医学と薬学 80/7 2023年7月号

出版社: 自然科学社
発行日: 2023-06-27
分野: 薬学  >  雑誌
ISSN: 03893898
雑誌名:
特集: 新生児医療の最前線
電子書籍版: 2023-06-27 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

2,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

1,760 円(税込)

目次

  • 特集 新生児医療の最前線

    序文
    早産児の長期予後
    新生児の呼吸管理
    先天性サイトメガロウイルス感染症診療の最前線
    新生児の栄養
    新生児低酸素性虚血性脳症
    早産児の循環管理

    Health Care
     各種ウイルス(SARS-CoV-2・A 型インフルエンザウイルス)に対する
      ベンザルコニウム塩化物含有エタノール液の有効性評価
    「FMT整体」が自律神経系,血流,筋機能,心身の緊張緩和に与える影響

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

【特集 新生児医療の最前線】

P.668 掲載の参考文献
1) e-Stat政府統計の総合窓口, 人口動態統計. https://www.e-stat.go.jp/dbview?sid=0003411613 (2023年4月11日アクセス)
2) Miyazawa T, Arahori H, Ohnishi S, et al : Mortality and morbidity of extremely low birth weight infants in Japan, 2015. Pediatr Int 65 : e15493, 2023.
3) Ishii N, Kono Y, Yonemoto N, et al : Outcomes of infants born at 22 and 23 weeks' gestation. Pediatrics 132 : 62-71, 2013.
4) Kono Y, Yonemoto N, Nakanishi H, et al : Changes in survival and neurodevelopmental outcomes of infants born at < 25 weeks' gestation : a retrospective observational study in tertiary centres in Japan. BMJ Paediatr Open 2 : e000211, 2018.
5) 日本小児科学会新生児委員会新生児医療調査小委員会 : わが国の主要医療施設におけるハイリスク新生児医療の現状と新生児死亡率. 日児誌 100 : 1931-1938, 1996.
6) 上谷良行, 藤村正哲 : 2005年出生の超低出生体重児6歳児予後の全国調査集計結果. 厚生労働科研費補助金「重症新生児のアウトカム改善に関する多施設共同研究」平成24年度総括・分担研究報告書, 2013.
7) Kusuda S, Fujimura M, Sakuma I, et al : Morbidity and mortality of infants with very low birth weight in Japan : center variation. Pediatrics 118 : e1130-1138, 2006.
8) 周産期母子医療センターネットワークデータベース解析報告. http://plaza.umin.ac.jp/nrndata/index.htm (2023年4月11日アクセス)
9) ハイリスク児フォローアップ研究会 健診スケジュール. https://highrisk-followup.jp/schedule/ (2023年4月11日アクセス)
10) 河野由美 : NICU退院児のフォローアップ : 発達のフォローアップ. 日本新生児成育医学会雑誌 34 : 123-128, 2022.
11) Johnson S, Marlow N : Preterm birth and childhood psychiatric disorders. Pediatr Res 9 : 11R-18R, 2011.
12) Burnett AC, Youssef G, Anderson PJ, et al : Exploring the "preterm behavioral phenotype" in children born extremely preterm. J Dev Behav Pediatr 40 : 200-207, 2019.
13) Vinther JL, Ekstrom CT, Sorensen TIA, et al : Gestational age and trajectories of body mass index and height from birth through adolescence in the Danish National Birth Cohort. Sci Rep 13 : 3298, 2023.
14) Eriksson J G, Forsen TJ, Kajantie E, et al : Childhood growth and hypertension in later life. Hypertension 49 : 1415-1421, 2007.
15) Sugihara S, Sasaki N, Amemiya S, et al : Analysis of weight at birth and at diagnosis of childhood-onset type 2 diabetes mellitus in Japan. Pediatr Diabetes 9 (4 Pt 1) : 285-290, 2008.
16) Gluckman PD, Hanson MA, Cooper C, et al : Effect of in utero and early-life conditions on adult health and disease. N Engl J Med 359 : 61-73, 2008.
17) 河野由美 : シンポジウム 5 超低出生体重児の思春期以降のフォローアップ. 日本周産期・新生児医学会雑誌 58 : 737-740, 2023.
P.679 掲載の参考文献
1) Gregory GA, Kitterman JA, Phibbs RH, et al : Treatment of the idiopathic respiratory-distress syndrome with continuous positive airway pressure. N Engl J Med 284 : 1333-1340, 1971.
2) 長谷川久弥 : 新生児の人工呼吸療法. 小児科診療 67 : 2167-2175, 2004.
3) Avery ME, Tooly WH, Keller JB, et al : Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Peadiatrics 79 : 26-30, 1987.
4) Dysart K, Miller TL, Wolfson MR, et al : Research in high flow therapy : mechanisms of action. Respir Med 103 : 1400-1405, 2009.
5) Bryan AC : High frequency oscillation. 周産期医学 15 : 1343-1349, 1985.
6) 堺武男 : 高頻度振動換気法. 小児内科 29 : 435-442, 1997.
7) 長谷川久弥 : 新生児の呼吸機能. 未熟児新生児誌 5 : 41-58, 1993.
8) 長谷川久弥 : 新生児呼吸機能検査の臨床応用. 東京女子医科大学学会雑誌 81 : 165-170, 2011.
9) LeSouef PN, Lopes JM, England SJ, et al : Passive respiratory mechanicsin newborns and children. Am Rev Respir Dis 129 : 552-556, 1984.
10) 長谷川久弥 : 新生児気道病変の管理. 日本未熟児新生児学会雑誌 18 : 29-37, 2006.
11) 長谷川久弥 (編) : 新生児呼吸管理ハンドブック, 東京医学社, 東京, 2022.
P.687 掲載の参考文献
1) サイトメガロウイルス, トキソプラズマ等の母子感染の予防と診療に関する研究班ホームページ. http://cmvtoxo.umin.jp (2023年4月27日アクセス)
2) Koyano S, Inoue N, Oka A, et al : Screening for congenital cytomegalovirus infection using newborn urine samples collected on filter paper : feasibility and outcomes from a multicentre study. BMJ Open 1 : e000118, 2011.
3) Nagano N, Morioka I : Congenital cytomegalovirus infection : epidemiology, prediction, diagnosis, and emerging treatment options for symptomatic infants. Expert Opin Orphan Drugs 8 : 1-9, 2020.
4) Fujii T, Oka A, Morioka I, et al : Newborn con-genital cytomegalovirus screening based on clinical manifestations and evaluation of DNA-based assays for in vitro diagnostics. Pediatr Infect Dis J 36 : 942-946, 2017.
5) 日本小児科学会 予防接種・感染症対策委員会 : 先天性サイトメガロウイルス感染の確定診断のための生後3週間以内の新生児尿を用いたCMV核酸検査が保険適用になりました (修正版). https://www.jpeds.or.jp/uploads/files/CMV_Sindan_201912.pdf (アクセス2023年4月27日)
6) Kimberlin DW, Jester PM, Sanchez PJ, et al : Valganciclovir for symptomatic congenital cytomegalovirus disease. N Engl J Med 372 : 933-943, 2015.
7) Nishida K, Morioka I, Nakamachi Y, et al : Neurological outcomes in symptomatic congenital cytomegalovirus-infected infants after introduction of newborn urine screening and antiviral treatment. Brain Dev 38 : 209-216, 2016.
8) Ohyama S, Morioka I, Fukushima S, et al. Efficacy of valganciclovir treatment depends on the severity of hearing dysfunction in symptomatic infants with congenital cytomegalovirus infection. Int J Mol Sci 20 : 1388, 2019.
9) Fukushima S, Morioka I, Ohyama S, et al : Prediction of poor neurological development in patients with symptomatic congenital cytomegalovirus diseases after oral valganciclovir treatment. Brain Dev 41 : 743-750, 2019.
10) Morioka I, Kakei Y, Omori T, et al : Efficacy and safety of valganciclovir in patients with symptomatic congenital cytomegalovirus disease : Study Protocol Clinical Trial (SPIRIT Compliant). Medicine 99 : e19765, 2020.
11) Morioka I, Kakei Y, Omori T, et al : Oral valganciclovir therapy in infants aged < 2 months with congenital cytomegalovirus disease : A multicenter, single-arm, open-label clinical trial in Japan. J Clin Med 11 : 3582, 2022.
12) Rawlinson WD, Boppana SB, Fowler KB, et al : Congenital cytomegalovirus infection in pregnancy and the neonate : consensus recommendations for prevention, diagnosis, and therapy. Lancet Infect Dis 17 : e177-188, 2017.
13) Luck SE, Wieringa JW, Blazquez-Gamero D, et al : Congenital cytomegalovirus-a European expert consensus statement on diagnosis and management. Pediatr Infect Dis J 36 : 1205-1213, 2017.
14) Kimberlin DW, Lin CY, Sanchez PJ, et al : Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system : a randomized, controlled trial. J Pediatr 143 : 16-25, 2003.
15) Kimberlin DW, Acosta EP, Sanchez PJ, et al : Pharmacokinetic and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease. J Infect Dis 197 : 836-845, 2008.
16) バリキサ(R) 錠450 mg バリキサ(R) ドライシロップ 5,000 mg 添付文書 2023年3月改訂 (第3版) https://www.info.pmda.go.jp/go/pack/6250025F1026_1_19/ (2023年4月27日アクセス)
P.693 掲載の参考文献
1) 仁志田博司 (編) : 第15章 栄養・消化器系の基礎と臨床. 新生児学入門 第5版, p269, 医学書院, 東京, 2018.
2) 板橋家頭夫 : 栄養管理. 母子保健情報 62 : 62-69, 2010.
3) Schanler RJ, Schulman RJ, Lau C, et al : Feeding strategies for premature infants : randomized trial of gastrointestinal priming and tube-feeding method. Pediatrics 103 : 434-439, 1999.
4) Berger I : Energy expenditure for breast feeding and bottle feeding preterm infants. Pediatr 124 : e1149-e1152, 2009.
5) Galante L, Milan AM, Reynolds CM, et al : Sex-specific human milk composition : the role of infant sex in determining early life nutrition. Nutritents 10 : 1194, 2018.
6) Riskin A, Almog M, Peri R, et al : Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr Res 71 : 220-225, 2012.
7) Silfverdal SA, Ekholm L, Bodin L : Breastfeeding enhances the antibody response to Hib and Pneumococcal serotype 6B and 14 after vaccination with conjugate vaccines. Vaccine 25 : 1497-1502, 2007.
8) Hornell A, Lagstrom H, Lande B, et al : Breastfeeding, introduction of other foods and effects on health : a systematic literature review for the 5th Nordic nutrition recommendations. Food Nutr Res 57, 2013.
9) Davisse-Paturet C, Adel-Patient K, Divaret-Chauveau A, et al : Breastfeeding status and duration and infections, hospitalizations for infections, and antibiotic use in the first two years of life in the ELFE cohort. Nutrients 11 : 1607, 2019.
10) Lamberti LM, Zakarija-Grkovic I, Fischer CL, et al : Breastfeeding for reducing the risk of pneumonia morbidity and mortality in children under two : a systematic literature review and meta-analysis. BMC Public Health 13 (Supple 3) : S18, 2013.
11) Chantry CJ, Howard CR, Auinger P : Full breastfeeding duration and associated decrease in respiratory tract infection in US children. Pediatrics 117 : 425-432, 2006.
12) Nishimura T, Suzue J, Kaji H : Breastfeeding reduces the severity of respiratory synchytial virus infection among young infants. A multi-center prospective study. Pediatr Int 51 : 812-816, 2009.
13) Korvel-Hanquist A, Djurhuus BD, Homoe P : The effect of breastfeeding on childhood otitis media. Curr Allergy Asthma Rep 17 : 45, 2017.
14) Horta BL, Victora CG : Short-term effects of breastfeeding : a systematic review of the benefits of breastfeeding on diarrhea and pneumonia mor tality, World Health Organization, 2013. https://www.who.int/publications/i/item/9789241506120
15) Vennemann MM, Bajanowski T, Brinkmann B, et al : Does breastfeeding reduce the risk of sudden infant death syndrome? Pediatrics 123 : e406-410 2009.
16) Yorifuji T, Tsukahara H, Doi H : Breastfeeding and Risk of Kawasaki Disease : A Nationwide Longitudinal Survey in Japan. Pediatrics 137 : e20153919, 2016.
17) Greenop KR, Bailey HD, Miller M, et al : Breastfeeding and nutrition to 2 years of age and risk of childhood acute lymphoblastic leukemia and brain tumors. Nutr Cancer 67 : 431-441, 2015.
18) de Oliveira DM, Dahan P, Ferreira DF, et al : Association between exclusive maternal breastfeeding during the first 4 months of life and primary enuresis. J pediatr Urol 12 : 95.e1-6, 2016.
19) van den Hooven EH, Gharsalli M, Heppe DH, et al : Associations of breast-feeding patterns and introduction of solid foods with childhood bone mass : The Generation R Study. Br J Nutr 115 : 1024-1032, 2016.
20) Fewtrell MS : Does early nutrition program later bone health in preterm infants? Am J Clin Nutr 94 (suppl 6) : 1870S-1873S, 2011.
21) Wong PD, Anderson LN, Dai DDW, et al : The association of breastfeeding duration and early childhood cardiometabolic risk. J Pediatr 192 : 80-85.e1, 2018
22) Boucher O, Julvez J, Guxens M, et al : Association between breastfeeding duration and cognitive development, autistic traits and ADHD symptoms : a multicenter study in Spain. Pediatr Res 81 : 434-442, 2017.
23) Jedrychowski W, Perera F, Jankowski J, et al : Effect of exclusive breastfeeding on the devlopment of children's cognitive function in the Krakow prospective birth cohort study. Eur J Pediatr 171 : 151-158, 2012.
24) Oken E : Associations of maternal fish intake during pregnancy and breastfeedingduration with attaiment of develpmental milestones in early childhood : a study from the Danish National Birth Cohort. Am J Clin Nutr 88 : 789-796, 2008.
25) Whitehouse AJ, Robinson M, Li J, et al : Duration of breast feeding and language ability in middle childhood. Paediatr Pernat Epidemol 25 : 44-52, 2011.
26) Oddy WH, Scott JA, Graham KI, et al : Breastfeeding influences on growth and health at one year of age. Breastfeed Rev 14 : 15-23, 2006.
27) Rzehak P, Sausenthaler S, Koletzko S, et al : Period-specific growth, overweight and modification by breastfeeding in the GINI and LISA birth cohorts up to age 6 years. Eur J Epidemiol 24 : 449-467, 2009
28) Kalies H, Heinrich J, Borte N, et al : The effect of breastfeeding on weight gain in infants : result of a birth cohort study. Eur J Med Res 10 : 36-42, 2005.
29) De Kroon ML, Renders CM, Buskermolen MP, et al : The Terneuzen Birth Cohort. Longer exclusive breastfeeding duration is associated with leaner body mass and a healthier diet in young adulthood. BMC Pediatr 11 : 33, 2011.
30) Gubbles JS : Association of breast-feeding and growth in children until the age of 3 years : the Generation R Study. Br J Nutr 6 : e515-522, 2011.
P.703 掲載の参考文献
1) Touyama M, Touyama J, Toyokawa S, et al : Trends in the prevalence of cerebral palsy in children born between 1988 and 2007 in Okinawa, Japan. Brain Dev 38 : 792-799, 2016.
2) Adstamongkonkul D, Hess DC : Ischemic Conditioning and neonatal hypoxic ischemic encephalopathy : a literature review. Cond Med 1 : 9-16, 2017.
3) Hayakawa M, Ito Y, Saito S, et al : Incidence and prediction of outcome in hypoxic-ischemic encephalopathy in Japan. Pediar Int 56 : 215-221, 2014.
4) Greco P, Nencini G, Piva I, et al : Pathophysiology of hypoxic-ischemic encephalopathy : a review of the past and a view on the future. Acta Neurol Belg 120 : 277-288, 2020.
5) Hassell K J, Ezzati M, Alonso-Alconada D, et al : New horizons for newborn brain protection : enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed 100 : F541-552, 2015.
6) Edwards AD, Brocklehurst P, Gunn AJ, et al : Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy : synthesis and meta-analysis of trial data. Bmj 340 : c363, 2010.
7) Jacobs SE, Berg M, Hunt R, et al : Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst Rev 2013 : CD003311, 2013.
8) Faulkner S, Bainbridge A, Kato T, et al : Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in perinatal asphyxia. Ann Neurol 70 : 133-150, 2011.
9) Chakkarapani E, Dingley J, Liu X et al : Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 68 : 330-341, 2010.
10) Azzopardi D, Robertson NJ, Bainbridge A, et al : Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe) : a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol 15 : 145-153, 2016.
11) Broad KD, Fierens I, Fleiss B et al : Inhaled 45-50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis 87 : 29-38, 2016.
12) Aly H, Elmahdy H, El-Dib M, et al : Melatonin use for neuroprotection in perinatal asphyxia : a randomized controlled pilot study. J Perinatol 35 : 186-191, 2015.
13) Maiwald CA, Annink KV, Rudiger M, et al : Effect of allopurinol in addition to hypothermia treatment in neonates for hypoxic-ischemic brain injury on neurocognitive outcome (ALBINO) : study protocol of a blinded randomized placebo-controlled parallel group multicenter trial for superiority (phase III). BMC Pediatr 19 : 210, 2019.
14) Tagin M, Shah PS, Lee KS, et al : Magnesium for newborns with hypoxic-ischemic encephalopathy : a systematic review and meta-analysis. J Perinatol 33 : 663-669, 2013.
15) Filippi L, Fiorini P, Catarzi S, et al : Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI) : a feasibility study. J Matern Fetal Neonatal Med 31 : 973-980, 2018.
16) Sato Y, Tsuji M : Diverse actions of cord blood cell therapy for hypoxic-ischemic encephalopathy. Pediatr Int 63 : 497-503, 2021.
17) Woodbury D, Schwarz EJ, Prockop DJ, et al : Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61 : 364-370, 2000.
18) Sanchez-Ramos JR, Song S, Kamath SG, et al : Expression of neural markers in human umbilical cord blood. Exp Neurol 171 : 109-115, 2001.
19) Li Y, Chen J, Wang L, et al : Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56 : 1666-1672, 2001.
20) Chen J, Sanberg PR, Li Y, et al : Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32 : 2682-2688, 2001.
21) Nakanishi K, Sato Y, Mizutani Y, et al : Rat umbilical cord blood cells attenuate hypoxic-ischemic brain injury in neonatal rats. Sci Rep 7 : 44111, 2017.
22) Willing AE, Lixian J, Milliken M, et al : Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73 : 296-307, 2003.
23) van Velthoven CT, Kavelaars A, van Bel F, et al : Repeated mesenchymal stem cell treatment after neonatal hypoxia ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci 30 : 9603-9611, 2010.
24) Hattori T, Sato Y, Kondo T, et al : Administration of umbilical cord blood cells transiently decreased hypoxic-ischemic brain injury in neonatal rats. Dev Neurosci 37 : 95-104, 2015.
25) Tsuji M, Sawada M, Watabe S, et al : Autologous cord blood cell therapy for neonatal hypoxic-ischemic encephalopathy : a pilot study for feasibility and safety. Sci Rep 10 : 4603, 2020.
26) Sato Y, Ueda K, Kondo T, et al : Administration of Bone Marrow-Derived Mononuclear Cells Contributed to the Reduction of Hypoxic-Ischemic Brain Injury in Neonatal Rats. Front Neurol 9 : 987, 2018.
27) Sugiyama Y, Sato Y, Kitase Y, et al : Intravenous Administration of Bone Marrow-Derived Mesenchymal Stem Cell, but not Adipose Tissue-Derived Stem Cell, Ameliorated the Neonatal Hypoxic-Ischemic Brain Injury by Changing Cerebral Inflammatory State in Rat. Front Neurol 9 : 757, 2018.
28) Tanaka E, Ogawa Y, Mukai T, et al : Dose-Dependent Effect of Intravenous Administration of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Neonatal Stroke Mice. Front Neurol 9 : 133, 2018.
29) Kitase, Y, Sato Y, Ueda K, et al : A Novel Treatment with Stem Cells from Human Exfoliated Deciduous Teeth for Hypoxic-Ischemic Encephalopathy in Neonatal Rats. Stem Cells Dev 29 : 63-74, 2020.
P.710 掲載の参考文献
1) Rudolph AM : Perinatal and postnatal changes in the circulation. Congenital Diseases of the Heart : Clinical-Physiological Considerations. 3rd ed, pp.25-36, Wiley-Blackwell, Oxford, 2009.
2) Rudolph AM : The ductus arteriosus and persistent patency of the ductus arteriosus. Congenital Diseases of the Heart : Clinical-Physiological Considerations. 3rd ed, pp.115-47, Wiley-Blackwell, Oxford, 2009.
3) Yokoyama U, Minamisawa S, Ishikawa Y : Regulation of vascular tone and remodeling of the ductus arteriosus. J Smooth Muscle Res 46 : 77-87, 2010.
4) 豊島勝昭 : 未熟児動脈管開存症. 新生児の心エコー入門, pp.154-182, メディカ出版, 大阪, 2020.
5) 門間和夫 : 動脈管薬の実験40年. 日本小児循環器学会雑誌 32 : 261-269, 2016.
6) Toyoshima K, Isayama T, Kobayashi T, et al : What Echocardiographic Indices Are Predictive of Patent Ductus Arteriosus Surgical Closure in Early Preterm Infants? : A Prospective Multicenter Cohort Study. J Cardiol 74 : 512-518, 2019.
7) 未熟児動脈管開存症診療ガイドライン作成プロジェクトチーム : 根拠と総意に基づく未熟児動脈管開存症治療ガイドライン. 日本未熟児新生児学会雑誌 22 : 255-267, 2010.
8) Ohlsson A, Walia R, Shah SS : Ibuprofen for the treatment of patent ductus arteriosus in preterm or low birth weight (or both) infants. Cochrane Database Syst Rev 2 : CD003481, 2020.
9) Jasani B, Mitra S, Shah PS : Paracetamol (acetaminophen) for patent ductus arteriosus in preterm or low birth weight infants. Cochrane Database Syst Rev 12 : Cd010061, 2022.
10) Momma K, Toyoshima K, Imamura S, et al : In vivo dilation of fetal and neonatal ductus arteriosus by inhibition of phosphodiesterase-5 in rats. Pediatr Res 58 : 42-45, 2005.
11) Toyoshima K, Momma K, Imamura S, et al : In vivo dilatation of the fetal and postnatal ductus arteriosus by inhibition of phosphodiesterase 3 in rats. Biol Neonate 89 : 251-256, 2006.
12) Toyoshima K, Momma K, Imamura S, et al : In vivo dilatation of the postnatal ductus arteriosus by atrial natriuretic peptide in the rat. Neonatology 92 : 139-144. 2007.
13) Toyoshima K, Momma K, Nakanishi T : Fetal reversed constrictive effect of indomethacin and postnatal delayed closure of the ductus arteriosus following administration of transplacental magnesium sulfate in rats. Neonatology 96 : 125-131, 2009.
15) Momma K, Toyoshima K, Sun F, et al : In vivo dilatation of the ductus arteriosus by Rho kinase inhibition in the rat. Neonatology 95 : 324-331, 2009.
16) Momma K, Toyoshima K, Takeuchi D, et al : In vivo reopening of the neonatal ductus arteriosus by a prostanoid EP4-receptor agonist in the rat. Prostaglandins Other Lipid Mediat 78 : 117-128, 2005.
17) Toyoshima K, Momma K, Ishii T : Dilatation of the ductus arteriosus by diazoxide in fetal and neonatal rats. Pediatr Int 59 : 1246-1251, 2017.
18) Momma K, Toyono M : The role of nitric oxide in dilating the fetal ductus arteriosus in rats. Pediatr Res 46 : 311-315, 1999.
19) Momma K, Toyoshima K, Ito K, et al : Delayed neonatal closure of the ductus arteriosus following early in utero exposure to indomethacin in the rat. Neonatology 96 : 69-79, 2009.
20) Keller RL, Tacy TA, Fields S, et al : Combined treatment with a nonselective nitric oxide synthase inhibitor (l-NMMA) and indomethacin increases ductus constriction in extremely premature newborns. Pediatr Res 58 : 1216-1221, 2005.
21) Toyoshima K, Takeda A, Imamura S, et al : Constriction of the ductus arteriosus by selective inhibition of cyclooxygenase-1 and -2 in near-term and preterm fetal rats. Prostaglandins Other Lipid Mediat 79 : 34-42, 2006.
22) Momma K, Toyoshima K, Takeuchi D, et al : In vivo constriction of the fetal and neonatal ductus arteriosus by a prostanoid EP4-receptor antagonist in rats. Pediatr Res 58 : 971-975, 2005.
23) Momma K, Monma M, Toyoshima K, et al : Fetal and Neonatal Ductus Arteriosus Is Regulated with ATP-Sensitive Potassium Channel. In Nakanishi T, Markwald RR, Baldwin HS, et al (eds) : Etiology and Morphogenesis of Congenital Heart Disease : From Gene Function and Cellular Interaction to Morphology, pp.263-265, Springer, Tokyo, 2016.

【Health Care】

P.716 掲載の参考文献
1) World Health Organization. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/ [参照2023年4月18日]
2) 厚生労働省. データからわかる-新型コロナウイルス感染症情報-. https://covid19.mhlw.go.jp/ [参照2023年4月18日]
3) 岡部信彦 : 最近話題になったウイルス感染症. 安全工学 55 (1) : 10-16, 2016.
4) 神谷晃, 尾家重治 : 改訂2版 消毒剤の選び方と使用上の留意点. pp.20-21, じほう, 東京, 2006.
5) 新型コロナウイルスに対する代替消毒方法の有効性評価に関する検討委員会 : 新型コロナウイルスに対する代替消毒方法の有効性評価 (最終報告). 独立行政法人製品評価技術基盤機構, 2020.
6) 危険物規制・基準研究会 : 消防法危険物 advice. pp.14-15, 新日本法規出版, 愛知, 2015.
7) John M. Boyce, Didier Pittet : Guideline for hand hygiene in health-care settings. MMWR 51 (RR16) : 1-44, 2002.
P.726 掲載の参考文献
1) 令和2年 (2020) 患者調査の概況, 厚生労働省, 令和2年.
2) 2019年 国民生活基礎調査の概況, 厚生労働省, 令和元年
3) 星野雄一 : 腰痛とつきあう. 順天堂医学 48 : 197-201, 2002.
4) 厚生労働省 : 「統合医療」のあり方に関する検討会 これまでの議論の整理について, 平成25年2月. https://www.mhlw.go.jp/stf/shingi/2r9852000002vsub-att/2r9852000002vsy2.pdf [最終アクセス2023/5/24]
5) FMT https://f-mt.jp/ [最終アクセス2023/5/27]
6) 柳井久江 : 4 Steps エクセル統計 第4版. オーエムエス出版, 東京, 2015.
7) 野沢哲矢, 宇佐英幸, 中林利允 : 横断摩擦マッサージが筋特性と筋機能に与える影響-大腿直筋による検討-. 理学療法科学 36 : 375-381, 2021.
8) 坂本歩, 古屋英治 : 鍼灸, マッサージと心身の健康保持増進 (健康保持 : 健康創造と心身医学). 心身医学 41 : 163, 2001.
9) 鍵谷方子 : 皮膚刺激と心身の健康. 心身健康科学 10 : 14-17, 2014.
10) 二神弘子, 藤原宏子 : オキシトシンと心身の健康. 心身健康科学 15 : 48-50, 2019.
11) 田村幸恵, 鈴木玲子 : 手指への指圧によるリラクゼーションション効果の検討. 保健医療福祉科学 3 : 39-45, 2013.
12) 菊池真, 青野都, 石川恵子, 他 : 指圧および経穴マッサージが体温と身体柔軟性に及ぼす効果. 日本伝統医療看護連携学会誌 1 : 57-64, 2020.
13) 佐藤都也子 : 健康な成人女性におけるハンドマッサージの自律神経活動および気分の影響. 山梨大学看護学会誌 4 : 25-32, 2006.
14) 松澤正, 加藤仁志, 飯塚直貴, 他 : マッサージによる筋硬度の変化の検討. In 関東甲信越ブロック理学療法士学会 第30回関東甲信越ブロック理学療法士学会, pp.271-271, 社団法人日本理学療法士協会関東甲信越ブロック協議会, 2011.
15) 原田脩平, 加藤仁志, 栗林朋宏, 他 : マッサージに血流の改善効果はあるのか. In 理学療法学 Supplement 36 (2) : (第44回日本理学療法学術大会 抄録集) (pp.F3P3585-F3P3585). 公益社団法人日本理学療法士協会, 2009.
16) 菅原寿彦, 藤井亮輔, 野口栄太郎, 他 : 肩関節の痛み・可動域制限に対するマッサージ療法の有効性に関する研究. 日本東洋医学系物理療法学会誌 45 : 49-55, 2020.
17) 安藤正志, 藤井翔太, 河村明和, 遠山智明 : 徒手的軟部組織刺激が可動域に及ぼす影響 (第2報). 標準徒手医学会誌 1 : 20-23, 2014.

最近チェックした商品履歴

Loading...