眼科診療エクレール 2 最新 眼科画像診断パワーアップ

出版社: 中山書店
著者:
発行日: 2023-10-17
分野: 臨床医学:外科  >  眼科学
ISBN: 9784521750521
電子書籍版: 2023-10-17 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

16,500 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

16,500 円(税込)

商品紹介

眼科画像診断の基本から応用を,エキスパートの執筆陣が具体的に解説.
部位・疾患別の画像診断の種類と目的,検査の実際,検査結果の解釈と診療への活かし方がよくわかる.
広角眼底撮影,造影検査(FA,ICGA),超音波断層撮影,CT,MRI,MRA,そしてOCTをはじめとして,OCTAやSS-OCT,SD-OCT,UBM,SLOなど,最新機器を用いた画像診断のコツも満載.

目次

  • Chapter 1 検査の総論
     1.1 角膜
     1.2 前房,隅角,水晶体
     1.3 硝子体
     1.4 網膜
     1.5 脈絡膜
     1.6 眼底広角撮影
     1.7 造影検査
     1.8 超音波断層撮影(B モード)
     1.9 CT/MRI
      ADVICE くも膜下腔を走行する脳神経(動眼・滑車・外転神経)画像

    Chapter 2 前眼部
     2.1 ドライアイ
      TOPICS 1 免疫関連の重症ドライアイ
      TOPICS 2 眼瞼の化粧品とドライアイ
     2.2 円錐角膜
     2.3 水疱性角膜症,角膜移植

    Chapter 3 緑内障
     3.1 前眼部
     3.2 後眼部

    Chapter 4 網膜硝子体
     4.1 黄斑低形成
     4.2 後部硝子体剝離(PVD)
      COLUMN 臨床試薬ocriplasmin
     4.3 網膜上膜(ERM)
     4.4 黄斑円孔(MH),硝子体黄斑牽引(VMT)
     4.5 網膜剝離
     4.6 ドルーゼン
     4.7 網膜色素上皮?離(PED),網膜色素上皮裂孔(RPE tear)
     4.8 パキコロイド関連疾患(PSD)
     4.9 中心性漿液性脈絡網膜症(CSC),多発性後極部網膜色素上皮症(MPPE)
     4.10 滲出型加齢黄斑変性(滲出型AMD)
     4.11 ポリープ状脈絡膜血管症(PCV)
     4.12 網膜内血管腫状増殖(RAP)
      COLUMN FAFを用いたRAPの発症予測の方法
     4.13 萎縮型加齢黄斑変性(萎縮型AMD)
     4.14 網膜色素線条(AS)
     4.15 特発性脈絡膜新生血管(ICNV),点状内層脈絡膜症(PIC),多巣性脈絡膜炎(MFC)
     4.16 黄斑部毛細血管拡張症(MacTel)
     4.17 後部ぶどう腫,DSM,下方ぶどう腫
     4.18 MEWDS,APMPPE,AZOORほか
     4.19 acquired vitelliform lesions(AVLs)
     4.20 網膜細動脈瘤(RAM)
     4.21 網膜動脈閉塞症(RAO)
     4.22 網膜静脈閉塞症(RVO)
     4.23 parafoveal acute middle maculopathy(PAMM)
     4.24 高血圧網膜症,高血圧脈絡膜症
     4.25 血液疾患
     4.26 糖尿病網膜症
     4.27 糖尿病黄斑浮腫(DME)
     4.28 未熟児網膜症(ROP)
     4.29 病的近視
     4.30 網膜色素変性(RP)
     4.31 黄斑ジストロフィ
     4.32 acute macular neuroretinopathy(AMN)
     4.33 自己免疫網膜症(AIR)
     4.34 眼外傷
     4.35 術中OCT

    Chapter 5 ぶどう膜炎
     5.1 フォークト・小柳・原田病(VKH)
     5.2 眼内悪性リンパ腫
     5.3 その他のぶどう膜炎
     5.4 強膜炎

    Chapter 6 視神経疾患
     6.1 視神経炎
     6.2 視神経症
     6.3 甲状腺眼症
     6.4 頭蓋内疾患

    Chapter 7 腫瘍
     7.1 前眼部腫瘍
     7.2 網膜腫瘍
     7.3 脈絡膜腫瘍
      COLUMN 脈絡膜腫瘍における画像検査の重要性と病理診断の位置づけ
     7.4 眼窩腫瘍

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

Chapter1 検査の総論

P.10 掲載の参考文献
1) Goto S et al. Corneal Topography for Intraocular Lens Selection in Refractive Cataract Surgery. Ophthalmology 2021;128:e142-52.
2) 木下 茂ほか. 角膜内皮障害の重症度分類. 日本眼科学会雑誌2014;118:81-3.
P.15 掲載の参考文献
1) Mundt GH Jr et al. Ultrasonics in ocular diagnosis. Am J Ophthalmol 1956;41:488-98.
2) Coleman DJ et al. A hand-operated, ultrasound scan system for ophthalmic evaluation. Am J Ophthalmol 1969;68:256-63.
3) Scheimpflug T. Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes. British Patent 1904:GB1196.
4) Pavlin CJ et al. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology 1990:97:244-50.
5) Huang D et al. Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg Med 1991:11:419-25.
P.19 掲載の参考文献
1) Kishi S et al. Posterior precortical vitreous pocket. Arch Ophthalmol 1990;108:979-82.
2) Sakamoto T et al. Visualizing vitreous in vitrectomy by triamcinolone. Graefes Arch Clin Exp Ophthalmol 2009;247:1153-63.
3) Itakura H et al. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:3102-7.
4) Tsukahara M et al. Posterior Vitreous Detachment as Observed by Wide-Angle OCT Imaging. Ophthalmology 2018;125:1372-83.
5) Kishi S. Vitreous anatomy and the vitreomacular correlation. Jpn J Ophthalmol 2016;60:239-73.
6) Itakura H et al. Evolution of vitreomacular detachment in healthy subjects. JAMA Ophthalmol 2013;131:1348-52.
7) Itakura H et al. STARDUST SIGN AND RETINAL TEAR DETECTION ON SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY. Retina 2022;42:336-9.
P.28 掲載の参考文献
1) Uji A et al. HIDDEN INFORMATION IN COLOR FUNDUS PHOTOGRAPHS IS REVEALED BY THE DECORRELATION STRETCHING METHOD. Retin Cases Brief Rep 2019;13:176-80.
2) Suzuma K et al. Quantitative assessment of macular edema with retinal vein occlusion. Am J Ophthalmol 1998;126:409-16.
3) Ogura Y et al. Improved visualization of macular hole lesions with laser biomicroscopy. Arch Ophthalmol 1991;109:957-61.
5) Murakami T et al. Photoreceptor status after resolved macular edema in branch retinal vein occlusion treated with tissue plasminogen activator. Am J Ophthalmol 2007;143:171-3.
6) Sakamoto A et al. Spectral-domain optical coherence tomography with multiple B-scan averaging for enhanced imaging of retinal diseases. Ophthalmology 2008;115:1071-8. e7.
7) Sander B et al. Enhanced optical coherence tomography imaging by multiple scan averaging. Br J Ophthalmol 2005;89:207-12.
8) Pappuru RR et al. Clinical significance of B-scan averaging with SD-OCT. Ophthalmic Surg Lasers Imaging 2012;43:63-8.
9) Yamada H et al. Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis. Am J Ophthalmol 2014;158:1318-29. e3.
10) Spaide RF et al. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008;146:496-500.
11) Pang CE et al. Enhanced vitreous imaging technique with spectral-domain optical coherence tomography for evaluation of posterior vitreous detachment. JAMA Ophthalmol 2014;132:1148-50.
12) Uji A et al. Microarchitecture of the Vitreous Body:A High-Resolution Optical Coherence Tomography Study. Am J Ophthalmol 2016;168:24-30.
13) Nagiel A et al. A Promising Future for Optical Coherence Tomography Angiography. JAMA Ophthalmol 2015;133:629-30.
14) Arichika S et al. Noninvasive and direct monitoring of erythrocyte aggregates in human retinal microvasculature using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2013;54:4394-402.
15) Uji A et al. The source of moving particles in parafoveal capillaries detected by adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2012;53:171-8.
16) Kawai K et al. Prevention of Image Quality Degradation in Wider Field Optical Coherence Tomography Angiography Images Via Image Averaging. Transl Vis Sci Technol 2021;10:16.
17) Muraoka Y et al. Segmentation of the Four-Layered Retinal Vasculature Using High-Resolution Optical Coherence Tomography Angiography Reveals the Microcirculation Unit. Invest Ophthalmol Vis Sci 2018;59:5847-53.
18) Uji A et al. Choriocapillaris Imaging Using Multiple En Face Optical Coherence Tomography Angiography Image Averaging. JAMA Ophthalmol 2017;135:1197-204.
P.33 掲載の参考文献
1) Spaide RF et al. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 2008;146:496-500.
2) Yun SH et al. High-speed optical frequency-domain imaging. Opt Express 2003;11:2953-63.
3) Margolis R et al. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol 2009;147:811-5.
4) Sonoda S et al. Choroidal structure in normal eyes and after photodynamic therapy determined by binarization of optical coherence tomographic images. Invest Ophthalmol Vis Sci 2014;55:3893-9.
5) Hiroe T et al. Dilatation of Asymmetric Vortex Vein in Central Serous Chorioretinopathy. Ophthalmol Retina 2018;2:152-61.
6) Matsumoto H et al. Vortex Vein Anastomosis at the Watershed in Pachychoroid Spectrum Diseases. Ophthalmol Retina 2020;4:938-45.
P.43 掲載の参考文献
1) Kadomoto S et al. A novel strategy for quantification of panoramic en face optical coherence tomography angiography scan field. Graefes Arch Clin Exp Ophthalmol 2019;257:1199-206.
2) Yao X et al. Understanding the relationship between visual-angle and eye-angle for reliable determination of the field-of-view in ultra-wide field fundus photography. Biomed Opt Express 2021;12:6651-9.
3) Witmer MT et al. Wide-field imaging of the retina. Surv Ophthalmol 2013;58:143-54.
4) Choudhry N et al. Classification and Guidelines for Widefield Imaging:Recommendations from the International Widefield Imaging Study Group. Ophthalmol Retina 2019;3:843-9.
5) Pomerantzeff O. Equator-plus camera. Invest Ophthalmol 1975;14:401-6.
6) Ducrey N et al. Clinical trials with the Equator-Plus camera. Am J Ophthalmol 1977;84:840-6.
7) Webb RH et al. Flying spot TV ophthalmoscope. Appl Opt 1980;19:2991-7.
8) Dreher AW et al. Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt 1989;28:804-8.
9) Witmer MT et al. Ultra-wide-field autofluorescence imaging in non-traumatic rhegmatogenous retinal detachment. Eye(Lond) 2012;26:1209-16.
10) Sakono T et al. Comparison of multicolor scanning laser ophthalmoscopy and optical coherence tomography angiography for detection of microaneurysms in diabetic retinopathy. Sci Rep 2021;11:17017.
11) Oishi A et al. Wide-field fundus autofluorescence imaging of retinitis pigmentosa. Ophthalmology 2013;120:1827-34.
12) Spaide RF et al. Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 2005;112:825-33.
13) Kadomoto S et al. Ultra-widefield confocal imaging of multiple evanescent white dot syndrome. Am J Ophthalmol Case Rep 2020;19:100861.
P.48 掲載の参考文献
1) Spaide RF et al. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data:Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology 2020;127:616-36.
2) Cheung CMG et al. Pachychoroid disease. Eye(Lond) 2019;33:14-33.
3) 高橋寛二ほか. 加齢黄斑変性の分類と診断基準. 日本眼科学会雑誌 2008;112:1076-84.
4) Willoughby AS et al. Subretinal Hyper-Reflective Material in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology 2015;122:1846-53. e5.
5) Notani S et al. Retinal pigment epithelial detachment associated with retinal pigment epithelium thinning revealed by optical coherence tomography. Jpn J Ophthalmol 2015;59:305-11.
P.52 掲載の参考文献
1) Green RL et al. Diagnostic ophthalmic ultrasound. In:Ryan SJ et al, editors. Retina, 4th ed. vol.1. Elsevier;2006. pp.265-350.
P.58 掲載の参考文献
1) 橋本雅人. 頸動脈海綿静脈洞瘻. 村上 晶ほか編. 眼科疾患最新の治療2022-2024. 南江堂;2022. p.321.
2) Marinkovic SV et al. The neurovascular relationship and the blood supply of the abducent nerve:surgical anatomy of its cisternal segment. Neurosurgery 1994;34:1017-26.

Chapter2 前眼部

P.68 掲載の参考文献
1) ドライアイ研究会, ドライアイの定義および診断基準委員会. 日本のドライアイの定義と診断基準の改訂(2016年版). あたらしい眼科 2017;34:309-13.
2) Uchino M. What We Know About the Epidemiology of Dry Eye Disease in Japan. Invest Ophthalmol Vis Sci 2018;59:DES1-6.
3) Stapleton F et al. TFOS DEWS II Epidemiology Report. Ocul Surf 2017;15:334-65.
4) ドライアイ研究会 ドライアイの定義および診断基準委員会. ドライアイ診療ガイドライン. 日本眼科学会雑誌 2019;123:489-592.
5) Craig JP et al. TFOS DEWS II Definition and Classification Report. Ocul Surf 2017;15:276-83.
6) Tsubota K et al. New Perspectives on Dry Eye Definition and Diagnosis:A Consensus Report by the Asia Dry Eye Society. Ocul Surf 2017;15:65-76.
7) Yokoi N et al. Classification of Fluorescein Breakup Patterns:A Novel Method of Differential Diagnosis for Dry Eye. Am J Ophthalmol 2017;180:72-85.
8) 堀 裕一. 総説 進化するドライアイ診療. 日本の眼科2022;64:351-4.
9) Jackson CJ et al. Dry eye disease and proteomics. Ocul Surf 2022;24:119-28.
10) 島崎 潤. 読めばわかる!わかれば変わる!ドライアイ診療. メジカルビュー社;2017.
11) Okumura Y et al. DryEyeRhythm:A reliable and valid smartphone application for the diagnosis assistance of dry eye. Ocul Surf 2022;25:19-25.
12) Shimizu E et al. Smart Eye Camera:A Validation Study for Evaluating the Tear Film Breakup Time in Human Subjects. Transl Vis Sci Technol 2021;10:28.
13) Inomata T et al. Using Medical Big Data to Develop Personalized Medicine for Dry Eye Disease. Cornea 2020;39 Suppl 1:S39-46.
14) Sumida T et al. Clinical practice guideline for Sjogren's syndrome 2017. Mod Rheumatol 2018;28:383-408.
15) Ogawa Y et al. Multicenter prospective validation study for international chronic ocular graft-versus-host disease consensus diagnostic criteria. Ocul Surf 2022;26:200-8.
16) 重安千花. ドライアイ. 村上 晶ほか編. 眼科疾患 最新の治療2022-2024. 南江堂;2022. pp.122-3.
17) Kim Y et al. Different adverse effects of air pollutants on dry eye disease:Ozone, PM(2.5), and PM(10). Environ Pollut 2020;265(Pt B):115039.
18) Yu D et al. PM(2.5) exposure increases dry eye disease risks through corneal epithelial inflammation and mitochondrial dysfunctions. Cell Biol Toxicol 2023.
19) Hanyuda A et al. Physical inactivity, prolonged sedentary behaviors, and use of visual display terminals as potential risk factors for dry eye disease:JPHC-NEXT study. Ocul Surf 2020;18:56-63.
20) マイボーム腺機能不全診療ガイドライン作成委員会. マイボーム腺機能不全診療ガイドライン. 日本眼科学会雑誌 2023;127:109-228.
21) Amano S et al. Committee for Meibomian Gland Dysfunction Clinical Practice Guidelines. Meibomian Gland Dysfunction Clinical Practice Guidelines. Jpn J Ophthalmol 2023;67:448-539.
22) 日本眼科アレルギー学会診療ガイドライン作成委員会. アレルギー性結膜疾患診療ガイドライン(第3版). 日本眼科学会雑誌 2021;125:741-85.
23) Leonardi A et al. Allergy and Dry Eye Disease. Ocul Immunol Inflamm 2021;29:1168-76.
24) 細谷友雅. 眼瞼痙攣とドライアイ. あたらしい眼科 2018;35:885-90.
25) Koh S et al. COVID-19 and Dry Eye. Eye Contact Lens 2021;47:317-22.
26) Ozturk C et al. Bilateral Acute Anterior Uveitis and Corneal Punctate Epitheliopathy in Children Diagnosed with Multisystem Inflammatory Syndrome Secondary to COVID-19. Ocul Immunol Inflamm 2021;29:700-4.
27) Chidi-Egboka NC et al. Smartphone gaming induces dry eye symptoms and reduces blinking in school-aged children. Eye(Lond) 2023;37:1342-9.
28) Tomiita M et al. Clinical practice guidance for Sjogren's syndrome in pediatric patients(2018)-summarized and updated. Mod Rheumatol 2021;31:283-93.
29) Yagi H et al. Pediatric chronic graft-versus-host disease-related dry eye disease and the diagnostic association of potential clinical findings. Sci Rep 2023;13:3575.
30) Hanyuda A et al. Relationship between unhealthy sleep status and dry eye symptoms in a Japanese population:The JPHC-NEXT study. Ocul Surf 2021;21:306-12.
31) Ayaki M et al. High prevalence of sleep and mood disorders in dry eye patients:survey of 1,000 eye clinic visitors. Neuropsychiatr Dis Treat 2015;11:889-94.
32) van der Vaart R et al. The association between dry eye disease and depression and anxiety in a large population-based study. Am J Ophthalmol 2015;159:470-4.
33) Kojima T. Contact Lens-Associated Dry Eye Disease:Recent Advances Worldwide and in Japan. Invest Ophthalmol Vis Sci 2018;59:DES102-8.
34) Arita R et al. Therapeutic efficacy of intense pulsed light in patients with refractory meibomian gland dysfunction. Ocul Surf 2019;17:104-10.
35) Lei Y et al. Intense pulsed light (IPL) therapy for meibomian gland dysfunction (MGD)-related dry eye disease(DED):a systematic review and meta-analysis. Lasers Med Sci 2022;38:1.
36) Sotozono C et al. Japan:Diagnosis and Management of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis With Severe Ocular Complications. Front Med(Lausanne) 2021;8:657327.
37) Tung CI. Graft versus host disease:what should the oculoplastic surgeon know? Curr Opin Ophthalmol 2017;28:499-504.
38) Mead OG et al. Amniotic membrane transplantation for managing dry eye and neurotrophic keratitis. Taiwan J Ophthalmol 2020;10:13-21.
39) Tseng SCG. Evolution of amniotic membrane transplantation. Clin Exp Ophthalmol 2007;35:109-10.
40) Aziza Y et al. Limbal-Rigid Contact Lens Wear for the Treatment of Ocular Surface Disorders:A Review. Eye Contact Lens 2022;48:313-7.
41) Kawashima M et al. Dietary Supplementation with a Combination of Lactoferrin, Fish Oil, and Enterococcus faecium WB2000 for Treating Dry Eye:A Rat Model and Human Clinical Study. Ocul Surf 2016;14:255-63.
42) Tsubota K. Dry Eye. The Hidden Health Hazard:The Hidden Health Hazard:For Computer Users Concerned About Eye Health. Partridge:2022.
43) Makateb A et al. Dry eye signs and symptoms in night-time workers. J Curr Ophthalmol 2017;29:270-3.
P.77 掲載の参考文献
1) Ferdi AC et al. Keratoconus Natural Progression:A Systematic Review and Meta-analysis of 11529 Eyes. Ophthalmology 2019;126:935-45.
2) Amsler M. Keratocone classique et keratocone fruste:arguments unitaires [Classic keratocene and crude keratocene;Unitary arguments]. Ophthalmologica 1946;111:96-101.
3) Belin MW et al. Tomographic parameters for the detection of keratoconus:suggestions for screen ing and treatment parameters. Eye Contact Lens 2014;40:326-30.
4) Hersh PS et al;United States Crosslinking Study Group. United States Multicenter Clinical Trial of Corneal Collagen Crosslinking for Keratoconous Treatment. Ophthalmology 2017;124:1259-70.
5) Mazzotta C et al. Long term results of accelerated 9mW corneal crosslinking for early progressive keratoconus:the Siena Eye-Cross Study 2. Eye Vis(Lond) 2021;8:16.
6) Gomes JAP et al;Group of Panelists for the Global Delphi Panel of Keratoconus and Ectatic Diseases. Global consensus on keratoconus and ectatic diseases. Cornea 2015;34:359-69.
7) Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg 2005;31:156-62.
8) Leung CK et al. An ultra-high-speed Scheimpflug camera for evaluation of corneal deformation response and its impact on IOP measurement. Invest Ophthalmol Vis Sci 2013;54:2885-92.
9) Vinciguerra R et al. Detection of Keratoconus With a New Biomechanical Index. J Refract Surg 2016;32:803-10.
10) Ambrosio R Jr et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J Refract Surg 2017;33:434-43.

Chapter3 緑内障

P.88 掲載の参考文献
1) Akagi T et al. Transient Ciliochoroidal Detachment After Ab Interno Trabeculotomy for Open-Angle Glaucoma:A Prospective Anterior-Segment Optical Coherence Tomography Study. JAMA Ophthalmol 2016;134:304-11.
2) Kojima S et al. Filtering blebs using 3-dimensional anterior-segment optical coherence tomography:a prospective investigation. JAMA Ophthalmol 2015;133:148-56.
3) Akagi T et al. Anterior Segment OCT Angiography Images of Avascular Bleb after Trabeculectomy. Ophthalmol Glaucoma 2019;2:102.
4) Akagi T et al. Glaucoma Tube Changes After Suture Lysis Assessed by High-Resolution Anterior Segment Optical Coherence Tomography. JAMA Ophthalmol 2016;134:e153674.
P.96 掲載の参考文献
1) 日本緑内障学会緑内障診療ガイドライン改訂委員会. 緑内障診療ガイドライン(第5版). 日本眼科学会雑誌 2022;126:85-177.
2) Nitta K et al. Does the enlargement of retinal nerve fiber layer defects relate to disc hemorrhage or progressive visual field loss in normal-tension glaucoma? J Glaucoma 2011;20:189-95.
3) Jia, Y et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 2012;20:4710-25.
4) Akagi T et al. Microvascular Density in Glaucomatous Eyes With Hemifield Visual Field Defects:An Optical Coherence Tomography Angiography Study. Am J Ophthalmol 2016;168:237-49.
5) Kim JA et al. Evaluation of Parapapillary Choroidal Microvasculature Dropout and Progressive Retinal Nerve Fiber Layer Thinning in Patients With Glaucoma. JAMA Ophthalmol 2019;137:810-6.
6) Chao SC et al. Early Macular Angiography among Patients with Glaucoma, Ocular Hypertension, and Normal Subjects. J Ophthalmol 2019;2019:7419470.

Chapter4 網膜硝子体

P.100 掲載の参考文献
1) Matsushita I et al. Foveal Hypoplasia in Patients with Stickler Syndrome. Ophthalmology 2017;124:896-902.
2) Thomas MG et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography;a predictor of visual acuity? Ophthalmology 2011;118:1653-60.
3) Rufai SR et al. Can Structural Grading of Foveal Hypoplasia Predict Future Vision in Infantile Nystagmus?:A Longitudinal Study. Ophthalmology 2020;127:492-500.
P.106 掲載の参考文献
1) Itakura H et al. Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2013;54:3102-7.
2) Li D et al. Posterior precortical vitreous pockets and connecting channels in children on sweptsource optical coherence tomography. Invest Ophthalmol Vis Sci 2014;55:2412-6.
3) Itakura H et al. Vitreous changes in high myopia observed by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci 2014;55:1447-52.
4) Sakamoto T et al. Visualizing vitreous in vitrectomy by triamcinolone. Graefes Arch Clin Exp Ophthalmol 2009;247:1153-63.
5) Sato T et al. Modified technique for inducing posterior vitreous detachment through the posterior precortical vitreous pocket during microincision vitreous surgery with a wide-angle viewing system. Ophthalmologica 2013;230:76-80.
P.111 掲載の参考文献
1) Govetto A et al. Insights Into Epiretinal Membranes:Presence of Ectopic Inner Foveal Layers and a New Optical Coherence Tomography Staging Scheme. Am J Ophthalmol 2017;175:99-113.
2) Shiode Y et al. Surgical Outcome of Idiopathic Epiretinal Membranes with Intraretinal Cystic Spaces. PLoS One 2016;11:e0168555.
3) Govetto A et al. Tractional Abnormalities of the Central Foveal Bouquet in Epiretinal Membranes:Clinical Spectrum and Pathophysiological Perspectives. Am J Ophthalmol 2017;184:167-80.
4) Hirano M et al. EN FACE IMAGE-BASED ANALYSIS OF RETINAL TRACTION CAUSED BY EPIRETINAL MEMBRANE AND ITS RELATIONSHIP WITH VISUAL FUNCTIONS. Retina 2020;40:1262-71.
5) Kanzaki S et al. En Face Image-Based Analysis of Epiretinal Membrane Formation after Surgery for Idiopathic Epiretinal Membrane. Ophthalmol Retina 2021;5:815-23.
6) Kanzaki Y et al. OBJECTIVE AND QUANTITATIVE ESTIMATION OF THE OPTIMAL TIMING FOR EPIRETINAL MEMBRANE SURGERY ON THE BASIS OF METAMORPHOPSIA. Retina 2022;42:704-11.
7) Hubschman JP et al. Optical coherence tomography-based consensus definition for lamellar macular hole. Br J Ophthalmol 2020;104:1741-7.
8) Bringmann A et al. Degenerative lamellar macular holes:tractional development and morphological alterations. Int Ophthalmol 2021;41:1203-21.
P.117 掲載の参考文献
1) Sadda SR et al, editors. Ryan's Retina, 7th ed. Elsevier;2022.
2) Duker JS et al. The International Vitreomacular Traction Study Group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 2013;120:2611-9.
3) Gass JD. Idiopathic senile macular hole. Its early stages and pathogenesis. Arch Ophthalmol 1988;106:629-39.
4) Chan A et al. Stage 0 macular holes:observations by optical coherence tomography. Ophthalmology 2004;111:2027-32.
5) Mori K et al. Montage images of spectral-domain optical coherence tomography in eyes with idiopathic macular holes. Ophthalmology 2012;119:2600-8.
6) Mori K et al. Posterior vitreous mobility delineated by tracking of optical coherence tomography images in eyes with idiopathic macular holes. Am J Ophthalmol 2015;159:1132-41. e1.
7) Tadayoni R et al. Dissociated optic nerve fiber layer appearance of the fundus after idiopathic epiretinal membrane removal. Ophthalmology 2001;108:2279-83.
8) Michalewska Z et al. Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology 2010;117:2018-25.
9) Ito Y et al. Mechanistic Insights into the Pathogenesis of Proliferative and Nonproliferative Vitreomacular Traction. Am J Ophthalmol 2022;238:1-9.
10) Garg A et al. PREDICTIVE FACTORS OF SPONTANEOUS RELEASE OF VITREOMACULAR TRACTION:A Systematic Review and Meta-Analysis. Retina 2022;42:1219-30.
P.120 掲載の参考文献
1) Wakabayashi T et al. Foveal microstructure and visual acuity after retinal detachment repair:imaging analysis by fourier-domain optical coherence tomography. Ophthalmology 2009;116:519-28.
2) 川島裕子ほか. 裂孔原性網膜剥離復位後における視細胞外節の回復過程の検討. 日本眼科学会雑誌 2011;115:374-81.
3) Wolfensberger TJ et al. Optical coherence tomography in the evaluation of incomplete visual acuity recovery after macula-off retinal detachments. Graefes Arch Clin Exp Ophthalmol 2002;240:85-9.
4) Wolfensberger TJ. Foveal reattachment after macula-off retinal detachment occurs faster after vitrectomy than after buckle surgery. Ophthalmology 2004;111:1340-3.
P.126 掲載の参考文献
1) Khan KN et al. Differentiating drusen:Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res 2016;53:70-106.
2) Spaide RF et al. Subretinal drusenoid deposits AKA pseudodrusen. Surv Ophthalmol 2018;63:782-815.
3) Oishi A et al. Prevalence, Natural Course, and Prognostic Role of Refractile Drusen in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2017;58:2198-206.
4) Sakurada Y et al. CUTICULAR DRUSEN:Risk of Geographic Atrophy and Macular Neovascularization. Retina 2020;40:257-65.
5) Spaide RF. DISEASE EXPRESSION IN NONEXUDATIVE AGE-RELATED MACULAR DEGENERATION VARIES WITH CHOROIDAL THICKNESS. Retina 2018;38:708-16.
P.135 掲載の参考文献
1) Yannuzzi LA et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol 1999;117:1503-10.
2) Bird AC et al. Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc U K(1962) 1986;105:674-82.
3) Hartnett ME et al. Classification of retinal pigment epithelial detachments associated with drusen. Graefes Arch Clin Exp Ophthalmol 1992;230:11-9.
4) Mudvari SS et al. The natural history of pigment epithelial detachment associated with central serous chorioretinopathy. Retina 2007;27:1168-73.
5) Poliner LS et al. Natural history of retinal pigment epithelial detachments in age-related macular degeneration. Ophthalmology 1986;93:543-51.
6) Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin:one-year results of 2 randomized clinical trials--TAP report. Treatment of age-related macular degeneration with photodynamic therapy(TAP) Study Group. Arch Ophthala mol 1999;117:1329-45.
7) Singerman LJ et al. Natural history of subfoveal pigment epithelial detachments associated with subfoveal or unidentifiable choroidal neovascularization complicating age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1989;227:501-7.
8) Roquet W et al. Clinical features of drusenoid pigment epithelial detachment in age related macular degeneration. Br J Ophthalmol 2004;88:638-42.
9) Cukras C et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration:Age-Related Eye Disease Study Report No.28. Ophthalmology 2010;117:489-99.
10) Sarraf D et al. Prospective evaluation of the incidence and risk factors for the development of RPE tears after high-and low-dose ranibizumab therapy. Retina 2013;33:1551-7.
11) Spaide RF. Enhanced depth imaging optical coherence tomography of retinal pigment epithelial detachment in age-related macular degeneration. Am J Ophthalmol 2009;147:644-52.
12) Sarraf D et al. Retinal pigment epithelial tears in the era of intravitreal pharmacotherapy:risk factors, pathogenesis, prognosis and treatment(an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2014;112:142-59.
P.142 掲載の参考文献
1) Warrow DJ et al. Pachychoroid pigment epitheliopathy. Retina 2013;33:1659-72.
2) Lehmann M et al. PACHYCHOROID:an inherited condition? Retina 2015;35:10-6.
3) Lee WK et al. CHOROIDAL MORPHOLOGY IN EYES WITH POLYPOIDAL CHOROIDAL VASCULOPATHY AND NORMAL OR SUBNORMAL SUBFOVEAL CHOROIDAL THICKNESS. Retina 2016;36 Suppl 1:S73-82.
4) Ersoz MG et al. INDOCYANINE GREEN ANGIOGRAPHY OF PACHYCHOROID PIGMENT EPITHELIOPATHY. Retina 2018;38:1668-74.
5) Cheung CMG et al. Pachychoroid disease. Eye(Lond) 2019;33:14-33.
6) Kaye R et al. Central serous chorioretinopathy:An update on risk factors, pathophysiology and imaging modalities. Prog Retin Eye Res 2020;79:100865.
7) Pang CE et al. Pachychoroid pigment epitheliopathy may masquerade as acute retinal pigment epitheliitis. Invest Ophthalmol Vis Sci 2014;55:5252.
8) Cheung CMG et al. Polypoidal Choroidal Vasculopathy:Definition, Pathogenesis, Diagnosis, and Management. Ophthalmology 2018;125:708-24.
9) Margolis R et al. The expanded spectrum of focal choroidal excavation. Arch Ophthalmol 2011;129:1320-5.
10) Obata R et al. Tomographic and angiographic characteristics of eyes with macular focal choroidal excavation. Retina 2013;33:1201-10.
11) Phasukkijwatana N et al. PERIPAPILLARY PACHYCHOROID SYNDROME. Retina 2018;38:1652-67.
P.149 掲載の参考文献
1) Fok ACT et al. Risk factors for recurrence of serous macular detachment in untreated patients with central serous chorioretinopathy. Ophthalmic Res 2011;46:160-3.
2) Balaratnasingam C et al. Bullous Variant of Central Serous Chorioretinopathy:Expansion of Phenotypic Features Using Multimethod Imaging. Ophthalmology 2016;123:1541-52.
3) Imamura Y et al. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina 2009;29:1469-73.
4) Pang CE et al. Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 2014;158:362-71.
5) Cheung CMG et al. Pachychoroid disease. Eye(Lond) 2019;33:14-33.
6) Imanaga N et al. Scleral Thickness in Central Serous Chorioretinopathy. Ophthalmol Retina 2021;5:285-91.
7) Spaide RF et al. Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 2005;112:825-33.
8) Stattin M et al. Detection of secondary choroidal neovascularization in chronic central serous chorioretinopathy by swept source-optical coherence tomography angiography. Acta Ophthalmol 2019;97:e135-6.
9) Chan WM et al. Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin:a novel treatment at the primary disease level. Br J Ophthalmol 2003;87:1453-8.
10) Lotery A et al. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI):a randomized double-blind, placebo-controlled trial. Lancet 2020;395:294-303.
11) Uyama M et al. Indocyanine green angiography and pathophysiology of multifocal posterior pigment epitheliopathy. Retina 1999;19:12-21.
P.158 掲載の参考文献
1) 高橋寛二ほか. 加齢黄斑変性の分類と診断基準. 日本眼科学会雑誌 2008;112:1076-84.
2) 高橋寛二ほか. 萎縮型加齢黄斑変性の診断基準. 日本眼科学会雑誌 2015;119:671-7.
3) Hata M et al. Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 2023;379:45-62.
4) Ueta T et al. Cerebrovascular accidents in ranibizumab. Ophthalmology 2009;116:362.
5) Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss:AREDS report no. 8. Arch Ophthalmol 2001;119:1417-36.
6) Age-Related Eye Disease Study 2 Research Group. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration:the Age-Related Eye Disease Study 2(AREDS2) randomized clinical trial. JAMA 2013;309:2005-15.
7) 高橋寛二ほか. 加齢黄斑変性の治療指針. 日本眼科学会雑誌 2012;116:1150-5.
8) Oshima Y et al. Progression of age-related macular degeneration in eyes with abnormal fundus autofluorescence in a Japanese population:JFAM study report 3. PLoS One 2022;17:e0264703.
9) Cheung CMG et al. Polypoidal Choroidal Vasculopathy:Consensus Nomenclature and Non-Indocyanine Green Angiograph Diagnostic Criteria from the Asia-Pacific Ocular Imaging Society PCV Workgroup. Ophthalmology 2021;128:443-52.
10) Nagai H et al. Prevention of increased abnormal fundus autofluorescence with blue light-filtering intraocular lenses. J Cataract Refract Surg 2015;41:1855-9.
11) Kato A et al. Mental Status and Feasibility of an Intravitreal Ranibizumab Treat-and-Extend Regimen in Patients with Neovascular Age-Related Macular Degeneration. Adv Ther 2022;39:1403-16.
12) Lim TH et al. Comparison of Ranibizumab With or Without Verteporfin Photodynamic Therapy for Polypoidal Choroidal Vasculopathy:the EVEREST II Randomized Clinical Trial. JAMA Ophthalmol 2020;138:935-42.
13) Inoue N et al. Visual prognosis of submacular hemorrhage secondary to age-related macular degeneration:A retrospective multicenter survey. PLoS One 2022;17:e0271447.
P.165 掲載の参考文献
1) Yannuzzi LA. Idiopathic Polypoidal Choroidal Vasculopathy. Presented at the Macula Society meeting, Miami, Floria, 1982.
2) Maruko I et al. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 2007;144:15-22.
3) Laude A et al. Polypoidal choroidal vasculopathy and neovascular age-related macular degeneration:same or different disease? Prog Retin Eye Res 2010;29:19-29.
4) Cheung CMG et al. Pachychoroid disease. Eye(Lond) 2019;33:14-33.
5) Coscas G et al. Toward a specific classification of polypoidal choroidal vasculopathy:idiopathic disease or subtype of age-related macular degeneration. Invest Ophthalmol Vis Sci 2015;56:3187-95.
6) Kawamura A et al. Indocyanine green angiographic and optical coherence tomographic findings support classification of polypoidal choroidal vasculopathy into two types. Acta Ophthalmol 2013;91:e474-81.
7) Chung SE et al. Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 2011;118:840-5.
8) De Salvo G et al. Sensitivity and specificity of spectral-domain optical coherence tomography in detecting idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol 2014;158:1228-38. e1.
9) Kuehlewein L et al. Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration. Am J Ophthalmol 2015;160:739-48. e2.
10) Dansingani KK et al. Optical Coherence Tomography Angiography Reveals Mature, Tangled Vascular Networks in Eyes With Neovascular Age-Related Macular Degeneration Showing Resistance to Geographic Atrophy. Ophthalmic Surg Lasers Imaging Retina 2015;46:907-12.
11) Oishi A et al. LAPTOP study:a 24-month trial of verteporfin versus ranibizumab for polypoidal choroidal vasculopathy. Ophthalmology 2014;121:1151-2.
12) Kokame GT et al. Continuous anti-VEGF treatment with ranibizumab for polypoidal choroidal vasculopathy:6-month results. Br J Ophthalmol 2010;94:297-301.
13) Cho HJ et al. Intravitreal Aflibercept and Ranibizumab Injections for Polypoidal Choroidal Vasculopathy. Am J Ophthalmol 2016;165:1-6.
14) Ogura Y et al. Efficacy and safety of brolucizumab versus aflibercept in eyes with polypoidal choroidal vasculopathy in Japanese participants of HAWK. Br J Ophthalmol 2022;106:994-9.
15) Kikushima W et al. Comparison of initial treatment between 3-monthly intravitreal afibercept monotherapy and combined photodynamic therapy with single intravitreal afibercept for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 2017;255:311-6.
16) Matsumoto H et al. Short-term outcomes of intravitreal brolucizumab for treatment-naive neovascular age-related macular degeneration with type 1 choroidal neovascularization including polypoidal choroidal vasculopathy. Sci Rep 2021;11:6759.
17) Heier JS et al;TENAYA and LUCERNE Investigators. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration(TENAYA and LUCERNE):two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022;399:729-40.
18) Koh A et al. EVEREST study:efficacy and safety of verteporfin photodynamic therapy in combination with ranibizumab or alone versus ranibizumab monotherapy in patients with symptomatic macular polypoidal choroidal vasculopathy. Retina 2012;32:1453-64.
19) Lim TH et al;EVEREST II Study Group. Comparison of Ranibizumab With or Without Verteporfin Photodynamic Therapy for Polypoidal Choroidal Vasculopathy:The EVEREST II Randomized Clinical Trial. JAMA Ophthalmol 2020;138:935-42.
20) Lee WK et al. Efficacy and Safety of Intravitreal Aflibercept for Polypoidal Choroidal Vasculopathy in the PLANET Study:A Randomized Clinical Trial. JAMA Ophthalmol 2018;136:786-93.
21) Gomi F et al. INITIAL VERSUS DELAYED PHOTODYNAMIC THERAPY IN COMBINATION WITH RANIBIZUMAB FOR TREATMENT OF POLYPOIDAL CHOROIDAL VASCULOPATHY:the Fujisan Study. Retina 2015;35:1569-76.
22) Yanagi Y et al. CHOROIDAL VASCULAR HYPERPERMEABILITY AS A PREDICTOR OF TREATMENT RESPONSE FOR POLYPOIDAL CHOROIDAL VASCULOPATHY. Retina 2018;38:1509-17.
P.169 掲載の参考文献
1) Yannuzzi LA et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001;21:416-34.
2) Yannuzzi LA et al. The Retinal Atlas. Saunders;2010. pp.592-602.
3) Yannuzzi LA et al. The RETINAL ATLAS. 2nd ed. Saunders;2017. pp.754-7.
4) Spaide RF et al. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data:Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology 2020;127:616-36.
5) Maruko I et al. Clinical characteristics of exudative age-related macular degeneration in Japanese patients. Am J Ophthalmol 2007;144:15-22.
6) Saito M et al. Long-term characteristics of exudative age-related macular degeneration in Japanese patients. PLoS One 2021;16:e0261320.
7) Bottoni F et al. Treatment of retinal angiomatous proliferation in age-related macular degeneration:a series of 104 cases of retinal angiomatous proliferation. Arch Ophthalmol 2005;123:1644-50.
8) 高橋寛二ほか. 加齢黄斑変性の治療指針. 日本眼科学会雑誌2012;116:1150-5.
9) Gross NE et al. Nature and risk of neovascularization in the fellow eye of patients with unilateral retinal angiomatous proliferation. Retina 2005;25:713-8.
10) Saito M et al. Fundus autofluorescence of retinal angiomatous proliferation. PLoS One 2020;15:e0243458.
P.175 掲載の参考文献
1) Takahashi A et al. Pachychoroid Geographic Atrophy:Clinical and Genetic Characteristics. Ophthalmol Retina 2018;2:295-305.
2) 高橋寛二ほか. 萎縮型加齢黄斑変性の診断基準. 日本眼科学会雑誌 2015;119:671-7.
3) Schmitz-Valckenberg S et al. Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. Invest Ophthalmol Vis Sci 2006;47:2648-54.
4) Bindewald A et al. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol 2005;89:874-8.
5) Holz FG et al. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 2007;143:463-72.
6) Zweifel SA et al. Outer retinal tubulation:a novel optical coherence tomography finding. Arch Ophthalmol 2009;127:1596-602.
7) Hariri A et al. Outer retinal tubulation as a predictor of the enlargement amount of geographic atrophy in age-related macular degeneration. Ophthalmology 2015;122:407-13.
8) Sadda SR et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT:Classification of Atrophy Report 3. Ophthalmology 2018;125:537-48.
9) Choi WJ et al. Ultrahigh-Speed, Swept-Source Optical Coherence Tomography Angiography in Nonexudative Age-Related Macular Degeneration with Geographic Atrophy. Ophthalmology 2015;122:2532-44.
10) Muller PL et al. Choroidal Flow Signal in Late-Onset Stargardt Disease and Age-Related Macular Degeneration:An OCT-Angiography Study. Invest Ophthalmol Vis Sci 2018;59:AMD122-31.
11) Sato Y et al. Clinical Characteristics and Progression of Geographic Atrophy in a Japanese Population. Ophtalmol Retina 2023. doi:10.1016/j.oret.2023.06.004. Online ahead of print.
P.179 掲載の参考文献
1) Doyne RW. Choroidal and retinal changes:The results of blows on the eyes. Trans Ophthalmol Soc UK 1889;9:128-40.
2) Ringpfeil F et al. Pseudoxanthoma elasticum:Mutations in the MRP6 gene encoding a transmembrane ATP-binding cassette(ABC) transporter. Proc Natl Acad Sci USA 2000;97:6001-6.
3) Iwanaga A et al. Clinical practice guidelines for pseudoxanthoma elasticum(2017):Clinical Practice Guidelines for Pseudoxanthoma Elasticum Drafting Committee. J Dermatol 2022;49:e91-8.
4) Wada S, et al. Epidemiology of Angioid Streaks and Pseudoxanthoma Elasticum (2011-2020):a Nationwide Population-based Cohort Study. Ophthalmol Sci 2023. DOI:https://doi.org/10.1016/j.xops.2023.100370
5) Rosina C et al. Intravitreal bevacizumab for choroidal neovascularization secondary to angioid streaks:a long-term follow-up study. Eur J Ophthalmol 2015;25:47-50.
P.185 掲載の参考文献
1) Kedhar SR et al. Multifocal choroiditis with panuveitis and punctate inner choroidopathy:comparison of clinical characteristics at presentation. Retina 2007;27:1174-9.
2) Spaide RF et al. Redefining multifocal choroiditis and panuveitis and punctate inner choroidopathy through multimodal imaging. Retina 2013;33:1315-24.
3) Gilbert RM et al. Differentiating Multifocal Choroiditis and Punctate Inner Choroidopathy:A Cluster Analysis Approach. Am J Ophthalmol 2020;213:244-51.
4) Niederer RL et al. Risk Factors for Developing Choroidal Neovascular Membrane and Visual Loss in Punctate Inner Choroidopathy. Ophthalmology 2018;125:288-94.
5) Fung AT et al. Multifocal choroiditis without panuveitis:clinical characteristics and progression. Retina 2014;34:98-107.
6) de Groot EL et al. Idiopathic Multifocal Choroiditis and Punctate Inner Choroidopathy-Evaluation of Risk Factors for Increased Relapse Rate:A 2-Year Prospective Observational Cohort Study. Ophthalmologica 2022;245:476-86.
P.192 掲載の参考文献
1) Gass JD et al. Idiopathic juxtafoveolar retinal telangiectasis. Update of classification and follow-up study. Ophthalmology 1993;100:1536-46.
2) Yannuzzi LA et al. Idiopathic macular telangiectasia. Arch Ophthalmol 2006;124:450-60.
3) Ooto S et al. High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 2011;52:5541-50.
4) Ooto S et al. Comparison of cone pathologic changes in idiopathic macular telangiectasia types 1 and 2 using adaptive optics scanning laser ophthalmoscopy. Am J Ophthalmol 2013;155:1045-57.
5) Hirano Y et al. Indocyanine green angiography-guided laser photocoagulation combined with sub-Tenon's capsule injection of triamcinolone acetonide for idiopathic macular telangiectasia. Br J Ophthalmol 2010;94:600-5.
6) Takayama K et al. Intravitreal bevacizumab for type 1 idiopathic macular telangiectasia. Eye(Lond)2010;24:1492-7.
7) Moon BG et al. Use of intravitreal bevacizumab injections to treat type 1 idiopathic macular telangiectasia. Graefes Arch Clin Exp Ophthalmol 2012;250:1697-9.
8) Issa PC et al. Monthly ranibizumab for nonproliferative macular telangiectasia type 2:a 12-month prospective study. Am J Ophthalmol 2011;151:876-86.
9) Chew EY et al, the MacTel-CNTF Research Group. Ciliary neurotrophic factor for macular telangiectasia type 2:results from a phase 1 safety trial. Am J Ophthalmol 2015;159:659-66.
10) Karth PA et al. Outcomes of macular hole surgeries for macular telangiectasia type 2. Retina 2014;34:907-15.
P.197 掲載の参考文献
1) Spaide RF. Staphyloma:Part1. Springer;2014.
2) Ohno-Matsui K. Proposed classification of posterior staphyloma based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging. Ophthalmology 2014;121:1798-809.
3) Moriyama M et al. Topographic analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 2011;118:1626-37.
4) Curtin BJ. Pathology. In:The Myopias:Basic Science and Clinical Management. Harper & Row;1985. pp.247-51.
5) Ellabban AA et al. Three-dimensional tomographic features of dome-shaped macula by sweptsource optical coherence tomography. Am J Ophthalmol 2013;155:320-8.
6) Imamura Y et al. Enhanced depth imaging optical coherence tomography of the sclera in domeshaped macula. Am J Ophthalmol 2011;151:297-302.
7) Apple DJ et al. Congenital anomalies of the optic disc. Surv Ophthalmol 1982;27:3-41.
8) Kubota F et al. Tilted Disc Syndrome Associated with Serous Retinal Detachment:Long-term Prognosis. A Retrospective Multicenter Survey. Am J Ophthalmol 2019;207:313-8.
P.204 掲載の参考文献
1) Raven ML et al. Multi-modal imaging and anatomic classification of the white dot syndromes. Int J Retina Vitreous 2017;3:12.
2) 齋藤 航. 白点症候群の特徴と鑑別のポイント. 眼科 2022;64:841-51.
3) Papasavvas I et al. Multiple evanescent white dot syndrome (MEWDS):update on practical appraisal, diagnosis and clinicopathology;a review and an alternative comprehensive perspective. J Ophthalmic Inflamm Infect 2021;11:45.
4) Pichi F et al. The application of optical coherence tomography angiography in uveitis and inflammatory eye diseases. Prog Retin Eye Res 2017;59:178-201.
5) Tang W et al. Quantitative analysis of retinal and choriocapillary vascular density of multiple evanescent white dot syndrome by optical coherence tomography angiography. Graefes Arch Clin Exp Ophthalmol 2020;258:1697-707.
6) Bosello F et al. Multiple evanescent white dot syndrome:clinical course and factors influencing visual acuity recovery. Br J Ophthalmol 2022;106:121-7.
7) Hirooka K et al. Increased choroidal blood flow velocity with regression of acute posterior multifocal placoid pigment epitheliopathy. Jpn J Ophthalmol 2016;60:172-8.
8) Fiore T et al. Acute posterior multifocal placoid pigment epitheliopathy:outcome and visual prognosis. Retina 2009;29:994-1001.
9) Nazari Khanamiri H et al. Serpiginous choroiditis and infectious multifocal serpiginoid choroiditis. Surv Ophthalmol 2013;58:203-32.
10) Takahashi A et al. Impaired circulation in the thickened choroid of a patient with serpiginous choroiditis. Ocul Immunol Inflamm 2014;22:409-13.
11) 齋藤 航ほか. Birdshot chorioretinopathy-症例報告と本邦における文献的考察. 日本眼科学会雑誌 2002;106:229-35.
12) Pepple KL et al. Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy. JAMA Ophthalmol 2018;136:1288-92.
13) Saito S et al. Acute zonal occult outer retinopathy in Japanese patients:clinical features, visual function, and factors affecting visual function. PLoS One 2015;10:e0125133.
14) 厚生労働科学研究費補助金難治性疾患政策研究事業網膜脈絡膜・視神経萎縮症に関する調査研究班 AZOORの診断ガイドライン作成ワーキンググループ. 急性帯状潜在性網膜外層症(AZOOR)の診断ガイドライン. 日本眼科学会雑誌 2019;123:443-9.
P.207 掲載の参考文献
1) Freund KB et al. Acquired Vitelliform Lesions:correlation of clinical findings and multiple imaging analyses. Retina 2011;31:13-25.
2) Zweifel SA et al. Acquired vitelliform detachment in patients with subretinal drusenoid deposits(reticular pseudodrusen). Retina 2011;31:229-34.
3) Lima LH et al. Acquired vitelliform lesion associated with large drusen. Retina 2012;32:647-51.
4) Sakurada Y et al. Differentiating drusen and drusenoid deposits subtypes on multimodal imaging and risk of advanced age-related macular degeneration. Jpn J Ophthalmol 2023;67:1-13.
5) Balaratnasingam C et al. Clinical Characteristics, Choroidal Neovascularization, and Predictors of Visual Outcomes in Acquired Vitelliform Lesions. Am J Ophthalmol 2016;172:28-38.
6) Govetto A et al. Tractional Abnormalities of the Central Foveal Bouquet in Epiretinal Membranes:Clinical Spectrum and Pathophysiological Perspectives. Am J Ophthalmol 2017;184:167-80.
P.212 掲載の参考文献
1) Doi S et al. ADVERSE EFFECT OF MACULAR INTRARETINAL HEMORRHAGE ON THE PROGNOSIS OF SUBMACULAR HEMORRHAGE DUE TO RETINAL ARTERIAL MACROANEURYSM RUPTURE. Retina 2020;40:989-97.
2) Toth CA et al. Fibrin directs early retinal damage after experimental subretinal hemorrhage. Arch Ophthalmol 1991;109:723-9.
3) Cho HJ et al. Intravitreal bevacizumab for symptomatic retinal arterial macroaneurysm. Am J Ophthalmol 2013;155:898-904.
4) Okanouchi T et al. Novel technique for subretinal injection using local removal of the internal limiting membrane. Retina 2016;36:1035-8.
5) Sagara N et al. Macular hole formation after macular haemorrhage associated with rupture of retinal arterial macroaneurysm. Br J Ophthalmol 2009;93:1337-40.
6) Kawaji T et al. Internal Limiting Membrane Peeling-Repositioning Technique for Macular Hole After Macular Hemorrhage Associated With Rupture of Retinal Arterial Macroaneurysm. Retina 2019;39(Suppl 1):S84-6.
P.217 掲載の参考文献
1) Kido A et al. Nationwide incidence of central retinal artery occlusion in Japan:an exploratory descriptive study using the National Database of Health Insurance Claims(2011-2015). BMJ Open 2020;10:e041104.
2) Hayreh SS et al. Central retinal artery occlusion. Retinal survival time. Exp Eye Res 2004;78:723-36.
3) Hayreh SS et al. Central retinal artery occlusion and retinal tolerance time. Ophthalmology 1980;87:75-8.
4) Matsumoto CS et al. High correlation of scotopic and photopic electroretinogram components with severity of central retinal artery occlusion. Clin Ophthalmol 2011;5:115-21.
5) Cugati S et al. Treatment options for central retinal artery occlusion. Curr Treat Options Neurol 2013;15:63-77.
6) Kadonosono K et al. Intra-retinal Arterial Cannulation using a Microneedle for Central Retinal Artery Occlusion. Sci Rep 2018;8:1360.
7) Ohashi Ikeda H et al. Safety and effectiveness of a novel neuroprotectant, KUS121, in patients with non-arteritic central retinal artery occlusion:An open-label, non-randomized, first-in-humans, phase 1/2 trial. PLoS One 2020;15:e0229068.
8) Hayreh SS et al. Central retinal artery occlusion:visual outcome. Am J Ophthalmol 2005;140:376-91.
9) Brown GC et al. Cilioretinal arteries and retinal arterial occlusion. Arch Ophthalmol 1979;97:84-92.
10) Rudkin AK et al. Ocular neovascularization following central retinal artery occlusion:prevalence and timing of onset. Eur J Ophthalmol 2010;20:1042-6.
11) Shaikh IS et al. Assessing the risk of stroke development following retinal artery occlusion. J Stroke Cerebrovasc Dis 2020;29:105002.
P.224 掲載の参考文献
1) Yasuda M et al. Prevalence and systemic risk factors for retinal vein occlusion in a general Japanese population:the Hisayama study. Invest Ophthalmol Vis Sci 2010;51:3205-9.
2) Mitchell P et al. Prevalence and associations of retinal vein occlusion in Australia. The Blue Mountains Eye Study. Arch Ophthalmol 1996;114:1243-7.
3) Lim LL et al. Prevalence and risk factors of retinal vein occlusion in an Asian population. Br J Ophthalmol 2008;92:1316-9.
4) Muraoka Y et al. Arteriovenous crossing associated with branch retinal vein occlusion. Jpn J Ophthalmol 2019;63:353-64.
5) Miwa Y et al. RANIBIZUMAB FOR MACULAR EDEMA AFTER BRANCH RETINAL VEIN OCCLUSION:One Initial Injection Versus Three Monthly Injections. Retina 2017;37:702-9.
6) Osaka R et al. Anti-Vascular Endothelial Growth Factor Therapy for Macular Edema following Central Retinal Vein Occlusion:1 Initial Injection versus 3 Monthly Injections. Ophthalmologica 2018;239:27-35.
7) Hasegawa T et al. Macular vessel reduction as predictor for recurrence of macular oedema requiring repeat intravitreal ranibizumab injection in eyes with branch retinal vein occlusion. Br J Ophthalmol 2019;103:1367-72.
8) Campochiaro PA et al. Scatter Photocoagulation Does Not Reduce Macular Edema or Treatment Burden in Patients with Retinal Vein Occlusion:The RELATE Trial. Ophthalmology 2015;122:1426-37.
9) Wykoff CC et al. Peripheral Laser for Recalcitrant Macular Edema Owing to Retinal Vein Occlusion:The WAVE Trial. Ophthalmology 2017;124:919-21.
10) Murata T et al. The randomized ZIPANGU trial of ranibizumab and adjunct laser for macular edema following branch retinal vein occlusion in treatment-naive patients. Sci Rep 2021;11:551.
11) Osaka R et al. One-year results of anti-vascular endothelial growth factor therapy combined with triamcinolone acetonide for macular edema associated with branch retinal vein occlusion. Jpn J Ophthalmol 2020;64:605-12.
12) Ota M et al. Association between integrity of foveal photoreceptor layer and visual acuity in branch retinal vein occlusion. Br J Ophthalmol 2007;91:1644-9.
13) Ota M et al. Foveal photoreceptor layer in eyes with persistent cystoid macular edema associated with branch retinal vein occlusion. Am J Ophthalmol 2008;145:273-80.
14) Hasegawa T et al. Presence of foveal bulge in optical coherence tomographic images in eyes with macular edema associated with branch retinal vein occlusion. Am J Ophthalmol 2014;157:390-6. e1.
15) 長谷川泰司. 網膜静脈閉塞症における眼底イメージングと治療への応用. 日本眼科学会雑誌 2019;123:1038-53.
16) Hasegawa T et al. CLINICAL FINDINGS OF EYES WITH MACULAR EDEMA ASSOCIATED WITH BRANCH RETINAL VEIN OCCLUSION REFRACTORY TO RANIBIZUMAB. Retina 2018;38:1347-53.
17) Ko J et al. Optical coherence tomography predicts visual outcome in acute central retinal vein occlusion. Retina 2014;34:1132-41.
18) Hasegawa T et al. Optical coherence tomographic predictor of retinal non-perfused areas in eyes with macular oedema associated with retinal vein occlusion. Br J Ophthalmol 2017;101:569-73.
19) Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Branch Vein Occlusion Study Group. Arch Ophthalmol 1986;104:34-41.
20) A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report. Ophthalmology 1995;102:1434-44.
21) Brown DM et al. Ranibizumab in preproliferative (ischemic) central retinal vein occlusion:the rubeosis anti-VEGF(RAVE) trial. Retina 2014;34:1728-35.
P.230 掲載の参考文献
1) 猪俣 孟. 眼の組織・病理アトラス. 医学書院;2001. pp.196-7.
2) An D et al. Three-Dimensional Characterization of the Normal Human Parafoveal Microvasculature Using Structural Criteria and High-Resolution Confocal Microscopy. Invest Ophthalmol Vis Sci 2020;61:3.
3) Yu DY et al. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res 2001;20:175-208.
4) Scharf J et al. Paracentral acute middle maculopathy and the organization of the retinal capillary plexuses. Prog Retin Eye Res 2021;81:100884.
5) Sarraf D et al. Paracentral acute middle maculopathy:a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Ophthalmol 2013;131:1275-87.
6) Sridhar J et al. Optical Coherence Tomography Angiography and En Face Optical Coherence Tomography Features of Paracentral Acute Middle Maculopathy. Am J Ophthalmol 2015;160:1259-68. e2.
7) Falavarjani KG et al. En Face Optical Coherence Tomography Analysis to Assess the Spectrum of Perivenular Ischemia and Paracentral Acute Middle Maculopathy in Retinal Vein Occlusion. Am J Ophthalmol 2017;177:131-8.
8) Rahimy E et al. Paracentral Acute Middle Maculopathy:What We Knew Then and What We Know Now. Retina 2015;35:1921-30.
9) Chu S et al. Projection-Resolved OCT Angiography of Microvascular Changes in Paracentral Acute Middle Maculopathy and Acute Macular Neuroretinopathy. Invest Ophthalmol Vis Sci 2018;59:2913-22.
10) Bhavsar KV et al. Acute macular neuroretinopathy:A comprehensive review of the literature. Surv Ophthalmol 2016;61:538-65.
11) Fawzi AA et al. Acute macular neuroretinopathy:long-term insights revealed by multimodal imaging. Retina 2012;32:1500-13.
12) Thanos A et al. Optical Coherence Tomographic Angiography in Acute Macular Neuroretinopathy. JAMA Ophthalmol 2016;134:1310-4.
13) Nakamura M et al. Longitudinal follow-up of two patients with isolated paracentral acute middle maculopathy. Int Med Case Rep J 2019;12:143-9.
P.234 掲載の参考文献
1) Tso MO et al. Pathophysiology of hypertensive retinopathy. Ophthalmology 1982;89:1132-45.
2) 飯島裕幸. 高血圧性眼疾患の血圧管理. 眼科2017;59:1561-5.
3) 吉本弘志. 高血圧網膜症. 日本臨牀2004;62 増刊号3:381-5.
4) Verstappen M et al. Hypertensive Choroidopathy Revealing Malignant Hypertension in a Young Patient. Retina 2019;39:e12-3.
5) Abbassi S et al. Hypertensive retinopathy, choroidopathy, and optic neuropathy. JAMA Ophthalmol 2015;133:e151494.
6) Rezkallah A et al. Hypertensive choroidopathy:Multimodal imaging and the contribution of widefield swept-source oct-angiography. Am J Ophthalmol Case Rep 2019;13:131-5.
7) Saito M et al. Increased choroidal blood flow and choroidal thickness in patients with hypertensive chorioretinopathy. Graefe Arch Clin Exp Ophthalmol 2020;258:233-40.
8) Akay F et al. Retinal structural changes in systemic arterial hypertension:an OCT study. Eur J Ophthalmol 2016;26:436-41.
9) Ooto S et al. Effects of sex and age on the normal retinal and choroidal structures on optical coherence tomography. Curr Eye Res 2015;40:213-25.
10) Sonoda S et al. Luminal and stromal areas of choroid determined by binarization method of optical coherence tomographic images. Am J Ophthalmol 2015;159:1123-31. e1.
11) Kida T et al. Long-Term Follow-Up Changes of Central Choroidal Thickness Thinning after Repeated Anti-VEGF Therapy Injections in Patients with Central Retinal Vein Occlusion-Related Macular Edema with Systemic Hypertension. Ophthalmologica 2020;243:102-9.
P.239 掲載の参考文献
1) Jackson N et al. Retinal findings in adult leukaemia:correlation with leukocytosis. Clin Lab Haematol 1996;18:105-9.
2) Reddy SC et al. Retinopathy in acute leukemia at initial diagnosis:correlation of fundus lesions and haematological parameters. Acta Ophthalmol Scand 2004;82:81-5.
3) 喜多美穂里. 血液疾患に伴う網膜変化. 増田寛次郎ほか編. 眼科学大系5A, 中山書店;1994. pp.161-5.
4) Pang CE et al. Paraneoplastic cloudy vitelliform submaculopathy in primary vitreoretinal lymphoma. Am J Ophthalmol 2014;158:1253-61. e2.
5) 久次米祐樹ほか. 病初期から観察できたparaneoplastic cloudy vitelliform submaculopathy の1例, 日本眼科学会雑誌 2017;121:871-7.
6) Chan CC et al. Primary Intraocular Lymphoma. World Scientific Publishing;2007. pp.19-42.
P.244 掲載の参考文献
1) 日本糖尿病眼学会診療ガイドライン委員会. 糖尿病網膜症診療ガイドライン(第1版). 日本眼科学会雑誌 2020;124:955-81.
P.246 掲載の参考文献
2) Pane A et al. Swollen disc(s), normal vision. In:Pane A et al, editors. The Neuro-Ophthalmology Survival Guide. Mosby ELSEVIER;2007. pp.113-57.
3) Friedman DI. Papilledema. In:Miller NR et al, editors. Walsh & Hoyt's Clinical Neuro-Ophthalmology, 6th ed. Lippincott Williams & Wilkins;2005. pp.237-93.
P.249 掲載の参考文献
1) 日本糖尿病眼学会診療ガイドライン委員会. 糖尿病網膜症診療ガイドライン(第1版). 日本眼科学会雑誌 2020;124:955-81.
2) Otani T et al. Correlation between visual acuity and foveal microstructural changes in diabetic macular edema. Retina 2010;30:774-80.
3) Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group. Arch Ophthalmol 1985;103:1796-806.
4) Lewis H et al. Vitrectomy for diabetic macular traction and edema associated with posterior hyaloidal traction. Ophthalmology 1992;99:753-9.
5) Elman MJ et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 2011;118:609-14.
6) Chew EY et al. Ocular side effects associated with peribulbar injections of triamcinolone acetonide for diabetic macular edema. Retina 2011;31:284-9.
7) Shimura M et al. Reduction in the frequency of intravitreal bevacizumab administrations achieved by posterior subtenon injection of triamcinolone acetonide in patients with diffuse diabetic macular edema. Jpn J Ophthalmol 2016;60:401-7.
8) 小椋祐一郎ほか. 黄斑疾患に対する硝子体内注射ガイドライン. 日本眼科学会雑誌 2016;120:87-90.
P.254 掲載の参考文献
1) Chiang MF et al. International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 2021;128:e51-68.
2) Early Treatment For Retinopathy Of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity:results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol 2003;121:1684-94.
3) Mintz-Hittner HA et al. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med 2011;364:603-15.
4) Stahl A et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW):an open-label randomised controlled trial. Lancet 2019;394:1551-9.
5) Stahl A et al. Effect of Intravitreal Aflibercept vs Laser Photocoagulation on Treatment Success of Retinopathy of Prematurity:The FIREFLEYE Randomized Clinical Trial. JAMA 2022;328:348-59.
6) Yonekawa Y et al. PROGRESSIVE RETINAL DETACHMENT IN INFANTS WITH RETINOPATHY OF PREMATURITY TREATED WITH INTRAVITREAL BEVACIZUMAB OR RANIBIZUMAB. Retina 2018;38:1079-83.
7) 未熟児網膜症眼科管理対策委員会. 未熟児網膜症に対する抗VEGF療法の手引き. 日本眼科学会雑誌 2020;124:1013-9.
8) 未熟児網膜症眼科管理対策委員会. 未熟児網膜症に対する抗VEGF療法の手引き(第2版). 日本眼科学会雑誌 2023;127:570-8.
P.263 掲載の参考文献
1) Holden BA et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016;123:1036-42.
2) 中江公裕. わが国における視覚障害の現状. 厚生労働省難治性疾患克服研究事業. 網脈絡膜・視神経萎縮症に関する研究. 平成17年度研究報告書;2006. pp.263-70.
3) Iwase A et al. Prevalence and causes of low vision and blindness in a Japanese adult population:the Tajimi Study. Ophthalmology 2006;113:1354-62.
4) Flitcroft DI et al. IMI-Defining and Classifying Myopia:A Proposed Set of Standards for Clinical and Epidemiologic Studies. Invest Ophthalmol Vis Sci 2019;60:M20-30.
5) Moriyama M et al. Topographical analyses of shape of eyes with pathologic myopia by high-resolution three-dimensional magnetic resonance imaging. Ophthalmology 2011;118:1626-37.
6) Curtin BJ. The posterior staphyloma of pathologic myopia. Trans Am Ophthalmol Soc 1977;75:67-86.
7) Ohno-Matsui K. Proposed classification of posterior staphylomas based on analyses of eye shape by three-dimensional magnetic resonance imaging and wide-field fundus imaging. Ophthalmology 2014;121:1798-809.
8) Hosoda Y et al. CCDC102B confers risk of low vision and blindness in high myopia. Nat Commun 2018;9:1782.
9) Avila MP et al. Natural history of choroidal neovascularization in degenerative myopia. Ophtalmology 1984;91:1573-81.
10) 所 敬ほか. 病的近視診断の手引き. 厚生省特定疾患網膜脈絡膜萎縮症調査研究班報告書;1987. pp.1-14.
11) Ohno-Matsui K et al;META-analysis for Pathologic Myopia(META-PM)Study Group. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 2015;159:877-83. e7.
12) Fang Y et al. OCT-Based Diagnostic Criteria for Different Stages of Myopic Maculopathy. Ophthalmology 2019;126:1018-32.
P.271 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患政策研究事業網膜脈絡膜・視神経萎縮症に関する調査研究班網膜色素変性診療ガイドライン作成ワーキンググループ. 網膜色素変性診療ガイドライン. 日本眼科学会雑誌 2016;120:846-61.
2) Iwase A et al. Prevalence and causes of low vision and blindness in a Japanese adult population:the Tajimi Study. Ophthalmology 2006;113:1354-62.
3) Morizane Y et al. Incidence and causes of visual impairment in Japan:the first nation-wide complete enumeration survey of newly certified visually impaired individuals. Jpn J Ophthalmol 2019;63:26-33.
4) Berson EL et al. Natural course of retinitis pigmentosa over a three-year interval. Am J Ophthalmol 1985;99:240-51.
5) Hara A et al. The qualitative assessment of optical coherence tomography and the central retinal sensitivity in patients with retinitis pigmentosa. PLos One 2020;15:e0232700.
6) Gregory-Evans K et al. Retinitis pigmentosa and allied disorders. In:Schachat AP, editor. Ryan's Retina. Elsevier;2018. pp.861-935
7) Kuniyoshi K et al. Leber congenital amaurosis/early-onset retinal dystrophy in Japanese population. In:Prakash G et al, editors. Advances in Vision Research, volume I. Springer;2017. pp.137-67
8) Yoshida N et al. Factors affecting visual acuity after cataract surgery in patients with retinitis pigmentosa. Ophthalmology 2015;122:903-8.
9) Genead MA et al. Efficacy of sustained use of topical dorzolamide therapy for cystic macular lesions in patients with retinitis pigmentosa and Usher syndrome. Arch Ophthalmol 2010;128:1146-50.
P.278 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患政策研究事業網膜脈絡膜・視神経萎縮症に関する調査研究班黄斑ジストロフィの診断ガイドライン作成ワーキンググループ. 黄斑ジストロフィの診断ガイドライン. 日本眼科学会雑誌 2019;123:424-42.
2) 藤波 芳ほか. 黄斑ジストロフィの分子病態. 眼科 2018;60:309-21.
3) Rahman N et al. Macular dystrophies:clinical and imaging features, molecular genetics and therapeutic options. Br J Ophthalmol 2020;104:451-60.
4) 藤波 芳ほか. 遺伝性網膜疾患に対する遺伝子治療. 臨床眼科 2020;74:1472-83.
5) Georgiou M et al. Inherited retinal diseases:Therapeutics, clinical trials and end points-A review. Clin Exp Ophthalmol 2021;49:270-88.
6) Miyake Y et al. Hereditary macular dystrophy without visible fundus abnormality. Am J Ophthala mol 1989;108:292-9.
7) Miyake Y et al. Occult macular dystrophy. Am J Ophthalmol 1996;122:644-53.
8) Akahori M et al. Dominant mutations in RP1L1 are responsible for occult macular dystrophy. Am J Hum Genet 2010;87:424-9.
9) Fujinami K et al. Novel RP1L1 Variants and Genotype-Photoreceptor Microstructural Phenotype Associations in Cohort of Japanese Patients With Occult Macular Dystrophy. Invest Ophthalmol Vis Sci 2016;57:4837-46.
10) Fujinami K et al. Clinical and Genetic Characteristics of East Asian Patients with Occult Macular Dystrophy (Miyake Disease):East Asia Occult Macular Dystrophy Studies Report Number 1. Ophthalmology 2019;126:1432-44.
11) Yang L et al. Spatial Functional Characteristics of East Asian Patients With Occult Macular Dystrophy(Miyake Disease);EAOMD Report No.2. Am J Ophthalmol 2021;221:169-80.
12) Fujinami K et al. A longitudinal study of Stargardt disease:quantitative assessment of fundus autofluorescence, progression, and genotype correlations. Invest Ophthalmol Vis Sci 2013;54:8181-90.
13) Fujinami K et al. A longitudinal study of stargardt disease:clinical and electrophysiologic assessment, progression, and genotype correlations. Am J Ophthalmol 2013;155:1075-88. e13.
14) Fujinami K et al. Clinical and molecular analysis of Stargardt disease with preserved foveal structure and function. Am J Ophthalmol 2013;156:487-501. e1.
15) Fujinami K et al. Clinical and molecular characteristics of childhood-onset Stargardt disease. Ophthalmology 2015;122:326-34.
16) Fujinami K et al. The clinical effect of homozygous ABCA4 alleles in 18 patients. Ophthalmology 2013;120:2324-31.
17) Liu X et al. Clinical and genetic characteristics of Stargardt disease in a large Western China cohort:Report 1. Am J Med Genet C Semin Med Genet 2020;184:694-707.
18) Fujinami-Yokokawa Y et al. Clinical and Genetic Characteristics of 18 Patients from 13 Japanese Families with CRX-associated retinal disorder:Identification of Genotype-phenotype Association. Sci Rep 2020;10:9531.
19) Liu X et al. Clinical and Genetic Characteristics of 15 Affected Patients From 12 Japanese Families with GUCY2D-Associated Retinal Disorder. Transl Vis Sci Technol 2020;9:2.
20) Georgiou M et al. KCNV2-Associated Retinopathy:Detailed Retinal Phenotype and Structural Endpoints-KCNV2 Study Group Report 2. Am J Ophthalmol 2021;230:1-11.
21) Fujinami K et al. Molecular characteristics of four Japanese cases with KCNV2 retinopathy:report of novel disease-causing variants. Mol Vis 2013;19:1580-90.
22) Georgiou M et al. Retinal imaging in inherited retinal diseases. Ann Eye Sci 2020;5:25.
23) Nakanishi A et al. Clinical and Genetic Findings of Autosomal Recessive Bestrophinopathy in Japanese Cohort. Am J Ophthalmol 2016;168:86-94.
24) Georgiou M et al. X-Linked Retinoschisis:Deep Phenotyping and Genetic Characterization. Ophthalmology 2022;129:542-51.
25) Kondo H et al. Novel mutations in the RS1 gene in Japanese patients with X-linked congenital retinoschisis. Hum Genome Var 2019;6:3.
P.285 掲載の参考文献
1) Bos PJ et al. Acute macular neuroretinopathy. Am J Ophthalmol 1975;80:573-84.
2) Sarraf D et al. Paracentral acute middle maculopathy:a new variant of acute macular neuroretinopathy associated with retinal capillary ischemia. JAMA Opthalmol 2013;131:1275-87.
3) Parikh P et al. Parafoveal acute middle maculopathy(PAMM) in sickle cell disease after discontinuation of hydroxyurea. Am J Ophthalmol Case Rep 2022;28:101753.
4) Liang S et al. Association of Paracentral Acute Middle Maculopathy with Visual Prognosis in Retinal Artery Occlusion:A Retrospective Cohort Study. J Opthalmol 2022;2022:9404973.
5) Bhavsar KV et al. Acute macular neuroretinopathy:A comprehensive review of the literature. Surv Ophthalmol 2016;61:538-65.
6) David JA et al. Acute macular neuroretinopathy associated with COVID-19 infection. Am J Opthalmol Case Rep 2021;24:101232.
7) Ashfaq I et al. Acute Macular Neuroretinopathy Associated with Acute Influenza Virus Infection. Ocul Immounol Inflamm 2021;29:333-9.
8) Li M et al. Acute Macular Neuroretinopathy in Dengue Fever:Short-term Prospectively Followed Up Case Series. JAMA Ophthalmol 2015;133:1329-33.
9) Pirani V et al. Acute macular neuroretinopathy associated with subclinical cytomegalovirus infection. Int Ophthalmol 2017;37:727-31.
10) Marinho PM et al. Retinal findings in patients with COVID-19. Lancet 2020;395:1610.
11) D'Souza HS et al. Seeing Blue Dots After COVID-19 Infection. JAMA Ophthalmol 2023;141:97-8.
12) Azar G et al. Did the COVID-19 Pandemic Increase the Incidence of Acute Macular Neuroretinopathy? J Clin Med 2021;10:5038.
13) Druke D et al. Acute macular neuroretinopathy (AMN) following COVID-19 vaccination. Am J Opthalmol Case Rep 2021;24:101207.
14) Ramtohul P et al. The OCT angular sign of Henle fiber layer(HFL) hyperreflectivity(ASHH) and the pathoanatomy of the HFL in macular disease. Prog Retin Eye Res 2023;95:101135.
15) Cabral D et al. Deep Capillary Plexus Features in Acute Macular Neuroretinopathy:Novel Insights Based on the Anatomy of Henle Fiber Layer. Invest Ophthalmol Vis Sci 2022;63:4.
16) Chu S et al. Projection-Resolved OCT Angiography of Microvascular Changes in Paracentral Acute Middle Maculopathy and Acute Macular Neuroretinopathy. Invest Ophthalmol Vis Sci 2018;59:2913-22.
17) Hashimoto Y et al. Increased macular choroidal blood flow velocity during systemic corticosteroid therapy in a patient with acute macular neuroretinopathy. Clin Opthalomol 2012;6:1645-9.
P.290 掲載の参考文献
1) Chan JW. Paraneoplastic retinopathies and optic neuropathies. Surv Ophthalmol 2003;48:12-38.
2) Koike C et al. TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA 2010;107:332-7.
3) Kondo M et al. Identification of autoantibodies against TRPM1 in patients with paraneoplastic retinopathy associated with ON bipolar cell dysfunction. PLoS One 2011;6:e19911.
4) Ueno S et al. CLINICAL COURSE OF PARANEOPLASTIC RETINOPATHY WITH ANTI-TRPM1 AUTOANTIBODY IN JAPANESE COHORT. Retina 2019;39:2410-8.
5) Chen JJ et al. Clinical Utility of Antiretinal Antibody Testing. JAMA Ophthalmol 2021;139:658-62.
P.294 掲載の参考文献
1) Delori F et al. Deformation of the globe under high-speed impact:it relation to contusion injuries. Invest Ophthalmol 1969;8:290-301.
2) 笹元威宏ほか. エアーバッグ外傷によりPurtscher 網膜症をきたした1例. 日本職業・災害医学会会誌 2004;52:250-3.
3) Menchini U et al. Mechanism of spontaneous closure of traumatic macular hole:OCT study of one case. Retina 2003;23:104-6.
4) Privat E et al. Residual defect in the foveal photoreceptor layer detected by optical coherence tomogramphy in eyes with spontaneously closed macular holes. Am J Ophthalmol 2007;143:814-9.
5) 井石 涼ほか. 若年者外傷性黄斑円孔の硝子体手術. 臨床眼科 2011;65:803-7.
6) 太田聡美ほか. 鈍的外傷後の黄斑円孔に対する硝子体手術成績. 臨床眼科 2013;67:491-5.
P.298 掲載の参考文献
1) Ehlers JP et al. Intraoperative optical coherence tomography using the RESCAN 700:preliminary results from the DISCOVER study. Br J Ophthalmol 2014;98:1329-32.
2) Ehlers JP et al. The DISCOVER Study 3-Year Results:Feasibility and Utility of Microscope-integrated Intraoperative OCT During Ophthalmic Surgery. Ophthalmology 2018;125:1014-27.
3) Michalewska Z et al. Inverted internal limiting membrane flap technique for large macular holes. Ophthalmology 2010;117:2018-25.
4) Takahashi K et al. Results of lamellar macular hole-associated epiretinal proliferation embedding technique for the treatment of degenerative lamellar macular hole. Graefes Arch Clin Exp Ophthalmol 2019;257:2147-54.
5) Sotani Y et al. INTRAOPERATIVE OPTICAL COHERENCE TOMOGRAPHY FOR REAL-TIME VISUALIZATION OF THE POSITIONAL RELATIONSHIP BETWEEN BUCKLING MATERIAL AND RETINAL BREAKS DURING SCLERAL BUCKLING FOR RHEGMATOGENOUS RETINAL DETACHMENT. Retina 2022;42:2395-400.
6) Nishitsuka K et al. Intraoperative Optical Coherence Tomography Imaging of the Peripheral Vitreous and Retina. Retina 2018;38:e20-2.

Chapter5 ぶどう膜炎

P.304 掲載の参考文献
1) 日本眼炎症学会ぶどう膜炎診療ガイドライン作成委員会. ぶどう膜炎診療ガイドライン. 日本眼科学会雑誌 2019;123:635-96.
2) Suzuki T et al. Incidence and changing patterns of uveitis in Central Tokyo. Int Ophthalmol 2021;41:2377-88.
3) Gupta V et al. Spectral-domain cirrus optical coherence tomography of choroidal striations seen in the acute stage of Vogt-Koyanagi-Harada disease. Am J Ophthalmol 2009;147:148-53. e2.
4) Maruko I et al. Subfoveal choroidal thickness after treatment of Vogt-Koyanagi-Harada disease. Retina 2011;31:510-7.
5) Maruko I et al. SUBFOVEAL CHOROIDAL THICKNESS IN PAPILLITIS TYPE OF VOGT-KOYANAGI-HARADA DISEASE AND IDIOPATHIC OPTIC NEURITIS. Retina 2016;36:992-9.
6) Read RW et al. Revised diagnostic criteria for Vogt-Koyanagi-Harada disease:report of an international committee on nomenclature. Am J Ophthalmol 2001;131:647-52.
P.310 掲載の参考文献
1) Chan CC et al. Primary vitreoretinal lymphoma:a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist 2011;16:1589-99.
2) Sonoda KH et al. Epidemiology of uveitis in Japan:a 2016 retrospective nationwide survey. Jpn J Ophthalmol 2021;65:184-90.
3) Pichi F et al. Optical coherence tomography diagnostic signs in posterior uveitis. Prog Retin Eye Res 2020;75:100797.
4) Kimura K et al. Clinical features and diagnostic significance of the intraocular fluid of 217 patients with intraocular lymphoma. Jpn J Ophthalmol 2012;56:383-9.
5) 後藤 浩. 原発性眼内リンパ腫. 臨床眼科 2014;68:42-9.
6) 慶野 博. リンパ腫のイメージングによる診断法について教えてください. あたらしい眼科 2020;37(臨増):196-201.
7) Saito T et al. Optical coherence tomography manifestations of primary vitreoretinal lymphoma. Graefes Arch Clin Exp Ophthalmol 2016;254:2319-26.
8) Barry RJ et al. Characteristic optical coherence tomography findings in patients with primary vitreoretinal lymphoma:a novel aid to early diagnosis. Br J Ophthalmol 2018;102:1362-6.
9) Yang X et al. SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FEATURES OF VITREORETINAL LYMPHOMA IN 55 EYES. Retina 2021;41:249-58.
10) Pichi F et al. Advanced OCT Analysis of Biopsy-proven Vitreoretinal Lymphoma. Am J Ophthalmol 2022;238:16-26.
11) Takase H et al. Challenges in the diagnosis and management of vitreoretinal lymphoma-Clinical and basic approaches. Prog Retin Eye Res 2022;90:101053.
12) Deak GG et al. Vertical Hyperreflective Lesions on Optical Coherence Tomography in Vitreoretinal Lymphoma. JAMA Ophthalmol 2019;137:194-8.
13) Keino H et al. Spectral-domain Optical Coherence Tomography Patterns in Intraocular Lymphoma. Ocul Immunol Inflamm 2016;24:268-73.
14) Carbonell D et al. Consensus Recommendations for the Diagnosis of Vitreoretinal Lymphoma. Ocul Immunol Inflamm 2021;29:507-20.
15) Sobolewska B et al. Vitreoretinal Lymphoma. Cancers(Basel) 2021;13:3921.
16) Kaburaki T et al. Combined intravitreal methotrexate and immunochemotherapy followed by reduced-dose whole-brain radiotherapy for newly diagnosed B-cell primary intraocular lymphoma. Br J Haematol 2017;179:246-55.
P.315 掲載の参考文献
1) Keino H. Evaluation of disease activity in uveoretinitis associated with Behcet's disease. Immunol Med 2021;44:86-97.
2) Schneider EW et al. Chronic retinal necrosis:cytomegalovirus necrotizing retinitis associated with panretinal vasculopathy in non-HIV patients. Retina 2013;33:1791-9.
3) Tomkins-Netzer O et al. Long-term clinical outcome and causes of vision loss in patients with uveitis. Ophthalmology 2014;121:2387-92.
4) Accorinti M et al. Epidemiology of Macular Edema in Uveitis. Ocul Immunol Inflamm 2019;27:169-80.
P.318 掲載の参考文献
1) Watson PG et al. Scleritis and episcleritis. Br J Ophthalmol 1976;60:163-91.
2) Tanaka R et al. Clinical characteristics and ocular complications of patients with scleritis in Japanese. Jpn J Ophthalmol 2018;62:517-24.
3) Keino H et al. Clinical features and visual outcomes of Japanese patients with scleritis. Br J Ophthalmol 2010;94:1459-63.
4) Preetam Peraka R et al. Role of anterior segment optical coherence tomography in scleral diseases:A review. Semin Ophthalmol 2023;38:238-47.
5) Alsarhani WK et al. Multimodal Imaging of Nodular Posterior Scleritis:Case Report and Review of the Literature. Middle East Afr J Ophthalmol 2020;27:134-8.
6) McCluskey PJ et al. Posterior scleritis:clinical features, systemic associations, and outcome in a large series of patients. Ophthalmology 1999;106:2380-6.

Chapter6 視神経疾患

P.326 掲載の参考文献
1) Bennett JL. Optic Neuritis. Continuum(Minneap Minn) 2019;25:1236-64.
2) Petzold A et al. Diagnosis and classification of optic neuritis. Lancet Neurol 2022;21:1120-34.
3) 若倉雅登ほか. 我が国における視神経炎の頻度と治療の現況について. 日本眼科学会雑誌 1995;99:93-7.
4) 抗アクアポリン 4 抗体陽性視神経炎診療ガイドライン作成委員会. 抗アクアポリン 4 抗体陽性視神経炎診療ガイドライン. 日本眼科学会雑誌 2014;118:446-60.
5) Kezuka T et al. Diagnosis and treatment of anti-myelin oligodendrocyte glycoprotein antibody positive optic neuritis. Jpn J Ophthalmol 2018;62:101-8.
6) Ishikawa H et al. Epidemiologic and Clinical Characteristics of Optic Neuritis in Japan. Ophthalmology 2019;126:1385-98.
7) 「多発性硬化症・視神経脊髄炎診療ガイドライン」作成委員会編. 第12章 急性増悪期の治療. 第13章 再発予防(進行抑制)の治療. 日本神経学会監. 多発性硬化症・視神経脊髄炎診療ガイドライン 2017, 医学書院;2017. pp.174-264.
8) Mimura O et al. Intravenous immunoglobulin treatment for steroid-resistant optic neuritis:A multicenter, double-blind, phase III study. Jpn J Ophthalmol 2021;65:122-32.
9) Pittock SJ et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N Engl J Med 2019;381:614-25.
10) Yamamura T et al. Trial of Satralizumab in Neuromyelitis Optica Spectrum Disorder. N Engl J Med 2019;381:2114-24.
11) Cree BAC et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder(N-MOmentum):a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet 2019;394:1352-63.
12) Tahara M et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders(RIN-1 study):a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2020;19:298-306.
P.335 掲載の参考文献
1) 中尾雄三. 視神経疾患の新たな考え方-原発病変部位・病因・視機能障害. あたらしい眼科 2018;35:69-77.
2) 後藤克聡ほか. 視神経症の原因にはどのようなものがありますか. また鑑別はどうしますか. あたらしい眼科 2019;36(臨増):210-4.
3) Hayreh SS et al. Visual field abnormalities in nonarteritic anterior ischemic optic neuropathy:their pattern and prevalence at initial examination. Arch Ophthalmol 2005;123:1554-62.
4) Goto K et al. Time course of macular and peripapillary inner retinal thickness in non-arteritic anterior ischemic optic neuropathy using spectral-domain optical coherence tomography. Neuroophthalmology 2016;40:74-85.
5) Ishikawa H et al. Epidemiologic and clinical characteristics of optic neuritis in Japan. Ophthalmology 2019;126:1385-98.
6) Maekubo T et al. Laser speckle flowgraphy for differentiating between nonarteritic ischemic optic neuropathy and anterior optic neuritis. Jpn J Ophthalmol 2013;57:385-90.
7) Akashi A et al. The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Invest Ophthalmol Vis Sci 2014;55:4667-72.
8) Goto K et al. Quantitative analysis of macular inner retinal layer using swept-source optical coherence tomography in patients with optic tract syndrome. J Ophthalmol 2017;2017:3596587.
9) 後藤克聡ほか. 正中線偏位を伴う脳内出血後に片眼性圧迫性視神経症と同名半盲をきたした2例. 神経眼科 2022;39:142-50.
10) 後藤克聡ほか. 網膜内層厚とRAPDx(R) による対光反射の長期経過を観察できた外傷性視神経症の2例. 神経眼科 2021;38:30-6.
11) Kanamori A et al. Longitudinal study of retinal nerve fiber layer thickness and ganglion cell complex in traumatic optic neuropathy. Arch Ophthalmol 2012;130:1067-9.
12) 高橋洋平ほか. Leber 遺伝性視神経症における限界フリッカ値と視機能についての検討. 神経眼科 2017;34:156-60.
13) Wakakura M et al. Initial temporal field defect in Leber hereditary optic neuropathy. Jpn J Ophthalmol 2009;53:603-7.
14) Akiyama H et al. Retinal ganglion cell analysis in Leber's hereditary optic neuropathy. Ophthalmology 2013;120:1943-4. e5.
15) 上田香織. Leber 遺伝性視神経症. あたらしい眼科 2022;39:1605-10.
16) 高井康行ほか. 薬剤性視神経症. 眼科 2021;63:1311-7.
17) 比嘉梨沙子ほか. エタンブトール視神経症. 眼科 2013;55:693-703.
P.342 掲載の参考文献
1) 尤 文彦ほか. 外眼筋のT2 緩和時間による甲状腺視神経症の評価. 臨床眼科 2001;55:1871-5.
2) 神前あい. 甲状腺眼筋症. 眼科 2002;44:1785-95.
3) 舟木智佳ほか. 複視に対し観血的治療を行った甲状腺眼症の検討. 日本眼科紀要 2003;54:192-5.
4) 井上洋一. 甲状腺眼症における難治性複視に対する治療について. 神経眼科 1999;16:351-3.
5) 神前あい. 甲状腺眼症に伴う斜視に対するBTX-A療法. 眼科 2019;61:1483-7.
6) 神前あい. 上眼瞼後退に対する局所薬物療法. 眼科 2011;53:1819-26.
7) Mckeag D et al. Clinical festures of dysthyroid optic neuropathy:a European Group on Graves' Orbitopathy(EUGOGO) survey. Br J Ophthalmol 2007;91:455-8.
8) Liao SL et al. Transcaruncular orbital decompression:an alternate procedure for Graves ophthalmopathy with compressive optic neuropathy. Am J Ophthalmol 2006;141:810-8.
9) Shorr N et al. Transcaruncular approach to the medial orbit and orbital apex. Ophthalmology 2000;107:1459-63.
P.346 掲載の参考文献
1) Trobe JD et al. Optic neuropathies. In:Burde RB et al, editors. Clinical Decisions in Neuro-Ophthalmology, 3rd ed. Mosby;2002. pp.27-59.

Chapter7 腫瘍

P.353 掲載の参考文献
1) Bianciotto C et al. Assessment of anterior segment tumors with ultrasound biomicroscopy versus anterior segment optical coherence tomography in 200 cases. Ophthalmology 2011;118:1297-302.
2) 小幡博人. 眼瞼・結膜の良性腫瘍と悪性腫瘍の発生頻度. 日本眼科学会雑誌 2005;109:573-9.
3) Shields CL et al. Tumors of the conjunctiva and cornea. Indian J Ophthalmol 2019;67:1930-48.
4) 田邉美香. 前眼部非色素性腫瘍性病変-眼表面扁平上皮新生物, 結膜悪性リンパ腫, 副涙腺嚢胞. あたらしい眼科 2020;37:3-13.
5) Georgalas I et al. Iris cysts:A comprehensive review on diagnosis and treatment. Surv Ophthalmol 2018;63:347-64.
6) 後藤 浩. 眼内腫瘍の診断. 日本の眼科 2006;77:1227-34.
7) Shields CL et al. Iris metastasis from systemic cancer in 104 patients:the 2014 Jerry A. Shields Lecture. Cornea 2015;34:42-8.
P.359 掲載の参考文献
1) Shields JA et al. Glial Tumors of the retina and optic Disc. In:Shields JA et al, editors. Intraocular Tumors:An Atlas and Text Book, 3rd. Wolters Kluwer;2016. pp.427-52.
2) Hashimoto I et al. Clinicopathological analysis of secondary retinal vasoproliferative tumor/reactive retinal astrocytic tumor successfully treated by endoresection. Retin Cases Brief Rep 2022. doi:10.1097/ICB.0000000000001310. Online ahead of print.
3) Saito W et al. Expression of vascular endothelial growth factor and intravitreal anti-VEGF therapy with bevacizumab in vasoproliferative retinal tumors. Retina 2013;33:1959-67.
4) Tanimukai T et al. Noninvasive Imaging of a Vasoproliferative Retinal Tumor Treated with Cryopexy. Case Rep Ophthalmol 2022;13:611-6.
5) Kase S et al. Retinal Capillary Hemangioma in von Hippel-Lindau Disease:Current Concept, Diagnosis and Managements. J Ttansl Med Epidemiol 2014;2:1010.
6) Chan CC et al. Molecular pathology of eyes with von Hippel-Lindau(VHL) Disease:a review. Retina 2007;27:1-7.
7) Kase S et al. Photocoagulation for juxtapapillary retinal hemangioma in a young girl:A case report. Mol Clin Oncol 2019;10:521-3.
8) Mitamura M et al. Laser speckle flowgraphy in juxtapapillary retinal capillary hemangioblastoma:a case report on natural course and therapeutic effect. Oncotarget 2020;11:3800-4.
9) Saito W et al. Intravitreal anti-vascular endothelial growth factor therapy with bevacizumab for tuberous sclerosis with macular oedema. Acta Ophthalmol 2010;88:377-80.
10) Shields CL et al. Retinal metastasis from systemic cancer in 8 cases. JAMA Ophthalmol 2014;132:1303-8.
P.367 掲載の参考文献
1) Nelson CC et al. A histopathologic study of 716 unselected eyes in patients with cancer at the time of death. Am J Ophthalmol 1983;95:788-93.
2) Goto H et al. Efficacy of (123)N-isopropyl-p-[(123)I]-iodoamphetamine single photon emission computed tomography for the diagnosis of uveal malignant melanoma. Am J Ophthalmol 2001;132:937-9.
3) Dalvin LA et al. Combination of multimodal imaging features predictive of choroidal nevus transformation into melanoma. Br J Ophthalmol 2019;103:1441-7.

最近チェックした商品履歴

Loading...