新女性医学大系 41 婦人科腫瘍の分子・細胞生物学

出版社: 中山書店
著者:
発行日: 2001-06-30
分野: 臨床医学:外科  >  産婦人科学
ISBN: 9784521543512
電子書籍版: 2001-06-30 (第1版第1刷)
電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

34,650 円(税込)

商品紹介

遺伝子レベルにおける研究成果から癌遺伝子や癌抑制遺伝子について概説し、細胞生物学の見知から浸潤、転移、血管新生のメカニズムを考察する。さらに子宮癌、卵巣癌など婦人科腫瘍の分子機構を解き、臨床への展望を示す。

目次

  • 表紙
  • 執筆者一覧
  • 目次
  • 癌の分子遺伝学
  • I 癌の分子遺伝学総論
  • 1. RNAがんウイルス , がん遺伝子 , プロトがん遺伝子
  • a. RNAがんウイルスからがん遺伝子へ
  • b. がん遺伝子とプロトがん遺伝子
  • c. ヒトがん遺伝子の発見
  • 2. がん抑制遺伝子
  • a. がん抑制遺伝子の発見
  • b. DNAがんウイルスとがん抑制遺伝子の出会い
  • c. がん抑制遺伝子 , RBとp53
  • d. RBとp53 , 細胞周期 , アポトーシス
  • e. 種々のがん抑制遺伝子
  • 3. ウイルスとがん
  • 4. ゲノムの不安定性 , DNA複製エラー (RER) とがん
  • 5. アポトーシスとがん
  • 6. 老化とがん
  • II 癌遺伝子とシグナル伝達
  • A. rasとそのシグナル伝達系
  • l. ras遺伝子の発見
  • 2. その他のrasスーパーファミリー
  • 3. Rasタンパク質の生化学
  • a. Rasタンパク質の構造
  • b. Rasタンパク質の活性制御機構
  • c. 翻訳後修飾
  • 4. 癌化に関与するシグナル伝達とRasタンパク質
  • 5. Rasを介するシグナル伝達系
  • a. Rafを介する経路
  • b. ホスファチジルイノシトール3キナーゼ (PI3K) を介する経路
  • c. RalGDS
  • d. その他の標的
  • 6. Rasの機能
  • a. 細胞増殖
  • b. アポトーシス
  • c. 浸潤 , 転移
  • 7. 治療への応用
  • B. c-oncとキナーゼ遺伝子
  • 1. 癌遺伝子産物としてのプロテインキナーゼ
  • 2. 癌におけるプロテインキナーゼの活性化機構
  • 3. 受容体型チロシンキナーゼの構造
  • 4. 受容体型チロシンキナーゼを介した細胞増殖シグナルの伝達機構
  • 5. プロテインキナーゼを分子標的とした癌治療の可能性と現状
  • III 癌抑制遺伝子と細胞増殖制御
  • A. RB , p53と細胞増殖制御
  • 1. RBタンパク質とp53
  • 2. 細胞増殖制御のメカニズム
  • a. 細胞周期
  • b. チェックポイント機構
  • 3. RB
  • a. RBタンパク質の構造と機能の関連
  • b. RBタンパク質の作用
  • c. RBタンパク質の活性の制御メカニズム
  • d. 癌におけるRB経路の障害
  • e. RBタンパク質のファミリー
  • 4. p53
  • a. p53の構造と機能との関連
  • b. p53の活性化メカニズム
  • c. p53の作用
  • d. 癌におけるp53経路の障害
  • e. p53のファミリー
  • 5. 細胞癌化の抑制におけるp53経路とRB経路の協調
  • B. その他の癌抑制遺伝子
  • 1. APC遺伝子
  • a. APC遺伝子と大腸癌
  • b. APC遺伝子の機能
  • c. APC遺伝子産物の構造と機能
  • d. APCタンパク質とWntシグナル伝達経路
  • e. APCタンパク質とAsefの相互作用
  • 2. BRCA遺伝子
  • a. BRCA遺伝子と家族性乳癌 / 卵巣癌
  • b. BRCA遺伝子の機能 : ゲノム安定性
  • c. BRCA遺伝子産物の機能 : 相同組換え修復
  • 3. TGF-β受容体およびSmad2 , 4
  • a. TGF-βファミリーの機能
  • b. TGF-βシグナル伝達経路
  • c. TGF-β受容体の癌細胞での異常
  • d. Sinadの癌細胞での異常
  • 4. PTEN / MMAC1
  • a. PTEN / MMAC1と癌
  • b. PTEN / MMAC1遺伝子産物の構造
  • c. PTEN / MMAC1遺伝子産物の機能
  • d. PTEN / MMAC1とアポトーシス
  • IV ゲノム安定性 , DNA修復
  • 1. 悪性腫瘍にみられるゲノム変化
  • a. 高等生物のゲノム構造
  • b. 悪性腫瘍にみられるゲノム変化の階層構造
  • 2. ゲノム変化とDNA修復
  • a. 点突然変異とミスマッチ修復
  • b. 比較的大きなゲノム変化とDNA修復
  • 3. 婦人科腫瘍とゲノム変化
  • a. 婦人科腫瘍におけるマイクロサテライト不安定性
  • b. 婦人科腫瘍における大きいレベルのゲノム変化
  • V アポトーシス
  • 1. アポトーシスとその生理的意義
  • a. アポトーシスとは
  • b. アポトーシスの生理的・病態的意義
  • 2. アポトーシスの分子機構
  • a. death receptorを介したアポトーシス
  • b. ミトコンドリアを介するアポトーシス
  • c. カスパーゼカスケードとアポトーシスの決定
  • d. アポトーシスを制御する細胞内因子
  • 3. アポトーシスと癌
  • a. アポトーシスと癌とのかかわり
  • b. 癌形成とアポトーシス
  • VI ゲノムインプリンティング
  • 1. ゲノムインプリンティング総論
  • a. ゲノムインプリンティング (GI) とは
  • b. GIモデルとしてのマウス
  • c. GI遺伝子とは
  • d. 生物学的意義
  • e. 分子機構
  • 2. GIの異常に基づく疾患群
  • a. Prader-Willi / Angelman症候群 (PWS / AS)
  • b. PWS / ASの分子遺伝学的分類
  • c. Beckwith-Wiedemann症候群 (BWS)
  • d. Silver-Russell症候群 (SRS)
  • 3. GIと癌化
  • a. Wilms腫瘍 (WT)
  • b. 神経芽細胞腫 (NB)
  • c. 絨毛癌 (CC)
  • VII 細胞老化 , 不死化 , 癌化とテロメラーゼ
  • 1. 細胞老化 , 細胞死 , 不死化の概念
  • 2. テロメアとは
  • 3. 細胞分裂に伴うテロメアの短縮
  • 4. テロメアの短縮と細胞の老化
  • 5. 癌細胞におけるテロメラーゼの活性化
  • 6. 婦人科腫瘍のテロメラーゼ活性
  • 7. テロメラーゼ活性と癌の病態
  • 8. 正常組織におけるテロメラーゼ活性
  • 9. テロメラーゼの構成要素と機能
  • 10. hTERT遺伝子発現の分子機構
  • 11. テロメラーゼ活性の臨床応用
  • 12. テロメラーゼ活性の制御と癌の遺伝子治療への応用
  • VIII 細胞周期
  • 1. 細胞周期のカスケード
  • 2. cdc2ファミリー
  • 3. サイクリンファミリー
  • 4. 細胞周期阻止因子
  • 5. G1期チェックポイント
  • 6. S期の調節
  • 7. G2期チェックポイント
  • 8. M期の調節
  • 9. 細胞周期異常と癌化
  • 10. 細胞周期因子と不死化
  • IX ユビキチン―プロテアソームシステム
  • 1. 概要
  • a. プロテアソームの構造と機能
  • b. ユビキチン化反応
  • 2. ユビキチンシステムの分子機構と生理機能
  • a. ユビキチンリガーゼの分類と多様性
  • b. ユビキチン―プロテアソームシステムによる細胞周期の制御
  • c. ユビキチンシステムによるシグナル伝達制御
  • 3. タンパク質分解の異常と疾患
  • a. ユビキチン―プロテアソームシステムと細胞癌化
  • b. その他の疾患とタンパク質分解系の異常
  • 癌の細胞生物学
  • I 癌細胞の細胞生物学的特性
  • 1. 浸潤
  • 2. 転移
  • a. nm23
  • b. KA11
  • c. KiSS-1
  • 3. 血管新生
  • a. 血管内皮増殖因子 (VEGF)
  • b. チミジンホスホリラーゼ (TP)
  • c. 線維芽細胞増殖因子(FGF)
  • d. 血管新生抑制因子
  • e. アンジオスタチン
  • f. エンドスタチン
  • g. PEX
  • 4. 血管新生阻害薬の開発
  • a. Flk-1 / KDR阻害薬
  • b. TP阻害薬
  • c. MMP阻害薬
  • d. インテグリン阻害薬
  • II 浸潤と転移のメ力ニズム
  • A. 浸潤
  • 1. 癌細胞の生物学的特性とは
  • 2. 癌細胞による浸潤能獲得の分子機構
  • 3. 浸潤の分子メカニズム
  • a. 癌細胞膜上での酵素活性発現カスケード
  • b. ウロキナーゼ受容体の構造と作用
  • c. 癌細胞膜上でウロキナーゼが再活性化されるメカニズム
  • 4. 浸潤のコントロール
  • a. 浸潤抑制のための実験的試み
  • b. 生理的な浸潤 , 転移抑制物質の開発
  • 5. 血管新生とその阻害
  • a. 腫瘍血管新生の過程
  • b. 血管新生阻害療法の特徴および将来像
  • B. 転移
  • 1. 癌転移プロセスにかかわる細胞生物学
  • a. 原発巣からの遊離 , 離脱
  • b. 癌細胞と脈管との関係
  • c. 標的臓器での増殖と抑制
  • 2. 転移に関連する遺伝子
  • a. 癌遺伝子 , 癌抑制遺伝子
  • b. 転移遺伝子と転移抑制遺伝子
  • 3. 癌の転移に対する新しい治療の方向性
  • III 血管新生
  • 1. 血管新生とその過程
  • 2. 血管新生阻害薬
  • 3. 女性生殖器における血管新生の特徴
  • 4. 女性生殖器癌における血管新生とその制御
  • a. 子宮頸癌における血管新生とその制御
  • b. 卵巣癌における血管新生とその制御
  • c. 子宮内膜癌における血管新生とその制御
  • IV ECMとプロテアーゼ
  • 1. ECM分解酵素の分類
  • 2. MMPの概要
  • a. MMPの種類とその性質
  • b. MMPの活性制御機構
  • c. 膜型MMPとゼラチナーゼA活性化
  • d. 間質細胞のMMP産生
  • 3. 婦人科癌とMMP
  • a. 婦人科癌組織におけるMMP活性
  • b. 腹膜による卵巣癌細胞のMMP分泌の促進
  • 4. 癌と細胞表面ペプチダーゼ
  • a. 細胞表面ペプチダーゼとは
  • b. アミノペプチダーゼN (APN / CD13)
  • c. アミノペプチダーゼA (APA)
  • d. ニュートラルエンドペプチダーゼ (NEP / CD10)
  • e. ジペプチジルペプチダーゼIV (DPP IV / CD26)
  • 5. プロテアーゼインヒビターの癌治療における臨床応用
  • V 増殖因子 , サイトカイン
  • 1. 増殖因子 , サイトカインによるシグナル伝達
  • a. 受容体型チロシンキナーゼ
  • b. 非受容体型チロシンキナーゼ
  • c. サイトカイン受容体ファミリー
  • d. MAPキナーゼ
  • 2. 婦人科腫瘍発生に関与するサイトカイン , 増殖因子
  • VI ウイルス発癌
  • 1. ウイルスの発癌的感染
  • a. 腫瘍ウイルスの発見
  • b. 腫瘍ウイルス研究の意義
  • 2. 腫瘍ウイルスの種類・構造
  • 3. 腫瘍ウイルスの癌遣伝子
  • 4. 腫瘍ウイルスによる癌化のメカニズム
  • 5. ヒトの癌ウイルス
  • 6. ヒトウイルス発癌とリスク因子 : まとめにかえて
  • 腫瘍マーカーの細胞生物学
  • I 腫瘍マーカーの臨床における意義と複合糖質関連マーカー
  • 1. 糖鎖抗原関連腫瘍マーカー
  • a. コアタンパク関連腫瘍マーカー
  • b. 基幹糖鎖関連腫瘍マーカー
  • c. 母核糖鎖関連腫瘍マーカー
  • 2. 腫瘍マーカーのコンビネーションアッセイ
  • 3. 腫瘍細胞における糖鎖構造の変化
  • a. 抗子宮体癌モノクローナル抗体
  • b. MSN-1の認識する連鎖抗原の局在
  • 4. 糖転移酵素
  • a. GAT (癌関連ガラクトース転移酵素) の特性
  • b. GATと健常人由来のGalTとの関連について
  • c. 卵巣癌に対する腫瘍マーカーGAT
  • d. 卵巣腫瘍の良性・悪性の鑑別
  • II SCC抗原
  • 1. SCC抗原の構造
  • 2. SCC抗原遺伝子の発現調節機構
  • 3. SCC抗原の組織局在
  • 4. SCC抗原の生物作用
  • a. 標的酵素
  • b. アポトーシスとSCC抗原
  • 5. SCC抗原の生物学的意義
  • 6. SCC抗原の臨床的意義
  • III タンパク関連マーカー
  • A. 胎児タンパク
  • 1. α-フェトプロテイン (AFP)
  • 2. 癌胎児性抗原(CEA)
  • a. CEAの分子生物学
  • b. CEAの臨床
  • 3. basic fetoprotein(BFP)
  • 4. 胎児性抗原1 (FA1)
  • 5. 胎児性抗原2 (FA2)
  • B. 胎盤タンパク
  • 1. hCG
  • a. hCG分子の構造とその多様性
  • b. hCG測定
  • c. hCG測定に際しての注意
  • d. β-core fragment (β-CF) の臨床応用
  • 2. SP1
  • 3. hPL
  • 4. PP5
  • 5. PP10
  • 6. PP12
  • 7. PP14
  • 8. PP19
  • 9. PP26
  • C. 細胞骨格関連タンパク
  • 1. 中間径フィラメントの血清診断マーカーとしての応用
  • a. tissue polypeptide antigen (TPA)
  • b. サイトケラチン-19
  • 2. 病理組織マーカーとしての中間径フィラメント
  • a. ケラチン
  • b. ビメンチン
  • c. デスミン
  • d. グリア線維酸性タンパク
  • e. ニューロフイラメント
  • 分子腫瘍学の臨床
  • I 婦人科癌と高発癌家系
  • 1. 高発癌家系における原因遺伝子
  • 2. 婦人科癌における高発癌家系
  • a. 子宮内膜癌
  • b. 家族性卵巣癌
  • II 婦人科癌の薬剤耐性機構
  • 1. 薬剤耐性の種々のメカニズム
  • a. プラチナ耐性
  • b. タキサン耐性
  • 2. 薬剤耐性の克服 (将来的な展望)
  • a. プラチナ耐性の克服
  • b. タキサン耐性の克服
  • III 遺伝子を標的とした治療
  • 1. 悪性腫瘍に対する遺伝子治療法
  • a. 導入経路-ex vivoとin vivo
  • b. 導入法
  • 2. 癌遺伝子治療の戦略
  • a. 癌遺伝子の抑制
  • b. 癌抑制遺伝子の導人
  • c. 自殺遺伝子
  • d. 免疫遺伝子
  • e. 多剤耐性遺伝子
  • 3. 婦人科癌の遺伝子治療
  • a. 卵巣癌
  • b. 子宮頸癌
  • 4. 遺伝子治療の展望
  • IV 子宮頸癌
  • A. 子宮頸癌の分子機構
  • 1. HPVと子宮頸部腫瘍
  • 2. 子宮頸部腫瘍にみられる遺伝子変化
  • 3. HLAの役割
  • 4. 遺伝子障害と病変の進行
  • 5. ホルモン環境
  • 6. HPV陰性の子宮頸部腫瘍
  • 7. 結論
  • B. HPVと頸癌の臨床
  • 1. HPVの診断法
  • 2. HPVのタイプと子宮頸部病変
  • 3. HPVを用いた前癌病変の管理
  • a. 子宮頸部異形成から子宮頸癌へ進展するリスク
  • b. HPVテストを併用した前癌病変の管理
  • 4. HPVを用いた頸癌の管理
  • V 子宮体癌
  • A. 子宮体癌の分子機構
  • 1. 子宮体癌の発生に関与する遺伝子群
  • a. ホルモン , 増殖因子 , サイトカインとその受容体の異常
  • b. 癌原遺伝子の活性化
  • c. 癌抑制遺伝子の不活性化
  • d. 不死化・アポトーシス関連遺伝子
  • e. MSI
  • f. 外来性ウイルス遺伝子
  • 2. 子宮体癌の進展に関連する遺伝子
  • a. 癌細胞のクローナル選択と不死化
  • b. 浸潤・転移に関する遺伝子群
  • 3. 子宮体癌発生の分子機構
  • a. 子宮体癌の臨床病理学的特徴
  • b. 子宮体癌発生の多様性
  • 4. 遺伝子の臨床応用
  • a. 微量材料を用いた遺伝子診断
  • b. 癌に対する治療法の選択指標
  • c. 遺伝子治療
  • d. 家族性癌の診断
  • B. 増殖因子とホルモン
  • 1. 子宮体癌と性ホルモン
  • 2. 子宮体癌のエストロゲン反応性とその作用機序
  • 3. 性ホルモン誘導性増殖因子
  • 4. 子宮体癌のエストロゲン誘導性増殖因子と増殖因子受容体
  • 5. 結語
  • VI 卵巣癌の分子機構
  • 1. 散発性卵巣癌の分子病理学
  • a. 癌遺伝子
  • b. 癌抑制遺伝子
  • 2. 卵巣癌の遺伝子治療
  • VII 絨毛癌の分子機構
  • 1. 絨毛性疾患の分類
  • a. 部分奇胎
  • b. 全奇胎
  • 2. 絨毛癌化機構へのアプローチ
  • a. 絨毛癌の発生起源
  • b. ゲノムインプリンティングと絨毛癌化
  • c. 絨毛癌化の分子機構
  • Glossary
  • 索引
  • 和文索引
  • 欧文索引
  • 奥付

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

癌の分子遺伝学

P.16 掲載の参考文献
1) 藤永惠:がん遺伝-生命科学の本質に迫る. 1997, 講談社, 東京
8) Perucho M, Goldfarb M, et al:Human-tumor-derived cell lines contain common and different transforming genes. Cell 1981;27:467-476
9) 藤永惠:がん遺伝の分. 子生物学. 1985, 講談社, 東京
10) 横田 淳, 秋徹:がん抑制遺伝. がん遺伝子/がん抑制遺伝(新津郎, 横田 淳, 編). 1999;pp13-46, 南江堂, 東京
19) 佐谷秀行(監修):P53:癌抑制の分メカニズムと臨床応用. 細胞工学別冊 1998;pp111-137
20) 土田信夫, 西垣玲子. ほか:DNAダメージによるp53蛋白質の癌抑制シグナルとヒト癌における遺伝子変異. 蛋白質・核酸・酵素2000;45:1742-1751
23) 高 崇峰, 中島琢磨, 土田信夫:P53と細胞周期の制御. 血液・腫瘍科2000;41:303-309
24) 土田信夫:がん抑制遺伝と細胞周期, 概説, がんと遺伝-機能から診断・治療まで(山本 雅, 土田信夫, ほか編). 1997;pp1551-1553, 共立出版, 東京
25) 藤永惠, 蝶野英人, 嶌田雅光:ヒトパピローマウイルスと子宮頸癌. Cancer Frontier 1999;1:99-110
32) 田沼靖一:細胞の基本機能としてのアポトーシス-その研究史と展望アポトーシスと医学 (田沼靖一, 編). 1998;pp14-20, 羊土社, 東京
34) 井出利憲, 川原栄俊:ヒトの老化・癌とテロメラーゼ. 蛋白質・核酸・酵素1997;42:1351-1374
P.30 掲載の参考文献
2) 清水憲二:rasの突然変異とヒト腫瘍. 実験医学1990;8:101-108
3) Bos H:Ras oncogenes in human cancer. Cancer Res 1989;149:4682-46898
4) 日原太郎, 田中一馬, 高井義美:RasとRho低分量蛋白質の機能と作用機構. 蛋白質・核酸・酵素1997;42:1501-1508
5) 菊池 章:低分量GTP結合蛋白質-その活性制御機構と機能. 生化学1992;64:1079-1102
6) Der CJ:In Oncogenes (Benz C, Lin E, eds). 1989;pp73-118, Kluwer Academic Publishers. San Francisco
7) Bourne HE, Sanders DA, McCormick F:The GTPase superfamily conserved structure and molecular mechanism. Nature 1991;349:117.-127
17) Kato K, Der CJ, Buss JE:Prenoids and plamitate:Lipids that control the biological activity of Rasroteins. Semin Cancer Biol 1992;3:179-188
20) Moores SL, Schaber MD, et al:Sequence dependence of protein isopreylation. J Biol Chem 1991;266:14603-16610
23) 山本 雅:チロシンキナーゼ. 実験医学1999;17:30-38
42) Filmus J, Robles AI, et al:Induction of cyclinD1 overexpression by activated ras. Oncogene 1994;9:3627-3633
51) Bondy GR, Wilson S, et al:Experimental metastatic ability of H-ras transformed NIH3T3 cells. Cancer Cell 1985;45:6005-6009
52) Muschel RJ, Williams JE, et al:Harvey ras induction or metastatic potential depends upon oncogene activation and the type of recipient cell. Am J Pathol 1985;121:1-8
57) Cowsert LM:In vitro and in vivo activity of antisense inhibitors of ras:Potential for clinical development. Anticancer Drug Des 1997;12:359-371
P.41 掲載の参考文献
9) Shiota M, Fujimoto J, et al:Hyperphosphorylation of a novel 80 kDa protein-tyrosine kinase similar to Ltk in a human Ki-1 lymphoma cell line. AMS3. Oncogene 1994;9:1567-1574
11) Shiota M, Fujimoto J, et al:Anaplastic large cell lymphomas expressing the novel chimeric protein p80NPM/ALK:A distinct clinicopathologic entity. Blood 1995;86:1954-1960
P.55 掲載の参考文献
34) Chehab NH, Malikzay A, et al:Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev 2000;14:278-288
36) Shieh SY, Ahn J, et al:The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 2000;14:289-300
45) Scolnick DM, Chehab NH, et al:CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res 1997;57:3693-3696
49) Hermeking H, Lengauer C, et al:14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol Cell 1997;1:3-11
50) Chan TA, Hermeking H, et al:14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 1999;401:616-620
53) Miyashita T, Krajewski S, et al:Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994;9:1799-1805
60) Park DJ, Wilczynski SP, et al:p53 mutations in HPV-negative cervical carcinoma. Oncogene 1994;9:205-210
P.67 掲載の参考文献
P.81 掲載の参考文献
1) Baker SJ, Preisinger AC, Jessup JM:p53 gene mutations occur incombination with 17p allelic deletions as late events in colorectal tumorigenesis. Cancer 1990;150:7717-7722
11) Reenan RA, Kolodner RD:Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes:Evidence for separate mitochondrial and nuclear functions. Genet Res 1992;132:975-985
14) Kneitz B, Cohen PE, et al:MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev 2000;14:1085-1097
15) Bocker T, Barusevicius A, et al:hMSH5:A human MutS homologue that forms a novel heterodimer with hMSH4 and is expressed during spermatogenesis. Cancer Res 1999;59:816-822
27) Kolodner RD, Tytell JD, et al:Germ-line msh6 mutations in colorectal cancer families. Cancer Res 1999;59:5068-5074
33) Parc YR, Halling KC, et al:HMSH6 alterations in patients with microsatellite instability-low colorectal cancer. Cancer Res 2000;60:2225-2231
40) Ikeda M, Orimo H:Moriyama H:Close correlation between mutations of E2F4 and hMSH3 genes in colorectal cancer with microsatellite instability. Cancer Res 1998;58:594-598
41) Thibodeau SN, Bren G, Schaid D:Microsatellite instability in cancer of the proximal colon. Science 1993;260:816-819
43) Boland CR, Thibodeau SN, Hamilton SR:A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition:Development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58:5248-5257
46) Shibuya ML, Ueno AM, Vannais DB:Megabase pair deletion in mutant mammalian cells following exposure to amsacrine, an inhibitor of DNA topoisomerase II. Cancer Res 1994;54:1092-1097
54) Risinger JI, Berchuck A, Kohler MF:Genetic instability of microsatellites in endometrial carcinoma. Cancer Res 1993;53:5100-5103
55) Peltomaki P, Lothe RA, Aaltonen LA:Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res 1993;53:5853-5855
62) Sato T, Saito H, Morita R:Allelotype of human ovarian cancer. Cancer Res 1991;51:5118-5122
63) 和気徳夫, 山田秀人, 加藤秀則:染色体分析技術の実際(標本作成から写真まで). 臨床病理1989;特80:242-251
65) Wake N, Hreshchyshyn MM, Piver SM:Cytogenetic changes in ovarian cancer involving chromosome 6 and 14. Cancer Res 1980;40:4512-4518
66) Loeb LA:Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991;51:3075-3079
P.94 掲載の参考文献
4) Kerr JFR, Searle J, et al:Apoptosis. Perspectives on mammalian cell death (Potten CS, ed). 1987;pp93-128, Oxford Science Publication, New York
8) 木崎治俊:アポトーシスと疾患のかかわり. 新アポトーシスの分子医学(橋本嘉幸, 山田 武, 編). 1999;pp123-133, 羊土社, 東京
14) Vincenz C, Dixit VM:Fas-associated death domain protein interleukin-1β converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95-and p55-mediated death signaling. J Biol Chem 1997;272:6578-6583
43) Wang XW:Role of p53 and apoptosis in carcinogenesis. Anticancer Res 1999;19:4759-4771
47) 黒川健児, 小林信之:ウイルス感染とアポトーシス. 新アポトーシスの分子医学(橋本嘉幸, 山田 武, 編). 1999;pp134-147, 羊土社, 東京
50) Macleod K, Jacks T:The retinoblastoma gene and the control of apoptosis. Apoptosis and cancer (Martin SJ, ed). 1997;pp141-163, Karger Landers System, Basel
52) Schwartz S, Yamamoto H Jr, et al:Frameshift mutation of mononucleotide repeats in caspase-5 and other target gene in endometrial and gastrointestinal cancer of the microsatellite mutator or phenotype, Cancer Res 1999;59:2995-3002
53) Amarante-Mendes GP, Green DR:Abl tyrosine kinase and the control of apoptosis. Apoptosis and Cancer (Martin SJ, ed). 1997;pp98-115, Karger Landers Systems, Basel
P.107 掲載の参考文献
1) Kajii T, Ohama K:Androgenetic origin of hydatidiform mole. Nature 1977;268:633-634
3) Surani MA, Barton SC, Norris ML:Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984;308:548-550
5) Cattanach BM:Parental origin effects in mice. J Embriol Exp Morph 1986;97(Suppl):137-150
19) Lam WWK, Hatada I, et al:Analysis of germline CDKNIC (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype phenotype correlation Med Genet 1999;36:518-523
36) Miyoshi O, Kondoh T, et al:47, XX, UPD(7) mat, +r(7) pat/47, XX, UPD(7)mat mosaicism in a girl with Silver-Russell syndrome(SRS):possible exclusion of the putative SRS gene from a 7p13-q11 region. J Med Genet 1999;36:326-329
49) Mutter GL, Stewart CL, et al:Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast. Am J Hum Genet 1993;53:1096-1102
P.127 掲載の参考文献
7) Kyo S, Kanaya T, et al:Telomerase activity in gynecological tumors. Clin Cancer Res 1996;2:2023-2028
10) Hiyama E, Yokoyama T, et al:Telomerase activity in gastric cancer. Cancer Res 1995;55:3258-3262
12) Kyo S, Takakura M, et al:Quantitative differences in telomerase activity among malignant, premalignant and benign ovarian lesions. Clin Cancer Res 1998;4:339-405
14) Yasumoto S, Kunimura C, et al:Telomerase activity in normal human epithelial cells. Oncogene 1996;13:433-439
16) Kyo S, Takakura M, et al:Telomerase activity in human endometrium. Cancer Res 1997;57:610-614
26) Takakura M, Kyo S, et al:Expression of human telomerase subunits and correlation with telomeras activity in cervical cancer. Cancer Res 1998;58:1558-1561
28) Takakura M, Kyo S, et al:Cloning of human telomerase reverse transcriptase gene promoter and identification of proximal core promoter essential for transcriptional activation in immortalized and cancer cells. Cancer Res 1999;59:551-557
30) Ulaner GA, Hu JF et al:Telomerase activity in human development is regulated by human telomerase reverse transcriptase (hTERT) transcription and by alternate splicing of hTERT transcripts. Cancer Res 1998;58:4168-4172
32) Kyo S, Takakura M, et al:Estrogen activates telomerase. Cancer Res 1999;59:5917-5921
33) Wang Z, Kyo S, et al:Progesterone regulates human telomerase reverse transcriptase gene expression activation of mitogen-activated protein kinase signaling pathway. Cancer Res 2000;60:5376-5381
35) Kyo S, Takakura M, et al:Application of telomerase assay for the screening of cervical lesions. Cancer Res 1997;57:1863-1867
37) Yokoyama Y, Takahashi Y, et al:Attenuation of telomerase activity by a hammerhead ribozyme targeting the template region of telomerase RNA in endometrial carcinoma cells. Cancer Res 1998;58:5406-5410
P.141 掲載の参考文献
1) 二階堂敏雄:Cyclin:細胞周期調節. Medical Immunology 1992;23:429-441
2) 二階堂敏雄:サイクリンによる細胞周期調節. CRC 1993;12:80-90
3) Howard A, Pelc SR:Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity 1953;6 (Suppl):261
7) Yoshida M, Yamamoto M, Nikaido T:Quercetin arrests human leukemic T cells in late G1 phase of the cell cycle. Cancer Res 1993;52:6676-6681
21) Minshull J, Pines J, et al:Protein synthesis, proteolysis, and the control of cell division in early embryo:Do the synthesis and destruction of cyclin comprise the cytoplasmic oscillator? Cell Cycle Control in Eukaryotes (Beach D, Basilico C, Newport J, eds). 1988;p128, Cold Spring Harbor Laboratory. New York
24) Pines J:Cyclin:wheels within wheels. Cell Growth Differ 1991;2:305-310
28) Sherr CJ:The Pezcoller lecture:Cancer cell cycles revisited. Cancer Res 2000;60:3689-3695
P.152 掲載の参考文献
21) DiDonato JA, Hayakawa M, et al:A cytokine-responsive IKB kinase that activates the transcription the factor NF-κB. Nature 1997;388:548-554
23) Hatakeyama S, Kitagawa M, et al:Ubiquitin-dependent degradation or IKBα is mediated by a ubiquitin ligase Skp1/Cu11/F-box protein FWD1. Proc Natl Acad Sci USA 1999;96:3859-3863
24) Kitagawa M, Hatakeyama S, et al:An F-box protein FWD1 mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J 1999;18:2401-2410
25) Polakis P:Wnt signaling and cancer. Genes Dev 2000;14:1837-1851
32) 横内雅博, Baron R, 吉村昭彦:c-CblのRINGフィンガー依存性ユビキチンリガーゼ活性と癌化. 実験医学 2001;19:155-161
33) Hashizume R, Fukuda M, et al:The RING heterodimer BRCA1-BARD1 is an ubiquitin Ligase inactivated by a breast cancer derived mutation. J Biol Chem, in press

癌の細胞生物学

P.168 掲載の参考文献
3) Ewing J:Neoplastic disease, 6th ed. 1928, WB Saunders, Philadelphia
4) Liotta LA:Tumor invasion and metastasis. Cancer Res 1986;46:1-8
11) DeClerck YA, Lang WE:Inhibition or tumor cell collagenolytic activity by bovine endothelial cell. Cancer Res 1986;46:3580-3586
12) Herron GS, Bana MJ, et al:Secretion of metalloproteinases by stimulated capillary endothelial cells. II. Expression of collagenase and stromelysin activities is regulated by endogenous inhibitors. J Biol Chem 1986;261:2814-2818
13) DeClerck YA, Yean TD, et al:Purification and characterization of two related but distinct metalloproteinase inhibitors secreted by bovine aortic endothelial cells. J Biol Chem 1989;264:17445-17453
14) Hekman CM, Loskutoff DJ:Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985;260:11581-11587
16) Fogar P, Basso D, et al:Neural cell adhesion molecule (N-CAM) in gastrointestinal neoplasias. Anti-cancer Res 1997;17:1227-1230
17) Perl AK, Dahl U, et al:Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic β tumor cells. Nat Med 1999;5:286-291
24) Adachi M, Taki T, et al:Correlation of KAI1 CD82 gene expression with good prognosis patients with non-small cell lung cancer. Cancer Res 1996;56:1751-1755
31) Miyadera K, Sumizawa T, et al:Role of thymidine phosphorylase activity in the angiogenic effect of platelet derived endothelial cell growth factor/thymidine phosphorylase. Cancer Res 1995;55:1687-1690
34) Crawford SE, Stellmach V, et al:Thrombospondin-1 is a major activator of TGF-β1 in vivo. Cell 1998;93:1159-1170
38) Matsushita S, Nitanda T, et al:The effect of a thymidine phosphorylase inhibitor on angiogenesis and apoptosis in tumors. Cancer Res 1999;59:1911-1961
P.179 掲載の参考文献
1) Schmitt M, Goretzki L, et al:Biological and clinical relevence of the urokinase-type plasminogen activator (uPA) in breast cancer. Biomed Biochim Acta 1991;50:731-741
3) Kobayashi H, Ohi H, et al:Inhibition of in vitro ovarian cancer cell invasion by modulation of urokinase-type plasminogen activator and cathepsin B. Cancer Res 1992;52:3610-3614
6) Sloane BF, Liotta LA, Stetler-Stevenson WG:Increased gelatinase A (MMP-2) and cathepsin B activity in invasive tumor regions of human colon cancer samples. Am J Pathol 1994;145:1285-1290
7) Kobayashi H, Ohi H, et al:Regulation of plasmin production by cancer cells. Jpn J Obstet Gynecol Neonatal Hematol 1992;12:39-48
10) Kobayashi H, Fujishiro S, Terao T:Impact of urokinase-type plasminogen activator and its inhibitor type-1 on prognosis in cervical cancer of the uterus. Cancer Res 1994;54:6539-6548
15) Kobayashi H, Shinohara H, et al:Inhibition of the soluble and the tumor cell receptor-bound plasmin by urinary trypsin inhibitor and subsequent effects on tumor cell invasion and metastasis. Cancer Res 1994;54:844-849
20) Kobayashi H, Gotoh J, et al:Inhibition of tumor cell invasion through matrigel by a peptide derived from the domain II region in urinary trypsin inhibitor. Cancer Res 1995;55:1847-1852
21) 漆崎一郎:癌の抗血管新生療法剤. Cancer Therapy and Host 1999;11:63-72
22) 青沼正志, 田中紀子:血管新生阻害剤の研究開発. 細胞工学1997;16:992-997
23) 漆崎一郎:Tumor dormancyからみた抗血管新生療法. Pharma Medica 1998;16:159-167
P.196 掲載の参考文献
3) 清木元治:ヒト癌細胞の転移機構の解析. 癌転移(渡邊 寛, 清木元治, 編). 1998;pp15-29, 医薬ジャーナル社, 大阪
4) Liotta LA, Rao CN, Barsky SH:Tumor invasion and the extracellular matrix. Lah Invest 1983;49:636-649
11) Behrens J, Jerchow BA, et al:Functional interaction of an axin homologue, conductin, with beta-catenin, APC and GSK3β. Science 1998;280:596-599
12) Hart MJ, de los Santos R, et al:Dowenregulation of β-catenin by human axin and its association with the APC tumor suppressor, β-catenin and GSK3β. Curr Biol 1998;8:573-581
14) Huber AH, Nelson WJ, Weis WI:Three dimensional structure of armakillo repeat region of β-catenine. Cell 1997;90:871-882
15) Shtutman M, Zhurinsky J, et al:The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 1999;96:5522-5527
20) Kawanishi J, Kato J, et al:Loss of E-cadherin-dependent cell-cell adhesion due to maturation of the β-catenin gene in a human cancer cell line, HSC-39. Mol Cell Biol 1995;15:1175-1181
24) Berx G, Cleton-Jansen AM, et al:E-cadherin is inactivated in a majority of invasive human lobular breast cancers by tuncation mutations throughout its extracellular domain. Oncogene 1996;13:1919-1925
28) Novak A, Hsu SC, et al:Cell adhesion and the integrin-linked kinase regulate the LEF-1 and β-catenin signaling pathways. Proc Natl Acad Sci USA 1998;95:4374-4379
36) Cheresh DA, Spiro RC:Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 1987;262:17703-17711
42) 深川正紀, 黒田真也, ほか:Cdc42, Rac1 と標的タンパク質による細胞接着シグナル. 細胞工学1996;15:1724-1731
44) Shaw LM, Rabinovitz I, et al:Activation of phosphoinositide 3-OH kinase by the α6β4 inegrin promotes carcinoma invasion. Cell 1997;91:949-960
45) Tamura M, Gu J, et al:Tumor suppressor PTEN inhibition of cell invasion, migration, and growth:Differential involvement of focal adhesion kinase and p130cas. Cancer Res 1999;59:442-449
48) Kluger MS, Johnson DR, Pober JS:Mechanism of sustained E-selectin expression in cultured human dermal microvascular endothelial cells. J Immunol 1997;158:887-896
49) Takada A, Ohmori K, et al:Contribution of carbohydrate antigen sialyl LewisA and sialyl LewisX to adhesion of human cancer cells to vascular endothelium. Cancer Res 1993;53:354-361
52) Gorelik E, Xu F, et al:Reduction of metastatic properties of BL6 melanoma cells expressing terminal fucose α1-2-galactose after α1, 2-fucosyltransferase cDNA transfection. Cancer Res 1997;57:332-336
56) Wielenga VJM, Heider K-H, et al:Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993;53:4754-4756
58) Guo Y-J, Liu G, et al:Potential use of soluble CD44 in serum as indicator of tumor burden and metastasis in patients with gastric cancer. Cancer Res 1994;54:422-426
59) Saito T, Barbin A, et al:Connexin 37 mutations in rat hepatic angiosarcomas induced by vinyl chloride. Caner Res 1997;57:375-377
65) Murata J, Lee H-Y, et al:cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J Biol Chem 1994;269:30479-30484
67) Miyake M, Nakano K, et al:Motility related protein 1 (MRP-1/CD9) expression:Inverse correlation with metastasis in breast cancer. Cancer Res 1995, 55:4127-4131
68) Isoai A, Goto-tsukamoto H, et al:Inhibitory effects of tumor invasion-inhibiting factor 2 and its conjugate on disseminating tumor cells. Cancer Res 1994;54:1264-1270
69) Wyckoff JB, Jones JG, et al:A critical step in metastasis:In vivo analysis of intravasation at the primary tumor. Cancer Res 2000;60:2504-2511
70) Paget S:The distribution of secondary growth in cancer of breast Lancet 1898;i:571-573
71) Yeatman TJ, Nicolson G:Molecular basis of tumor progression:Mechanism of organ-specific tumor metastasis. Semin Surg Oncol 1993;9:256-263
76) Davies BR, Davies MP, et al:Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with oncogene EJ-ras-1. Oncogene 1993;8:999-1008
77) Toh Y, Pencil SD, Nicolson GL:A novel candidate metastasis-associated gene, mtal, differentially expressed in highly metastatic mammary adenocarcinoma cell lines:cDNA cloning, expression, and protein analyses. J Biol Chem 1994;269:22958-22963
78) 岡田和也, 玖珠 洋:がん転移抑制遺伝子 nm23/NDPKの分子生物学. 生化学1998;70:337-346
P.208 掲載の参考文献
3) Enenstein J, Waleh NS, Kramer RH:Basic FGF and TGF-β differentially modulate integrin expression of human microvascular endothelial cells. Exp Cell Res 1992;203:499-503
5) Fujimoto J, Hosoda S, et al:Inhibition of tumor angiogenesis activity by medroxyprogesterone acetaten in gynecologic malignant tumors. Invasion Metastasis 1989;9:269-277
7) Tamargo RJ, Bok RA, Brem H:Angiogenesis inhibition by minocycline. Cancer Res 1991;52:672-675
9) Kohn EC, Liotta LA:Molecular insights into cancer invasion:Strategies for prevention and intervention. Cancer Res 1995;55:1856-1862
13) Gagliarde A, Hadd H, Collins DC:Inhibition or angiogenesis by suramin. Cancer Res 1992;52:5073-5075
17) Nemunaitis J, Poole C, et al:Combined analysis or studies of the effects of the matrix metalloproteinase inhibitor marimastat on serum tumor markers in advanced cancer:selection of a biologically active and tolerable dose for long-term studies. Clin Cancer Res 1998;4:1101-1110
18) O'Reilly MS, Holmgren L, et al:Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat Med 1996;2:689-692
20) Denekamp J:Vascular as a target for tumor therapy. Prog Appl Microcirc 1984;4:28-38
24) Srivastava A, Laidler P, et al:The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. Am J Prothol 1988;133:419-423
28) Weider N, Carroll PR, et al:Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 1993;143:401-409
32) Fujimoto J, Sakaguchi H, et al:Clinical implication of expression of platelet-derived endothelial cell growth factor (PD-ECGF) in metastatic lesions of uterine cervical cancers. Cancer Res 1999;59:3041-3044
33) Fujimoto J, Sakaguchi H, et al:The value of platelet-derived endothelial cell growth factor (PD-ECGF) as a novel predictor of advancement of uterine cervical cancers. Cancer Res 2000;60:3662-3665
34) Fujimoto J, Sakaguchi H, et al:Clinical implication of expression of interleukin 8 related to angioenesis in uterine cervical cancers. Cancer Res 2000;60:2632-2635
37) Fujimoto J, Sakaguchi H, et al:Clinical implications of expression of vascular endothelial growth factor in metastatic lesions of ovarian cancers. Br J Cancer (in press)
42) Fujimoto J, Hori M, et al:Expressions of basic fibroblast growth factor and its mRNA in uterine endometrial cancers. Invas Metast 1995;15:203-210
P.222 掲載の参考文献
1) 今井一志, 岡田保典:マトリックス分解酵素と癌の浸潤・転移. 血液・免疫・腫瘍 1996;1:370-376
2) 中島元夫:細胞外マトリックス分解酵素. 癌の悪性化と転移, 清木元治(編). 1993;pp124-136, 中外医学社, 東京
3) Kobayashi H, Fujishiro S, Terao T:Impact of urokinase-type plasminogen activator and inhibitor type 1 on prognosis in cervical cancer of the uterus. Cancer Res 1994;54:6539-6545
4) 小林 浩:癌細胞の細胞外マトリックス破壊の機序とその制御による浸潤, 転移抑制. 日本産婦人科学会雑誌1996;48:623-632
5) 岡田保典:腫瘍の浸潤・転移とMMP. 産科と婦人科2000;67:1115-1124
6) 佐藤 博:がんの浸潤・転移におけるマトリックスメタロプロテアーゼの役割. 最新医学2000;55:1887-1894
7) Okada Y, Tsuchiya H, et al:Induction and stimulation of 92-kDa gelatinase/type IV collagenase production in osteosarcoma and fibrosarcoma cell lines by tumor necrosis factor-α. Biochem Biophy Res Commun 1990;171:610-617
9) Nomura H, Sato H, et al:Expression of membrane-type matrix metalloproteinase in human gastric carcinomas. Cancer Res 1995;55:3263-3266
11) Imai K, Ohuchi E, et al:Membrane-type matrix metalloproteinase 1 is a gelatinolytic enzyme and is secreted in a complex with tissue inhibitor of metalloproteinases 2. Cancer Res 1996;56:2707-2710
12) 中島元夫:転移における癌細胞と宿主細胞のマトリックスメタロプロテイナーゼの役割. 実験学1994;12:971-979
14) 吉川史隆:婦人科癌組織および細胞株におけるマトリックス分解酵素の分泌調節機構-転移阻へのアプローチ. 日本産科婦人科学会雑誌1996;48:618-622
17) Shibata K, Kikkawa E, et al:Increased matrix metalloproteinase-9 activity in human ovarian cancer cells cultured with conditioned medium from human peritoneal tissue. Clin Exp Metastasis 1997;15:612-619
18) Shibata K, Kikkawa F, et al:Fibronectin secretion from human peritoneal tissue induces Mr 92000 type IV collagenase expression and invasion in ovarian cancer cell lines. Cancer Res 1997;57:5416-5420
19) Kikkawa F, Nawa A, et al:The different stimulatory effect of normal tissues on the secretion of matrix metalloproteinases and their inhibitors by human ovarian cancer cells. Anticancer Res 1998;18:4323-4328
21) Shipp MA, Look AT:Hematopoietic differentiation antigens that are membrane-associated enzymes:Cutting is the key! Blood 1993;82:1052-1070
24) Ino K, Goto S, et al:Aminopeptidase inhibitor ubenimex (bestatin) inhibits the growth of human choriocarcinoma in nude mice through its direct cytostatic activity. Anticancer Res 1995;15:2081-2088
26) Menrad A, Speicher D, et al:Biochemical and fuctional characterization of aminopeptidase N expressed by human melanoma cells. Cancer Res 1993;53:1450-1455
27) Ueda M, Ueki M, et al:Inhibitory effects of ubenimex (bestatin) on the invasion of uterine cervical carcinoma cells and their production and activation of gelatinase A. J Medicine 1997;28:175-190
29) Pasqualini R, Koivunen E, et al:Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 2000;60:722-727
40) 中島元夫:マトリックスメタロプロテアーゼ阻害薬. 蛋白質・核酸・酵素2000;45:1083-1089
41) 鈴木孝信, 井箟一彦, ほか:侵入奇胎および絨毛癌治療におけるベスタチン併用化学療法. Biotherapy (東京) 1992;6:1679-1685
P.241 掲載の参考文献
2) Ohmichi M, Decker SJ, et al:Phospholipase C-γ1 directly associates with the p70 trk oncogene product through its src homology domains. J Biol Chem 1991;266:14858-14861
3) Ohmichi M, Decker SJ, et al:Nerve growth factor binds to the 140 kd trk proto-oncogene product and stimulates its association with the src homology domain of phospholipase Cγ1. Biochem Biophys Res Commun 1991;179:217-223
6) Ohmichi M, Decker SJ, Saltiel AR:Nerve growth factor stimulates thc tyrosine phosphorylation of a 38-kDa protein that specifically associates with the src homology domain of phospholipase C-γ1. J Biol Chem 1992;267:21601-21606
8) Ohmichi M, Koike K, et al:Role of mitogen activated protein kinase pathway in prostaglandin F2α-induced rat puerperal uterine contraction. Endrocrinology 1997;138:5275-5281
10) Ohmichi M, Sawada T, et al:Thyrotropin-releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation. J Biol Chem 1941;269:3783-3788
12) Kimura A, Ohmichi M, et al:The role of mitogen-activated protein kinase (MAPK) /extracellular signal-regulated kinase (ERK) cascade in gonadotropin-releasing hormone induced growlh inhibition of human ovarian cancer cell line. Cancer Res 1999;59:5133-5142
14) Hayakawa J, Ohmichi M, et al:Inhibition of BAD phosphorylation either at scrine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 2000;60:5988-5994
20) Vigani A, Miglietta L, et al:Effect of recombinant human TNF on human ovarian cancer cell lines. Boll Soc Ital Biol Sper 1990;66:537-542
24) Yazlovitskaya EM, Pelling JC, Persons DL:Association of apoptosis with the inhibition of extracellular signal-regulated protein kinase activity in the tumor necrosis factor α-resistant ovarian carcinoma cell line Ucl 101 Mol. Carcinogenesis 1999;25:14-20
26) Fujimoto J, Sakaguchi H, et al:Clinical implications of expression of interleukin 8 related to angiogenesis in uterine cervical cancers. Cancer Res 2000;60:2632-2635
28) Kurachi H, Morishige K, et al:Importance of transforming growth factor α and epidermal growth factor receptor autocrine growth mechanism in an ovarian cancer cell line in vivo. Cancer Res 1991;51:5956-5959
29) Morishige K-I, Kurachi H, et al:Evidence for the involvement of transforming growth factor α and epidermal growth factor receptor autocrine growth mechanism in primary human ovarian cancers in vitro. Cancer Res 1991;51:5322-5328
30) Morishige K-I, Kuraci H, et al:Involvement of transforming growth factor α/epidermal growth factor receptor autocrine growth mechanism in an ovarian cancer cell line in vitro. Cancer Res 1991;51:5951-5955
P.252 掲載の参考文献
1) 大里外譽郎(編):医科ウイルス学, 第2版. 2000, 南江堂, 東京
2) Granoff A, Webster R (eds):Encyclopedia of Virology, 2nd ed. 1999, Academic Press, New York
3) 大里外譽郎:EBウイルス発がんとリスク因子. 臨床とウイルス1999;27:99-113

腫瘍マーカーの細胞生物学

P.269 掲載の参考文献
7) Matsuoka Y, Nakashima T, et al:Recognition of ovarian cancer antigen CA125 by murine monoclonal antibody produced by immunization of lung cancer cells. Cancer Res 1987;47:6335-6340
10) Nishihara S, Yazawa S, et al:α-(1, 3/1, 4)-fucosyltransferase gene inactivated by a single amino acid substitution in Lewis histo-blood type negative individuals. Biochem Biophys Res Commun 1993;196:624-631
11) Narimatsu H, Iwasaki H, et al:Lewis and secretor gene dos ageg, affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res 1998;58:512-518
12) Kannagi R, Nudelman E, et al:A series human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1. J Biol Chem 1982;257:14865-14874
14) Nozawa S, Aoki D, et al:CA54/61 as a marker for epithelial ovarian cancer. Canser Res 1992;52:1205-1209
15) Nozawa S, Yajinia M, et al:Tumor-associated mucin-type glycoprotein(CA54/61) defined by two monoclonal antibodies(MA54 and MA61) in ovarian cancers, Cancer Res 1989;49:493-498
16) Kjeldeson T, Clausen H, et al:Preparation and characterization of monoclonal antibodies directed to the tumor-associated ο-linked sialosyl-2α→6-N-acetylgalactosaminyl(sialosyl-Tn) epitope. Cancer Res 1988;48:2214-2220
17) 宇田川康博, 野澤志朗, 矢島正純:CA54/61-CA602とのコンビネーションアッセイを含めて. 腫瘍マーカー最近の進歩(大倉久直, 編). 1991;pp92-104, 中外医学社, 東京
18) 野澤志朗:腫瘍マーカーの現況と将来. 日産婦誌1991;43:883-889
22) Aoki D, Kato S, et al:Genotypes of fucosyltransferase-III and its involvement in fucosylated carbohyrate antigen expressed in endometrial adenocarcinoma. Int Gynec Cancer 1995;5:30
23) Susumu N, Nozawa S, et al:Subcellular localizalion of blood group Leib carbohydrate antigen(MSN 1-reactive antigen) in endometrial cancer cells. Cancer Res 1993;53:3643-3648
24) Masri KA, Appert HE, Fukuda MN:Identification on the full-length coding sequence for human galacosyltransferase (β-N-acetylglucosaminide:β1, 4-galactosyltransferase). Biochem Biophys Res Commun 1988;157:657-663
28) Uemura M, Sakaguchi T, et al:Mouse monoclonal antibodies which recognize a human(β1-4) galacosyltransferase associated with tumor in body fluids. Cancer Res 1992;52:6153-6157
29) Uejima T, Uemura M, et al:Complementary DNA cloning for galaclosyltransferase associated with tumor and determination of antigenetic epitopes recognized by specific monoclonal antibodies. Cancer Res 1992;52:6158-6163
P.278 掲載の参考文献
3) Kato H:Expression and function of squamous cell carcinoma antigen. Anticancer Res 1996;16:2149-2154
4) Kato H, Nagaya T, Torigoe T:Heterogeneity of a tumor antigen TA-4 of squamous cell carcinoma in relation to its appearance in the circulation. Gann 1984;75:433-435
10) 縄田修吾, 加藤 紘, 中村和行:SCC腫瘍マーカーの発現とその機能解析. 生物物理化学1998;42:257-263
11) 縄田修吾, 住浪義則, 加藤 紘:子宮頸部扁平上皮癌からのSCC抗原分泌. 産婦人科の世界2000;52:589-592
12) 小林正幸:扁平上皮癌のTA-4産生に及ぼす末梢. 血単核球の影響. 日本産科婦人科学会雑誌1989;41:412-418
13) 中村 薫:扁平上皮癌のSCC抗原産生に及ぼすTumor Necrosis Factor-αの影響. 山口医学1991;40:623-629
14) Numa F, Takeda O, et al:Tumor necrosis factor-α stimulates the production of squamous cell carcioma antigen in normal squamous cells. Tumour Biol 1996;17:97-101
16) 奥野長門:正常ヒト keratinocyte の SCC抗原産生能に及ぼすカルシウムの影響. 山口医学1994;43:419-426
25) 住浪義則, 長島茂樹, ほか:扁平上皮癌関連セルピン, SCC抗原-1によるNK細胞化学遊走性阻止. 日本癌学会総会記事 2000;91:159
P.286 掲載の参考文献
3) 日本産科婦人科学会, 日本病理学会編:卵巣腫瘍取り扱い規約. 第1部. 1990, 金原出版, 東京
5) 山下克子:CEAファミリーの糖鎖構造とその臨床応用. 医学の歩み1995;175:423-426
6) 黒木政秀:CEA(癌胎児性抗原). Medicina 1994;31:452-454
7) 日野田裕治, 明石浩史, 今井浩三:癌胎児性抗原(CEA). 臨床検査ガイド97(Medical Practice 編集委員会編). 1997;pp885-888, 文光堂, 東京
8) 及川信三, 中里 紘, ほか:新しい接着分子・CEAファミリーの構造と機能. Medical Immunology 1992;23:485-495
9) 石井 勝, 服部 信, ほか:Basic Fetoprotein EIAキットの臨床的検討;(1) 血清BFPの臨床的有用性. 癌と化学療法1988;15:2107-2113
10) 五十嵐信一, 樋口譲治, ほか:産婦人科領域におけるBasic fetoproteinの意義. 産婦人科の世界 1990;42:55-57
12) 鈴木良知, 井坂恵一, 高山雅臣:胎児性蛋白Fetal Antigen 1の生体内動態に関する研究/RIAの開発および免疫組織学的検討. 日本産婦人科・新生児血液学会誌1996;6:81-91
13) Teisner B, Rasmussen HB, et al:Fetal antigen 2:An amniotic protein identified as the aminopropeptide of the α1 chain of human procollagen type 1. Acta Pathol Microbiol Immunol Scand 1992;100:1106-1114
P.295 掲載の参考文献
1) 友田 豊, 後藤節子, 那波明宏:絨毛癌と腫瘍マーカー. 産婦人科治療1992;64463-467
2) 西村隆一郎, 衣笠万理, ほか・絨毛性疾患におけるhCG測定値の解釈. 産婦人科の実際1991;40:2219-2226
3) Suzuki N, Konishi E, et al:A highly sensitive colorimetric sandwich-enzyme immunoassay for human chorionic gonadotropin using specific antibodies against the carbonyl-terminal portion of the β-subunit. Clin Chimi Acta 1985;150:247-253
4) Cole LA, Kardana A:Discordant results in human chorionic gonadotropin assays. Clin Chem 1992;38:263-270
5) Matsuura S, Ohashi M, et al:Physicochemical and immunological characterization of an HCG-like substance from human pituitary glands. Nature 1984;14:740-741
6) 弓立 環, 高山雅臣, ほか新しい腫瘍マーカーとしての尿中hCGβ-core fragment(3-CF) 測定の評価. 産科と婦人科1991, 581357-1362
7) Seppala M, Rutanen EM, et al:Detection of trophoblastic tumor activity by pregnancy-specific β1-glycoprotein. Int J Cancer 1978;21:265-267
12) Takayama M, Soma H, et al:Levels of placental protein 10(PP10) in maternal serum in normal and pathologic pregnancies. Biol Res Pregnancy 1985;6:168-172
17) Inaba N, Renk T, et al:Ectopic synthesis of pregnancy specific β1-glycoprotein (SP1) and placental specific tissue proteins (PP5, PP10, PP11. PP12) in nontrophoblastic malignant tumors. Possible markers in oncology. Klin Wochenschr 1980;58:789-791
19) Huhtala ML, Seppala M, et al:Amino acid sequence homology between human placental protein 14 and β-lactogloblins from various species. Endocrinology 1987;120:2620-2622
21) 鈴木良知, 高山雅臣:胎盤と免疫. 周産期医学1998;28:713-717
22) 杉山力一, 臼田三郎, ほか:Placental Protein 14(PP14) の子宮内膜よりの産生・分泌に関する検討. 産婦人科の実際1999;48:299-306
25) Takayama M, Isaka K, et al:Comparative study of placental protein 19, human chorionic gonadotropinnd pregnancy-specific β1-glycoprotein as immunohistochemical markers for extravillous trophoblastin pregnancy and trophoblastic disease. Histochemistry 1989;93:167-173
P.300 掲載の参考文献
1) 稲葉憲之, 太田順子, ほか:腫瘍マーカーとしての細胞骨格蛋白. 臨床婦人科産科1998;52:150-152
2) 河井通泰, 加納武夫, ほか:卵巣癌におけるCA125, TPA, CA72-4, BFP, CA19-9の臨床的意義. 産婦人科の実際1991;40:1391-1396
3) 根岸能之:婦人科悪性腫瘍における新しい腫瘍マーカーCytokeratin 19の臨床的有用性に関する研究. 臨床婦人科産科1993;6:789-786
4) 伏木 弘, 今井敏啓, ほか:子宮頸部扁平上皮癌におけるサイトケラチン19フラグメント(シフラ) 測定の意義について. 産婦人科治療1998;77:684-686

分子腫瘍学の臨床

P.310 掲載の参考文献
3) Ogawa H, Kato I, et al:Family history of cancer among cancer patiens. J Jpn Cancer Res 1985;76:113-118
9) Whittemore AS, Gong G, Itnyre J:Prevalence and contribution of BRCA1 mutations in breast cancer and ovarian cancer:Results from three US Population-based case-control stuidies of ovarian cancer. Am J Hum Genet 1997;60:496-504
11) Easton DF Bishop DT, et al:Genetic linkage analysis in familial breast and ovarian cancer:Results from 214 families. Am J Hum Gennet 1993;52:678-701
13) Pharoah PD, Easton DL, et al:Survival in familial BRCA1 associated, and BRCA2 associated epithelial ovarian cancer. Cancer Res 1999;59:868-871
14) Aida H, et al:Clinical feature of ovarian cancer in Japanese women with germ-line mutations of BRCA1. Clinical Cancer Res 1998;4:235-240
15) Schultz DC, Vanderveer L et al:Identification of two candidate tumor suppressor genes on chromoome 17p13.3. Cancer Res 1996;56:1997-2002
P.322 掲載の参考文献
1) Andrews PA, Howell SB:Cellular pharmacology of cisplatin:Perspectives on mechanisms of acquired resistance. Cancer Cells, 1990;2:35-43
4) Andrews PA, Mann SC, et al:Role of the Na+, K(+)-adenosine triphosphatase in the accumulation of cis-diamminedichloroplatinum (II) in human ovarian carcinoma cells. Cancer Res 1991;51:3677-3681
5) Taniguchi K, Wada M, et al:A human canalicular multispecific organic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistant human ovarian cancer cell lines with decreased drug accumulation. Cancer Res 1996;56:4124-4129
8) Ishihama T, Ali-Osman F:Glutathine-associated cis-diamminedichloroplatinum (II) metabolis and ATP-dependent efflux from leukemia cells. J Biol Chem 1993;268:20116-20125
10) Pottanaik A, Bachowski G, et al:Properties of the reaction of cis-diamminedichloroplatinum (II) with metallothionein. J Biol Chem 1992;267:16121-16125
11) Yokomizo A, Ono M, et al:Cellular levels of thioredoxin associated with drug sensitivity to cisplatin. mitomycin C, doxorubicine and etoposide. Cancer Res 1995;55:4293-4296
12) Kikuchi Y, Hirata J, et al:Altered expression of γ-glutamyl cysteine synthetase, metallothionein and topoisomerase I or II during acquisition of drug resistance to cisplatin in human ovarian cancer cells. Jpn J Cancer Res 1997;88:213-217
18) Moolenaar WH, Tertoolen GJ, et al:Growth factors immediately raise cytoplasmic free Ca++ in human fibroblasts. J Biol Chem 1984;259:8066-8069
21) Ohmori T, Arteaga CL:Protein kinase Cε transduction and phosphorylation by cis-diamminedichloroplatinum (II) (CDDP):Potential role in CDDP-mediated cytotoxicity. Cell Growth Differ 1998;9:345-353
24) Perego P, Giarola M, et al:Association between cisplatin resistance and mutation or p53 gene and reduced expression in ovarian carcinoma cell systems. Cancer, Res 1996;56:556-562
25) Kikuchi Y, Hirata J, et al:Complexity of cis-diamminedichloroplatinum (II) resistance mechanism in human ovarian cancer cells. The Mechanism of Cisplatin Resistance and its Circumvention (Kikuchi Y, et al, eds). 1998;pp157-174, Nova Science Publishers, Commack, New York
32) Duan Z, Feller AJ, et al:Discovery of differentially expressed genes associated with paclitaxel resistance using cDNA array technology:Analysis of interleukin (IL) 6, IL-8 and monocyte chemotactic protein 1 in the paclitaxel-resistant phenotype. Clin Cancer Res 1999;5:3445-3453
41) Goddard P, Valenti M, et al:The role of glutathione (GSH) in determining sensitivity to platinum drugs in vivo in platinum-sensitive and-resistant murine leukaemia and plasmacytoma and human ovarian carcinoma xenografts. Anticancer Res 1994;14:1065-1070
P.334 掲載の参考文献
1) http://www.wiley.co.uk/genetherapy/clinical/index.html
2) 蒲生 忍, 清水信義, ほか:蛋白質核酸酵素. 遺伝子治療(新津洋司郎, 浅野茂隆, ほか編). 1995;pp2562-2569, 共立出版, 束京
3) 浅野茂隆:遺伝子治療-その臨床展開と将来. 1997;pp33-71, 真興交易医書出版部, 東京
4) 小澤敬也:遺伝治療. 1996;pp50-77, 羊社社, 東京
19) Stochhammer G, Brotchi J, et al:Gene therapy for glioblastoma multiform:in vivo tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. J Mor Med 1997;175:300-304
20) Osaki T, Tanio Y, et al:Gene therapy for carcinoembryonic antigen-producing human lung cancer cells by type-specific expression of herpes simplex virus thymidine kinase gene. Cancer Res 1994;54:5258-5261
21) Kaneko S, Chiang YL, et al:Adenovirus-mediated gene therapy of hepatocellular carcinoma using cancer-specific gene expression. Cancer Rev 1995;55:5283-5287
30) Roth JA, Walsh GL, et al:Gene therapy for non-small cell lung cancer:A preliminary report of phase I trial of adenoviral p53 gene replacement. Semin Oncol 1998;25:33-37
31) Habib NA, Abdel-Gaffer Y, et al:Preliminary report:The short-term effects of direct p53 injection in primary hepatocellular carcinomas. Cancer Detect Prev 1996;20:103-107
32) Tait DL, Holt JT, et al:A phase I trial of retroviral BRCA1 gene therapy in ovarian cancer. Clin Cancer Res 1997;3:1959-1968
33) Tait DL, Obermiller PS, et al:Ovarian cancer BRCA1 gene therapy:Phase I and II trial differences in immune response and vector stability. Clin Cancer Res 1999;5:1708-1714
P.350 掲載の参考文献
4) Thierry F:Proteins involved in the control of HPV transcription. Papillomavirus Rep 1993;4:27-32
6) Banks L, Matlashewski G:Cell transformation and the HPVE5 gene. Papillomavorus Rep 1993;4:1-4
8) Jacobs MV, Snijders PJ, et al:A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol 1997;35:791-795
9) Van Ranst MA, Tachezy R, et al:Taxonomy of the human papillomaviruses. Papillomavirus Rep 1993;4:61-65
10) Chan SY, Delius H, et al:Analysis of genomic sequences of 95 papillomavirus types:Uniting typing, phylogeny, and taxonomy. J Virol 1995;69:3074-3083
14) Kessis TD, Connolly DC, et al:Expression of HPV 16 E6 or E7 increases integration of foreign DNA. Oncogene 1996;13:427-431
20) Pirisi L, Yasumoto S, et al:Transformation of human tibroblasts and keratinocytes with human papillomavirus type 16 DNA. J Virol 1987;61:1061-1066
22) Thomas M, Matlashewski G, et al:Induction of apoptosis by p53 is independent of its oligomeric state and can be abolished by HPV-18 E6 through ubiquitin mediated degradation. Oncogene 1996;13:265-273
25) Schneider JF, McGlennen RC, et al:Rhesus papillomavirus type 1 cooperates with activaled ras in transforming primary epithelial rat cells independent of dexamethasone. J Virol 1991;65:3354-3358
29) Band V, De Caprio JA, et al:Loss of p53 protein in hunnan papillomavirus type 16 E6-immortalized human mammary epithelial cells. J Virol 1991;65:6671-6676
30) Sedman SA, Hubbert NL, et al:Mutant p53 can substitute for human papillomavirus type 16 E6 in immortalization of human keratinocytes but does not have E6-associated trans-activation or transforming activity. j Virol 1992;66:4201-4208
35) Tan SH, Leong LE, et al:The human papillomavirus type 16 E2 transcriptional factor binds with low cooperativity to two flanking sites and repress the E6 promoter through displacement of SP1 and TFIID. J Virol 1994;68:6411-6420
41) Jeon S, Allen-Hoffmann BL, Lambert PF:Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J Virol 1995;69:2989-2997
47) Yokota J, Tsukada Y, et al:Loss of heterozygosity on the short arm of chromosome 3 in carcinoma of the uterine cervix. Cancer Res 1989;49:3598-3601
48) Jones MH, Nakamura Y:Deletion mapping of chromosome 3p in female genital tract malignancies using microsatellite polymorphisms. Oncogene 1992;7:1631-1634
49) Kohno T, Takayama H, et al:Deletion mapping of chromosome 3p in human uterine cervical cancer. Oncogene 1993;8:1825-1832
51) Mitra AB, Murty VV, et al:Allelotype analysis of cervical carcinoma. Cancer Res 1994;54:4481-4487
52) Mullokandov MR, Kholodilov NG, et al:Genomic alterations in cervical carcinoma:Losses of chromosome heterozygosity and human papillomavirus tumor status. Cancer Res 1996;56:197-205
54) Larson AA, Kern S, et al:High resolution analysis of chromosome 3p alterations in cervical carcinoma. Int J Cancer Res 1997;57:4082-4090
61) Steenbergen RD, Hermsen MA, et al:Integrated human papillomavirus type 16 and loss of heterozygosity at 11q22 and 18q21 in an oral carcinoma and its derivative cell line. Cancer Res 1995;55:5465-5471
62) Steenbergen RD, Walboomers JM, et al:Transition of human papillomavirus type 16 and 18 tansfected human foreskin keratinocytes towards immortality:Activation of telomerase and allele loss at 3p, 10p, 11q, and/or 18q. Oncogene 1996;13:1249-1257
70) Srivatsan ES, Misra BC, et al:Loss of heterozygosity for alleles on chromosome II in cervical carcinoma. Am J Hum Genet 1991;49:868-877
80) Mitra AB, Murty VV, et al:ERBB2(HER2/neu) oncogene is frequently amplified in squamous, cell carcinoma of the uterine cervix. Cancer Res, 1994;54:637-639
85) Larson AA, Kern S, et al:Analysis of replication error (RER+) phenotypes in cervical carcinoma. Cancer Res 1996;56:1426-1431
89) Steenbergen RD, Walboomers JM, et al:Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality:Activation of telomerase and allele losses at 3p, 10p, 11q and/or 18q. Oncogene 1996;13:1249-1257
91) Bartholomew JS, Glenville S, et al:Integration of high-risk human papillomavirus DNA is linked to the down-regulation of class I human leukocyte antigens by steroid hormones in cervical tumor cells. Cancer Res 1997;57:937-942
94) Mittal R, Tsutsumi K, et al:Human papillomavirus type 16 expression in cervical keratinocytes:Role of progesterone and glucocorticoid hormones. Obstet Gynecol 1993;81:5-12
97) Crook T, Wrede D, Vousden KH:p53 point mutation in HPV negative human cervical carcinoma cell lines. Oncogene 1991;6:873-875
P.364 掲載の参考文献
10) Hagensee ME, Olson NH:Three-dimensional structure of vaccinia virus-produced human papillomavirus type 1 capsids. J Virol 1994;68:4503-4505
11) Yoshikawa H, Matsukura T, et al:Occurrence of human papillomavirus types 16 and 18 DNA in cervical carcinomas from Japan:Age of patients and histological type of carcinomas. Jpn J Cancer Res 1985;76:667-671
15) Yoshikawa H, Onda T, et al:Management of HPV-positive CIN patients:HPV type and the risk of progression of CIN to cancer. Women's Health:Recent Advances in the Asia-Oceania Region, Saifuddin AB, Affandi B, Wiknjosastro GH, eds. 1995;pp361-363, Yayasan Bina Pustaka Sarwono Prawirohardjo, Jakarta
21) Zehbe I, Wilander E, et al:Human papillomavirus 16 E6 variants are more prevalent in invasive cervical carcinoma than the prototype. Cancer Res 1998;58:829-833
37) Czegledy J, Poka R, et al:Amplification of human papillomavirus type 16 transforming genes from cervical cancer biopsies and lymph nodes of Hungarian patients. J Clin Microbiol 1992;30:233-236
41) Kobayashi Y, Yoshinouichi M, et al:Presence of human papilloma virus DNA in pelvic lymph nodes can predict unexpected recurrence of cervical cancer in patients with histologically negative lymph node. Clin Cancer Res 1998;4:979-983
45) Breitburd F, Kirnbauer R, et al:Immunization with viruslike particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection. J Virol 1995;69:3959-3963
49) Chen L, Mizuno MT, et al:Induction or cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. J Immunol 1992;148:2617-2621
51) Steller MA, Gurski KJ, et al:Cell mediated immunological responses in cervical and vaginal cancer patients immunized with a lipidated epitope of human papillomavirus type 16 E7. Clin Cancer Res 1998;4:2103-2109
P.387 掲載の参考文献
3) Bigsby RM, Aixin L, et al:Immunohistochemical study of HER 2/neu in epidermal, growth factor receptor and steroid receptor expression in normal and malignant endometrium. Obstet Gynecol 1992;79:95-100
5) Boyd J, Kauffman DG:Expression of transforming growth factor beta, by human endometrial carcinoma cell lines. Cancer Res 1990;50:3394-3399
6) Gold LI, Sazena B, et al:Increased expression of transforming growth factor beta isoforms and basic fibroblast growth factor in complex hyperplasia and adenocarcinoma of the endometrium. Cancer Res 1994;54:2347-2358
7) Talavere F, Reynolds RK, et al:Insulin-like growth factor I receptor in normal and neoplastic human endometrium. Cancer Res 1990;50:3019-3024
9) Smith HO, Anderson PS, et al:The role of colony-stimulating factor 1 and its receptor in thc etiopathogenesis of endometrial adenocarcinoma. Clin Cancer Res 1995;1:313-325
10) Inoue M, Kyo S, et al:Coexpression of the c-kit receptor and the stem cell factor in gynecologic tumors. Cancer Res 1994;54:3049-3053
13) Enomoto T, Inoue M, et al:K-ras activation in premalignant and malignant lesions of the human uterus. Cancer Res 1991;51:5308-5314
14) Enomoto T, Fujita M, et al:Alteration of the p53 tumor suppresor gene and its association with activation of the c-k-ras-2 protooncogene in premalignant and malignant lesions of the human endometrium. Cancer Res 1993;53:1883-1888
17) Sasaki H, Nishi H, et al:Mutation of the Ki-ras protooncogene in human endometrial hyperplasia and carcinoma. Cacer Res 1993;53:1906-1910
18) Caduff RF, Johston CM, et al:Mutation of the Ki-ras oncogene in carcinoma of the endometrium. Am J Pathol 1995;146:182-188
22) Chenevix-Trench G, Leary J, et al:Frequent loss of heterozygosity on chromosome 18 in ovarian adenocarcinoma which does not always include the DCC locus. Oncogene 1992;7:1059-1065
23) Fujino T, Risinger JI, et al:Allelotype of endometrial carcinoma. Cancer Res 1994;54:4294-4298
26) Tashiro H Blazes MS, et al:Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997;57:3935-3940
28) Risinger JI, Hayes K, et al:PTEN/MMACI mutations in endometrial cancers. Cancer Res 1997;57:4736-4738
29) Risinger JI, Hayes K, et al:PTEN mutation in endometrial cancers is associated with favorable clinical and pathologic characteristics. Clin Cancer Res 1998;4:3005-3010
33) Segawa T, Sasagawa T, et al:Clinicopathological significance of fragile histidine triad transcription protein expression in endometrial carcinomas. Clin Cancer Res 2000;6:2341-2348
34) Giatromanolaki A, Sivridis E, et al:Bc1-2 and p53 expression on stage I endometrial carcinoma. Anti-Cancer Res 1998;18:3689-3693
35) Henderson GS, Brown KA, et al:Bcl-2 is downn-regulated in atypical endometrial hyperplasia and adenocarcinoma. Mod Pathol 1996;9:430-438
37) Schwartz S Jr, Yamamoto H, et al:Frameshift mutations at mononucleotide repeats in caspase-5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 1999;59:2995-3002
41) Katabuchi K, Rees BV, et al:Mutations in DNA mismatch repair genes are not responslble for micro-satellite instability in most sporadic endometrial carcinomas. Cancer Res 1995;55:5556-5560
42) Lim PC, Tester D, et al:Absence of mutations in DNA mismatch repair genes in sporadic endometrial tumors with microsatellite instability. Clin Cancer 1996;2:1907-1911
45) Gurin CC, Federici MG, et al:Causes and conscquences of microsatellite instability in endometrial carcinoma. Cancer Res 1999;59:426-466
46) Caduff RF, Johnston CM, et al:Clinical and pathological significance of microsatellite instability in sporadic endometrial carcinoma. Am J Pathol 1996;148:1671-1678
51) Esteller M, Garcia A, et al:Detection of clonality and genetic alterations in endometrial pipelle biopsy and its surgical specimen counterpart. Lab 1976;76:109-116
52) Kyo S, Takakura M, et al:Telomerase activity in human endometrium. Cancer Res 1997;57:610-614
53) Ueno H, Nakamura H, et al:Expression and tissue localization of membrane-types 1, 2 and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 1997;57:2055-2060
56) Fukuchi T, Sakamoto M, et al:Beta-catenin mutation in carcinoma of the uterine endometrium. Cancer Res 1998;58:3526-3528
57) Mirabelli-Primdahl L, Gryfe R, et al:Beta-catenin mutations are specific for clolorectal carcinomas with microsatellite instability but occur in endometrial carcinomas irrespective of mutator pathway. Cancer Res 1999;59:3346-3351
58) Lesscy BA, Albelda S, et al:Distribution of integrin cell adhesion molecules in endometrial cancer. Am J Pathol 1995;146:717-726
64) Hendrickson MR, Kempson RL:Non-neoplastic metaplasias:Surgical Pathology of the Uterine Corpus. 1980;pp158-214, WB Saunders, Philadelphia
68) Liu L, Markowitz S, et al:Mismatch repair mutations overide alkyltransferase in conferring resistance to tempozolomide but not to 1.3-bis (2-chloroethyl) nitrosourea. Cancer Res 1996;56:5375-5379
72) Lynch HT, Krush AL, Magnuson CW:Endometrial carcinoma:Multiple primary malignancies, constitutional factors and heredity. Am J Med Sci 1996;36:381-390
P.403 掲載の参考文献
1) 蔵本博行, 上坊敏子, 人河原聡:若年体がんの諸問題. 産科と婦人科1988;55:1703-1710
3) Henderson BE, Ross RK, et al:Endogenous hormones as a major factor in human cancer. Cancer Res 1982;42:3232-3239
4) Siiteri PK:Steroid hormones and endometrial cancer. Cancer Res 1978;39:4360-4366
6) Chamlian DL, Taylor HB:Endometrial hyperplasia in young woman. Obstet Gynecol 1970;36:659-666
7) Novak ER, Kitchmeskji J, Mupus RS:Feminizing gonadal stromal tumors:Analysis of granulosa theca cell tumors of the ovarian tumor registy. Ohstet Gynecol 1971;38:701-713
9) Villani C, Pucci G, Pietrangeri D:Roles of diet in endometrial cancer patient. Eur J Gynecol Oncol 1986;7:139-149
12) Kodama M, Murakami M, Kodama T:Reproductive activity is a magic spell to connect the genesis of cancers of the uterine cervix and endometrium. Anticancer Res 1989;9:1909-1914
16) Tashiro H, Blazes MS, et al:Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res 1997;57:3935-3940
17) 蔵本博行, 上坊敏子, ほか:子宮体癌に随伴する内膜増殖症-体癌の発生と予後判定の指標とての意義について. 日本婦人科病理コルポスコピー学会雑誌1989;7:179-184
18) 蔵本博行, 上坊敏子, ほか:エストロゲンと子宮体癌. 産婦人科の世界1990;42:1073-1077
19) 蔵本博行, 上坊敏子, ほか:体癌予後不良例の検討-当院で経験した症例から. 産科と婦人科 1987;9:1649-1656
20) Gusberg SB, Kaplan AL:Precursors of corpus cancer, IV. Adenomatous hyperplasia as stage O carcinoma of the endometrium. Am J Obstet Gynecol 1963;87:662-678
26) 西川正人, 笠原国武, ほか:エストロゲン, プロゲステロンレセプターを持つ分化型子宮内膜癌細胞株(Ishikawa株)の樹立. 日本産科婦人科学会雑誌 1985;37:1103-1111
27) 秦 宏樹, 秦 和子, ほか:子宮内膜癌のステロイドホルモン感受性とその作用機序. Hum Cell 1989;2:265-271
30) Holinka CF, Hata H, et al:Effects of steroid hormones and antisteroids on alkaline phosphatase activity in human endometrial cancer cells (Ishikawa line). Cancer Res 1986;46:2771-2774
32) Lippman ME, Bolan G, Huff K:The effects of estrogens and antiestrogens in hormone-responsive human breast cancer in long term culture. Cancer Res 1976;36:4595-4601
33) Darbre P, Yates J, et al:Effect or estradiol on human breast cancer cells in culture. Cancer Res 1983;43:349-354
35) Bates SE, Dickson RB, et al:Characterization of estrogen-responsive transforming activity in human breast cell lines. Cancer Res 1986;46:1707-1713
36) Dickson RB, Huff KK, et al:Induction of epidermal growth factor-related polypeptides by 17β-estradiol in MCF-7 human breast cancer cells. Endocrinol 19861;118:138-142
37) Davidson NE, Lippman ME:Thc role of estrogens in growth regulation of breast cancer. Crit Rev Oncog 1989;1:89-111
38) Bates SE, Davidson NE, et al:Expression of transtorming growth factor-α and its messenger ribonucleic acid in human breast cancer:Its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988;2:543-555
39) Salomon DS, Kidwell WR, et al:Modulation by estrogen and growth factor of transforming growth factor α and epidermal growth factor receptor expression in normal and malignant human mammary epithelial cells. Recent Results Cancer Rers 1989;113:57-69
40) Saeki T, Cristiano A, et al:Regulation by estrogen through the 5'-flanking region of the transforming growth factor α gene. Mol Endocrinol 1991;5:1955-1963
41) Huff KK, Kaufman D, et al:Human breast cancer cells secret an insulin-like growth facrtor I-related polypeptide. Cancer Res 1986;46:4613-4619
42) Karey KR Sirbasku DA:Differential responsive if human breast cancer cell lines MCF-7 and T47D ti growth factors and 17β-estradiol. Cancer Res 1988;48:4083-4092
44) Peyrat J-P, Bonneterre E, et al:Insulin-like growth factor 1 receptor and human breast cancer and their relation to estradiol and progesterone receptors. Cancer Res 1988;48:6429-6433
45) Bonneterre J, Peyrat JP, Demaille A:Prognostic significance of insulin-like growth factor 1 receptors in human breast cancer. Cancer Res 1990;50:6931-6935
46) Cunha GR, Bigsby RM, et al:Stromal-epithelial interactions in thc determination of hormonal responsiveness. Estrogens in the Environment. 1985;pp273-287, Elsevier Science. New York
47) Nonomura N, Nakamura N, et al:Proliferation of Shionogi carcinoma cells caused by androgen induced fibloblast growth factor (FGF)-like peptide in an autocrine mechanism. Perspectives in Andrology. 1989;pp431-438, Raven Press, New York
49) Mosses HL, Branum EL, et al:Transforming growth factor production by chemically transformed cells. Cancer Res 1981;41:2842-2848
51) Derynck R:Transforming growth factor-α. Cell 1988;54:593-595
53) Stoscheck CM, King LE Jr:Role of epidermal growth factor in carcinogenesis. Cancer Res 1986;46:1030-1037
57) Hata H, Hamano M, et al:Role of TGFα in the mechanism of hormone dependency of endometrial carcinoma cells (Ishikawa). In Vitro Biology of Sex Steroid Hormone Action. 1996;pp158-170, Churchill Livingstone, Tokyo
60) Menon KMJ, Talavera F, et al:Growth regulation of human endometrial cells:Action of cyclic AMP and PMA on IGF-1 mediated proliferation of HEC-1-A cells. In Vitro Biology of Sex Steroid Hormone Action. 1996;pp171-183, Churchill Livingstone, Tokyo
61) Sakata N, Kurachi H, et al:Autocrine growth mechanism by transforming growth factor (TGF)-β1 and TGF-β1 receptor regulation by epidermal grwoth factor in a human endometrial cancer cell line IK-90. Int J Cancer 1993;54:862-867
62) Terakawa N:Growth inhibition by progesting, in human endometrial cancer. In Vitro Biology of Sex Steroid Hormone Action. 1996;pp184-191, Churchill Livingstone, Tokyo
63) Croxtall JD, Jamil A, et al:TGF-β stimulation of endometrial and breast cancer cell growth. Int J Cancer 1992;50:822-827
64) Kuramoto H, Hamano M, et al:Establishment of a new human endometrial carcinoma cell line derived from ascites. Acta Obstet Gyneacol Jpn 1976;28:1405-1406
68) Hata H, Hamano M, et al:In vitro study for hormones and growth factors dependent cell proliferation on endometriral adenocarcinoma cells. Hum Cell 1993;6:182-187
71) Berchuck A, Rodriguez GC, et al:Overexpresion of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990;50:4087-4091
P.419 掲載の参考文献
2) Ichikawa Y, Nishida M, et al:Mutation of K-ras protooncogene is associated with histological sub-types in human mucinous ovarian tumors. Cancer Res 1994;54:33-35
3) Mok SCm Bell DA, et al:Mutation of K-ras protooncogene in human ovarian epithelial tumors of borderline malignancy. Cancer Res 1993;53:1489-1492
5) Enomoto T, Weghorst CM, et al:K-ras activation occurs frequently in mucinous adenocarcinomas and rarely in other common epithelial tumors of the human ovary. Am J Pathol 1991;139:777-785
10) Masuda H, Battifora H, Yokata J:Specificity of proto-oncogene amplification in human malignant diseases. Mol Biol Med 1987;4:213-227
14) Berchuck A, Kamel A, et al:Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res 1990;50:4087-4091
16) 榎本隆之, 藤田征巳, 村川雄二:卵巣癌の分子生物学-癌遺伝子, 癌抑制遺伝子. 産科と婦人科 1999;66:19-25
24) Liu AX, Testa JR, et al:AKT2, a member of the protein kinase B family, is activated by growth factors, v-Ha-ras, and v-src through phosphatidylinositol 3-kinase in human ovarian epithelial cancer cells. Cancer Res 1998;58:2973-2977
28) Page C, Lin HJ, et al:Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 2000;20:407-416
34) Moscatello DK, Holgado Madruga M, et al:Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995;55:5536-5539
35) Kacinski BM, Carter D, et al:Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with co-expression of CSF-1. Am J Pathol 1990;137:135-147
36) Chambers SK, Wang Y, et al:Macrophage colony-stimulating factor mediate:invasion of ovarian cancer cells through urokinase. Cancer Res 1995;55:1578-1585
38) Henriksen R, Funa K, et al:Expression and prognostic significance of platelet-derived growth factor and its receptors in epithelial ovarian neoplasms. Cancer Res 1993;53:4550-4554
39) Yee D, Morales FR, et al:Expression of insulin like growth factor I, its binding proteins, and its receptor in ovarian cancer. Cancer Res 1991;51:5107-5112
40) Stromberg K, Collins TJ4th, et al:Transforming growth factor alpha acts as an autocrine growth factor in ovarian carcinoma cell lines. Cancer Res 1992;52:341-347
42) Marks JR, Davidoff AM, et al:Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res 1991;51:2979-2984
44) Mazars R, Pujol P, et al:p53 mutations in ovarian cancer:A late event? Oncogene 1991;6:1685-1690
48) Schultz DC, Vanderveer L, et al:Characterization of chromosome 9 in human ovarian neoplasia identifies frequent genetic imbalance on 9q and rare alterations involving 9p, including CDKN2. Cancer Res 1995;55:2150-2157
51) Sato T, Saito H, et al:Allelotype of human ovarian cancer. Cancer Res 1991;51:5118-5122
52) Cliby W, Ritland S, et al:Human epithelial ovarian cancer allelotype. Cancer Res 1993;53:2393-2398
53) Dodson MK, Cliby WA, et al:Evidence of functional RB protein in epithelial ovarian carcinomas despite loss of heterozygosity at the RB locus. Cancer Res 1994;54:610-613
54) Kim TM, Benedict WF, et al:Loss or heterozygosity on chromosome 13 is common only in biologically more aggressive subtype:of ovarian epithelial tumors and is associated with normal retinoblastoma gene expression. Cancer Res 1994;54:605-609
59) Lynch MA, Nakashima R, et al:Mutation analysis of the transforming growth factor receptor type II gene in human ovarian carcinoma. Cancer Res 1998;58:4227-4232
61) Wang D, Kanuma T, et al:Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. Cancer Res 2000;60:4507-4512
P.431 掲載の参考文献
1) 日本産科婦人科学会, 日本病理学会(編):絨毛性疾患取扱い規約, 改訂2版. 1995;pp819, 金原出版, 東京
2) 山田秀人, 藤本征一郎:全胞状奇胎発生における embryogenesis の停止機構. 新女性医学大系37, 絨毛性疾患. 1995;pp114-119, 中山書店, 東京
4) Kajii T, Ohama K:Androgenetic origin of hydatidiform mole. Nature 1977;268:633-634
18) Wada M, Seenger RC, et al:Maintenance of normal imprinting of H19 and IGF2 genes in neuroblastoma. Cancer Res 1995;55:3386-3388
19) Mutter GL, Stewart CL, et al:Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast Am J Hum Genet 1993;53:1096
24) 藤野敬史, 和氣徳夫, ほか:ヒト癌遺伝子研究の動向とDNA診断. (12) 絨毛癌・胞状奇胎. 日本臨床 1989;47 増刊号:695-700
26) Knudson AG Jr:Mutation and cancer:Statistical study of retinoblastoma. Proc Natl Acad Sci USA 1971;68:820-823
27) 宮本新吾, 佐々木雅弘, ほか:絨毛癌化とその分子機構. Human Cell 1991;4:38-43

最近チェックした商品履歴

Loading...