イオン交換膜 基礎と応用

出版社: 丸善出版
著者:
発行日: 2016-12-20
分野: 基礎・関連科学  >  医用工学/材料
ISBN: 9784621301159
電子書籍版: 2016-12-20
電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

30,800 円(税込)

商品紹介

イオン交換膜研究の座右の書。イオン交換膜研究に長年従事してきた著者が、イオン交換膜が示す多くの現象・基本的問題をはじめとして、各分野における応用から、その経済的評価までをまとめました。環境関連技術や燃料電池につながる幅広い分野で有用なリファレンスです。

目次

  • 表紙
  • まえがき
  • 目次
  • 第1部 基礎編
  • 1 イオン交換膜の合成
  • 1.1 基本事項
  • 1.2 炭化水素系イオン交換膜
  • 1.3 均質膜
  • サンドイッチ法
  • 脱気法
  • ペースト法
  • 螺旋巻法
  • 1.4 不均一膜
  • 合成法
  • 樹脂 / 結合剤比および粒径
  • 結合剤の形
  • 1.5 グラフト共重合
  • 同時照射
  • 前照射
  • 実施例
  • 1.6 バイポーラ膜
  • 1.7 フッ素系膜
  • 燃料電池膜
  • 塩素アルカリ分離膜
  • 2 イオン交換膜の基本的性質
  • 2.1 はじめに
  • 2.2 イオンの膜内移動
  • Donnan平衡理論
  • 輸率
  • 真の輸率の測定
  • 銀 - 塩化銀電極の作成法
  • 2.3 膜電位
  • Nernst式
  • 見かけの輸率の測定
  • 2.4 拡散
  • 濃度拡散
  • 溶質透過係数の測定
  • 2.5 選択透過性
  • 電荷の異なる同符号イオン間の選択透過性
  • 選択透過係数の測定
  • 1価イオン選択透過性陽イオン交換膜
  • 2.6 電気伝導度
  • 電気伝導度の原理
  • 電気抵抗の測定
  • 直流電気抵抗
  • 2.7 浸透
  • 加速浸透と減速浸透
  • 浸透の測定
  • 2.8 電気浸透
  • 電気浸透係数
  • 電気浸透係数の測定
  • 2.9 イオン交換容量, 含水率
  • 膜中のイオン交換基濃度
  • イオン交換容量と含水率の測定
  • 2.10 膨潤率
  • 2.11 機械的強度
  • 試料膜の調整
  • 破裂強度
  • 引張強度
  • 2.12 市販膜の性質
  • 3 Teorell, Meyer, Sieversの理論 ( TMS理論 )
  • 3.1 はじめに
  • 3.2 膜電位
  • 3.3 拡散係数
  • 3.4 電気伝導度
  • 3.5 輸率
  • 4 非平衡熱力学
  • 4.1 はじめに
  • 4.2 現象方程式と現象係数
  • 4.3 膜現象
  • 透過性
  • 動電現象
  • 拡散電位
  • 4.4 反発係数
  • 4.5 電気透析現象
  • 4.6 電気透析による塩と水の分離
  • 2室型電気透析系
  • 3室型電気透析系
  • 5 総括物質移動
  • 5.1 はじめに
  • 5.2 塩水の電気透析と総括物質移動式
  • 5.3 イオン交換膜対の性質
  • ρ対λ, μ, φの関係
  • ρ対膜電気抵抗
  • ρ対温度
  • 膜対特性に対する電解質濃度と液流速の影響
  • 5.4 総括物質移動と海水電気透析
  • 5.5 総括物質移動式と現象方程式
  • 5.6 イオン交換膜の反発係数
  • 6 濃度分極
  • 6.1 はじめに
  • 6.2 電流 - 電圧 ( I - V ) 曲線
  • 6.3 境膜における濃度変化
  • 6.4 境膜内物質移動
  • 6.5 空間電荷
  • 6.6 重力対流
  • 6.7 電気対流
  • 6.8 振動
  • 6.9 濃縮側イオン交換膜面で発生する濃度分極
  • 7 水解離
  • 7.1 はじめに
  • 7.2 電流 - pH関係
  • 7.3 拡散モデル
  • 7.4 静電反発域
  • 7.5 Wien効果
  • 7.6 プロトン化脱プロトン化反応
  • 7.7 水解離の実験的研究
  • 電流 - pH関係
  • 液中の電解質イオンが水解離に及ぼす影響
  • 水解離反応に対する電位の影響
  • 不溶性金属水酸化物の膜面析出と水解離の発生
  • イオン交換膜内における電位
  • 7.8 水解離反応の機構
  • 水解離反応の電流効率
  • 反応層におけるH + イオンとOH - イオンの濃度分布, 反応層の面積電気抵抗, 正反応速度定数
  • 正反応速度定数
  • イオン交換基と水解離反応
  • イオン交換基のpK値と水解離反応
  • 触媒的水解離反応
  • 8 流体力学
  • 8.1 はじめに
  • 8.2 スペーサー周辺の流線
  • 8.3 スペーサーの物質輸送効果
  • 8.4 スペーサー周囲の死角
  • 8.5 流路内流動模型
  • 8.6 流動パターンと限界電流密度
  • 8.7 流路内流速分布
  • 8.8 脱塩室間の液流速分布
  • 8.9 流路の空気洗浄
  • 8.10 スペーサーのない場合の流路内液流と物質移動
  • 8.11 スペーサーのある場合の流路内液流速
  • 8.12 スペーサー網目ステップモデルと境膜内物質移動
  • 8.13 スペーサー構造と流路内圧力変化
  • 8.14 脱塩室内液摩擦因子と液流速分布
  • 8.15 電気透析槽ダクト内圧力分布
  • 9 限界電流密度
  • 9.1 はじめに
  • 9.2 Nernst拡散モデル
  • 9.3 Nernst - Planck式から導かれる限界電流密度
  • 9.4 化学工学的手法により導いた限界電流密度
  • Stanton数, Pecret数および電位差数と用いた解析
  • Sherwood数を用いた解析
  • Reynolds数, Schmidt数およびスペーサー因子を用いた解析
  • 9.5 限界電流密度の塩濃度, 液流速および温度依存性
  • 9.6 電気透析槽の限界電流密度
  • 10 電流漏洩・液漏洩
  • 10.1 はじめに
  • 10.2 電流漏洩
  • 電流漏洩式
  • 漏洩電流の計算
  • 10.3 液漏洩
  • 総括物質移動と液漏洩
  • 液漏洩の測定
  • 11 膜劣化
  • 11.1 はじめに
  • 11.2 各種化学薬品に対する膜性質安定性
  • 11.3 長期間海水電気透析における膜性能変化
  • 11.4 膜面汚染
  • 膜面汚染の機構
  • 膜面におけるフィルムの形成
  • 膜表面のフィルム除去
  • 11.5 有機汚染
  • 有機汚染現象
  • 有機汚染に伴う水解離反応
  • 耐有機汚染膜
  • 第2部 応用編
  • 12 電気透析
  • 12.1 技術概要
  • 12.2 電気透析槽
  • 電気透析槽の構造
  • 電気透析槽の構成要素
  • 電気透析槽の性能を向上するための要件
  • 12.3 メンテナンス技術
  • 給液の前処理
  • 濁度測定
  • スケール防止
  • 解体・組立作業
  • 12.4 応用例
  • 塩水から飲料水製造
  • 太陽光発電式電気透析脱塩
  • 金属表面処理工程排液の回収
  • 廃液回収
  • 酸回収
  • 海水濃縮
  • アミノ酸とアミノ酸調味料
  • 天然エキスの脱塩
  • 牛乳・ホエーの電気透析
  • 糖液の脱塩
  • 13 電気透析塩水脱塩と飲料水製造
  • 13.1 はじめに
  • 13.2 一過流通プロセス
  • 13.3 一過流通電気透析プロセス
  • 13.4 電気透析プログラム
  • 13.5 電気透析プログラムチャート
  • 一過流通プロセス
  • 計算ステップ
  • 13.6 電気透析槽の仕様と運転条件
  • 13.7 計算結果
  • 14 電流逆転式電気透析
  • 14.1 技術概要
  • 14.2 スペーサー
  • 14.3 水回収
  • 14.4 スケール析出防止
  • 14.5 耐有機汚染
  • 14.6 膜面におけるコロイド沈殿物生成とその除去
  • 14.7 硝酸塩・亜硝酸塩の回収
  • 14.8 応用例
  • Suffolk市飲料水製造のためのEDR運転
  • EDR, ナノ濾過 ( NF ) およびROによる塩水再生
  • 飲料水製造のための塩水脱塩 ( バルセロナ )
  • 15 バイポーラ膜電気透析
  • 15.1 技術概要
  • 15.2 BPM電気透析における自由エネルギー変化
  • 15.3 境界層
  • 15.4 膜表面における不均一構造
  • 15.5 BPMにおける水解離反応
  • 15.6 BPMの電流効率
  • 15.7 BPMのエネルギー消費と製造量
  • 15.8 BPM内水移動
  • Maxwell圧力
  • 膨潤圧
  • 電流 - 電圧関係
  • 水移動不足によるBPMの劣化
  • 15.9 BPM整流効果
  • 15.10 BPM電気透析プロセスにおける望ましい特性と運転上の問題点
  • 15.11 応用例
  • ステンレス酸洗工程排液中から混酸の回収
  • 硫酸ナトリウムからカセイソーダと硫酸の回収
  • 16 電気再生式脱塩
  • 16.1 技術概要
  • 16.2 混床, 層床, 分床
  • 16.3 電気再生式装置の構造とエネルギー消費
  • 16.4 EDIプロセスにおける物質移動と水解離
  • 16.5 弱電離物質の除去
  • 水解離の影響
  • シリカ除去
  • 二酸化炭素除去
  • ホウ素除去
  • アンモニア除去
  • 16.6 応用例
  • 発電, 半導体製造における超純水製造
  • 製薬工業における超純水製造
  • 電気再生式脱塩と混床式イオン交換の経済性比較
  • 17 電解
  • 17.1 技術概要
  • 17.2 イオン交換膜
  • パーフルオロスルホン酸膜
  • スルホン酸 / カルボン酸複層膜
  • 17.3 電解システムにおける物質移動と電極反応
  • 物質移動
  • 陰極反応
  • 陽極反応
  • 17.4 電解槽とその性能
  • 単極式と複極式
  • 電解槽エネルギー消費低減
  • 電解プロセス
  • 17.5 塩水精製
  • 1次精製
  • 2次精製
  • 塩水中不純物が電解槽性能に及ぼす影響
  • 17.6 研究開発
  • ガス拡散電極
  • 燃料電池
  • 18 拡散透析
  • 18.1 技術概要
  • 18.2 物質移動現象
  • 18.3 拡散透析槽の運転
  • 18.4 応用例
  • アルミニウム陽極酸化プロセスにおける成分制御
  • 酸洗浄プロセスにおける硝酸回収
  • 19 Donnan透析
  • 19.1 技術概要
  • 19.2 物質移動
  • 原理
  • イオン交換動力学
  • Donnan透析動力学
  • 19.3 応用例
  • UO2 ( NO3 ) 2水溶液中UO2 2 + の濃縮
  • 希薄塩水中フッ化物の除去
  • 廃水中アンモニウムイオン除去
  • 20 燃料電池
  • 20.1 技術概要
  • 20.2 原理
  • 20.3 燃料電池の構成
  • 膜 / 電極接合体とセルスタック
  • イオン交換膜
  • 触媒
  • 20.4 燃料電池の性能
  • 20.5 応用例
  • 電気動力車
  • 家庭用コージェネレーション
  • 21 レドックスフロー電池
  • 21.1 技術概要
  • 21.2 原理
  • 21.3 レドックスフロー電池の長所と短所
  • 長所
  • 短所
  • 注釈
  • 21.4 レドックスフロー電池の構成
  • 21.5 イオン交換膜
  • 21.6 運転
  • 21.7 応用例
  • 鹿島北共同発電プラント
  • ウインビラ風力発電プラント
  • 22 逆電気透析
  • 22.1 技術概要
  • 22.2 原理
  • 物質移動
  • スタック電気抵抗, スタック電圧
  • 回路電圧, 内部電圧, 内部電気抵抗
  • 外部電流, 電力密度, 発電効率
  • イオン輸送効率
  • 圧力損失
  • 限界電流密度
  • 22.3 コンピューターシミュレーション
  • 22.4 計算
  • RED運転条件の最適化
  • REDスタック性能
  • REDプラント運転
  • あとがき
  • 索引
  • 著者略歴
  • 奥付

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1部 基礎編

P.21 掲載の参考文献
Araki, K., Daido, H., Sasaki, T., Suzuki, H., Tsushima, S., Misumi, Y., 1981. Production of polymer structure of an ion exchange membrane including polypropylene strings. JP S56-8857.
Bodamer, G. W., Cheltenham, 1954. Permselective films of anion-exchange films. US 2,681,319 ; Permselective films of cation-exchange resins. US 2,681,320.
Chen, W. K. W., 1966. Method of forming graft copolymer ion exchange membrane. US 3,247,133.
DuPont, 2002. Nafion Perfluorinated Membranes. Product information (3.18.02).
Gierke, T. D., 1977. Am. Electrochem. Soc. Meeting, Atranta, Oct. 1977.
Grot, W. G., 1973. Laminates of support material and fluorinated polymer containing pendant side chains containing sulfonyl groups. US 3,770,567.
Grot, W. G., 1974. Films of fluorinated polymer containing sulfonyl groups with one surface in the sulfonamide or sulfonamide salt form and a process for preparing such. US 3,784,399.
Grot, W. G., Molnar, C. J., Resnick, P. R., 1978. BE 866 122.
Hanada, F, Hirayama, K., Ohmura, N., Tanaka, S., 1991. Bipolar membrane and method for its production. EP 0459820
Hanada, F., Hirayama, K., Ohmura, N., Tanaka, S., 1993. Bipolar membrane and method for its production. US 5,221,455.
Hanada, F., Hirayama, K., Tanaka, S., Ohmura, N., 1996. Bipolar membrane and method for its production. JP 2,524,012.
Kosaka, Y., Shimizu, H., 1963. Ion Exchange Membrane, pp.28-37. Kyoritsu Publishing Co. (Tokyo).
MacDonald, R. J., Hodgdon, R. B., Alexander, S. S., 1992. Process for manufacturing continuous supported ion selective membranes using non-polymerizable high boiling point solvent. US 5,145,618.
Machi, S., Ishigaki, S., Sugo, T., 1980. Production of new ion exchange membranes. JP S55-106231.
Mineki, Y., Gunzima, T., Arai, S., 1972. Production of an ion exchange membrane. JP S47-40868.
Misumi, T., Kawashima, Y., Takeda, K., Kamaya, M., 1974. Production of an ion exchange membrane structure and an apparatus. JP S49-34476.
Mizutani, Y., Yamane, R., Kimura, K., 1964. Production of an ion exchange membrane. JP S39-27861.
Momose, T., Yoshioka, H., Ishigaki, I., Okamoto, J., 1989. Radiation grafting of α, α, β-trifluorostyrene onto poly (ethylene-tetrafluoroethylene) film by preirradiation method. I. Effects of preirradiation dose, monomer concentration, reaction temperature, and film thickness. J. Appl. Polym. Sci., 37, 2817-2826.
NEDO Research and Development Report, 1999. Development of polymer electrolyte fuel cell-Development of a high current density 10 kW mobile power source system.
Onoue, K., Sata, T., Nakahara, A., Ito, J., 1980. US 4 200 711.
Sata, T. 2004. Ion Exchange Membranes : Preparation, Characterization, Modification and Application. Royal Society of Chemistry (Cambridge).
Sata, T., Nakahara, A., Ito, J., 1978. JP S 53-137 888.
Seko, M., Yamakoshi, Y., Miyauchi, H., Fukumoto, M., Kimoto, K., Hane, T., Hamada, M.,1978. JP S53-125 986.
Seko, M., Yamakoshi, Y., Miyauchi, H., Fukumoto, M., Kimoto, K., 1979. JP S 54-6 887.
Seko, M., Miyauchi, H., Ohmura, J., Kimoto, K., 1982. Ion-exchange membrane for chlor-alkali process. J. Electrochem. Jpn. 50, 470-476.
Shel'deshov, N. V., Zabolotsky, V. I., Pis'menskaya, N. D., Gunsin, N. P., 1986. Catalysis of water dissociation by phosphoric acid groups and an MB-3 bipolar membrane. Elektrokhimiya 22, 791-795.
Strathmann., H., 2004. Ion-Echange Membrane Separation Process. Membrane Science Technology Series, 9. Elsevier, Amsterdam, pp. 111.
Terada, I., Umemura, K., Miyake, H., 1997. Heterogeneous ion exchange membrane and process for its production. JP H9-124805.
Umemura, K., Naganuma, T., Miyake, H., 1994. Production of a bipolar membrane. JP H6-32918.
Umemura, K., Naganuma, T., Miyake, H., 1995. Bipolar membrane. U S 5,401,408.
Umemura, K., Shimodaira, T., 2004. Perfluorinated cation-exchange membrane and electrolysis of sodium chloride. JP 2004-188375.
Wilhelm, F. W., 2000. Bipolar membrane preparation. In : (Ed) A. J. B., Kemperman, Bipolar membrane technology. Twente University Press, Enschede, The Netherlands.
Yingqui, Y., Zhongqin, L., 1990. A brief account of the development of ion exchangers in China. Technol. Water Treat. 16, 119-121.
P.50 掲載の参考文献
Azechi, S., 1970. Numerical analysis of permselectivity between two ions having the same electric charge on the basis of mass transfer model across ion exchange membrane. Bull. Soc. Sea Water Sci. 24, 25-36 ; 54-67.
Conway, B. E., 1952. Electrochemical data. Elsevier Publishing Co., London.
Debye, P., Huckel, E., 1923. Zur Theorie der electrolyte. I. Gefrierpunktserniedrigung und verwandte erscheinungen. Physik. Z. 24, 185-206.
Hani, H., Nishihara, H., Oda, Y., 1961. Anion-exchange membrane having permselectivity between anions. JP S36-15258.
Ilschner, B., 1958. The adaptability and relationship of Nernst-Einstein and of Onsager. Z. Electrochem. 62, 989-992.
Mihara, K., Misumi, T., Miyauchi, H., Ishida, Y., 1970. Anion-exchange membrane having excellent specific permeability between anions. JP S45-19980.
Mihara, K., Misumi, T., Miyauchi, H., Ishida, Y., 1972. Production of a cation-exchange membrane having excellent specific permeability between cations. JP S47-3081.
Mizutani, Y., Yamane, R., Sata, T., 1971a. Electrodialysis for transporting selectively smaller charged cations. JP S46-23607.
Mizutani, Y., Yamane, R., Sata, T., Izuo, T., 1971b. Permselectivity treatment of a cation-exchange membrane. JP S46-42083.
Seno, M., Tanaka, Y., 1984. Ion exchange membrane experimental method. In : Nakagaki, M. (Ed.), Membrane Science Experimental Method. Kitami Shobo Co., Tokyo, pp. 191-207.
Tanaka, Y., 1974. Effect of treatment conditions by a reagent on low permeability of cation exchange membranes for bivalent ions. J. Electrochm. Jpn. 42, 192-198.
Tanaka, Y., 2007. Ion Exchange Membrane, Membrane Science and Technology Series, 12. Elsevier, Amsterdam.
Yamabe, T., Seno, M., 1964. Ion Exchange Resin Membrane. Gihodo Co., Tokyo, p. 139.
Yamamoto, H., 1968. Mobility of counter ions in an ion exchange membrane. Bull. Soc. Sea Water Sci., Jpn. 22, 323-326.
P.60 掲載の参考文献
P.71 掲載の参考文献
de Groot, S. R., Mazur, P., 1962. Nonequilibrium Thermodynamics. North-Holland, New York.
Dunlop, P. J., 1957. A study of interacting flows in diffusion of the system raffinose-KCl-H2O at 25 ℃. J. Phys. Chem. 61, 994-1000.
Dunlop, P. J., Gosting, L. J., 1959. Use of diffusion and thermodynamics data to test the Onsager reciprocal relation for isothermal diffusion in the system NaCl-KCl-H2O at 25 ℃. J. Phys. Chem. 63, 86-93.
Fitts, D. D., 1962. Nonequilibrium Thermodynamics. Mc-Graw Hill, New York.
Glansdorff, P., Prigogine, I., 1971. Thermodynamic Theory, Structure, Stability and Fluctuations. Wily-Interscience, London.
House, C. R., 1974. Water transport in Cells and Tissues. Edward Arnold, London.
Kimizuka, H., 1988. Membrane Transport of Ions. Kyoritsu Shuppan Co., Tokyo.
Prigogine, P., 1961. Introduction to Thermodynamics of Irreversible Process, second ed. John Wiley, New York.
Sakai, W., Seiyama, T., 1956. Electrochemical studies on ion exchanger. Application of non-equilibrium thermodynamics to ionic membrane system. J. Electr. Chem. Jpn. 24, 274-279.
Schultz, S. G., 1980. Basic Principles of Membrane Transport. Cambridge University Press, Cambridge.
Yamabe, T., Seno, M., 1964. Ion Exchange Resin Membrane. Giho Do Co., Tokyo.
P.82 掲載の参考文献
Schlogl, R. Z., 1964. Fortschritte der physikalischen Chemie, Band 9.
Tanaka, Y., 2015. Ion Exchange Membranes, Fundamentals and Applications, second ed. Elsevier, Amsterdam.
Yamauchi, A., Tanaka Yasuko, 1993. Salt transport phenomena across charged membrane driven by pressure difference. In Paterson R. (Ed.), Effective Membrane Process-New Perspectives. BHR Group Limited, Information Press Ltd., Oxford England, pp. 179-185.
P.98 掲載の参考文献
Kolyubin, A. V., Maksimychev, A. V., Timashev, S. F., 1996. The use of flicker-noise spectroscopy for studying the mechanism of the overlimiting current in a system with cation-exchanhe membrane. Russ. J. Electrochem. 32, 206-213.
Peer A. M., 1956. Communication in the Membrane Phenomena Special Issue. Discus. Faraday Soc. 21, 124
Takemoto, N., 1969. Concentration distribution in concentrating surface of membranes. Bull. Soc. Sea Water Sci. Jpn. 23, 54-59.
Tanaka, Y., Seno, M. 1983. The concentration polarization and dissociation of water in ion exchange membrane electrodialysis V. The acceleration of ionic transport on the membeane surface. J. Electrochem. Soc. Jpn. 51, 267-271.
P.127 掲載の参考文献
de Grotthuss, C. J. T., 1806. Sur la decomposition de l'eau et des corps qu'elle tient en dissociation a l' aide de l' electricite galvanique. In. Ann. Chim. (Paris) 58, 54-73.
Eigen, M., Maeyer, L. D., 1959. Hydrogen bond structure, proton hydration, and proton transfer in aqueous solutions. In : The Structure of Electrolyte Solutions. Wiley, New York.
Ganych, V. V., Zabolotskii, V. I., Shel'deshov, N. V., 1992. Electrolytic dissociation of water molecules in systems comprising solutions and MA-40 anion-exchange membranes modified with transition metal ions. Sov. Electrochem. 28, 1138-1143.
Helfferich, F., 1962. Ion Exchange. McGraw-Hill, New York, p. 86.
Kolyubin, A. V., Maksimychev, A. V., Timashev, S. F., 1966. The use of flicker-noise spectroscopy for studying the mechanism of the overlimiting current in a system with cation-exchange membrane. Russ. J. Chem. 32, 206-213.
Tanaka, Y., 1974. Concentration polarization and dissociation of water in the ion exchange membrane electrodialysis. J. Electrochem. Soc. Jpn. 42, 450-456.
Tanaka, Y., 1975. Concentration polarization and dissociation of water in the ion exchange membrane electrodialysis. J. Electrochem. Soc. Jpn. 43, 584-588.
Tanaka, Y., Matsuda, S., Sato, Y. Seno, M., 1982. Concentration polarization and dissociation of water in ion exchange membrane electrodialysis III. The effects of electrolytes on the dissociation of water. J. Electrochem. Soc. Jpn. 50, 667-672.
Tanaka, Y., Seno, M., 1983a. The concentration polarization and dissociation of water in ion exchange membrane electrodialysis V. The acceleration of ionic transport on the membrane surface. J. Electrochem. Soc. Jpn. 51, 267-271.
Tanaka, Y., Seno, M., 1983b. Concentration polarization and dissociation of water in ion exchange membrane electrodialysis VI. The effect of insoluble inorganic materials on the dissociation of water under conditions of low concentration and high potential. J. Electrochem. Soc. Jpn. 51, 465-470.
Timashev, S. F., Kirganova, E. V., 1981. Mechanism of the electrolytic decomposition of water molecules in bipolar ion-exchange membranes. Sov. Electrochem. 17, 366-369.
Timashev, S. F., 1985. Role of temperature and entropic factors in the kinetic of membrane processes. DAN USSR. 285, 1419-1423.
Umnov, V. V., Shel'deshov, N. V., Zabolotskii, V. I., 1999. Current-voltage curve for the space charge region of a bipolar membrane. Rus. J. Electrochem. 35, 871.
Wien, M., 1928. Uber die abweichungen der electrolyte vom Ohmschen gesetz. Phys. Zeits 29, 751-755.
P.155 掲載の参考文献
Azechi, S., Fujimoto, Y., Yuyama, T., 1966. Studies on electrodialytic equipment with ion exchange membrane (XIII). Flow velocity distribution of the fluid passing through the uneven flat flow path. Scientific papers of the Odawara Salt Experiment Station, Japan Monopoly Corporation, Odawara, Japan, vol. 11, 20-23.
Azechi, S., Fujimoto, Y., 1970. Flow characteristics of the practical-scale electrodialytic apparatus of filter-press type. Bull. Soc. Sea Water Sci. Jpn. 23, 134-147.
Hanzawa, N., Azechi, S., Fujimoto, Y., Nagatsuka, S., 1965. Studies on the electrodialytic equipment with ion exchange membranes (X). Comparison of spacer used for electrodialytic equipment. Scientific papers of the Odawara Salt Experiment Station, Japan Monopoly Corporation, Odawara, Japan, vol. 10, 16-25.
Ichiki, T., Asawa, T., Hani, H., 1976. An experimental study of turbulent promoters in electrodialysis. Fifth Int. Symp. Fresh Water Sea 3, 89-96.
Kuroda, O., 1993. Study for improvement of efficiency in electrodialyzer. Bull. Sea Water Sci. Jpn. 47, 248-258.
Takahashi, S., Arikawa, Y., Teraoka, Y., 1979. Air bubble cleaning type electrodialyzer and its high temperature process. Hitachi Rev. 28, 317-322.
Tanaka, Y., 2007. Ion Exchange Membrane ; Fundamentals and Applications, Membrane Science and Technology Series, vol. 12. Elsevier, Amsterdam.
P.170 掲載の参考文献
Helfferich, F., 1962. Ion Exchange, p. 253. McGraw-Hill, NewYork.
Kirkham, T. A., 1956. Chem. Eng. 63, 185.
Kitamoto, A., Takashima, Y., 1967. Mass transfer by electrodialysis using ion-exchange membranes-Studies on electrodialytic concentration of electrodialysis. J. Chem. Eng. Jpn. 31, 1201-1207.
Vielstich, W., 1953. Der Zusammenhang zwischen Nernstscher Diffusionsschicht und Prandlscher Stromungsgrenzschicht. Z. Elektrochem. 57, 646.
P.181 掲載の参考文献
Salt Industry Center of Japan, 1998. Salt Production Technical Report.
Tanaka, Y., 2007. Ion Exchange Membranes : Fundamentals and Applications, Membrane Science and Technology Series 12. Elsevier, Amsterdam, p. 272.
Wilson, J. R., 1960. Demineralization by electrodialysis. Buther-worths Scientific Publication, London, pp. 265-274.
P.199 掲載の参考文献
Azechi, S., Akiyama, M., Suwa, K., 1964. Studies on the concentration operation by ion exchange membrane method (VI). Effects of suspended matter in sea water on electrodialytic unit and concentration results (part 1). Scientific papers of the Odawara salt experiment station. Japan Monopoly Corporation, No. 9, pp. 18-33.
Hanzawa, N., Yuyama, T., Suzuki, K., Nakayama, M., 1966. Studies on durability of ion exchange membrane (IV) Long term electrodialytic concentration test. Scientific Papers of the Odawara Salt Experiment Station, Japan Monopoly Corporation, No.11, 1-13.
Hodgdon, R. B., Sudbury, Jr., 1971. Ion exchange membranes having a macroporous surface area. UA Patent, 3,749,655.
Ohwada,K., Shimizu, U., Taga, N., 1981. Microorganism and organic matter deposited on the ion exchange membrane. Bull. Sea Water Sci. Jpn. 34, 367-372.
Tanaka, Y., 1997. Concentration polarization in the substance layer attached to an ion exchange membrane. Bull. Sea Water Sci. Jpn. 51, 228-236.
Ueno, K., Ozawa, T., Ooki, H., Ishida, T., Nakajima, K., Sudo, T., 1980. Washing method of ion-exchange membranes. JP S55-33662.
Urabe, S., Doi, K., 1987. Washing method of ion-exchange membranes. JP S62-52624.
Yamashita, I., 1976. Removing method of fouling substances in an electrodialyzer. JP S51-131477.

第2部 応用編

P.231 掲載の参考文献
Azechi, S., 1980. Electrodialyzer. Bull. Soc. Sea Water Sci. 34, 77-83.
Fukuhara, K., Hamada, M., Azuma, I., 1993. Efficient desalination of brackish water by electrodialysis. In : Industrial application of ion exchange membranes, vol.2. Research group of electrodialysis and membrane separation technology, Soc. Sea Water Science, Jpn., pp.159-167.
Ideue, K., 1986. Desalination with ion exchange membranes in food industry. Food and development 21, 54-59.
Inoue, S., Kuroda O., 1993. Electrodialysis desalination system powered by photovoltaic power generation. In : Industrial application of ion exchange membranes, vol.2. Research group of electrodialysis and membrane separation technology. Soc. Sea Water Science, Jpn., pp. 151-157.
Itoi, S., 1983. Electrodialytic demineralization of soy sauce and amino acid seasoning. In : Food Industry and Membrane Utilization. Saiwai Shobo Inc. tokyo.
Itoi, S., Komori, R., Terada, Y., Hazama, Y., 1978. Basis of electrodialyzer design and cost estimation. Industrial Water, No. 239, pp. 29-40.
Itoi, S., Nakamura, K., Kawahara, T., 1986. Electrodialytic recovery of waste water from metal surface treatment process. In : Industrial application of ion exchange membranes, vol.1. Research group of electrodialysis and membrane separation technology, Soc. Sea Water Science, Jpn., pp. 206-211.
Itoi, S., Utsunomiya, T., 1965. Electrodialysis of aqueous solution of amino acid containing electrolyte by ion exchange membrane. Asahi Glass Research Report 15, 1-8.
Katayama, S., 2004. Waste water treatment and recovering of useful substances. In : Seno M., Tanioka, A., Itoi, S., Yamauchi, A., Yoshida, S., (Eds), Functions and Applications of Ion Exchange Membranes. Industrial Publishing & Consulting Inc., Tokyo, pp. 151-169.
Kokubu, T., Yamauchi, T., Miyagi, S., 1983. Application of electrodialysis in sugar industry. Food Industry 9, 26-31.
Kunisada, Y., 1979. Measurement technology of turbidity in sea water. Bull. Soc. Sea Water Sci. Jpn. 33, 184-189.
Matsunaga, Y., 1986. Reuse of waste water by electrodialytic treatment. In : Industrial application of ion exchange membranes vol.1. Research group of electrodialysis and membrane separation technology, Soc. Sea Water Science, Jpn., pp.188-196.
Okada, K., Tomita, M., Tamura, Y., 1975. Electrodialysis in the treatment of dairy products. Symposium "Separation processes by membranes, Ion-exchange and freeze-concentration in food industry", Paris, March 13-14, 1-21.
Sugiyama, M., Takatori, Y., Touyama, R., Nakamura, A., Yamauchi, T., Kawate, H., Yamaguchi, A., 1982.
On the desalination process of sugar solutions by electrodialysis using neutral membranes. J. Sugar Refining Technology 30, 26-32.
Tanaka, Y., 1987. Concentration of seawater using electrodialysis. In : Kawasaki, J., Kunime, T., Sakai, K., Hakuta, T., (Eds), Membrane Separation Technology Hand book. Science Forum, Tokyo, 211-215.
Tanaka, Y., 1991. Membrane Separation. In : Seno, M., Abe, M., Suzuki, T., (Eds), Ion Exchange. Kodansya Scientific Co., Tokyo, pp.211-227.
Tomita, A, 1995. Electrodialyzer. In : Ogata, N. (Ed), Engineering in Salt Manufacturing, vol. 2, Electrodialysis. Japan Salt Industry Association, pp. 85-101.
Tomita, M., Tamura, Y., Mizota, T., 1986. Electrodialysis of milk and whey. In : Industrial application of ion exchange membranes, vol.1. Research group of electrodialysis and membrane separation technology, Soc. Sea Water Science, Jpn., pp.147-158.
Urabe, S., Doi, K., 1978. Electrodialyzer. Industrial Water 239, 24-28.
Yamamoto, Y., 1993. Desalination of natural essences by electrodialysis. In : Industrial application of ion exchange membranes, vol.2. Research group of electrodialysis and membrane separation technology, Soc. Sea Water Science, Jpn., pp.181-188.
P.243 掲載の参考文献
Tanaka, Y., 2015. Ion Exchange Membranes. Fundamentals and Applications second ed. Elsevier, Amsterdam. ; http://booksite.elsevier.com/9780444633194/
P.263 掲載の参考文献
Allison, R. P., 1993. High water recovery with electrodialysis reversal. Proceedings of 1993 AWWA Membrane Conference, Baltimore, Maryland, USA, August 1-4.
Allison, R. P., 2001. Electrodialysis treatment of surface and waste water. Ionics Technical Paper ; Reprint from Proceedings of 2001 AWWA Annual Conference.
Lacey, R. E., Loeb, S. (Eds.), 1972. Industrial Processing with Membranes, p.348, Wiley-Interscience, New York.
Passanisi, J., Reynolds, T. K., 2000. EDR, NF and RO at a brackish water reclamation facility. Proceedings of 2000 AWWA Annual Conference.
Prato, T., Parent, R. G., 1993. Nitrate and nitrite removal from municipal drinking water supplies with electrodialysis reversal. Proceedings of 1993 AWWA Membrane Conference, Baltimore, Maryland, USA, August 1-4.
Reahl, E. R., 2004. Half a century of desalination with electrodialysis. Ionics Technical Paper. Siwak, L. R., 1993. Here's how electrodialysis reverse…and why EDR works. Int'l Desalination & Water Reuse Quarterly, vol. 2/4.
Thompson, M. A., Robinson, Jr., M. P., 1991. Suffolk introduce EDR to Virginia. Proceedings, American Water Works Assoc. Membrane Conference, Orlando, Fl., USA.
von Gottberg, A., 1998. New high-performance spacers in electrodialysis reversal (EDR) systems. Proceedings of 1998 AWWA Annual Conference, Dallas, Texas, USA, June 21-25.
Werner, T. E., von Gottberg, A. J. M., 1998. Five billion gallons later-Operating experience at City of Suffolk EDR plant. The American Desalting Association 1998 North American Biennial Conference and Exposition, August 2-6.
P.283 掲載の参考文献
Atkins, P. W, 1994. Physical chemistry, 5th edn., Oxford University Press, Oxford, U. K.
Ganych, V. V., Zabolotskii, V. I., Shel'deshov, N. V., 1992. Electrolytic dissociation of water molecules in systems comprising solutions and MA-40 anion-exchange membranes modified with transition metal ions. Sov. Electrochem. 28, 1138-1143.
Hanada, F., Hirayama, K., Ohmura, N., Tanaka, S., 1991. Bipolar membrane and method for its production. European Patent 0459820.
Hanada, F., Hirayama, K., Ohmura, N., Tanaka, S., 1993. Bipolar membrane and method for its production. US Patent 5,221,455.
Hanada, F., Hirayama, K., Tanaka, S., Ohmura, N., 1996. Bipolar membrane and method for its production. JP Patent 2,524,012.
Helfferich, F. G., 1962. Ion Exchange. McGraw-Hill, New York, p. 100.
International Critical Tables, 1930. Vol. 7, McGraw-Hill, p. 232.
Lin, A. G., 2001. Application of bipolar membrane electrodialysis in production of silicic acid. Membr. Sci. Technol. 21, 66-69.
Mani, K. N., Chlanda, F. P., 1982. Electrodialytic water splitting process and apparatus for conversion of alkali metal sulfate values derived from spent rayon spin baths. US 4504373A.
Novalic, S., Kulbe, K. D., 1998. Separation and concentration of citric acid by means of electrodialysis bipolar membrane technology. Food Technol. Biotechnol. 36, 193-195.
Pourcelly, G., Gavach, C., 2000. Electrodialysis water splitting - application of electrodialysis with bipolar membranes. In : Kempermann, AJB, editor. Handbook-Bipolar Membrane Technology. Enschede, Holland : Twente University Press, 17-46.
Strathmann, H., 2004. Ion Exchange Membrane Separation Process. Membrane Science and Technology Series, 9, Elsevier, Amsterdam, p. 272.
Tanaka, 2007. Ion Exchange Membranes ; Fundamentals and Applications. Membrane Science and Technology Series, 12, Elsevier, Amsterdam, pp. 419-421.
Yamabe, T., Seno, M., 1964. Ion Exchange Resin Membranes. Gihodo, Tokyo, p. 29.
P.302 掲載の参考文献
Allison, R. P., 1996. The continuous electro-deionization process. American Desalting Association 1996 Biennial Conference & Exposition, Monterey, CA, USA, August 4-8.
Deguchi, T., Karibe, T., 1998. Electro deionization. In : Water Treatment Handbook, pp. 220-225, Maruzen Publishing Co., Tokyo.
DiMascio, F., Ganzi, G. C., 1999. Electrodeionization apparatus and method. US 5858191.
Edmonds, C., Salem, E., 1998. Demineralization. An economic comparison between EDI and mixed-bed ion exchange. ULTRAPURE WATER, November.
Ganzi, G. C., Egozy, Y., Giuffrida, A. J., Jha, A. D., 1987. High purity water by electrodeionization performance of the ionpure continuous deionization system. ULTRAPURE WATER 4 (3), 43-50.
Glueckauf, E., 1959. Electro-deionization through a packed bed. Brit. Chem. Eng. 4, 646-651.
Grabowski, A., 2010. Electromembrane desalination processes for production of low conductivity water, p. 135-138. Logos Verlag Berlin GmbH, Berlin.
Hernon, B. P., Zanapalldou, R. H. Li., Zhang, Siwak, L. R., Schoepke, E. J., 1994. Application of electrodeionization in ultrapure water production : performance and theory, 55th Annual Meeting International Water Conference, Pittsburg, PA, Oct. 30-Nov. 2.
Hernon, B. P., Zhang, Li., Siwak, L. R., Schoepke, E. J., 1995. Process report, Application of electrodeionization in ultrapure water production. 1995, 56th Annual Meeting International Water Conference, Pittsburg, PA, Oct. 29-Nov. 2.
Hernon, B., Zanapalidou, H., Prato, T., Zhang, Li., 1998. Removal of weakly ionized species by EDI. ULTRAPURE WATER 16 (10), 45-49.
Jha, A. D., Gifford, J. D., 2004. Ultrapure CEDI for microelectronics applications : a cost effective alternative to mixed-bed polishers. Proceedings for Ultrapure water Asia 2004, Singapore, March 10-11, 2004.
Kollsman, P., 1957. Method and apparatus for treating ionic fluids by dialysis. US 2815320.
Korngold, E., Selegny, E., 1972. Method of separation of ions from a solution. US 2366089.
Kunz G., 1983. Verhahren und Vorrichtung zum Behandeln von Flussigkeiten, insbesondere Entsalzen wassriger Losungen. DE 3217990.
Kunz G. K., 1987. Process and apparatus for treatment of fluid, particularly desalination of aqueous solutions. US 4636296.
Liang, L., Wang, L., 2001. Continuous electrodeionization processes for production of ultrapure water. Semiconductor Pure Water and Chemical Conference.
McRay, W. A., Rigopulos, P. N., 1967. Removal of gases by electrode-ionization. US 3330750.
Parise, P. L., Parekh, B. S., Waddington, G., 1990. The use of ionpure continuous deionization for the production of pharmaceutical and semiconductor grades of water. ULTRAPURE WATER 7 (8), 14-27.
Parsi, E., 1964. Removal of dissolved salts and silica from liquids. US 3149061.
Parsi, E. J., 1966. Removal of weakly basic substances from solution by electrodeionization. US 3291713.
Salem, E., Tessier, D. F., 1998. Advances in electrodeionization. International Water Conference, Pittsburgh, PA, October 1998.
Thate, S., 2002. Untersuchung der elektrochemischen Deionisation zur Reinstwasserherstellung. ph. D. Thesis, Universitat Stuttgart, Institut fur Chemische Verfahrenstechnik, Stuttgart, Germany (February 2002).
Yoshida, S., Kanazawa, N., Qiu, L., Umeda, M., Uchino, H., Fukuda, J., Aoyagi, M., Watanabe, T., 2002. Regeneration mechanism of ion exchange materials in electrodeionization system. J. Electrochem. Jpn. 70, 784-788.
P.322 掲載の参考文献
Aikawa, H, 1994. Brine purification for ion exchange membrane chlor-alkali process. Bull, Soc. Sea Water Sci., Jpn. 48, 439-450.
Asawa, T., 1991. Sodium chloride electrolysis, Asahi Glass process. In : Nakagaki, S., Shimizu H., (Eds), Membrane treatment technology system, vol. 1, pp. 510-515, Fuji Techno System, Tokyo.
Chlorine Engineers Corp., 1987. Technical report, Tokyo.
Chlorine Engineers Corp., 2006. Product Bulletin, Tokyo.
DuPont, 2002. Nafion perfluorinated membranes. Product information (3/18/02).
Furuya, T, 2000. Sodium chloride electrolysis. In : Soc. Electrochem., Jpn (Ed), Electrochemistry Handbook, vol. 5, pp.380-386.
Grot, W. G. F., Munn, G. E., Walmsley, P. N., 1972. Perfluorinated ion exchange membranes. Presented at 141st National Meeting of Electrochem. Soc., Houston Texas , May 7-11.
Kado,Y., 2009. Soda industry. Kanzaki Y. (Ed.) ; Ion Exchange Technology, p. 98, Kogyo Chosakai Publishing Co. Ltd., Tokyo.
Katayama, H., Sugimoto, M., Kado, Y., 2010. A Cation Exchange Membrane and Manufacturing Method of an Electrolyzer and the Cation Exchange Membrane. JP2010-068855.
NEDO, 2004. http://www.nedo.go.jp/content/100089530.pdf.
Ohmura, J., 1984. Sodium chloride electrolysis using ion exchange membranes-Asahi Chemical process. In : Shimizu, H., Nishimura M. (Eds), Advanced membrane treatment technology and its applications, Fuji Techno System, Tokyo, pp. 645-649.
Putnam, P. E., 1967. (to E. I. du Pont de Nemours and Co.) US 3 301 893.
Seko, M., Miyauchi, H., Ohmura, J., Kimoto, K., 1982. Ion-exchange membrane for the chlor-alkali process. J. Electrochem. Soc., Jpn. 50, 470-476.
Sudoh, M., 2004. Perfluorocarbon ion exchange membrane, Membrane structure and characteristics. In : Seno, M., Tanioka, A., Itoi, S., Yamauchi, A., Yoshida S. (Eds), Functions and applications of ion exchange membranes, pp. 106-117, Industrial Publishing & Consulting Inc., Tokyo.
Suzuki, Y., Sirogami, Y., 1984. Sodium chloride electrolysis using ion exchange membranes-Asahi Glass Flemion process. In : Shimizu, H., Nishimura, M. (Eds), Advanced membrane treatment technology and its applications, Fuji Techno System, Tokyo, pp. 656-660.
Takarada, H., 2004. Perfluorocarbon ion exchange membrane, production of sodium hydroxide using ion exchange membranes. In : Seno, M., Tanioka, A., Itoi, S., Yamauchi, A., Yoshida S. (Eds), Functions and Applications of Ion Exchange Membranes, pp. 106-117, Industrial Publishing & Consulting Inc., Tokyo.
Toagosei, 2013. http://toagosei.co.jp/whatsnew/news/n130806.pdf.
Yawataya, T., 1986. Ion Exchange Membranes for Engineers, second ed. Kyoritu Shuppan Co. Tokyo, pp.149-157.
P.331 掲載の参考文献
Itoi, S., Mochida, M., 1985. Present status of the dialysis technique. Ionics, No. 120, pp.171-176, Ionics Co., Tokyo.
Katayama, S., 2004. Acid recovery from waste acid. In ; M. Seno, A. Tanioka, S. Itoi, A. Yamauchi, S. Yoshida (Eds.) Functions and Applications of Ion Exchange Membranes. Industrial Publishing & Consulting Inc. Tokyo, pp. 151-162
Kawahara, T., 1984. Industrial diffusion dialyzer. In : H. Shimizu, M. Nishimura (Eds), The Latest Membrane Treatment Technology and its Applications. Fuji Techno System Co., Tokyo, pp. 248-252.
Motomura, H., 1986. Recovery of nitric acid and fluoric nitric acid by diffusion dialysis. In : Industrial Application of Ion Exchange Membranes, vol. 1, Research Group of Electrodialysis and Membrane Separation Technology, Soc. Sea Water Sci., Jpn, pp. 223-233.
Utsunomiya, H., 1984. Recovery of waste acid by diffusion dialysis. In : H. Shimizu, M. Nishimura (Eds), The Latest Membrane Treatment Technology and its Applications. Fuji Techno System Co., Tokyo, pp. 455-463.
P.342 掲載の参考文献
Helfferich, F. 1962a. Ion Exchange. McGraw-Hill, 1962, p. 237.
Helfferich, F. 1962b. Ion Exchange. McGraw-Hill, 1962, p. 156.
Takeuchi, H., Nagai, K., Ioh, H., Ozawa, M., 1987. Treatment of Waste Water Dissolving Ammonium Ions. JP S62-160189.
P.354 掲載の参考文献
de Grotthuss, C. J. T., 1806. Sur la decomposition de l'eau et des corps qu'elle tient en dissociation a l' aide de l'elecricite galvanique. In : Am Chim. (Paris), V. 58, pp. 54-73.
Fuel Cell Technology Committee, 2002. Polymer Electrolyte Fuel Cell. In : Institute of Electrical Engineers of Japan (Ed.), Fuel Cell Technology. Ohm Co., Tokyo. pp. 55-98.
Gubler, L., Finsterwald, T., Scherer, G. G., 2004. PSI Electrochemistry Laboratory-Annual Report, p. 111. Also available on the World Wide Web : http://ecl.web.psi.ch/SciRep.html.
Honda, 2012. http://honda.co.jp/news/2012/4120327.html
LaConti, A. B., Hamdan, H., McDonald, R. C., 2003. In : Vielstich, W., Gasteiger, H. A., Lamm, A. (Eds.), Mechanisms of Membrane Degradation, in Handbook of Fuel Cells-Fundamentals, Technology and Applications, Volume 3. John Wiley & Sons, pp. 647-662.
Mitsuta, K. et al., 1997. Development of an exterior manifold type PEFC module. The 4 th FCDIC symposium, pp.265-268.
New Sunshine Program Promotion Center, 1999. Polymer Electrolyte Fuel Cell. Agency of Industrial Science and Technology, Ministry of International Trade and Industry, Japan, pp. 13-14.
Yasuda, K., 2000. Development and application of polymer electrolyte fuel cells, Lecture 2, Material development in PEFC. NTS Co., Tokyo.
Yoshitake, Y., 2008. Recent development of parts in fuel cells ? Electrode catalyst and electrolytes. 37th Charged membrane colloquium, Research Group of Electrodialysis, Soc. Sea Water Science, Jpn. March, 21, Tokyo.
P.364 掲載の参考文献
de Grottuss C. J. T., 1806. Sur la decomposition de l'eau et des corps qu'elle tient en dissolution a l'aide de l'electricite galvanique. Ann Chim. Paris. 58, 54-73.
Hagedorn, N. H., Thaller, L. H., 1980. Redox Storage Systems for Solar Application. NASA TM-81464, National Aeronautics and Space Administration, U. S. Dept. of Energy.
International Flow Battery Forum ; IFBF, http://www.flowbatteryforum.com/
Koshimizu, G., Numata, T., Yoshimoto, K., Hasuike, H., Shibata, T., 2007. Project analysis of field test results for stabilization of 30.6 MW wind farm with energy storage. EESAT Conference.
Mohammadi, T., Skyllas-Kazakos, M., 1997. Evaluation of the chemical stability of some membranes in vanadium solution. J. Appl. Electrochem. 27, 153-160.
NEDO, 2010, http://www.nedo.go.jp/content/1000098129.pdf
Nozaki, K., Kaneko, H., Negishi, A., Ozawa, T., 1984. Proc. Symp. Advances in Battery Materials, Proceedings Vol. 84-4. Electrochemical Society Inc., Princeton, NJ., p. 143.
Pelligri, A., Spaziante, P. M., 1978. in GB Patent 2030349.
Pissoort, P. A., 1933. in FR Patent 754065.
Sato, K., Sawahama, M., Miyahayashi, M., Kageyama, Y., Nakajima, M., 1998. Development of new fuel and electric power storage battery. Soda and Chlorine 49, 149-158.
Shigematsu, T., 2011. Redox flow battery. In : Ohta, K and Nozaki, K. (Eds), Large-Scale Electric Power Storage Battery. Nikkan Kogyo Shimbun Publisher, pp. 63-112, Tokyo, .
Skyllas-Kazacos, Rychick, M., Robins, R., 1988. All-vanadium redox battery, U. S. 4,786,567.
Tanaka, Y., 2007. Ion Exchange Membranes : Fundamentals and Applications. Elsevier, Amsterdam.
Thaller, L. H., 1974. Proc. 9th Inter-Soc. Energy Conv. Eng. Conf., American Society of Mechanical Engineering, p. 924.
Yoshimoto, K., Narahara, T., Koshimozu, G., 2009. Analysis of data obtained in demonstration test about battery energy storage system to mitigate output fluctuation of wind farm. IEEE PES CALGARY.
P.378 掲載の参考文献
Pattel R. E., 1955. Electricity from fresh and salt water-without fuel. Chem. Proc. Eng. 35, 351-354.
Tanaka, Y., 2015. Ion Exchange Membranes. Fundamentals and Applications second ed. Elsevier, Amsterdam.
Wick G. L., Schmitt W. R., 1977. Prospects for renewable energy from sea. Mar. Technol. Soc. J. 11, 16-21.
Wilson J. R., 1960. Demineralization by Electrodialysis. Buther-worths Scientific Publication, London. pp. 265-274.

最近チェックした商品履歴

Loading...