A, et al : Coma, hyperviscosity syndrome, hyperammonemia and myelofibrosis in a patient with IgG, lambda type multiple myeloma. Rinshoketsueki 30 : 361-365, 1989.
27) Sakano S, Matsuyama H, Ishikawa H, et al : Myasthenia gravis with anti-muscle-specific tyrosine kinase antibodies during therapy for multiple myeloma : a case report. BMC Neurol 20 : 240, 2020.
28) Rowland LP, Osserman EF, Scharfman WB, et al : Myasthenia gravis with a myeloma-type, gamma-G (IgG) immunoglobulin abnormality. Am J Med 46 : 599-605, 1969.
29) Modarressi A, Kuriyan M, Harvey G, et al : Heat insoluble cryoglobulin associated with gangrene in multiple myeloma. J Clin Apher 18 : 190-193, 2003.
30) Endo S, Nishimura N, Kawano Y, et al : MUC1/KL-6 expression confers an aggressive phenotype upon myeloma cells. Biochem Biophys Res Commun 507 : 246-252, 2018.
31) Kaito K, Otsubo H, Takahara S, et al : Carcinoembryonic antigen-producing multiple myeloma detected by a transcription-reverse transcription concerted reaction system. Int J Hematol 85 : 128-131, 2007.
32) Yang H, Mi R, Wang Q, et al : Expression of neuron-specific enolase in multiple myeloma and implications for clinical diagnosis and treatment. PLoS One 9 : e94304, 2014.
33) Leebeek FW, Kruip MJ, Sonneveld P : Risk and management of thrombosis in multiple myeloma. Thromb Res 129 (Suppl 1) : S88-92, 2012.
34) Gidaro A, Manetti R, Delitala AP, et al : Incidence of Venous Thromboembolism in Multiple Myeloma Patients across Different Regimens : Role of Procoagulant Microparticles and Cytokine Release. J Clin Med 11 : 2720, 2022.
35) Gkalea V, Fotiou D, Dimopoulos MA, et al : Monoclonal Gammopathy of Thrombotic Significance. Cancers (Basel) 15 : 480, 2023.
36) Papanota AM, Ntanasis-Stathopoulos I, Liakea A, et al : Primary plasma cell leukemia presenting as secondary pulmonary alveolar proteinosis. Leuk Lymphoma 61 : 2246-2249, 2020.
37) Tammaa M, Nasser W, Zaman M, et al : Respiratory failure in an 83-year-old man with multiple myeloma. Pulmonary alveolar proteinosis. Tenn Med 102 : 37-39, 2009.
38) Kobbe G, Germing U, Soehngen D, et al : Massive extramedullary disease progression in a patient with stable multiple myeloma during G-CSF priming for peripheral blood progenitor mobilization. Oncol Rep 6 : 1151-1152, 1999.
39) Okuno Y, Takahashi T, Suzuki A, et al : Expression of the erythropoietin receptor on a human myeloma cell line. Biochem Biophy Res Commun 170 : 1128-1134, 1990.
40) Danziger SA, McConnell M, Gockley J, et al : Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma : A cohort study of patients in the Total Therapy clinical trials. PLoS Med 17 : e1003323, 2020.
41) Bereziat V, Mazurier C, Auclair M, et al : Systemic Dysfunction of Osteoblast Differentiation in Adipose-Derived Stem Cells from Patients with Multiple Myeloma. Cells 8 : 441, 2019.
42) Okasaki M, Kubota K, Miwa A, et al : Comparison of (11) C-4'-thiothymidine, (11) C-methionine, and (18) F-FDG PET/CT for the detection of active lesions of multiple myeloma. Ann Nucl Med 29 : 224-232, 2015.
P.582 掲載の参考文献
1) Kuehl WM, Bergsagel PL : Multiple myeloma : evolving genetic events and host interactions. Nature Reviews Cancer 2 : 175-187, 2002
2) Morgan GJ, Walker BA, Davies FE : The genetic architecture of multiple myeloma. Nat Rev Cancer 12 : 335-348, 2012
3) Chapman MA, Lawrence MS, Keats JJ, et al : Initial genome sequencing and analysis of multiple myeloma. Nature 471 : 467-472, 2011.
4) Walker BA, Boyle EM, Wardell CP, et al : Mutational Spectrum, Copy Number Changes, and Outcome : Results of a Sequencing Study of Patients With Newly Diagnosed Myeloma. J Clin Oncol 33 : 3911-3920, 2015.
5) Bhalla S, Melnekoff DT, Aleman A, et al : Patient similarity network of newly diagnosed multiple myeloma identifies patient subgroups with distinct genetic features and clinical implications. Sci Adv 7 : eabg9551. 2021.
6) Cohen YC, Zada M, Wang SY, et al : Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nat Med 27 : 491-503, 2021.
7) Dutta AK, Alberge JB, Sklavenitis-Pistofidis R, et al : Single-cell profiling of tumour evolution in multiple myeloma-opportunities for precision medicine. Nat Rev Clin Oncol 19 : 223-236, 2022.
8) Fonseca R, Debes-Marun CS, Picken EB, et al : The recurrent IgH translocations are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102 : 2562-2567,2003.
9) Fonseca R, Barlogie B, Bataille R, et al : Genetics and cytogenetics of multiple myeloma : a workshop report. Cancer Res 64 : 1546-1558, 2004.
10) Rajkumar SV : Multiple myeloma : 2020 update on diagnosis, risk-stratification and management. Am J Hematol 95 : 548-567, 2020.
11) Chesi M, Bergsagel PL, Brents LA, et al : Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines. Blood 88 : 674-681, 1996.
12) Keats JJ, Reiman T, Maxwell CA, et al : In multiple myeloma, t (4 ; 14) (p16 ; q32) is an adverse prognostic factor irrespective of FGFR3 expression. Blood 101 : 1520-1529, 2003.
13) Santra M, Zhan F, Tian E, et al : A subset of multiple myeloma harboring the t (4 ; 14) (p16 ; q32) translocation lacks FGFR3 expression but maintains an IGH/MMSET fusion transcript. Blood 101 : 2374-2376, 2003.
14) Shaughnessy J, Gabrea A, Qi Y, et al : Cyclin D3 at 6p21 is dysregulated by recurrent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood 98 : 217-223, 2001.
15) Chesi M, Nardini E, Lim RS, et al : The t (4 ; 14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts. Blood 92 : 3025-3034, 1998.
16) Chesi M, Bergsagel PL, Shonukan OO, et al : Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91 : 4457-4463, 1998.
17) Hanamura I, Iida S, Akano Y, et al : Ectopic expression of MAFB gene in human myeloma cells carrying (14 ; 20) (q32 ; q11) chromosomal translocations. Jpn J Cancer Res 92 : 638-644, 2001.
18) Korsmeyer SJ : Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Annu Rev Immunol 10 : 785-807, 1992.
19) Walker BA, Wardell CP, Johnson DC, et al : Characterization of IGH locus breakpoints in multiple myeloma indicates a subset of translocations appear to occur in pregerminal center B cells. Blood 121 : 3413-3419, 2013.
20) Zhan F, Huang Y, Colla S, et al : The molecular classification of multiple myeloma. Blood 108 : 2020-2028, 2006.
21) Manier S, Salem KZ, Park J, et al : Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 14 : 100-113, 2017.
22) Boyle EM, Proszek PZ, Kaiser MF, et al : A molecular diagnostic approach able to detect the recurrent genetic prognostic factors typical of presenting myeloma. Genes Chromosomes Cancer 54 : 91-98, 2015.
23) Walker BA, Wardell CP, Murison A, et al : APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun 6 : 6997, 2015.
24) Bahlis NJ, Baz R, Harrison SJ, et al : Phase I Study of Venetoclax Plus Daratumumab and Dexamethasone, With or Without Bortezomib, in Patients With Relapsed or Refractory Multiple Myeloma With and Without t (11 ; 14). J Clin Oncol 39 : 3602-3612, 2021.
25) Nimura K, Ura K, Shiratori H, et al : A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 460 : 287-291, 2009
26) Kuo AJ, Cheung P, Chen K, et al : NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming. Mol Cell 44 : 609-620, 2011.
27) Martinez-Garcia E, Popovic R, Min DJ, et al : The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t (4 ; 14) multiple myeloma cells. Blood 117 : 211-220, 2011.
28) de Krijger I, van der Torre J, Peuscher MH, et al : H3K36 dimethylation by MMSET promotes classical non-homologous end-joining at unprotected telomeres. Oncogene 39 : 4814-4827, 2020.
29) Eychene A, Rocques N, Pouponnot C : A new MAFia in cancer. Nat Rev Cancer 8 : 683-693, 2008.
30) Suzuki A, Iida S, Kato-Uranishi M, et al : ARK5 is transcriptionally regulated by the Large-MAF family and mediates IGF-1-induced cell invasion in multiple myeloma : ARK5 as a new molecular determinant of malignant multiple myeloma. Oncogene 24 : 6936-6944, 2005.
31) Sheehy AM, Gaddis NC, Choi JD, et al : Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418 : 646-650, 2002.
32) Alexandrov LB, Nik-Zainal S, Wedge DC, et al : Signatures of mutational processes in human cancer. Nature 500 : 415-421, 2013.
33) Samur MK, Aktas Samur A, Fulciniti M, et al : Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. J Clin Oncol 38 : 3107-3118, 2020.
34) Walker BA, Mavrommatis K, Wardell CP, et al : Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood 132 : 587-597, 2018.
35) Walker BA, Mavrommatis K, Wardell CP, et al : A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 33 : 159-170, 2019.
36) Hanamura I, Stewart JP, Huang Y, et al : Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization : incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood 108 : 1724-1732, 2006.
37) Hanamura I : Gain/Amplification of Chromosome Arm 1q21 in Multiple Myeloma. Cancers (Basel) 13 : 256, 2021.
38) Neben K, Jauch A, Hielscher T, et al : Progression in smoldering myeloma is independently determined by the chromosomal abnormalities del (17p), t (4 ; 14), gain 1q, hyperdiploidy, and tumor load. J Clin Oncol 31 : 4325-4332, 2013.
39) Shah V, Sherborne AL, Walker BA, et al : Prediction of outcome in newly diagnosed myeloma : a meta-analysis of the molecular profiles of 1905 trial patients. Leukemia 32 : 102-110, 2017.
40) Ziccheddu B, Biancon G, Bagnoli F, et al : Integrative analysis of the genomic and transcriptomic landscape of double-refractory multiple myeloma. Blood Adv 4 : 830-844, 2020.
41) Lannes R, Samur M, Perrot A, et al : In Multiple Myeloma, High-Risk Secondary Genetic Events Observed at Relapse Are Present From Diagnosis in Tiny, Undetectable Subclonal Populations. J Clin Oncol 41 : 1695-1702, 2022.
42) Walker BA, Leone PE, Chiecchio L, et al : A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood 116 : e56-65, 2010.
43) Boyd KD, Ross FM, Walker BA, et al : Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res 17 : 7776-7784, 2011.
44) Mroczek S, Chlebowska J, Kulinski TM, et al : The non-canonical poly (A) polymerase FAM46C acts as an onco-suppressor in multiple myeloma. Nat Commun 8 : 619, 2017
45) Zhang H, Zhang S-H, Hu J-L, et al : Structural and functional characterization of multiple myeloma associated cytoplasmic poly (A) polymerase FAM46C. Cancer Commun (Lond) 41 : 615-630, 2021
46) Zhu YX, Shi CX, Bruins LA, et al : Loss of FAM46C Promotes Cell Survival in Myeloma. Cancer Res 77 : 4317-4327, 2017.
47) Manfrini N, Mancino M, Miluzio A, et al : FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy. Cancer Res 80 : 4693-4706, 2020.
48) Kanasugi J, Hanamura I, Ota A, et al : Biallelic loss of FAM46C triggers tumor growth with concomitant activation of Akt signaling in multiple myeloma cells. Cancer Sci 111 : 1663-1675, 2020.
49) Drach J, Ackermann J, Fritz E, et al : Presence of a p53 gene deletion in patients with multiple myeloma predicts for short survival after conventional-dose chemotherapy. Blood 92 : 802-809, 1998.
50) Avet-Loiseau H, Attal M, Moreau P, et al : Genetic abnormalities and survival in multiple myeloma : the experience of the Intergroupe Francophone du Myelome. Blood 109 : 3489-3495, 2007.
51) Shaughnessy JD, Zhou Y, Haessler J, et al : TP53 deletion is not an adverse feature in multiple myeloma treated with total therapy 3. Br J Haematol 147 : 347-351, 2009.
52) Cavo M, Gay F, Beksac M, et al : Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95) : a multicentre, randomised, open-label, phase 3 study. Lancet Haematol 7 : e456-e468, 2020.
53) Hanamura I : Multiple myeloma with high-risk cytogenetics and its treatment approach. Int J Hematol 115 : 762-777, 2022.
54) Boyd KD, Ross FM, Chiecchio L, et al : A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS : analysis of patients treated in the MRC Myeloma IX trial. Leukemia 26 : 349-355, 2012.
55) Avet-Loiseau H, Attal M, Campion L, et al : Long-term analysis of the IFM 99 trials for myeloma : cytogenetic abnormalities [t (4 ; 14), del (17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol 30 : 1949-1952, 2012.
56) Costa LJ, Chhabra S, Medvedova E, et al : Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone With Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J Clin Oncol 40 : 2901-2912, 2022.
57) Rasche L, Wasch R, Munder M, et al : Novel immunotherapies in multiple myeloma-chances and challenges. Haematologica 106 : 2555-2565, 2021.
P.592 掲載の参考文献
1) 日本骨髄腫学会 (編) : 多発性骨髄腫の診療指針 第5版, 文光堂, 東京, 2020.
2) 日本血液学会 (編) : 造血器腫瘍診療ガイドライン 2018年版補訂版, 金原出版, 東京, 2020.
3) Rajkumar SV, Dimopoulos MA, Palumbo A, et al : International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15 : e538-548, 2014.
4) Harousseau JL, Attal M, Avet-Loiseau H, et al : Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma : results of the IFM 2005-01 phase III trial. J Clin Oncol 28 : 4621-4629, 2010.
5) Reeder CB, Reece DE, Kukreti V, et al : Cyclophosphamide, bortezomib and dexamethasone induction for newly diagnosed multiple myeloma : high response rates in a phase II clinical trial. Leukemia 23 : 1337-1341, 2009.
6) Roussel M, Lauwers-Cances V, Robillard N, et al : Front-line transplantation program with lenalidomide, bortezomib, and dexamethasone combination as induction and consolidation followed by lenalidomide maintenance in patients with multiple myeloma : a phase II study by the Intergroupe Francophone du Myelome. J Clin Oncol 32 : 2712-2717, 2014.
7) Cavo M, Tacchetti P, Patriarca F, et al : Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma : a randomised phase 3 study. Lancet 376 : 2075-2085, 2010.
8) Moreau P, Hulin C, Macro M, et al : VTD is superior to VCD prior to intensive therapy in multiple myeloma : results of the prospective IFM2013-04 trial. Blood 127 : 2569-2574, 2016.
9) Attal M, Harousseau JL, Stoppa AM, et al : A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 335 : 91-97, 1996.
10) Attal M, Lauwers-Cances V, Hulin C, et al : Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma. N Engl J Med 376 : 1311-1320, 2017.
11) Palumbo A, Cavallo F, Gay F, et al : Autologous transplantation and maintenance therapy in multiple myeloma. N Engl J Med 371 : 895-905, 2014.
12) Gay F, Oliva S, Petrucci MT, et al : Chemotherapy plus lenalidomide versus autologous transplantation, followed by lenalidomide plus prednisone versus lenalidomide maintenance, in patients with multiple myeloma : a randomised, multicentre, phase 3 trial. Lancet Oncol 16 : 1617-1629, 2015.
13) Cavo M, Gay F, Beksac M, et al : Autologous haematopoietic stem-cell transplantation versus bortezomib-melphalan-prednisone, with or without bortezomib-lenalidomide-dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95) : a multicentre, randomised, open-label, phase 3 study. Lancet Haematol 7 : e456-e468, 2020.
14) Auner HW, Szydlo R, Hoek J, et al : Trends in autologous hematopoietic cell transplantation for multiple myeloma in Europe : increased use and improved outcomes in elderly patients in recent years. Bone Marrow Transplant 50 : 209-215, 2015.
15) Ozaki S, Harada T, Saitoh T, et al : Survival of multiple myeloma patients aged 65-70 years in the era of novel agents and autologous stem cell transplantation. A multicenter retrospective collaborative study of the Japanese Society of Myeloma and the European Myeloma Network. Acta Haematol 132 : 211-219, 2014.
16) Mizuno S, Kawamura K, Hanamura I, et al : Efficacy and safety of autologous stem cell transplantation in patients aged > 65 years with multiple myeloma in the era of novel agents. Bone Marrow Transplant 54 : 1595-1604, 2019.
17) Facon T, Mary JY, Hulin C, et al : Melphalan and prednisone plus thalidomide versus melphalan and prednisone alone or reduced-intensity autologous stem cell transplantation in elderly patients with multiple myeloma (IFM 99-06) : a randomised trial. Lancet 370 : 1209-1218, 2007.
18) Sonneveld P, Dimopoulos MA, Beksac M, et al : Consolidation and Maintenance in Newly Diagnosed Multiple Myeloma. J Clin Oncol 39 : 3613-3622, 2021.
19) Stadtmauer EA, Pasquini MC, Blackwell B, et al : Autologous Transplantation, Consolidation, and Maintenance Therapy in Multiple Myeloma : Results of the BMT CTN 0702 Trial. J Clin Oncol 37 : 589-597, 2019.
20) Gagelmann N, Eikema DJ, Koster L, et al : Tandem Autologous Stem Cell Transplantation Improves Outcomes in Newly Diagnosed Multiple Myeloma with Extramedullary Disease and High-Risk Cytogenetics : A Study from the Chronic Malignancies Working Party of the European Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 25 : 2134-2142, 2019.
21) McCarthy PL, Holstein SA, Petrucci MT, et al : Lenalidomide Maintenance After Autologous Stem-Cell Transplantation in Newly Diagnosed Multiple Myeloma : A Meta-Analysis. J Clin Oncol 35 : 3279-3289, 2017.
22) Jackson GH, Davies FE, Pawlyn C, et al : Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI) : a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 20 : 57-73, 2019.
23) Diamond B, Korde N, Lesokhin AM, et al : Dynamics of minimal residual disease in patients with multiple myeloma on continuous lenalidomide maintenance : a single-arm, single-centre, phase 2 trial. Lancet Haematol 8 : e422-e432, 2021.
24) Pawlyn C, Menzies T, Davies FE, et al : Defining the Optimal Duration of Lenalidomide Maintenance after Autologous Stem Cell Transplant-Data from the Myeloma XI Trial. Blood 140 (Supple 1) : 1371-1372, 2022.
25) Silvernoinen RH, Waage A, Peceliunas V, et al : A Prospective Phase 2 Study to Assess Minimal Residual Disease after Ixazomib, Lenalidomide and Dexamethasone Treatment for Newly Diagnosed Transplant Eligible Multiple Myeloma Patients. Blood 136 (Suppl 1) : 40-41, Abstract No. 144, 2020.
26) Nooka AK, Kaufman JL, Muppidi S, et al : Consolidation and maintenance therapy with lenalidomide, bortezomib and dexamethasone (RVD) in high-risk myeloma patients. Leukemia 28 : 690-693, 2014.
27) Kaiser MF, Hall A, Smith I, et al : Extended Intensified Post-ASCT Consolidation with Daratumumab, Bortezomib, Lenalidomide and Dexamethasone (Dara-VRd) for Ultra-High Risk (UHiR) Newly Diagnosed Myeloma (NDMM) and Primary Plasma Cell Leukemia (pPCL) : The UK Optimum/Muknine Trial. Blood 140 (Suppl 1) : 1833-1835, 2022.
28) Costa LJ, Chhabra S, Medvedova E, et al : Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone With Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J Clin Oncol 40 : 2901-2912, 2022
29) Voorhees PM, Kaufman JL, Laubach J, et al : Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma : the GRIFFIN trial. Blood 136 : 936-945, 2020.
30) Moreau P, Attal M, Hulin C, et al : Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA) : a randomised, open-label, phase 3 study. Lancet 394 : 29-38, 2019.
31) San Miguel JF, Schlag R, Khuageva NK, et al : Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 359 : 906-917, 2008.
32) Benboubker L, Dimopoulos MA, Dispenzieri A, et al : Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N Engl J Med 371 : 906-917, 2014.
33) Mateos MV, Cavo M, Blade J, et al : Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE) : a randomised, open-label, phase 3 trial. Lancet 395 : 132-141, 2020.
34) Facon T, Kumar SK, Plesner T, et al : Daratumumab, lenalidomide, and dexamethasone versus lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA) : overall survival results from a randomised, open-label, phase 3 trial. Lancet Oncol 22 : 1582-1596, 2021.
35) San-Miguel JF, Avet-Loiseau H, Paiva B, et al : Sustained Minimal Residual Disease (MRD) Negativity and Clinical Efficacy in Transplant-Ineligible (TIE) Newly Diagnosed Multiple Myeloma (NDMM) Patients (Pts) Treated with Daratumumab-Based Regimens : Analysis of Maia and Alcyone. Blood 136 (Suppl1) : 24-26, Abstract No. 2317, 2020.
36) Bringhen S, D'Agostino M, Giuliani N, et al : Bortezomib-Melphalan-Prednisone (VMP) Vs. Lenalidomide-Dexamethasone (Rd) in Transplant-Ineligible Real-Life Multiple Myeloma Patients : Updated Results of the Randomized Phase IV Real MM Trial. Blood 140 (Supple 1) : 1814-1816, 2022
37) Durie BGM, Hoering A, Sexton R, et al : Longer term follow-up of the randomized phase III trial SWOG S0777 : bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood Cancer J 10 : 53, 2020.
38) O'Donnell EK, Laubach JP, Yee AJ, et al : A phase 2 study of modified lenalidomide, bortezomib and dexamethasone in transplant-ineligible multiple myeloma. Br J Haematol 182 : 222-230, 2018.
39) Facon T, Venner CP, Bahlis NJ, et al : Oral ixazomib, lenalidomide, and dexamethasone for transplant-ineligible patients with newly diagnosed multiple myeloma. Blood 137 : 3616-3628, 2021.
40) Jakubowiak AJ, Kumar S, Medhekar R, et al : Daratumumab Improves Depth of Response and Progression-free Survival in Transplant-ineligible, High-risk, Newly Diagnosed Multiple Myeloma. Oncologist 27 : e589-596, 2022.
P.606 掲載の参考文献
1) de Arriba de la Fuente F, Montes Gaisan C, de la Rubia Comos J : How to Manage Patients with Lenalidomide-Refractory Multiple Myeloma. Cancers (Basel) 15 : 155, 2022.
2) Kastritis E, Terpos E, Dimopoulos MA : How I treat relapsed multiple myeloma. Blood 139 : 2904-2917, 2022.
3) Richardson PG, Sonneveld P, Schuster MW, et al : Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352 : 2487-2498, 2005.
4) Garderet L, Iacobelli S, Moreau P, et al : Superiority of the triple combination of bortezomib-thalidomide-dexamethasone over the dual combination of thalidomide-dexamethasone in patients with multiple myeloma progressing or relapsing after autologous transplantation : the MMVAR/IFM 2005-04 Randomized Phase III Trial from the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol 30 : 2475-2482, 2012.
5) Stewart AK, Rajkumar SV, Dimopoulos MA, et al : Carfilzomib, lenalidomide, and dexamethasone for relapsed multiple myeloma. N Engl J Med 372 : 142-152, 2015.
6) Dimopoulos MA, Moreau P, Palumbo A, et al : Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR) : a randomised, phase 3, open-label, multicentre study. Lancet Oncol 17 : 27-38, 2016.
7) Moreau P, Mateos MV, Berenson JR, et al : Once weekly versus twice weekly carfilzomib dosing in patients with relapsed and refractory multiple myeloma (A.R.R.O.W.) : interim analysis results of a randomised, phase 3 study. Lancet Oncol 19 : 953-964, 2018.
8) Moreau P, Masszi T, Grzasko N, et al : Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med 374 : 1621-1634, 2016.
9) Dimopoulos M, Spencer A, Attal M, et al : Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357 : 2123-2132, 2007.
10) Miguel JS, Weisel K, Moreau P, et al : Pomalidomide plus low-dose dexamethasone versus high-dose dexamethasone alone for patients with relapsed and refractory multiple myeloma (MM-003) : a randomised, open-label, phase 3 trial. Lancet Oncol 14 : 1055-1066, 2013.
11) Richardson PG, Oriol A, Beksac M, et al : Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM) : a randomised, open-label, phase 3 trial. Lancet Oncol 20 : 781-794, 2019.
12) Baz RC, Martin TG, 3rd, Lin HY, et al : Randomized multicenter phase 2 study of pomalidomide, cyclophosphamide, and dexamethasone in relapsed refractory myeloma. Blood 127 : 2561-2568, 2016.
13) Dimopoulos MA, Oriol A, Nahi H, et al : Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N Engl J Med 375 : 1319-1331, 2016.
14) Palumbo A, Chanan-Khan A, Weisel K, et al : Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N Engl J Med 375 : 754-766, 2016.
15) Dimopoulos M, Quach H, Mateos MV, et al : Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR) : results from a randomised, multicentre, open-label, phase 3 study. Lancet 396 : 186-197, 2020.
16) Dimopoulos MA, Terpos E, Boccadoro M, et al : Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO) : an open-label, randomised, phase 3 trial. Lancet Oncol 22 : 801-812, 2021.
17) Moreau P, Dimopoulos MA, Mikhael J, et al : Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA) : a multicentre, open-label, randomised phase 3 trial. Lancet 397 : 2361-2371, 2021.
18) Attal M, Richardson PG, Rajkumar SV, et al : Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM) : a randomised, multicentre, open-label, phase 3 study. Lancet 394 : 2096-2107, 2019.
19) Dimopoulos M, Bringhen S, Anttila P, et al : Isatuximab as monotherapy and combined with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood 137 : 1154-1165, 2021.
20) Sunami K, Suzuki K, Ri M, et al : Isatuximab monotherapy in relapsed/refractory multiple myeloma : A Japanese, multicenter, phase 1/2, safety and efficacy study. Cancer Sci 111 : 4526-4539, 2020.
21) Lonial S, Dimopoulos M, Palumbo A, et al : Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N Engl J Med 373 : 621-631, 2015.
22) Dimopoulos MA, Dytfeld D, Grosicki S, et al : Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N Engl J Med 379 : 1811-1822, 2018.
23) San-Miguel JF, Hungria VT, Yoon SS, et al : Panobinostat plus bortezomib and dexamethasone versus placebo plus bortezomib and dexamethasone in patients with relapsed or relapsed and refractory multiple myeloma : a multicentre, randomised, double-blind phase 3 trial. Lancet Oncol 15 : 1195-1206, 2014.
24) Kumar S, Paiva B, Anderson KC, et al : International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol 17 : e328-e346, 2016.
25) Sonneveld P : Management of multiple myeloma in the relapsed/refractory patient. Hematology Am Soc Hematol Educ Program 2017 : 508-517, 2017.
26) Rajkumar SV, Harousseau JL, Durie B, et al : Consensus recommendations for the uniform reporting of clinical trials : report of the International Myeloma Workshop Consensus Panel 1. Blood 117 : 4691-4695, 2011.
27) Abdallah N, Greipp P, Kapoor P, et al : Clinical characteristics and treatment outcomes of newly diagnosed multiple myeloma with chromosome 1q abnormalities. Blood Adv 4 : 3509-3519, 2020.
28) Mohan M, Weinhold N, Schinke C, et al : Daratumumab in high-risk relapsed/refractory multiple myeloma patients : adverse effect of chromosome 1q21 gain/amplification and GEP70 status on outcome. Br J Haematol 189 : 67-71, 2020.
29) Harrison SJ, Perrot A, Alegre A, et al : Subgroup analysis of ICARIA-MM study in relapsed/refractory multiple myeloma patients with high-risk cytogenetics. Br J Haematol 194 : 120-131, 2021.
30) Munshi NC, Avet-Loiseau H, Anderson KC, et al : A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv 4 : 5988-5999, 2020.
31) Costa L J, Chhabra S, Medvedova E, et al : Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone With Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J Clin Oncol 40 : 2901-2912, 2022.
32) Ferrero S, Ladetto M, Drandi D, et al : Long-term results of the GIMEMA VEL-03-096 trial in MM patients receiving VTD consolidation after ASCT : MRD kinetics' impact on survival. Leukemia 29 : 689-695, 2015.
33) Oliva S, Gambella M, Gilestro M, et al : Minimal residual disease after transplantation or lenalidomide-based consolidation in myeloma patients : a prospective analysis. Oncotarget 8 : 5924-5935, 2017.
34) Keats JJ, Chesi M, Egan JB, et al : Clonal competition with alternating dominance in multiple myeloma. Blood 120 : 1067-1076, 2012.
35) Rasche L, Chavan SS, Stephens OW, et al : Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun 8 : 268, 2017.
36) Jourdan M, Cren M, Schafer P, et al : Differential effects of lenalidomide during plasma cell differentiation. Oncotarget 7 : 28096-28111, 2016.
37) Chaidos A, Barnes CP, Cowan G, et al : Clinical drug resistance linked to interconvertible phenotypic and functional states of tumor-propagating cells in multiple myeloma. Blood 121 : 318-328, 2013.
38) Gonsalves WI, Buadi FK, Ailawadhi S, et al : Utilization of hematopoietic stem cell transplantation for the treatment of multiple myeloma : a Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus statement. Bone Marrow Transplant 54 : 353-367, 2019.
39) Mateos MV, Weisel K, De Stefano V, et al : LocoMMotion : a prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 36 : 1371-1376, 2022.
40) Minakata D, Fujiwara SI, Yokoyama D, et al : Relapsed and refractory multiple myeloma : A systematic review and network meta-analysis of the efficacy of novel therapies. Br J Haematol 200 : 694-703, 2023.
41) Kastritis E, Roussou M, Gavriatopoulou M, et al : Impact of last lenalidomide dose, duration, and IMiD-free interval in patients with myeloma treated with pomalidomide/dexamethasone. Blood Adv 3 : 4095-4103, 2019.
42) Qian X, Dimopoulos MA, Amatangelo M, et al : Cereblon gene expression and correlation with clinical outcomes in patients with relapsed/refractory multiple myeloma treated with pomalidomide : an analysis of STRATUS. Leuk Lymphoma 60 : 462-470, 2019.
43) Ma J, Wu K, Bai W, et al : Synergistic Cytotoxicity of Lenalidomide and Dexamethasone in Mantle Cell Lymphoma via Cereblon-dependent Targeting of the IL-6/STAT3/PI3K Axis. EBio-Medicine 20 : 70-78, 2017.
44) Hideshima T, Cottini F, Nozawa Y, et al : p53-related protein kinase confers poor prognosis and represents a novel therapeutic target in multiple myeloma. Blood 129 : 1308-1319, 2017.
45) Yamamoto J, Suwa T, Murase Y, et al : ARID2 is a pomalidomide-dependent CRL4 (CRBN) substrate in multiple myeloma cells. Nat Chem Biol 16 : 1208-1217, 2020.
46) Dechow T, Aldaoud A, Behlendorf T, et al : Pomalidomide plus dexamethasone for patients with relapsed or refractory multiple myeloma : Final results of the non-interventional study POSEIDON and comparison with the pivotal phase 3 clinical trials. Eur J Haematol 108 : 133-144, 2022.
47) Siegel DS, Schiller GJ, Samaras C, et al : Pomalidomide, dexamethasone, and daratumumab in relapsed refractory multiple myeloma after lenalidomide treatment. Leukemia 34 : 3286-3297, 2020.
48) Ghose J, Viola D, Terrazas C, et al : Daratumumab induces CD38 internalization and impairs myeloma cell adhesion. Oncoimmunology 7 : e1486948, 2018.
49) Krejcik J, Frerichs KA, Nijhof IS, et al : Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clin Cancer Res 23 : 7498-7511, 2017.
50) Nijhof IS, Casneuf T, van Velzen J, et al : CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood 128 : 959-970, 2016.
51) Mikhael J, Belhadj-Merzoug K, Hulin C, et al : A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab. Blood Cancer J 11 : 89, 2021.
52) van de Donk N, Richardson PG, Malavasi F : CD38 antibodies in multiple myeloma : back to the future. Blood 131 : 13-29, 2018.
53) Oberle A, Brandt A, Alawi M, et al : Long-term CD38 saturation by daratumumab interferes with diagnostic myeloma cell detection. Haematologica 102 : e368-e370, 2017.
P.615 掲載の参考文献
1) Facon T, Kumar S, Plesner T, et al : Daratumumab, lenalidomide and dexamethasone alone in newly diagnosed multiple myeloma (MAIA) : overall survival results from a randomized, open-label, phase 3 trial. Lancet Oncol 22 : 1582-1596, 2021.
2) Mateos MV, Cavo M, Blade J, et al : Overall survival with daratumumab, bortezomib, melphalan, and predonisone in newly diagnosed multiple myeloma (ALCYONE) : a randomized, open-label, phase 3 trial. Lancet 395 : 132-141, 2020.
3) Bahlis NJ, Dimopoulos MA, White DJ, et al : Daratumumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma : extended follow-up of POLLUX, a randomized, open-label, phase 3 study. Leukemia 34 : 1875-1884, 2020.
5) Usmani SZ, Quach H, Mateos MV, et al : Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR) : updated outcomes from a randomized, multicenter open-label, phase 3 study. Lancet Oncol 23 : 65-76, 2021.
6) Dimopoulos MA, Terpos E, Boccadoro M, et al : Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO) : an open-label, randomized, phase 3 trial. Lancet Oncol 22 : 801-812, 2021.
8) Moreau P, Dimopoulos MA, Mikhael J, et al : Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA) : a multicenter, open-label, randomized phase 3 trial. Lancet 397 : 2361-2371, 2021.
9) Dimopoulos MA, Lonial S, Betts KA, et al : Elotuzumab plus lenalidomide and dexamethasone in relapsed/refractory multiple myeloma : extended 4-year follow-up and analysis of relative progression-free survival from the randomized ELOQUENT-2 trial. Cancer 124 : 4032-4043, 2018.
10) Dimopoulos MA, Dytfeld D, Grosicki S, et al : Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N Engl J Med 379 : 1811-1822, 2018.
13) Harrison SJ, Minnema MC, Lee HC, et al : A phase 1 first in human (FIH) study of AMG701, an anti-B-cell maturation antigen (BCMA) half-life extended (HLE) BiTE (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood 136 (suppl 1) : 181, 2020.
14) Jakubowiak AJ, Bahlis NJ, Raje NS, et al : Elranatamab, a BCMA-targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma : updated results from MagnetisMM-1. J Clin Oncol 40 (suppl 16) : 8014, 2022.
16) Trudel S, Cohen AD, Krishnan AY, et al : Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma (RRMM) : Updated results from an ongoing phase I study. Blood 138 (suppl 1) : 157, 2021.
17) Chari A, Minnema MC, Berdeja JG, et al : Talquetamab, a T-cell-redirecting GPRC5D bispecific antibody for multiple myeloma. N Engl J Med 387 : 2232-2244, 2022.
18) Munshi NC, Anderson LDJ, Shah N, et al : Ide-cabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med 384 : 705-716, 2021.
19) Berdeja JG, Madduri D, Usmani SZ, et al : Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1) : a phase 1b/2 open-label study. Lancet 398 : 314-324, 2021.
20) Cipkar C, Chen C, and Trudel S : Antibodies and bispecifics for multiple myeloma : effective effector therapy. Hematology Am Soc Hematol Educ Program 2022 : 163-172, 2022.
21) Rodriguez-Otero P, San-Miguel JF : Cellular therapy for multiple myeloma : what's now and what's next. Hematology Am Soc Hematol Educ Program 2022 : 180-189, 2022.
P.621 掲載の参考文献
1) Manier S, Salem KZ, Park J, et al : Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol 14 : 100-113, 2017.
2) Mimura N, Hideshima T, Anderson KC : Novel therapeutic strategies for multiple myeloma. Exp Hematol 43 : 732-741, 2015.
3) Hetz C, Zhang K, Kaufman RJ : Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21 : 421-438, 2020.
4) Mimura N, Fulciniti M, Gorgun G, et al : Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119 : 5772-5781, 2012.
5) Hideshima T, Mitsiades C, Tonon G, et al : Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7 : 585-598, 2007.
6) Mimura N, Hideshima T, Shimomura T, et al : Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res 74 : 4458-4469, 2014.
7) Minnie SA, Hill GR : Immunotherapy of multiple myeloma. J Clin Invest 130 : 565-575, 2020.
8) Krejcik J, Casneuf T, Nijhof IS, et al : Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood 128 : 384-394, 2016.
9) Cao R, Wang L, Wang H, et al : Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298 : 1039-1043, 2002.
10) Agger K, Cloos PAC, Christensen J, et al : UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449 : 731-734, 2007.
11) Kalushkova A, Fryknas M, Lemaire M, et al : Polycomb target genes are silenced in multiple myeloma. PloS one 5 : e11483, 2010.
12) van Haaften G, Dalgliesh GL, Davies H, et al : Somatic mutations of the histone H3K27 demethylase gene UTX in human cancer. Nat Genet 41 : 521-523, 2009.
13) Rizq O, Mimura N, Oshima M, et al : Dual Inhibition of EZH2 and EZH1 Sensitizes PRC2-Dependent Tumors to Proteasome Inhibition. Clin Cancer Res 23 : 4817-4830. 2017.
14) Rizk M, Rizq O, Oshima M, et al : Akt inhibition synergizes with polycomb repressive complex 2 inhibition in the treatment of multiple myeloma. Cancer Sci 110 : 3695-3707, 2019.
15) Cao L, Bombard J, Cintron K, et al : BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 112 : 2729-2741, 2011.
16) De Vos J, Thykjaer T, Tarte K, et al : Comparison of gene expression profiling between malignant and normal plasma cells with oligonucleotide arrays. Oncogene 21 : 6848-6857, 2002.
17) Nagai Y, Mimura N, Rizq O, et al : The combination of the tubulin binding small molecule PTC596 and proteasome inhibitors suppresses the growth of myeloma cells. Sci Rep 11 : 2074, 2021.
18) Eberle-Singh JA, Sagalovskiy I, Maurer HC, et al : Effective delivery of a microtubule polymerization inhibitor synergizes with standard regimens in models of pancreatic ductal adenocarcinoma. Clin Cancer Res 25 : 5548-5560, 2019.
19) Rizq O, Mimura N, Oshima M, et al : Utx Insufficiency Cooperates with Braf V600E in the Induction of Myeloma in Mice. Blood 132 (Suppl 1) : 1005, 2018.
20) Rizq O, Mimura N, Oshima M, et al : Cooperative impact of Utx loss and Braf V600E mutation induces myeloma in mice. Clin Lymphoma Myeloma Leuk 19 : e20-e21, 2019.
21) Shibamiya A, Mimura N, Miyamoto-Nagai Y, et al : Exhausted T Cells Characterized By Upregulation of Specific Transcription Factors Are Increased in a Mouse Model of De Novo Mature B Cell Neoplasms. Blood 140 (Suppl 1) : 4240-4241, 2022.

【Diagnosis】

P.629 掲載の参考文献
1) 西尾善彦 : HbA1c, GA, 1,5-AG. 日本臨床 7 : 366-369, 2016.
2) 日高宏哉 : HbA1cの測定. 臨床検査法提要 第32版, 金井正光 (監), pp.519-523, 金原出版, 東京, 2005.
3) (RE) ノルディアN HbA1c, 添付文書. 積水メディカル株式会社, 2022年7月作成
4) 日本糖尿病学会 : 桑克彦, 岡橋美貴子, 佐藤麻子, 他 : 遠心処理後に測定するHbA1c測定法での採血管の取扱い (EDTA入り採血管の推奨) について. 糖尿病 64 (5) : 336-339, 2021.
5) 西田亙, 八木一夫, 大澤春彦 : ヘモグロビンA1c (HbA1c). 臨床検査ガイド 2020年改訂版, 大西宏明 (監), pp.272-275, 文光堂, 東京, 2020.

【総説】

P.633 掲載の参考文献
1) Mei Zhang, Julian A Kim, Alex Yee-Chen Huang : Optimizing Tumor Microenvironment for Cancer Immunotherapy : β-Glucan-Based Nanoparticles. Front Immunol 9 : 341, 2018. doi : 10.3389/fimmu.2018.00341
2) Koji Kawata, Atsushi Iwai, Daisuke Muramatsu, et al : Stimulation of Macrophages with the β-Glucan Produced by Aureobasidium pullulans Promotes the Secretion of Tumor Necrosis Factor-Related Apoptosis Inducing Ligand (TRAIL). PLoS One 10 (4) : e0124809, 2015. doi : 10.1371/journal.pone.0124809
3) Xin Hu, Yifang Shui, Kisato Kusano, et al : PD-L1 antibody enhanced βglucan antitumor effects via blockade of the immune checpoints in a melanoma model. Cancer Immunology Immunotherapy 72 (3) : 719-731, 2023.
4) Lydia Kalafati, Ioannis Kourtzelis, Jonas Schulte-Schrepping, et al : Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity, Cell 183 (3) : 771-785.e12, 2020. doi : 10.1016/j.cell.2020.09.058.
5) Anne Geller, Jun Yan : Could the Induction of Trained Immunity byβ-Glucan Serve as a Defense Against COVID-19? Front Immunol 11 : 1782, 2020. doi : 10.3389/fimmu.2020.01782
6) Alfredo Cordova-Martinez, Alberto Caballero-Garcia, Enrique Roche, et al : β-Glucans Could Be Adjuvants for SARS-CoV-2 Virus Vaccines (COVID-19). Int J Environ Res Public Health 18 (23) : 12636, 2021. doi : 10.3390/ijerph182312636
7) Simon Paris, Ludivine Chapat, Nathalie Martin-Cagnon, et al : β-Glucan as Trained Immunity-Based Adjuvants for Rabies Vaccines in Dogs. Front Immunol 11 : 564497, 2020. doi : 10.3389/fimmu. 2020.564497
8) Kosagi-Sharaf Rao, Vaddi Suryaprakash, Rajappa Senthilkumar, et al : Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements. Front Immunol 11 : 1548, 2020. doi : 10.3389/fimmu.2020.01548
9) Pablo Mata-Martinez, Marta Bergon-Gutierrez, Carlos Del Fresno : Dectin-1 Signaling Update : New Perspectives for Trained Immunity. Front Immunol 13 : 812148, 2022. doi : 10.3389/fimmu.2022.812148. eCollection 2022
10) Iwona Mironczuk-Chodakowska, Karolina Kujawowicz, Anna Maria Witkowska : Beta-Glucans from Fungi : Biological and Health-Promoting Potential in the COVID-19 Pandemic Era. Nutrients 13 (11) : 3960, 2021. doi : 10.3390/nu13113960
11) Daisuke Muramatsu, Atsushi Iwai, Shiho Aoki, et al : β-Glucan Derived from Aureobasidium pullulans Is Effective for the Prevention of Influenza in Mice. PLoS One. 7 (7) : e41399, 2012. doi : 10.1371/journal.pone.0041399

【Cosmetic】

P.641 掲載の参考文献
1) Tanioka M, Yamada M, Doi Y, et al : Molecular Clocks in Mouse Skin. J Invest Dermatol 129 (5) : 1225-1231, 2009.
2) Yosipovitch G, Xiong L, Haus E, Sackett-Lundeen L, et al : Time-Dependent Variations of the Skin Barrier Function in Humans : Transepidermal Water Loss, Stratum Corneum Hydration, Skin Surface pH, and Skin Temperature. J Invest Dermatol 110 : 20-23, 1998.
3) Le Fur I, Reinberg A, Lopez S, et al : Analysis of Circadian and Ultradian Rhythms of Skin Surface Properties of Face and Forearm of Healthy Women. J Invest Dermatol 117 : 718-724, 2001.
4) P Oyetakin-White P, Suggs A, Koo B, et al : Does poor sleep quality affect skin ageing?. Clin Exp Dermatol 40 : 17-22, 2015.
5) Yoshizaki T, Kimura Y, Mano H, et al : Association between Skin Condition and Sleep Efficiency in Japanese Young Adults. J Nutr Sci Vitaminol 63 : 15-20, 2017.
6) Imokawa G, Hattori M : A Possible Function of Structural Lipids in the Water-Holding Properties of the Stratum Corneum. J Invest Dermatol 84 : 282-284, 1985.
7) 石川正, 大及進 : 口唇形状の検討-面積測定による評価-. 昭医会 56 (5) : 107-113, 2018.
8) 高橋元次 : 肌の状態を調べ, 効能を評価するために非侵襲的皮膚計測技術. J Soc Cosmet Chem Jpn 51 (2) : 105-116, 2017.
9) 岩井秀隆 : 化粧品におけるスキンケア製剤の役割. オレオサイエンス 1 (3) : 27-35, 2001.
10) Kawai M, Imokawa G : The induction of skin tightness by surfactants. J Soc Cosmet Chem 35 : 147-156, 1984
11) Takahashi M, Machida Y : The influence of hydroxy acids on the rheological properties of stratum corneum. J Soc Cosmet Chem 36 : 177-187, 1985.
12) 浅野新, 尾股定夫, 鈴木正 : 硬さ測定用センサによる皮膚の力学的特性の計測. J Soc Cosmet Chem Jpn 28 (4) : 336-343, 1995.

最近チェックした商品履歴

Loading...