術中蛍光イメージング実践ガイド ラボ室からオペ室まで

出版社: メジカルビュー社
著者:
発行日: 2020-10-01
分野: 臨床医学:外科  >  外科学一般
ISBN: 9784758315371
電子書籍版: 2020-10-01 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

8,800 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

8,800 円(税込)

商品紹介

術中の蛍光イメージング技術について, 1. 初めて機器を導入する方法, 2. 各診療科での実践的活用法, 3. 先端の研究と開発,の3部構成で詳しく解説。活用法の解説では,血流・がん・リンパ節 リンパ管・解剖構造を光らせて評価する4つの手法について,各診療科の第一人者が症例画像を提示しながら紹介している。また,実際に蛍光イメージングを施行している映像をWeb動画で見られる。
外科医,オペナース, ME, MR,メーカー開発者,基礎研究者の方々にお薦めの1冊。

目次

  • I 術中蛍光イメージングの基本 [ 導入編]
      はじめに
      1.臨床使用可能な蛍光試薬(種類と特徴)
      2. ICG 蛍光イメージングの撮影装置:Open 手術
      3. ICG 蛍光イメージングの撮影装置:鏡視下手術,ロボット支援手術
      4. 5-ALA 蛍光イメージングの撮影装置
      5.蛍光イメージングを手術室に導入するには
      6.術中蛍光イメージングの記録

    II 術中蛍光イメージングの実際 [ 実践編]
     A.血流のイメージング
      はじめに
      1.冠動脈造影
      2.脳血管造影(脳動脈瘤)
      3.皮弁の血流評価
      4.上部消化管の血流評価
      5.下部消化管の血流評価
      6.肝胆膵・移植手術の血流評価
     B.がんのイメージング
      はじめに
      1.肝癌(原発性肝癌,転移性肝癌)
      2.肺癌(腫瘍部位のマーキング)
      3.胃癌(原発巣,腹膜播種)
      4.脳腫瘍
      5.膀胱癌
     C.リンパ節・リンパ管のイメージング
      はじめに
      1.乳癌手術におけるセンチネルリンパ節の同定
      2.胃癌手術におけるセンチネルリンパ節の同定
      3.大腸癌手術におけるセンチネルリンパ節の同定
      4.婦人科手術におけるセンチネルリンパ節の同定
      5.リンパ管造影とリンパ浮腫の評価
     D.解剖構造のイメージング
      はじめに
      1.胆管のイメージング(蛍光胆道造影法)
      2.肝区域のイメージング
      3.肺区域のイメージング
      4.尿管のイメージング
      52.副甲状腺のイメージング

    III 術中蛍光イメージングの実際 [ 開発編]
      はじめに
      1.新規蛍光プローブの開発
      2.新規イメージングシステムの開発
      3.画像情報を統合する新しい手術室の開発
      4.治療への応用(1):ポルフィリン化合物を用いた光線力学的治療
      5.治療への応用(2):近赤外蛍光プローブを用いた光免疫誘導治療

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I 術中蛍光イメージングの基本 [ 導入編 ]

P.11 掲載の参考文献
1) Makuuchi M, Kosuge T, Takayama T, et al:Surgery for small liver cancers. Semin Surg Oncol 1993;9:298-304.
2) Ishizawa T, Hasegawa K, Aoki T, et al:Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology 2008;134:1908-1916.
3) Stummer W, Stocker S, Wagner S, et al:Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 1998;42:518-526.
4) Ishizuka M, Hagiya Y, Mizokami Y, et al:Porphyrins in urine after administration of 5-aminolevulinic acid as a potential tumor marker. Photodiagnosis Photodyn Ther 2011;8:328-331.
5) Mitsuhashi N, Kimura F, Shimizu H, et al:Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J Hepatobiliary Pancreat Surg 2008;15:508-514.
6) Mulllock BM, Shaw LJ, Fitzharris B, et al:Sources of proteins in human bile. Gut 1985;26:500-509.
7) Kaibori M, Ishizaki M, Matsui K, et al:Intraoperative indocyanine green fluorescent imaging for prevention of bile leakage after hepatic resection. Surgery 2011;150:91-98.
8) Uchiyama K, Ueno M, Ozawa S, et al:Combined intraoperative use of contrast-enhanced ultrasonography imaging using a sonazoid and fluorescence navigation system with indocyanine green during anatomical hepatectomy. Langenbecks Arch Surg 2011;396:1101-1107.
9) Kaibori M, Matsui K, Ishizaki M, et al:Intraoperative detection of superficial liver tumors by Fluorescence Imaging Using Indocyanine Green and 5-aminolevulinic Acid. Anticancer Res 2016;36:1841-1849.
P.18 掲載の参考文献
1) Kitai T, Inomoto T, Miwa M, et al:Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer 2005;12:211-215.
P.24 掲載の参考文献
1) 小澤剛志, 竹腰聡:内視鏡画像の最前線(近赤外蛍光内視鏡). 小児外科 2015;47:531-535.
P.31 掲載の参考文献
1) Inoue K, Fukuhara H, Shimamoto T, et al:Comparison between intravesical and oral administration of 5-aminolevulinic acid in the clinical benefit of photodynamic diagnosis for nonmuscle invasive bladder cancer. Cancer 2012;118:1062-1074.
2) Hagiya Y, Endo Y, Yonemura Y, et al:Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocytotoxicity of gastric cancer cells in vitro. Photodiagnosis Photodyn Ther 2012;9:204-214.
3) Inoue K, Karashima T, Kamada M, et al:Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carcinomas. Pathobiology 2009;76:303-314.
4) Fukuhara H, Inoue K, Satake H, et al:Photodynamic diagnosis of positive margin during radical prostatectomy:preliminary experience with 5-aminolevulinic acid. Int J Urol 2011;18:585-591.
5) Inoue K, Fukuhara H, Kurabayashi A, et al:Photodynamic therapy involves an antiangiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci 2013;104:765-772.
6) Namikawa T, Yatabe T, Inoue K, et al:Clinical applications of 5-aminolevulinic acid-mediated fluorescence for gastric cancer. World J Gastroenterol 2015;21:8769-8775.
7) Namikawa T, Inoue K, Uemura S, et al:Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J Surg Oncol 2014;109:213-217.
8) Namikawa T, Fujisawa K, Munekage E, et al:Clinical application of photodynamic medicine technology using light-emitting fluorescence imaging based on a specialized luminous source. Med Mol Morphol 2018;51:187-193.
P.36 掲載の参考文献
1) Handa T, Katare RG, Nishimori H, et al:New device for intraoperative graft assessment:HyperEye charge-coupled device camera system. Gen Thorac Cardiovasc Surg 2010;58:68-77.
2) Namikawa T, Uemura S, Kondo N, et al:Successful preservation of the mesenteric and bowel circulation with treatment for a ruptured superior mesenteric artery aneurysm using the HyperEye Medical System. Am Surg 2014;80:E359-361.
P.43 掲載の参考文献
1) 手術動画の録画・保存に関する調査研究報告書 愛知県弁護士会人権擁護委員会医療部会編, 平成30(2018)年1月 愛知県弁護士会発行(https://www.aiben.jp/about/katsudou/jinken/6fe1d07bbac688037f8d2adbfaa505d2509f70a2.pdf)

II 術中蛍光イメージングの実際 [ 実践編 ]

P.49 掲載の参考文献
1) Kogure K, David NJ, Yamanouchi U, et al:Infrared absorption angiography of the fundus circulation. Arch Ophthalmol 1970;83:209-214.
2) Flower RW:Infrared absorption angiography of the choroid and some observations on the effects of high intraocular pressures. Am J Ophthalmol 1972;74:600-614.
3) Flower RW, Hochheimer BF:A clinical technique and apparatus for simultaneous angiography of the separate retinal and choroidal circulations. Invest Ophthalmol 1973;12:248-261.
4) Still J, Law E, Dawson J, et al:Evaluation of the circulation of reconstructive flaps using laser-induced fluorescence of indocyanine green. Clinical Trial Ann Plast Surg 1999;42:266-274.
5) Detter C, Russ D, Iffland A, et al:Near-infrared fluorescence coronary angiography:a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum 2002;5:364-369.
6) Raabe A, Beck J, Gerlach R, et al:Near-infrared indocyanine green video angiography:a new method for intraoperative assessment of vascular flow. Neurosurgery 2003;52:132-139.
7) Sekijima M, Tojimbara T, Sato S, et al:An intraoperative fluorescent imaging system in organ transplantation. Transplant Proc 2004;36:2188-2190.
8) Aoki T, Yasuda D, Shimizu Y, et al:Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 2008;32:1763-1767.
9) Kudszus S, Roesel C, Schachtrupp A, et al:Intraoperative laser fluorescence angiography in colorectal surgery:a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 2010;395:1025-1030.
10) Jafari MD, Wexner SD, Martz JE, et al:Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II):a multi-institutional study. J Am Coll Surg 2015;220:82-92.
11) Saito T, Yano M, Motoori M, et al:Subtotal gastrectomy for gastric tube cancer after esophagectomy:a safe procedure preserving the proximal part of gastric tube based on intraoperative ICG blood flow evaluation. J Surg Oncol 2012;106:107-110.
12) Kubota K, Yoshida M, Kuroda J, et al:Application of the HyperEye Medical System for esophageal cancer surgery:a preliminary report. Surg Today 2013;43:215-220.
13) Yoshida M, Wakabayashi G, Ishikawa H, et al:A protease inhibitor attenuates gastric erosions and microcirculatory disturbance in the early period after thermal injury in rats. J Gastroenterol Hepatol 1998;13:104-108.
14) Yoshida M, Kurose I, Wakabayashi G, et al:Suppressed production of nitric oxide as a cause of irregular constriction of gastric venules induced by thermal injury in rats. J Clin Gastroenterol 1997;25:S56-60.
P.58 掲載の参考文献
1) D'Ancona G, Karamanoukian HL, Ricci M, et al:Graft revision after transit time flow measurement in off-pump coronary artery bypass grafting. Eur J Cardiothorac Surg 2000;17:287-293.
2) Balacumaraswami L, Taggart DP:Intraoperative imaging techniques to assess coronary artery bypass graft patency. Ann Thorac Surg 2007;83:2251-2257.
3) Detter C, Russ D, Iffland A, et al:Near-infrared fluorescence coronary angiography:a new noninvasive technology for intraoperative graft patency control. Heart Surg Forum 2002;5:364-369.
4) Rubens FD, Ruel M, Fremes SE:A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum 2002;5:141-144.
5) Balacumaraswami L, Abu-Omar Y, Choudhary B, et al:A comparison of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. J Thorac Cardiovasc Surg 2005;130:315-320.
6) Desai ND, Miwa S, Kodama D, et al:A randomized comparison of intraoperative indocyanine green angiography and transit-time flow measurement to detect technical errors in coronary bypass grafts. J Thorac Cardiovasc Surg 2006;132:585-594.
7) 畔柳智司, 浅井徹, 鈴木友彰, ほか:Intraoperative fluorescence imaging を用いた冠動脈バイパスにおけるグラフト評価の有用性. 日冠疾会誌 2013;19:223-227.
8) Kuroyanagi S, Asai T, Suzuki T:Intraoperative fluorescence imaging after transit-time flow measurement during coronary artery bypass grafting. Innovations (Phila) 2012;7:435-440.
9) Taggart DP, Choudhary B, Anastasiadis K, et al:Preliminary experience with a novel intraoperative fluorescence imaging technique to evaluate the patency of bypass grafts in total arterial revascularization. Ann Thorac Surg 2003;75:870-873.
10) Reuthebuch O, Haussler A, Genoni M, et al:Novadaq SPY:intraoperative quality assessment in off-pump coronary artery bypass grafting. Chest 2004;125:418-424.
11) Desai ND, Miwa S, Kodama D, et al:Improving the quality of coronary bypass surgery with intraoperative angiography:validation of a new technique. J Am Coll Cardiol 2005;46:1521-1525.
12) Takahashi M, Ishikawa T, Higashidani K, et al:SPYTM:an innovative intra-operative imaging system to evaluate graft patency patency during off-pump coronary artery bypass grafting. Interact Cardiovasc Thorac Surg 2004;3:479-483.
13) Waseda K, Ako J, Hasegawa T, et al:Intraoperative fluorescence imaging system for on-site assessment of off-pump coronary artery bypass graft. JACC Cardiovasc Imaging 2009;2:604-612.
14) Ferguson TB Jr:Physiology of in-situ arterial revascularization in coronary artery bypass grafting:Preoperative, intraoperative and postoperative factors and influences. World J Cardiol 2016;8:623-637.
15) Hatada A, Okamura Y, Kaneko M, et al:Comparison of the waveforms of transit-time flowmetry and intraoperative fluorescence imaging for assessing coronary artery bypass graft patency. Gen Thorac Cardiovasc Surg 2011;59:14-18.
P.69 掲載の参考文献
1) Raabe A, Beck J, Gerlach R, et al:Near-infrared indocyanine green videoangiography:a new method for intraoperative assessment of vascular flow. Neurosurgery 2003;52:132-139.
2) Nakagawa S, Murai Y, Matano F, et al:Evaluation of Patency After Vascular Anastomosis Using Quantitative Evaluation of Visualization Time in Indocyanine Green Video Angiography. World Neurosurg 2018;110:e699-e709.
3) Murai Y, Nakagawa S, Matano F, et al:The feasibility of detecting cerebral blood flow direction using the indocyanine green video angiography. Neurosurg Rev 2016;39:685-690.
4) Matano F, Mizunari T, Murai Y, et al:Quantitative Comparison of the Intraoperative Utility of Indocyanine Green and Fluorescein video angiographies in Cerebrovascular Surgery. Oper Neurosurg (Hagerstown) 2017;13:361-366.
5) Murai Y, Sato S, Yui K, et al:Preliminary Clinical Microneurosurgical Experience With the 4K3-Dimensional Micro video scope (ORBEYE) System for Microneurological Surgery:Observation Study. Oper Neurosurg (Hagerstown) 2019;16:707-716.
6) Tsukiyama A, Murai Y, Matano F, et al:Optical effects on the surrounding structure during quantitative analysis using indocyanine green video angiography:A phantom vessel study. J Biophotonics 2018;11:e201700254.
7) 郭樟吾, 石井卓也, 長谷川譲, ほか:術中 Indocyanine Green 蛍光血管造影の有用性とピットフォール, 工学的見地と臨床医学的見地からの考察. 脳神外ジャーナル 2008;17:865-869.
P.80 掲載の参考文献
1) Hirigoyen MB, Blackwell KE, Zhang WX, et al:Continuous tissue oxygen tension measurement as a monitor of free-flap viability. Plast Reconstr Surg 1997;99:763-773.
2) Futran ND, Stack Jr BC, Hollenbeak C, et al:Green light photoplethysmography monitoring of free flaps. Arch Otolaryngol Head Neck Surg 2000;126:659-662.
3) Jones BM, Mayou BJ:The laser doppler flowmeter for microvascular monitoring:a preliminary report. Br J Plast Surg 1982;35:147-149.
4) Svensson H, Pettersson H, Svedman P:Laser doppler flowmetry and laser photometry for monitoring free flaps. Scand J Plast Reconstr Surg 1985;19:245-249.
5) Myers MB:Prediction of skin sloughs at the time of operation with the use of fluorescein dye. Surgery 1962;51:158-162.
6) Silverman DG, LaRossa DD, Barlow CH, et al:Quantification of tissue fluorescein delivery and prediction of flap viability with the fiberoptic dermofluorometer. Plast Reconstr Surg 1980;66:545-553.
7) Graham BH, Walton RL, Elings VB, et al:Surfacd quantification of injected fluorescein as a predictor of flap viability. Plast Reconstr Surg 1983;71:826-831.
8) Thompson JG, Kerrigan CL:Dermofluorometry:thresholds for predicting flap survival. Plast Reconstr Surg 1989;83:859-864.
9) Fox IJ, Brooker LG, Heseltine DW, et al:A tricarbocyanine dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Proc Staff Meet Mayo Clin 1957;32:478-484.
10) Flower RW, Hochheimer BF:Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J 1978;138:33-42.
11) Eren S, Rubben A, Krein R, et al:Assessment of microcirculation of an axial skin flap using indocyanine green fluorescence angiography. Plast Reconstr Surg 1995;96:1636-1649.
12) Rubben A, Eren S, Krain R, et al:Infrared videoangiofluorography of the skin with indocyanine green-Rat random cutaneous flap model and results in man. Microvasc Res 1994;47:240-251.
13) Still J, Law E, Dawson J, et al:Evaluation of the circulation of reconstructive flaps using laser-induced fluorescence of indocyanine green. Ann Plast Surg 1999;42:266-274.
14) Holm C, Mayr M, Hoefter E, et al:Intraoperative evaluation of skin-flap viability using laser-induced fluorescence of indocyanine green. Br J Plast Surg 2002;55:635-644.
15) Holm C, Tegeler J, Mayr M, et al:Monitoring free flaps using laser-induced fluorescence of indocyanine green:A preliminary experience. Microsurgery 2002;22:278-287.
16) Phillips BT, Lanier ST, Conkling N, et al:Intraoperative perfusion techniques can accurately predict mastectomy skin flap necrosis in breast reconstruction:results of a prospective trial. Plast Reconstr Surg 2012;129:778e-788e.
17) Sood M, Glat P:Potential of the SPY intraoperative perfusion assessment system to reduce ischemic complications in immediate postmastectomy breast reconstruction. Ann Surg Innov Res 2013;7:9.
18) Duggal CS, Madni T, Losken A:An outcome analysis of intraoperative angiography for postmastectomy breast reconstruction. Aesthet Surg J 2014;34:61-65.
19) Casey WJ, Connolly KA, Nanda A, et al:Indocyanine green laser angiography improves deep inferior epigastric perforator flap outcome following abdominal suction lipectomy. Plast Reconstr Surg 2015;135:491e-497e.
20) La Padula S, Hersant B, Meningaud JP, et al:Intraoperative use of indocyanine green angiography for selecting the more reliable perforator of the anterolateral thigh flap:a comparison study. Microsurgery 2018;38:738-744.
21) Losken A, Zenn MR, Hammel JA, et al:Assessment of zonal perfusion using intraoperative angiography during abdominal flap breast reconstruction. Plast Reconstr Surg 2012;129:618e-624e.
22) Woodard CR, Most SP:Intraoperative angiography using laser-assisted indocyanine green imaging to map perfusion of forehead flaps. Arch Facial Plast Surg 2012;14:263-269.
23) Kamolz LP, Andel H, Auer T, et al:Evaluation of skin perfusion by use of indocyanine green video angiography:Rational design and planning of trauma surgery. J Trauma 2006;61:635-641.
24) Krishnan KG, Schackert G, Steinmeier R:The role of near-infrared angiography in the assessment of post-operative venous congestion in random pattern, pedicled island and free flaps. Br J Plast Surg 2005;58:330-338.
25) Holm C, Mayr M, Hofter E, et al:Assessment of the patency of microvascular anastomoses using microscope-integrated near-infrared angiography:a preliminary study. Microsurgery 2009;29:509-514.
26) Kishi K, Imanishi N, Shimizu Y, et al:Alternative 1-step nasal reconstruction technique. Arch Facial Plast Surg 2012;14:116-121.
27) Kishi K, Nakajima H, Imanishi N:Distally based greater saphenous venoadipofascial-sartorius muscle combined flap with venous anastomosis. Plast Reconstr Surg 2007;119:1808-1812.
28) Obana A, Miki T, Hayashi K, et al:Survey of complications of indocyanine green angiography in Japan. Am J Ophthalmol 1994;118:749-753.
29) Starosoloski Z, Bhavane R, Ghaghada KB, et al:Indocyanine green fluorescence in second near-infrared(NIR-II)window. PLoS One 2017;12:e0187563.
30) Carr JA, Franke D, Caram JR, et al:Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci USA 2018;115:4465-4470.
P.91 掲載の参考文献
1) 三輪光春:ICG 蛍光法の原理と機器開発. 外科 2009;71:913-917.
2) Ikeda Y, Niimi M, Kan S, et al:Clinical significance of tissue blood flow during esophagectomy by laser doppler flowmetry. J Thorac Cardiovasc Surg 2001;122:1101-1106.
3) Zehetner J, DeMeester SR, Alicuben ET, et al:Intraoperative assessment of perfusion of the gastric graft and correlation with anastomotic leaks after esophagectomy. Ann Surg 2015;262:74-78.
4) Shimada Y, Okumura T, Nagata T, et al:Usefulness of blood supply visualization by indocyanine green fluorescence for reconstruction during esophagectomy. Esophagus 2011;8:259-266.
5) Yukaya T, Saeki H, Kasagi Y, et al:Indocyanine green fluorescence angiography for quantitative evaluation of gastric tube perfusion in patients undergoing esophagectomy. Am Coll Surg 2015;221:e37-42.
6) Kumagai Y, Hatano S, Sobajima J, et al:Indocyanine green fluorescence angiography of the reconstructed gastric tube during esophagectomy:efficacy of the 90-second rule. Dis Esophagus 2018;31:1-4.
7) Kamiya K, Unno N, Miyazaki S, et al:Quantitative assessment of the free jejunal graft perfusion. J Surg Res 2015;194:394-399.
8) Koyanagi K, Ozawa S, Oguma J, et al:Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence:New predictive evaluation of anastomotic leakage after esophagectomy. Medicine 2016;95:30(e4386).
9) Daele EV, van Nieuwenhove Y, Ceelen W, et al:Near-infrared fluorescence guided esophageal reconstructive surgery:A systematic review. World J Gastrointest Oncol 2019;11:250-263.
10) Ladak F, Dang JT, Switzer N, et al:Indocyanine green for the prevention of anastomotic leaks following esophagectomy:a meta-analysis. Surg Endosc 2019;33:384-394.
P.99 掲載の参考文献
1) Alander JT, Kaartinen I, Laakso, A et al:A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging 2012;2012:940585.
2) Kang CY, Halabi WJ, Chaudhry OO, et al:Risk factors for anastomotic leakage after anterior resection for rectal cancer. JAMA Surg 2013;148:65-71.
3) Snijders HS, Wouters MW, van Leersum NJ, et al:Meta-analysis of the risk for anastomotic leakage, the postoperative mortality caused by leakage in relation to the overall postoperative mortality. Eur J Surg Oncol 2012;38:1013-1019.
4) Mongin, Maggiori L, Agostini J:Does anastomotic leakage impair functional results and quality of life after laparoscopic sphincter-saving total mesorectal excision for rectal cancer? A case-matched study. Int J Colorectal Dis 2014;29:459-467.
5) Mirnezami A, Mirnezami R, Chandrakumaran K, et al:Increased local recurrence and reduced survival from colorectal cancer following anastomotic leak:systematic review and meta-analysis. Ann Surg 2011;253:890-899.
6) Kingham TP, Pachter HL:Colonic anastomotic leak:risk factors, diagnosis, and treatment. J Am Coll Surg 2009;208:269-278.
7) Karliczek A, Harlaar NJ, Zeebregts CJ, et al:Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Colorectal Dis 2009;24:569-576.
8) Nachiappan S, Askari A, Currie A, et al:Intraoperative assessment of colorectal anastomotic integrity:a systematic review. Surg Endosc 2014;28:2513-2530.
9) Kudszus S, Roesel C, Schachtrupp A, et al:Intraoperative laser fluorescence angiography in colorectal surgery:a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg 2010;395:1025-1030.
10) Ris F, Hompes R, Cunningham C, et al:Near-infrared (NIR) perfusion angiography in minimally invasive colorectal surgery. Surg Endosc 2014;28:2221-2226.
11) Jafari MD, Wexner SD, Martz JE, et al:Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II):a multi-institutional study. J Am Coll Surg 2015;220:82-92.
12) Kin C, Vo H, Welton L, et al:Equivocal effect of intraoperative fluorescence angiography on colorectal anastomotic leaks. Dis Colon Rectum 2015;58:582-587.
13) Boni L, David G, Dionigi G, et al:Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc 2016;30:2736-2742.
14) Boni L, Fingerhut A, Marzorati A, et al:Indocyanine green fluorescence angiography during laparoscopic low anterior resection:results of a case-matched study. Surg Endosc 2017;31:1836-1840.
15) Kim JC, Lee JL, Park SH:Interp, retative Guidelines and Possible Indications for Indocyanine Green Fluorescence Imaging in Robot-Assisted Sphincter-Saving Operations. Dis Colon Rectum 2017;60:376-384.
16) Ris F, Liot E, Buchs NC, et al:Multicentre phase II trial of near-infrared imaging in elective colorectal surgery. Br J Surg 2018;105:1359-1367.
17) Hasegawa H, Tsukada Y, Wakabayashi M, et al:Impact of intraoperative indocyanine green fluorescence angiography on anastomotic leakage after laparoscopic sphincter-sparing surgery for malignant rectal tumors. Int J Colorectal Dis 2020;35:471-480.
18) Degett TH, Andersen HS, Gogenur I:Indocyanine green fluorescence angiography for intraoperative assessment of gastrointestinal anastomotic perfusion:a systematic review of clinical trials. Langenbecks Arch Surg 2016;401:767-775.
19) Wada T, Kawada K, Takahashi R, et al:ICG fluorescence imaging for quantitative evaluation of colonic perfusion in laparoscopic colorectal surgery. Surg Endosc 2017;31:4184-4193.
P.110 掲載の参考文献
1) Makuuchi M, Hasegawa H, Yamazaki S:Ultrasonically guided subsegmentectomy. Surg Gynecol Obstet 1986;161:346-350.
2) Takasaki K:Glissonean pedicle transection method for hepatic resection:a new concept of liver segmentation. J Hepatobiliary Pancreat Surg 1998;5:286-291.
3) Horiguchi A, Miyakawa S, Ishihara S, et al:Gallbladder bed resection or hepatectomy of segments 4a and 5 for pT2 gallbladder carcinoma:analysis of Japanese registration cases by the study group for biliary surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J Hepatobiliary Pancreat Sci 2013;20:518-524.
4) Aoki T, Yasuda D, Shimizu Y, et al:Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 2008;32:1763-1767.
5) Ishizawa T, Fukushima N, Shibahara J, et al:Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 2009;115:2491-2504.
6) Ishizawa T, Bandai Y, Ijichi M, et al:Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 2010;97:1369-1377.
7) Oba A, Inoue Y, Sato T, et al:Impact of indocyanine green-fluorescence imaging on distal pancreatectomy with celiac axis resection combined with reconstruction of the left gastric artery. HPB (Oxford) 2019;21:619-625.
8) Nishino H, Hatano E, Seo S, et al:Real-time navigation for liver surgery using projection mapping with indocyanine green fluorescence:development of the novel Medical Imaging Projection System. Ann Surg 2018;267:1134-1140.
P.121 掲載の参考文献
1) Ishizawa T, Fukushima N, Shibahara J, et al:Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 2009;115:2491-2504.
2) Gotoh K, Yamada T, Ishikawa O, et al:A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol 2009;100:75-79.
3) Yokoyama N, Otani T, Hashidate H, et al:Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging:preliminary results of a prospective study. Cancer 2012;118:2813-2819.
4) Ishizawa T, Masuda K, Urano Y, et al:Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol 2014;21:440-448.
5) van der Vorst JR, Schaafsma BE, Hutteman M, et al:Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 2013;119:3411-3418.
6) Shibasaki Y, Sakaguchi T, Hiraide T, et al:Expression of Indocyanine Green-Related Transporters in Hepatocellular Carcinoma. J Surg Res 2015;193:567-576.
7) Alfano MS, Molfino S, Benedicenti S, et al:Intraoperative ICG-based Imaging of Liver Neoplasms:A Simple Yet Powerful Tool. Preliminary Results. Surg Endosc 2019;33:126-134.
8) Kobahashi K, Kawaguchi Y, Kobayashi Y, et al:Identification of liver lesions using fluorescence imaging:comparison of methods for administering indocyanine green. HPB 2020 (in press)
9) Ishizawa T, Bandai Y, Harada N, et al:Indocyanine green-fluorescent imaging of hepatocellular carcinoma during laparoscopic hepatectomy:An initial experience. Asian J Endosc Surg 2010;3:42-45.
10) Kudo H, Ishizawa T, Tani K, et al:Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy. Surg Endosc 2014;28:2504-2508.
11) Terasawa M, Ishizawa T, Saiura A, et al:Applications of fusion fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc 2017;31:5111-5118.
12) Aoki T, Murakami M, Koizumi T, et al:Determination of the surgical margin in laparoscopic liver resections using infrared indocyanine green fluorescence. Langenbecks Arch Surg 2018;403:671-680.
13) Harada N, Ishizawa T, Muraoka A, et al:Fluorescence navigation hepatectomy by visualization of localized cholestasis from bile duct tumor infiltration. J Am Coll Surg 2010;210:e2-6.
14) Satou S, Ishizawa T, Masuda K, et al:Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J Gastroenterol 2013;48:1136-1143.
15) Yamamichi T, Oue T, Yonekura T, et al:Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma. J Pediatr Surg 2015;50:833-836.
16) Kitagawa N, Shinkai M, Mochizuki K, et al:Navigation using indocyanine green fluorescence imaging for hepatoblastoma pulmonary metastases surgery. Pediatr Surg Int 2015;31:407-411.
17) Kaibori M, Matsui K, Ishizaki M, et al:Intraoperative detection of superficial liver tumors by fluorescence imaging using indocyanine green and 5-aminolevulinic acid. Anticancer Res 2016;36:1841-1849.
18) Miyata Y, Ishizawa T, Kamiya M, et al:Intraoperative imaging of hepatic cancers using γ-glutamyltranspeptidase-specific fluorophore enabling real-time identification and estimation of recurrence. Sci Rep 2017;7:3542.
19) Boogerd LSF, Hoogstins CES, Schaap DP, et al:Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer:a dose-escalation pilot study. Lancet Gastroenterol Hepatol 2018;3:181-191.
P.132 掲載の参考文献
1) 及川武史, 野本靖史, 木下孔明:小型末梢肺癌に対するCTガイド下マーキング時に生じた脳空気塞栓により左半身麻痺が残存した1例. 日呼外会誌 2008;22:914-919.
2) 松浦陽介, 渡正伸:CT ガイド下肺穿刺後に心腔内空気栓を生じた2症例. 日呼外会誌2010;24:967-971.
3) 陳 豊史, 辰巳明利:肺野末梢腫瘤性病変に対する術前CTガイド下マーキングの臨床的検討. 日呼外会誌 2001;15:87-91.
4) Sato M, Omasa M, Chen F, et al:Use of virtual assisted lung mapping(VAL-MAP), a bronchoscopic multispot dye-marking technique using virtual images, for precise navigation of thoracoscopic sublobar lung resection. J Thorac Cardiovasc Surg 2014;147:1813-1819.
5) Sato M, Yamada T, Menju T, et al:Virtual-assisted lung mapping:outcome of 100 consecutive cases in a single institute. Eur J Cardiothorac Surg 2015;47:e131-139.
6) Sekine Y, Itoh T, Toyoda T, et al:Precise Anatomical Sublobar Resection Using a 3D Medical Image Analyzer and Fluorescence-Guided Surgery With Transbronchial Instillation of Indocyanine Green. Semin Thorac Cardiovasc Surg 2019;31:595-602.
7) Kasai Y, Tarumi S, Chang SS, et al:Clinical trial of new methods for identifying lung intersegmental borders using infrared thoracoscopy with indocyanine green:comparative analysis of 2-and 1-wavelength methods. Eur J Cardiothorac Surg 2013;44:1103-1107.
8) Okusanya OT, Hess NR, Luketich JD, et al:Infrared intraoperative fluorescence imaging using indocyanine green in thoracic surgery. Eur J Cardiothorac Surg 2018;53:512-518.
9) Rho J, Lee JW, Quan YH, et al:Fluorescent and Iodized Emulsion for Preoperative Localization of Pulmonary Nodules. Ann Surg 2019. [Epub ahead of print]
10) Chen-Yoshikawa TF, Hatano E, Yoshizawa A, et al:Clinical application of projection mapping technology for surgical resection of lung metastasis. Interact Cardiovasc Thorac Surg 2017;25:1010-1011.
11) Hamaji M, Chen-Yoshikawa TF, Minami M, et al:Near-Infrared Imaging Using Intravenous Indocyanine Green at a Conventional Dose to Locate Pulmonary Metastases:A Pilot Study. Thorac Cardiovasc Surg 2019;67:688-691.
P.140 掲載の参考文献
1) Stell DA, arter CR, Stewart I, et al:Prospective comparison of laparoscopy, ultrasonography and computed tomography in the staging gastric cancer. Br J Surg 1996;83:1260-1262.
2) Tsuchida K, Yoshikawa T, Tsuburaya A, et al:Indications for staging laparoscopy in clinical T4M0 gastric cancer. World J Surg 2011;35:2703-2709.
3) Song KY, Kim JJ, Kim SN, et al:Staging laparoscopy for advanced gastric cancer:is it also useful for the group which has an aggressive surgical strategy? World J Surg 2015;39:2742-2747.
4) Miki Y, Tokunaga M, Tanizawa Y, et al:Staging Laparoscopy for Patients with cM0, Type 4, and Large Type3 Gastric Cancer. World J Surg 2015;39:2742-2747.
5) Hayashi M, Fukuhara H, Inoue K, et al:The effect of iron ion on the specificity of photodynamic therapy with 5-aminolevulinic acid. PLoS One 2015;10:e0122351.
6) Hagiya Y, Endo Y, Yonemura Y, et al:Pivotal roles of peptide transporter PEPT1 and ATP-binding cassette (ABC) transporter ABCG2 in 5-aminolevulinic acid (ALA)-based photocyto-toxicity of gastric cancer cells in vitro. Photodiagnosis Hotodyn Ther 2012;9:204-214.
7) Gibson SL, Cupriks DJ, Havens JJ, et al:A regulatory role for porphobilinogen deaminase (PBGD) in 5-aminolaevulinic acid (5-ALA) -induced photosensitization? Br J Cancer 1998;77:235-242.
8) Ohgari Y, Miyata Y, Chau TT, et al:Mechanisms involved in delta-aminolevulinic acid (ALA) -induced photosensitivity of tumor cells:relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol 2005;71:42-49.
9) Kishi K, Fujiwara Y, Yano M, et al:Diagnostic laparoscopy with 5-aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal micrometastases in advanced gastric cancer. Oncology 2014;87:257-265.
10) Inoue K, Anai S, Fujimoto K, et al:Oral 5-aminolevulinic acid mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer:A randomized, double-blind, multicenter phase II/III study. Photodiagnosis Photodyn Ther 2015;12:193-200.
11) Ushimaru Y, Fujiwara Y, Kishi K, et al:Prognostic Significance of Basing Treatment Strategy on the Result of Photodynamic Diagnosis in Advanced Gastric Cancer. Ann Surg Oncol 2017;24:983-989.
12) Kishi K, Fujiwara Y, Yano M, et al:Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA) -mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today 2016;46:1427-1434.
P.150 掲載の参考文献
1) Moore GE:Fluorescein as an Agent in the differentiation of normal and malignant tissues. Science 1947;106:130-131.
2) Kuroiwa T, Kajimoto Y, Ohta T:A new fluorescein operative microscope for use in malignant glioma surgery. 11th international congress of neurological surgery. 1997, pp.599-603.
3) Kuroiwa T, Kajimoto Y, Ohta T:Development of a fluorescein operative microscope for use during malignant glioma surgery. A technical note and preliminary report. Surg Neurol 1998;50:41-49.
4) Kuroiwa T, Kajimoto Y, Ohta T:Developmental and clinical application of near-infrared surgical microscope-preliminary report. Minim Invas Neurosurg 2001;44:240-242.
5) Stummer W, Stocker S, Wagner S, et al:Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery 1998;42:518-526.
6) Kremer P, Wunder A, Sinn H, et al:Laser-induced fluorescence detection of malignant gliomas using fluorescein-labeled serum albumin:Experimental and preliminary clinical results. Neurol Res 2000;22:481-489.
7) Kremer P, Fardanesh M, Ding R, et al:Intraoperative fluorescence staining of malignant brain tumors using 5-aminofluorescein-labeled albumin. Neurosurgery 2009;64:53-60.
8) Shimizu K, Nitta M, Komori T, et al:Using Talaporfin Sodium Simultaneously Applied for Photodynamic Therapy against Malignant Glioma:A Prospective Clinical Study. Front Neurol 2018;https://doi.org/10.3389/fneur.2018.00024.
9) Ritz R, Daniels R, Noell S, et al:Hypericin for visualization of high grade gliomas:first clinical experience. Eur J Surg Oncol 2012;38:352-360.
10) Li D, Zhang J, Chi C, et al:First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics 2018;8:2508-2520.
11) Lee JYK, Cho SS, Zeh R:Folate receptor overexpression can be visualized in real time during pituitary adenoma endoscopic transsphenoidal surgery with near-infrared imaging. J Neurosurg 2018;129:390-403.
12) Kuroiwa T, Kajimoto Y, Ohta T:Usefulness of a new fluorescein operative microscope. 11th international congress of neurological surgery. 1997, pp.1641-1646.
13) Shinoda J, Yano H, Yoshimura SI, et al:Fluorescein-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note. J Neurosurg 2003;99:597-603.
14) Haglund MM, Berger MS, Hochman DW:Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 1996;38:308-317.
15) Raabe A, Beck J, Gerlach R, et al:Near-infrared indocyanine green video angiography:a new method for intraoperative assessment of vascular flow. Neurosurgery 2003;52:132-139.
16) Tamura Y, Hirota Y, Miyata S, et al:The use of intraoperative neat-infrared indocyanine green videoangiography in the microscopic resection of hemangioblastomas. Acta Neurochir (Wien) 2012;154:1407-1412.
17) Hefti M, Holenstein F, Albert I, et al:Susceptibility to 5-aminolevulinic acid based photodynamic therapy in WHO I meningioma cells corresponds to ferrochelatase activity. Photochem Photobiolo 2011;87:235-241.
18) Suzuki T, Wada S, Eguchi H, et al:Cadherin 13 overexpression as an important factor related to the absence of tumor fluorescence in 5-aminolevulinic acid-guided resection of glioma. J Neurosurg 2013;119:1331-1339.
19) Kim S, Kim JE, Kim YH, et al:Glutaminase 2 expression is associated with regional heterogeneity of 5-aminolevulinic acid fluorescence in glioblastoma. Scientific Report 2017;7:12221/DOI:10.1038/s41598-017-12557-3.
20) Yoneda T, Nonoguchi N, Ikeda N, et al:Spectral Radiance of Protoporphyrin IX Fluorescence and Its Histopathological Implications in 5-Aminolevulinic Acid-Guided Surgery for Glioblastoma. Photomed Laser Surg 2018;36:266-272.
21) Saito K, Hirai T, Takeshima H, et al:Genetic Factors Affecting Intraoperative 5-aminolevulinic Acid-induced Fluorescence of Diffuse Gliomas. Radiol Oncol 2017;51:142-150.
22) Sun W, Kajimoto Y, Inoue H, et al:Gefitinib enhances the efficacy of photodynamic therapy using 5-aminolevulinic acid in malignant brain tumor cells. Photodiagnosis Photodyn Ther 2013;10:42-50.
23) Hefti M, Albert I, Luginbuehl V:Phenytoin reduces 5-aminolevulinic acid-induced protoporphyrin IX accumulation in malignant glioma cells. J Neuro-Oncol 2012;108:443-450.
24) Yagi R, Kawabata S, Ikeda N, et al:Intraoperative 5-aminolevulinic acid-induced photodynamic diagnosis of metastatic brain tumors with histopathological analysis. World J Surg Oncol 2017;15:175-187.
25) Widhalm G, Minchev G, Woehrer A, et al:Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev 2012;35:381-391.
26) Kajimoto Y, Kuroiwa T, Miyatake S, et al:Use of 5-aminolevulinic acid in fluorescence-guided resection of meningioma with high risk of recurrence. J Neurosurg 2007;106:1070-1074.
27) Dijkstra BM, Jeltema HJR, Kruijff S:The application of fluorescence techniques in meningioma surgery-a review. Neurosurg Rev 2019;42:799-809.
28) Foster N, Eljamel S:ALA-induced fluorescence image guided surgery of meningiomas:A meta-analyses. Photodiagnosis Photodyn Ther 2016;15:73-78.
29) Morshed RA, Han SJ, Lau D:Wavelength-specific lighted suction instrument for 5-aminolevulinic acid fluorescence-guided resection of deep-seated malignant glioma:technical note. J Neurosurg 2018;128:1448-1453.
30) Tamura Y, Kuroiwa T, Kajimoto Y, et al:Endoscopic identification and biopsy sampling of an intraventricular malignant glioma using a 5-aminolevulinic acid-induced protoporphyrin IX fluorescence imaging system. J Neurosurg 2007;106:507-510.
31) Stummer W, Pichlmeier U, Meinel T, et al:ALA-Glioma Study Group. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma:a randomised controlled multicentre phase III trial. Lancet Oncol 2006;7:392-401.
32) Suero Molina E, Schipmann S, Stummer W:Maximizing safe resections:the roles of 5-aminolevulinic acid and intraoperative MR imaging in glioma surgery-review of the literature. Neurosurg Rev 2019;42:197-208.
33) Coburger J, Wirtz CR:Fluorescence guided surgery by 5-ALA and intraoperative MRI in high grade glioma:a systematic review. J Neurooncol 2019;141:533-546.
34) Yano H, Nakayama N, Ohe N, et al:Pathological analysis of the surgical margins of resected glioblastomas excised using photodynamic visualization with both 5-aminolevulinic acid and fluorescein sodium. J Neurooncol 2017;133:389-397.
35) Suero Molina E, Wolfer J, Ewelt C:Dual-labeling with 5-aminolevulinic acid and fluorescein for fluorescence-guided resection of high-grade gliomas:technical note. J Neurosurg 2018;128:399-405.
36) Miyatake S, Kuroiwa T, Kajimoto Y, et al:Fluorescence of non-neoplastic, magnetic resonance imaging-enhancing tissue by 5-aminolevulinic acid:case report. Neurosurgery 2007;61:1101-1104.
37) Matsuda F, Ikeda N, Kajimoto Y, et al:Neurosurgical microscopic solid laser-based light inhibits photobleaching during fluorescence-guided brain tumor removal with 5-aminolevulinic acid. Photodiagnosis Photodyn Ther 2017;20:120-124.
P.160 掲載の参考文献
1) Babjuk M, Oosterlinck W, Sylvester R, et al;European Association of Urology(EAU):EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder.:European Association of Urology(EAU). Eur Urol 2008;54:303-314.
2) Brausi M, Collette L, Kurth K, et al;EORTC Genito-Urinary Tract Cancer Collaborative Group:Variability in the recurrence rate at first follow-up cystoscopy after TUR in stage Ta T1 transitional cell carcinoma of the bladder:a combined analysis of seven EORTC studies. 2002, 523-531.
3) Sylvester RJ, van der Meijden AP, Oosterlinck W, et al:Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables:a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006;49:466-475.
4) Raab O:Ueber die Wirkung fluorescierender Stoffe und Infusorien. Z. Biol 1900;39:524-526.
5) Lipson RL, Baldes EJ:The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 1960;82:508-516.
6) Dougherty TJ, Kaufman JE, Goldfarb A, et al:Photoradiation therapy for the treatment of malignant tumors. Cancer Res 1978;38:2628-2635.
7) Dougherty TJ, Potter WR, Weishaupt KR:The structure of the active component of hematoporphyrin derivative. Porphyrin localization and treatment of tumors. pp.301-314, Alan R. Liss Inc., New York, 1984.
8) 早田義博, 加藤治文, 野口正之, ほか:エキシマ・ダイ・レーザーを用いた癌の光線学的診断治療. BME 1987;1:532-535.
9) Rall DP, Loo TL, Lane MG:Apearance and persistsnce of fluorescent material in tumor tissue after tetracycline administration. J. National cancer Institute 1957;19:79-86.
10) Whitmore WF Jr, Bush IM, Esquivel E:Tetracycline ultraviolet fluorescence in bladder carcinoma. Cancer 1964;17:1528-1532.
11) Kelly JF, Snell ME:Hematoporphyrin derivative:a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol 1976;115:150-151.
12) Hisazumi H, Misaki T, Miyoshi N:Photoradiation therapy of bladder tumors. J Urol 1983;130:685-687.
13) Malik Z, Lugaci H:Destruction of erythroleukaemic cells by photoactivation of endogenous porphyrins. Br J Cancer 1987;56:589-595.
14) Kennedy JC, Pottier RH, Pross DC:Photodynamic therapy with endogenous protoporphyrin IX:basic principles and present clinical experience. J Photochem Photobiol B 1990;6:143-148.
15) Kriegmair M, Waidelich R, Baumgartner R, et al:Photodynamic therapy of superficial bladder cancer. An alternative to radical cystectomy? Urologe A 1990;33:276-280.
16) Inoue K, Takashi K, Kamada M, et al:Regulation of 5-aminolevulinic Acid-mediated Protoporphyrin IX-accumulation in Human Urothelial Carcinomas. Pathobiology 2009;76:303-314.
17) Steinbach P, Weingandt H, Baumgartner R, et al:Cellular fluorescence of the endogenous photosensitizer protoporphyrin IX following exposure to 5-aminolevulinic acid. Photochem Photobiol 1995;62:887-895.
18) Steinbach P, Kriegmair M, Baumgartner R, et al:Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology 1994;44:836-841.
19) Ishizuka M, Abe F, Sano Y, et al:Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol 2011;11:358-365.
20) Inoue K, Fukuhara H, Shimamoto T, et al:Comparison between Intravesical and Oral Administration of 5-aminolevulinic Acid in the Clinical Benefit of Photodynamic Diagnosis for Non-muscle Invasive Bladder Cancer. Cancer 2012;118:1062-1074.
21) Inoue K, Matsuyama H, Fujimoto K, et al:The clinical trial on the safety and effectiveness of the photodynamic diagnosis of non-muscle-invasive bladder cancer using fluorescent light-guided cystoscopy after oral administration of 5-aminolevulinic acid (5-ALA). Photodiagnosis Photodyn Ther 2016;13:91-96.
22) Inoue K, Anai S, Fujimoto K, et al:Oral 5-aminolevulinic acid mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer:A randomized, double-blind, multicentre phase II/III study. Photodiagnosis Photodyn Ther 2015;12:193-200.
23) Nakai Y, Inoue K, Tsuzuki T, et al:Oral 5-aminolevulinic acid-mediated photodynamic diagnosis using fluorescence cystoscopy for non-muscle-invasive bladder cancer:A multicenter phase III study. Int J Urol 2018;25:723-729.
24) アラグリオ(R)顆粒剤分包 1.5g アミノレブリン酸塩酸塩顆粒剤 適正使用ガイド, 2017年11月.
25) アラグリオ(R)顆粒剤分包 1.5g アミノレブリン酸塩酸塩顆粒剤 副作用の発現状況について, 2019年5月.
26) 日本泌尿器科学会 編:膀胱癌診療ガイドライン 2019年版. 医学図書出版.
27) EAU Oncology Guidelines. https://uroweb.org/individual-guidelines/oncology-guidelines/
28) Diagnosis and Treatment of Non-Muscle Invasive Bladder Cancer:AUA/SUO Joint Guideline (2016). https://www.auanet.org/guidelines/bladder-cancer-non-muscle-invasive-guideline
29) Mowatt G, N'Dow J, Vale L, et al:Aberdeen Technology Assessment Review (TAR) Group. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy:Systematic review and meta-analysis. Int J Technol Assess Health Care 2011;27:3-10.
30) Chen C, Huang H, Zhao Y, et al:Diagnostic performance of image technique based transurethral resection for non-muscle invasive bladder cancer:systematic review and diagnostic meta-analysis. BMJ Open 2019;9:e028173.
31) Kausch I, Sommerauer M, Montorsi F, et al:Photodynamic diagnosis in non-muscle-invasive bladder cancer:a systematic review and cumulative analysis of prospective studies. Eur Urol 2010;57:595-606.
32) Rink M, Babjuk M, Catto JW, et al:Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-invasive bladder cancer:a critical review of the current literature. Eur Urol 2013;64:624-638.
33) Burger M, Grossman HB, Droller M, et al:Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy:a meta-analysis of detection and recurrence based on raw data. Eur Urol 2013;64:846-854.
34) Di Stasi SM, De Carlo F, Pagliarulo V, et al:Hexaminolevulinate hydrochloride in the detection of nonmuscle invasive cancer of the bladder. Ther Adv Urol 2015;7:339-350.
35) Shen P, Yang J, Wei W, et al:Effects of fluorescent light-guided transurethral resection on non-muscle-invasive bladder cancer:a systematic review and meta-analysis. BJU Int 2012;110, E209-215.
36) Yuan H, Qiu J, Liu L, et al:Therapeutic outcome of fluorescence cystoscopy guided transurethral resection in patients with non-muscle invasive bladder cancer:a meta-analysis of randomized controlled trials. PLoS One 2013;8:e74142.
37) Rolevich AI, Evmenenko AA:A systematic review and meta-analysis to assess the recurrence-free survival in non-muscle invasive bladder cancer after transurethral resection guided by 5-aminolevulinic acid-induced photodynamic diagnosis compared with white-light transurethral resect. Urologiia 2016;4:137-146.
38) Chou R, Selph S, Buckley DI, et al:Comparative Effectiveness of Fluorescent Versus White Light Cystoscopy for Initial Diagnosis or Surveillance of Bladder Cancer on Clinical Outcomes:Systematic Review and Meta-Analysis. J Urol 2017;197:548-558.
39) Gakis G, Fahmyb O:Systematic Review and Meta-Analysis on the Impact of Hexaminolevulinate-versus white-light guided transurethral bladder tumor resection on progression in non-muscle invasive bladder cancer. Bladder Cancer 2016;2:293-300.
40) Osman E, Alnaib Z, Kumar N:Photodynamic diagnosis in upper urinary tract urothelial carcinoma:A systematic review. Arab J Urol 2017;15:100-1097.
41) Inoue K, Fukuhara H, Kurabayashi A, et al:Photodynamic Therapy involves Anti-Angiogenic Mechanism and is Enhanced by Ferrochelatase Inhibitor in Urothelial Carcinoma. Cancer Sci 2013;104:765-772.
42) Inoue K:5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol 2017;24:97-101.
43) Lee JY, Diaz RR, Cho KS, et al:Efficacy and safety of photodynamic therapy for recurrent, high grade nonmuscle invasive bladder cancer refractory or intolerant to bacille Calmette-Guerin immunotherapy. J Urol 2013;190:1192-1199.
P.165 掲載の参考文献
1) Takahashi N, Nimura H, Fujita T, et al:Laparoscopic sentinel node navigation surgery for early gastric cancer:a prospective multicenter trial. Langenbecks Arch Surg 2017;402:27-32.
2) Kinami S, Oonishi T, Fujita J, et al:Optimal settings and accuracy of indocyanine green fluorescence imaging for sentinel node biopsy in early gastric cancer. Oncol Lett 2016;11:4055-4062.
3) Yoshida M, Kubota K, Kuroda J, et al:Indocyanine green injection for detecting sentinel nodes using color fluorescence camera in the laparoscopy-assisted gastrectomy. J Gastroenterol Hepatol 2012;27:29-33.
4) Ohdaira H, Yoshida M, Okada S, et al:New method of indocyanine green fluorescence sentinel node mapping for early gastric cancer. Annals Med Surg 2017;20:61-65.
5) Kamada T, Yoshida M, Takeuchi H, et al:A new method of sentinel node mapping for early gastric cancer using a fluorescent laparoscope that can adjust the intensity of excitation light and quantify the intensity of indocyanine green fluorescence:Report of a case. Int J Surg Case Rep 2020;73:248-252.
P.173 掲載の参考文献
1) 日本乳癌学会:乳癌診療ガイドライン(1)治療編 2018年版. 金原出版, 2018, pp.228-242.
2) Kim T, Guiliano AE, Lyman GH, et al:Lymphatic mapping and sentinel lymph node biopsy in early-stage breast carcinoma:a metaanalysis. Cancer 2006;106:4-16.
3) Sugie T, Sawada T, Tagaya N, et al:Comparison of the indocyanine green fluorescence and blue dye methods in detection of sentinel lymph nodes in early-stage breast cancer. Ann Surg Oncol 2013;20:2213-2218.
4) Xiong L, Gazyakan E, Yang W, et al:Indcyanine green fluorescence-guided sentinel node biopsy:a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol 2014;40:843-849.
5) Giuliano AE, Hunt KK, Ballman KV, et al:Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis:a randomized clinical trial. JAMA 2011;305:569-575.
6) Morton DL, Wen DR, Wong JH, et al:Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 1992;127:392-399.
7) Krag DN, Anderson SJ, Julian TB, et al:Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer:overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol 2010;11:927-933.
8) Giuliano AE, Kirgan DM, Guenther JM, et al:Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg 1994;220:391-398.
9) Kitai T, Kawashima M:Transcutaneous detection and direct approach to the sentinel node using axillary compression technique in ICG fluorescence-navigated sentinel node biopsy for breast cancer. Breast cancer 2012;19:343-348.
10) Sugie T, Kinoshita T, Masyda N, et al:Evaluation of the Clinical Utility of the ICG Fluorescence Method Compared with the Radioisotope Method for Sentinel Lymph Node Biopsy in Breast Cancer. Ann Surg Oncol 2016;23:44-50.
11) Sugie T, Ikeda T, Kawaguchi A, et al:Sentinel lymph node biopsy using indocyanine green fluorescence in early-stage breast cancer:a meta-analysis. Int J clin Oncol 2017;22:11-17.
12) Takada M, Takeuchi M, Suzuki E, et al:Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence. Breast Cancer 2018;25:650-655.
P.184 掲載の参考文献
1) Morton DL, Wen DR, Wong JH, et al:Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg 1992;127:392-399.
2) Kinami S, Kosaka T:Laparoscopic sentinel node navigation surgery for early gastric cancer. Transl Gastroenterol Hepatol 2017;2:42.
3) Kitagawa Y, Takeuchi H, Takagi Y, et al:Sentinel node mapping for gastric cancer:a prospective multicenter trial in Japan. J Clin Oncol 2013;31:3704-3710.
4) 三輪晃一:Sentinel Node Conceptと癌治療への応用. 日外会誌 2000;101:307-310.
5) Kinami S, Nakamura N, Tomita Y, et al:Precision surgical approach with lymph-node dissection in early gastric cancer. World J Gastroenterol 2019;25:1640-1652.
6) Hiratsuka M, Miyashiro I, Ishikawa O, et al:Application of sentinel node biopsy to gastric cancer surgery. Surgery 2001;129:335-340.
7) Ichikura T, Morita D, Uchida T, et al:Sentinel node concept in gastric carcinoma. World J Surg 2002;26:318-322.
8) Nimura H, Narimiya N, Mitsumori N, et al:Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer. Br J Surg 2004;91:575-579.
9) Kusano M, Tajima Y, Yamazaki K, et al:Sentinel node mapping guided by indocyanine green fluorescence imaging:a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg 2008;25:103-108.
10) Kinami S, Oonishi T, Fujita J, et al:Optimal settings and accuracy of indocyanine green fluorescence imaging for sentinel node biopsy in early gastric cancer. Oncol Lett 2016;11:4055-4062.
11) Kinami S, Fujimura T, Ojima E, et al:PTD classification:proposal for a new classification of gastric cancer location based on physiological lymphatic flow. Int J Clin Oncol 2008;13:320-329.
P.191 掲載の参考文献
1) Cahill RA:What's wrong with sentinel node mapping in colon cancer? World J Gastroenterol 2007;13 :6291-6294.
2) 大腸癌研究会編:大腸癌取り扱い規約, 第9版. 金原出版, 2018.
3) 大腸癌研究会編:大腸癌治療ガイドライン 医師用 2019版. 金原出版, 2019.
4) Giuliano AE, Ballman KV, McCall, et al:Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis:The ACOSOG Z0011(Alliance)Randomized Clinical Trial. JAMA 2017;318:918-926.
5) Leiter U, Stadler R, Mauch C, et al:Complete lymph node dissection versus no dissection in patients with sentinel lymph node biopsy positive melanoma(DeCOG-SLT):a multicentre, randomised, phase 3 trial. Lancet Oncol 2016;17:757-767.
6) Kitagawa Y, Takeuchi H, Takagi Y, et al:Sentinel node mapping for gastric cancer:a prospective multicenter trial in Japan. J Clin Oncol 2013;31:3704-3710.
7) Liberale G, Lasser P, Sabourin JC, et al:Sentinel lymph nodes of colorectal carcinoma:reappraisal of 123 cases. Gastroenterol Clin Biol 2007;31:281-225.
8) Shiozawa M, Akaike M, Yamada R, et al:Clinicopathological features of skip metastasis in colorectal cancer. Hepatogastroenterology 2007;54:81-84.
9) Ronan AC:What's wrong with sentinel node mapping in colon cancer? World J Gastroenterol 2007;13:6291-6294.
10) van der Pas MH, Meijer S, Hoekstra OS, et al:Sentinel-lymph-node procedure in colon and rectal cancer:a systematic review and meta-analysis. Lancet Oncol 2011;12:540-550.
11) Ohdaira H, Yoshida M, Okada S, et al:New method of indocyanine green fluorescence sentinel node mapping for early gastric cancer. Ann Med Surg 2017;20:61-65.
12) Chand M, Keller DS, Joshi HM, et al:Feasibility of fluorescence lymph node imaging in colon cancer. Tech Coloproctol 2018;22:271-277.
13) Hutteman M, Choi HS, Mieog JS, et al:Clinical translation of ex vivo sentinel lymph node mapping for colorectal cancer using invisible near-infrared fluorescence light. Ann Surg Oncol 2011;18:1006-1014.
14) Schaafsma BE, Verbeek FP, van der Vorst JR, et al:Ex vivo sentinel node mapping in colon cancer combining blue dye staining and fluorescence imaging. J Surg Res 2013;183:253-257.
15) Liberale G, Vankerckhove S, Galdon MG, et al:Sentinel Lymph Node Detection by Blue Dye Versus Indocyanine Green Fluorescence Imaging in Colon Cancer. Anticancer Res 2016;36:4853-4858.
16) Currie AC, Brigic A, Thomas-Gibson S, et al:A pilot study to assess near infrared laparoscopy with indocyanine green(ICG)for intraoperative sentinel lymph node mapping in early colon cancer. Eur J Surg Oncol 2017;43:2044-2051.
17) Sorares AS, Lovat LB, Chand M:Intracorporeal lymph node mapping in colon cancer surgery. Eur J Surg Oncol 2019;45:2316-2318.
18) Ankersmit M, Bonjer HJ, Hannink G, et al:Near-infrared fluorescence imaging for sentinel lymph node identification in colon cancer:a prospective single-center study and systematic review with meta-analysis. Tech Coloproctol 2019;23:1113-1126.
19) Nimura H, Narimiya N, Mitsumori N, et al:Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer. Br J Surg 2004;91:575-579.
20) Miyashiro I, Hiratsuka M, Sasako M, et al:High false-negative proportion of intraoperative histological examination as a serious problem for clinical application of sentinel node biopsy for early gastric cancer:final results of the Japan Clinical Oncology Group multicenter trial JCOG0302. Gastric Cancer 2014;17:316-323.
21) Wei R, Jiang G, Lv M, et al:TMTP1-modified indocyanine green-loaded polymeric micelles for targeted imaging of cervical cancer and metastasis sentinel lymph node in vivo. Theranostics 2019;9:7325-7344.
P.200 掲載の参考文献
1) 日本産科婦人科学会婦人科腫瘍委員会 第60回治療年報.
2) 日本産科婦人科学会 2017年患者年報.
3) Papadia A, Gasparri ML, Buda A, et al:Sentinel lymph node mapping in endometrial cancer:comparison of fluorescence dye with traditional radiocolloid and blue. J Cancer Res Clin Oncol 2017;143:2039-2048.
4) Ruscito I, Gasparri ML, Braicu EI, et al:Sentinel Node Mapping in Cervical and Endometrial Cancer:Indocyanine Green Versus Other Conventional Dyes-A Meta-Analysis. Ann Surg Oncol 2016;23:3749-3756.
5) Lecuru F, Mathevet P, Querleu D, et al:Bilateral negative sentinel nodes accurately predict absence of lymph node metastasis in early cervical cancer:results of the SENTICOL study. J Clin Oncol 2011;29:1686-1691.
6) Niikura H, Okamoto S, Otsuki T, et al:Prospective study of sentinel lymph node biopsy without further pelvic lymphadenectomy in patients with sentinel lymph node-negative cervical cancer. Int J Gynecol Cancer 2012;22:1244-1250.
7) Yahata H, Kobayashi H, Sonoda K, et al:Prognostic outcome and complications of sentinel lymph node navigation surgery for early-stage cervical cancer. Int J Clin Oncol 2018;23:1167-1172.
8) Gortzak-Uzan L, Jimenez W, Nofech-Mozes S, et al:Sentinel lymph node biopsy vs. pelvic lymphadenectomy in early stage cervical cancer:is it time to change the gold standard? Gynecol Oncol 2010;116:28-32.
9) 日本婦人科腫瘍学会編:子宮頸癌治療ガイドライン 2017年版. 金原出版, 2017, pp.101-103.
10) National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology Cervical cancer Ver.4. 2019[Cited 7th Jul 2019]Available from URL:https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf
11) European Society of Gynaecological Oncology. POCKET GUIDELINES CERVICAL CANCER based on ESGO-ESTRO-ESP Guidelines for the Management of Patients with Cervical Cancer[Cited 7st Jun 2019]Available from URL:https://www.esgo.org/wp-content/uploads/2015/12/ESGO_Cervical-Cancer_A6.pdf
12) Ballester M, Dubernard G, Lecuru F, et al:Detection rate and diagnostic accuracy of sentinel-node biopsy in early stage endometrial cancer:a prospective multicentre study(SENTI-ENDO). Lancet Oncol 2011;12:469-476.
13) Rossi EC, Kowalski LD, Scalici J, et al:A comparison of sentinel lymph node biopsy to lymphadenectomy for endometrial cancer staging(FIRES trial):a multicentre, prospective, cohort study. Lancet Oncol 2017;18:384-392.
14) Lin H, Ding Z, Kota VG, et al:Sentinel lymph node mapping in endometrial cancer:a systematic review and meta-analysis. Oncotarget 2017;8:46601-46610.
15) 日本婦人科腫瘍学会編:子宮体がん治療ガイドライン 2018年版. 金原出版, 2018, pp.97-100.
16) National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology Uterine Neoplasm Ver.3. 2019[Cited 7th Jul 2019]Available from URL:https://www.nccn.org/professionals/physician_gls/pdf/uterine.pdf
17) European Society of Gynaecological Oncology. POCKET GUIDELINES ENDOMETRIAL CANCER based on ESGO-ESTRO-ESP Guidelines for the Management of Patients with Endometrial Cancer[Cited 7st Jul 2019]Available from URL:https://www.esgo.org/wp-content/uploads/2015/12/Endometrial_broz_A6_b.pdf
18) Hassanzade M, Attaran M, Treglia G, et al:Lymphatic mapping and sentinel node biopsy in squamous cell carcinoma of the vulva:systematic review and meta-analysis of the literature. Gynecol Oncol 2013;130:237-245.
19) Soergel P, Hertel H, Nacke AK, et al:Sentinel Lymphadenectomy in Vulvar Cancer Using Near-Infrared Fluorescence From Indocyanine Green Compared With Technetium 99m Nanocolloid. Int J Gynecol Cancer 2017;27:805-812.
20) Van der Zee AGJ, Oonk MH, A De Hullu J, et al:Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J Clin Oncol 2008;26:884-889.
21) 日本婦人科腫瘍学会編:外陰がん・腟がん治療ガイドライン 2015年版. 金原出版, 2015, pp.57-59.
22) National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology Vulva cancer Ver.2. 2019[Cited 17th Jul 2019]Available from URL:https://www.nccn.org/professionals/physician_gls/pdf/vulvar.pdf
23) Yamagami W, Susumu N, Kataoka F, et al:A Comparison of Dye Versus Fluorescence Methods for Sentinel Lymph Node Mapping in Endometrial Cancer. Int J Gynecol Cancer 2017;27:1517-1524.
24) Hope-Ross M, Yannuzzi LA, Gragoudas ES, et al:Adverse reactions due to indocyanine green. Ophthalmology 1994;101:529-533.
P.213 掲載の参考文献
1) Yoshida RY, Kariya S, Ha-Kawa S, et al:Lymphoscintigraphy for Imaging of the Lymphatic Flow Disorders. Tech Vasc Interv Radiol 2016;19:273-276.
2) Greene AK, Goss JA:Diagnosis and Staging of Lymphedema. Semin Plast Surg 2018;32:12-16.
3) Yamamoto T, Yamamoto N, Yoshimatsu H, et al:Indocyanine green lymphography for evaluation of genital lymphedema in secondary lower extremity lymphedema patients. J Vasc Surg:Venous and Lym Dis 2013;1:400-405.
4) Yamamoto T, Iida T, Matsuda N, et al:Indocyanine green (ICG)-enhanced lymphography for evaluation of facial lymphoedema. J Plast Reconstr Aesthet Surg 2011;64:1541-1544.
5) Yamamoto T, Yamamoto N, Giacalone G:Supermicrosurgical Lymphaticovenular Anastomosis for a Breast Lymphedema Secondary to vascularized Axillary Lymph Node Flap Transfer. Lymphology 2016;49:128-132.
6) O'Brien BM, Das SK, Franklin JD, et al:Effect of lymphangiography on lymphedema. Plast Reconstr Surg 1981;68:922-926.
7) Pons G, Clavero JA, Alomar X, et al:Preoperative planning of lymphaticovenous anastomosis:The use of magnetic resonance lymphangiography as a complement to indocyanine green lymphography. J Plast Reconstr Aesthet Surg 2019;72:884-891.
8) Svensson BJ, Dylke ES, Ward LC, et al:Electrode Equivalence for Use in Bioimpedance Spectroscopy Assessment of Lymphedema. Lymphat Res Biol 2019;17:51-59.
9) Giray E, Yagci I:Diagnostic accuracy of interlimb differences of ultrasonographic subcutaneous tissue thickness measurements in breast cancer-related arm lymphedema. Lymphology 2019;52:1-10.
10) Executive Committee:The Diagnosis and Treatment of Peripheral Lymphedema:2016 Consensus Document of the International Society of Lymphology. Lymphology 2016;49:170-184.
11) Ahmed M, Purushotham AD, Douek M:Novel techniques for sentinel lymph node biopsy in breast cancer:a systematic review. Lancet Oncol 2014;15:e351-e362.
12) Unno N, Inuzuka K, Suzuki M, et al:Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema. J Vasc Surg 2007;45:1016-1021.
13) Narushima M, Yamamoto T, Ogata F, et al:Indocyanine green lymphography findings in limb lymphedema. J Reconstr Microsurg 2016;32:72-79.
14) Yamamoto T, Narushima M, Doi K, et al:Characteristic indocyanine green lymphography findings in lower extremity lymphedema:the generation of a novel lymphedema severity staging system using dermal backflow patterns. Plast Reconstr Surg 2011;127:1979-1986.
15) Yamamoto T, Yamamoto N, Doi K, et al:Indocyanine green (ICG)-enhanced lymphography for upper extremity lymphedema:a novel severity staging system using dermal backflow (DB) patterns. Plast Reconstr Surg 2011;128:941-947.
16) Yamamoto T, Yoshimatsu H, Narushima M, et al:Indocyanine green lymphography findings in primary leg lymphedema. Eur J Vasc Endovasc Surg 2015;49:95-102.
17) Yamamoto T, Matsuda N, Doi K, et al:The earliest finding of indocyanine green (ICG) lymphography in asymptomatic limbs of lower extremity lymphedema patients secondary to cancer treatment:the modified dermal backflow (DB) stage and concept of subclinical lymphedema. Plast Reconstr Surg 2011;128:314e-321e.
18) Yamamoto T, Yamamoto N, Yoshimatsu H, et al:Factors associated with lower extremity dysmorphia caused by lower extremity lymphedema. Eur J Vasc Endovasc Surg 2017;54:126.
19) Yamamoto T, Narushima M, Koshima I:Lymphatic vessel diameter in female pelvic cancer-related lower extremity lymphedematous limbs. J Surg Oncol 2018;117:1157-1163.
20) Yamamoto T, Yamamoto N, Yoshimatsu H, et al:Factors associated with lymphosclerosis:an analysis on 962 lymphatic vessels. Plast Reconstr Surg 2017;140:734-741.
21) Yamamoto T, Yamamoto N, Fuse Y, et al:Optimal sites for supermicrosurgical lymphaticovenular anastomosis:an analysis of lymphatic vessel detection rates on 840 surgical fields in lower extremity lymphedema. Plast Reconstr Surg 2018;142:924e-930e.
22) Akita S, Mitsukawa N, Rikihisa N, et al:Early diagnosis and risk factors for lymphedema following lymph node dissection for gynecologic cancer. Plast Reconstr Surg 2013;131:283-290.
23) Yamamoto T, Yamamoto N, Yamashita M, et al:Efferent lymphatic vessel anastomosis (ELVA):supermicrosurgical efferent lymphatic vessel-to-venous anastomosis for the prophylactic treatment of subclinical lymphedema. Ann Plast Surg 2016;76:424-427.
24) Akita S, Nakamura R, Yamamoto N, et al:Early Detection of Lymphatic Disorder and Treatment for Lymphedema following Breast Cancer. Plast Reconstr Surg 2016;138:192e-202e.
25) Tsukuura R, Sakai H, Fuse Y, et al:Novel hands-free near-infrared fluorescence navigation and simultaneous combined imaging for elevation of vascularized lymph node flap. J Surg Oncol 2018;118:588-589.
26) Yamamoto T, Yamamoto N, Azuma S, et al:Near-infrared illumination system-integrated microscope for supermicrosurgical lymphaticovenular anastomosis. Microsurgery 2014;34:23-27.
27) Yamamoto T, Yamamoto N, Numahata T, et al:Navigation lymphatic supermicrosurgery for the treatment of cancer-related peripheral lymphedema. Vasc Endovasc Surg 2014;48:139-143.
28) Yamamoto T, Yoshimatsu H, Koshima I:Navigation lymphatic supermicrosurgery for iatrogenic lymphorrhea:supermicrosurgical lymphaticolymphatic anastomosis and lymphaticovenular anastomosis under indocyanine green lymphography navigation. J Plast Reconstr Aesthet Surg 2014;67:1573-1579.
29) Yamamoto T, Narushima M, Yoshimatsu H, et al:Dynamic indocyanine green lymphography for breast cancer-related arm lymphedema. Ann Plast Surg 2014;73:706-709.
30) Yamamoto T, Narushima M, Yoshimatsu H, et al:Indocyanine green velocity:Lymph transportation capacity deterioration with progression of lymphedema. Ann Plast Surg 2013;71:591-594.
31) Akita S, Mitsukawa N, Kazama T, et al:Comparison of lymphoscintigraphy and indocyanine green lymphography for the diagnosis of extremity lymphoedema. J Plast Reconstr Aesthet Surg 2013;66:792-798.
32) Campisi C, Boccardo F:Lymphedema and microsurgery. Microsurgery 2002;22:74-80.
33) Koshima I, Narushima M, Mihara M, et al:Lymphadiposal Flaps and Lymphaticovenular Anastomoses for Severe Leg Edema:Functional Reconstruction for Lymph Drainage System. J Reconstr Microsurg 2016;32:50-55.
34) Yamamoto T, Narushima M, Kikuchi K, et al:Lambda-shaped anastomosis with intravascular stenting method for safe and effective lymphaticovenular anastomosis. Plast Reconstr Surg 2011;127:1987-1992.
35) Yamamoto T, Yoshimatsu H, Narushima M, et al:A modified side-to-end lymphaticovenular anastomosis. Microsurgery 2013;33:130-133.
36) Yamamoto T, Narushima M, Yoshimatsu H, et al:Minimally invasive lymphatic supermicrosurgery (MILS):indocyanine green lymphography-guided simultaneous multi-site lymphaticovenular anastomoses via millimeter skin incisions. Ann Plast Surg 2014;72:67-70.
37) Yamamoto T, Yoshimatsu H, Narushima M, et al:Sequential anastomosis for lymphatic supermicrosurgery:multiple lymphaticovenular anastomoses on one venule. Ann Plast Surg 2014;73:46-49.
38) Yamamoto T, Yoshimatsu H, Yamamoto N, et al:Side-to-end lymphaticovenular anastomosis through temporary lymphatic expansion. PLoS ONE 2013;8:e59523.
39) Yamamoto T, Yoshimatsu H, Yamamoto N:Complete lymph flow reconstruction:a free vascularized lymph node true perforator flap transfer with efferent lymphaticolymphatic anastomosis. J Plast Reconstr Aesthet Surg 2016;69:1227-1233.
40) Yamamoto T, Iida T, Yoshimatsu H, et al:Lymph flow restoration after tissue replantation and transfer:importance of lymph axiality and possibility of lymph flow reconstruction using free flap transfer without lymph node or supermicrosurgical lymphatic anastomosis. Plast Reconstr Surg 2018;142:796-804.
41) Yamamoto T, Saito T, Ishiura R, et al:Quadruple-component superficial circumflex iliac artery perforator (SCIP) flap:a chimeric SCIP flap for complex ankle reconstruction of an exposed artificial joint after total ankle arthroplasty. J Plast Reconstr Aesthet Surg 2016;69:1260-1265.
42) Yamamoto T:Onco-Reconstructive Supermicrosurgery. Eur J Surg Oncol 2019;45:1146-1151.
43) Brahma B, Yamamoto T:Breast cancer treatment-related lymphedema (BCRL):an overview of the literature and updates in microsurgery reconstruction. Eur J Surg Oncol 2019;45:1138-1145.
44) Yamamoto T, Yamamoto N, Kageyama T, et al:Supermicrosurgery for oncologic reconstructions. Global Health & Medicine 2020;2:18-23.
45) Yamamoto T, Yamamoto N, Kageyama T, et al:Technical pearls in lymphatic supermicrosurgery. Global Health & Medicine 2020;2:29-32.
46) Sumiya R, Fuse Y, Yamamoto T:Distinction between the lymph vessel and the vein on ICG lymphography:Intradermal or subcutaneous ICG injection also enhances the vein [published online ahead of print, 2020 May 5]. J Plast Reconstr Aesthet Surg 2020;S1748-6815(20)30162-5.
P.228 掲載の参考文献
1) White TT, Hart MJ:Cholangiography and small duct injury. Am J Surg 1985;149:640-643.
2) Mullock BM, Shaw LJ, Fitzharris B, et al:Sources of proteins in human bile. Gut 1985;26:500-509.
3) Baker KJ:Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Biol Med 1966;122:957-963.
4) Landsman ML, Kwant G, Mook GA, et al:Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 1976;40:575-583.
5) Kubota K, Kita J, Shimoda M et al:Intraoperative assessment of reconstructed vessels in living-donor liver transplantation, using a novel fluorescence imaging technique. J Hepatobiliary Pancreat Surg 2006;13:100-104.
6) Mitsuhashi N, Kimura F, Shimizu H, et al:Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J Hepatobiliary Pancreat Surg 2008;15:508-514.
7) Ishizawa T, Bandai Y, Kokudo N:Fluorescent cholangiography using indocyanine green for laparo-scopic cholecystectomy:an initial experience. Arch Surg 2009;144:381-382.
8) 安田大輔, 草野満夫, 青木武士, ほか:Indocyanine green(ICG) 蛍光法による開腹および鏡視下術中胆道造影法の開発. 昭和医会誌 2009;69:253-262.
9) Aoki T, Murakami M, Yasuda D et al:Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J Hepatobiliary Pancreat Sci 2010;17:590-594.
10) Ishizawa T, Bandai Y, Ijichi M et al:Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 2010;97:1369-1377.
11) Tagaya N, Shimoda M, Kato M, et al:Intraoperative exploration of biliary anatomy using fluorescence imaging of indocyanine green in experimental and clinical cholecystectomies. J Hepatobiliary Pancreat Sci 2010;17:595-600.
12) Dip F, LoMenzo E, Sarotto L et al:Randomized Trial of Near-infrared Incisionless Fluorescent Cholangiography. Ann Surg 2019;270:992-999.
13) Ishizawa T, Tamura S, Masuda K et al:Intraoperative fluorescent cholangiography using indocyanine green;a biliary road map for safe surgery. J Am Coll Surg 2009;208:e1-e4.
14) Kawaguchi Y, Velayutham V, Fuks D et al:Usefulness of indocyanine green-fluorescence imaging for visualization of the bile duct during laparoscopic liver resection. J Am Coll Surg 2015;221:e113-e117.
15) Tanaka M, Inoue Y, Mise Y, et al:Laparoscopic deroofing for polycystic liver disease using laparoscopic fusion indocyanine green fluorescence imaging. Surg Endosc 2016;30:2620-2623.
16) Kaibori M, Ishizaki M, Matsui K et al:Intraoperative indocyanine green fluorescent imaging for prevention of bile leakage after hepatic resection. Surgery 2011;150:91-98.
17) Mizuno S, Inoue H, Tanemura A et al:Biliary complications in 108 consecutive recipients with duct-to-duct biliary reconstruction in living-donor liver transplantation. Transplant Proc 2014;46:850-855.
18) Hong SK, Lee KW, Kim HS, et al:Optimal bile duct division using real-time indocyanine green near-infrared fluorescence cholangiography during laparoscopic donor hepatectomy. Liver Transpl 2017;23:847-852.
19) Cherrick GR, Stein SW, Leevy CM et al:Indocyanine green:observations on its physical properties, plasma decay, and hepatic extraction. J Clin Invest 1960;39:592-600.
20) Hutteman M, van der Vorst JR, Mieog JS et al:Near-infrared fluorescence imaging in patients undergoing pancreaticoduodenectomy. Eur Surg Res 2011;47:90-97.
21) Flum DR, Dellinger EP, Cheadle A et al:Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA 2003;289:1639-1644.
22) Strasberg SM, Hertl M, Soper NJ:An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg 1995;180:101-125.
23) Harada N, Ishizawa T, Muraoka A, et al:Fluorescence navigation hepatectomy by visualization of localized cholestasis from bile duct tumor infiltration. J Am Coll Surg 2010;210:e2-6.
24) Kono Y, Ishizawa T, Tani K et al:Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy. Medicine (Baltimore) 2015;94:e1005.
25) Benson RC, Kues HA:Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 1978;23:159-163.
26) Zarrinpar A, Dutson EP, Mobley C, et al:Intraoperative laparoscopic near-infrared fluorescence cholangiography to facilitate anatomical identification;when to give indocyanine green and how much. Surg Innov 2016;23:360-365.
27) Boogerd LSF, Handgraaf HJM, Huurman VAL et al:The best approach for laparoscopic fluorescence cholangiography;overview of the literature and optimization of dose and dosing time. Surg Innov 2017;24:386-396.
28) Kawaguchi Y, Ishizawa T, Masuda K, et al:Hepatobiliary surgery guided by a novel fluorescent imaging technique for visualizing hepatic arteries, bile ducts, and liver cancers on color images. J Am Coll Surg 2011;212:e33-39.
29) Figueiredo JL, Siegel C, Nahrendorf M, et al:Intraoperative near-infrared fluorescent cholangiog-raphy (NIRFC) in mouse models of bile duct injury. World J Surg 2010;34:336-343.
30) Tanaka E, Choi HS, Humblet V, et al:Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light. Surgery 2008;144:39-48.
31) van den Bos J, Al-Taher M, Hsien SG, et al:Near-infrared fluorescence laparoscopy of the cystic duct and cystic artery:first experience with two new preclinical dyes in a pig model. Surg Endosc 2017;31:4309-4314.
32) Ashitate Y, Stockdale A, Choi HS, et al:Real-time simultaneous near-infrared fluorescence imaging of bile duct and arterial anatomy. J Surg Res 2012;176:7-13.
P.242 掲載の参考文献
1) Couinaud C:Les enveloppes vasculobiliaries du foie ou capsule de Glisson:leur interet dans la chirurgie vesicularie, les resections hepatiques et l'abord du bile du foie. Lyon Chir1954;49:589.
2) Makuuchi M, Hasegawa H, Yamazaki S:Ultrasonically guided subsebmentectomy. Surg Gynecol Obstet 1985;161:346-350.
3) Takayama T, Makuuchi M. Watanabe K, et al:A new method for mapping hepatic subsegment counterstaining identification technique. Surgery 1991;109:226-229.
4) 高崎健, 小林誠一郎, 田中精一, ほか:glisson 鞘処理による新しい系統的肝切除術. 手術 1986;40:7-14.
5) Aoki T, Yasuda D, Shimizu Y, et al:Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 2008;32:1763-1767.
6) Uchiyama K, Ueno M, Ozawa S, et al:Combined intraoperative use of contrast-enhanced ultrasonography imaging using a sonazoid and fluorescence navigation system with indocyanine green during anatomical hepatectomy. Langenbecks Arch Surg 2011;396:1101-1107.
7) Ishizawa T, Zuker NB, Kokudo N, et al:Positive and negative staining of hepatic segments by use of fluorescent imaging techniques during laparoscopic hepatectomy. Arch Surg 2012;147:393-394.
8) Aoki T, Koizumi T, Mansour DA, et al:Ultrasound-Guided Preoperative Positive Percutaneous Indocyanine Green Fluocrescence Staining for Laparoscopic Anatomical Liver Resection. J Am Coll Surg 2020;230:e7-e12.
9) Aoki T, Murakami M, Koizumi T, et al:Three-Dimensional Virtual Endoscopy for Laparoscopic and Thoracoscopic Liver Resection. J Am Coll Surg 2015;221:e21-26.
10) Takasaki K:Hepatic Cone Unit Resection (Anatomical Subsegmentectomy). Glissonean Pedicle Transection Method for Hepatic Resection:93-143, 2007.
11) Hasegawa K, Kokudo N, Imamura H, et al:Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg 2005;242:252-259.
12) Nishino H, Hatano E, Seo S, et al:Real-time Navigation for Liver Surgery Using Projection Mapping With Indocyanine Green Fluorescence:Development of Novel Medical Imaging Projection System. Ann Surg 2018;267:1134-1140.
13) Sakoda M, Ueno S, Iino S, et al:Pure laparoscopic subsegmentectomy of the liver using a puncture method for the target portal branch under percutaneous ultrasound with artificial ascites. Surg Laparosc Endosc Percutan Tech 2013;23:e45-48.
14) Inoue Y, Arita J, Sakamoto T, et al:Anatomical Liver Resections Guided by 3-Dimensional Parenchymal Staining Using Fusion Indocyanine Green Fluorescence Imaging. Ann Surg 2015;262:105-111.
15) Miyata A, Ishizawa T, Tani K, et al:Reappraisal of a Dye Staining Technique for Anatomic Hepatectomy by the Concomitant Use of Indocyanine Green Fluorescence Imaging. J Am Coll Surg 2015;221:e27-36.
16) Mizuno T, Sheth R, Yamamoto M, et al:Laparoscopic Glissonean Pedicle Transection (Takasaki) for Negative Fluorescent Counterstaining of Segment 6. Ann Surg Oncol 2017;24:1046-1047.
17) Kobayashi Y, Kawaguchi Y, Kobayashi K, et al:Portal vein territory identification using indocyanine green fluorescence imaging:Technical details and short-term outcomes. J Surg Oncol 2017;116:921-931.
18) Terasawa M, Ishizawa T, Mise Y, et al:Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc 2017;31:5111-5118.
19) Ueno M, Hayami S, Sonomura T, et al:Indocyanine green fluorescence imaging techniques and interventional radiology during laparoscopic anatomical liver resection (with video). Surg Endosc 2018;32:1051-1055.
20) Peyrat P, Blanc E, Guillermet S, et al:HEPATOFLUO:A prospective monocentric study assessing the benefits of indocyanine green (ICG) fluorescence for hepatic surgery. J Surg Oncol 2018;117:922-927.
21) Kono Y, Ishizawa T, Tani K et al:Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy. Medicine (Baltimore) 2015;94:e1005.
P.253 掲載の参考文献
1) Okada M, Mimura T, Ikegaki J, et al:A novel video-assisted anatomic segmentectomy technique:Selective segmental inflation via bronchofiberoptic jet followed by cautery cutting. J Thoraci Cardiovascul Surg 2007;133:753-758.
2) Gotoh M, Yamamoto Y, Igai H, et al:Clinical application of infrared thoracoscopy to detect bullous or emphysematous lesions of the lung. J Thorac Cardiovasc Surg 2007;134, 1498-1501.
3) Yamashita S, Tokuishi K, Anami K, et al:Video-assisted thoracoscopic indocyanine green fluorescence imaging system shows sentinel lymph nodes in non-small-cell lung cancer. J Thorac Cardiovasc Surg 2011;141:141-144.
4) Ashitate Y, Tanaka E, Stockdale A, et al:Near-infrared fluorescence imaging of thoracic duct anatomy and function in open surgery and video-assisted thoracic surgery. J Thorac Cardiovasc Surg 2011;142:31-8. e1-2.
5) Misaki N, Chang SS, Gotoh M, et al:A novel method for determining adjacent lung segments with infrared thoracoscopy. J Thorac Cardiovasc Surg 2009;138:613-618.
6) Sun Y, Zhang Q, Wang Z, et al:Is the near-infrared fluorescence imaging with intravenous indocyanine green method for identifying the intersegmental plane concordant with the modified inflation-deflation method in lung segmentectomy? Thorac Cancer 2019;10:2013-2021.
7) Sekine Y, Ko E, Oishi H, et al:A simple and effective technique for identification of intersegmental planes by infrared thoracoscopy after transbronchial injection of indocyanine green. J Thorac Cardiovasc Surg 2012;143:1330-1335.
8) Sekine Y, Itoh T, Toyoda T, et al:Precise Anatomical Sublobar Resection Using a 3D Medical Image Analyzer and Fluorescence-Guided Surgery With Transbronchial Instillation of Indocyanine Green. Semin Thorac Cardiovasc Surg 2019;31:595-602.
9) Cao C, Chandrakumar D, Gupta S, et al:Could less be more?-A systematic review and meta-analysis of sublobar resections versus lobectomy for non-small cell lung cancer according to patient selection. Lung Cancer 2015;89:121-132.
10) Predina JD, Newton AD, Xia L, et al:An open label trial of folate receptor-targeted intraoperative molecular imaging to localize pulmonary squamous cell carcinomas. Oncotarget 2018;9:13517-13529.
P.262 掲載の参考文献
1) Matsui A, Tanaka E, Choi HS, et al:Real-time, Near-Infrared, Fluorescence-Guided Identification of the Ureters Using Methylene Blue. Surgery 2010;148:78-86.
2) Selzman AA, Spirnak JP:Iatrogenic Ureteral Injuries:A 20-year Experience in Treating 165 Injuries. J Urol 1996;155:878-881.
3) Burks FN, Santucci RA:Management of iatrogenic ureteral injury. Ther Adv Urol 2014;6:115-124.
4) Siddighi S, Yune JJ, Hardesty J:Indocyanine green for intraoperative localization of ureter. Am J Obstet Gynecol 2014;211:436. e1-436. e2.
5) Lee Z, Moore B, Giusto L, et al:Use of Indocyanine Green During Robot-Assisted Ureteral Reconstructions. Eur Urol 2015;67:291-298.
6) Verbeek FP, Vorst JR, Schaafsma BE, et al:Intraoperative Near Infrared Fluorescence Guided Identification of the Ureters Using Low Dose Methylene Blue:A First in Human Experience. J Urol 2013;190:574-579.
7) Yeung TM, Volpi D, Tullis ID, et al:Identifying ureters in situ under fluorescence during laparoscopic and open colorectal surgery. Ann Surg 2016;263:e1-2.
8) Al-Taher M, van den Bos J, Schols RM:Fluorescence ureteral visualization in human laparoscopic colorectal surgery using methylene blue. J Laparoendosc Adv Surg Tech A 2016;26:870-875.
9) Barnes TG, Hompes R, Birks J, et al:Methylene blue fluorescence of the ureter during colorectal surgery. Surg Endosc 2018;32:4036-4043.
10) de Valk KS, Handgraaf HJ, Deken MM, et al:A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery. Nat Commun 2019;10:3118.
11) Tanaka E, Ohnishi S, Laurence RG, et al:Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence. J Urol 2007;178:2197-2202.
12) Schols RM, Lodewick TM, Bouvy ND, et al:Application of a new dye for near-infrared fluorescence laparoscopy of the ureters:demonstration in a pig model. Dis Colon Rectum 2014;57:407-411.
13) Korb ML, Huh WK, Boone JD, et al:Laparoscopic Fluorescent Visualization of the Ureter With Intravenous IRDye800CW. J Minim Invasive Gynecol 2015;22:799-806.
14) Al-Taher M, van den Bos J, Schols RM, et al:Evaluation of a novel dye for near-infrared fluorescence delineation of the ureters during laparoscopy. BJS Open 2018;2:254-261.
15) Verbeek FP, van der Vorst JR, Tummers QR, et al:Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann Surg Oncol 2014;21:S528-537.
16) Dip FD, Nahmod M, Anzorena FS, et al:Novel technique for identification of ureters using sodium fluorescein. Surg Endosc 2014;28:2730-2733.
17) Meershoek P, KleinJan GH, van Oosterom MN, et al:Multispectral fluorescence imaging as a tool to separate healthy and disease related lymphatic anatomies during robot-assisted laparoscopic procedures. J Nucl Med 2018;59:1757-1760.
18) Portnoy E, Nizri E, Golenser J, et al:Imaging the urinary pathways in mice by liposomal indocyanine green. Nanomedicine 2015;11:1057-1064.
19) Friedman-Levi Y, Larush L, Diana M, et al:Optimization of liposomal indocyanine green for imaging of the urinary pathways and a proof of concept in a pig model. Surg Endosc 2018;32:963-970.
20) Rowe CK, Franco FB, Barbosa JA, et al:A novel method of evaluating ureteropelvic junction obstruction:dynamic near infrared fluorescence imaging compared to standard modalities to assess urinary obstruction in a swine model. J Urol 2012;188:1978-1985.
21) Cha J, Nani RR, Luciano MP, et al:A chemically stable fluorescent marker of the ureter. Bioorg Med Chem Lett 2018;28:2741-2745.
22) Mahalingam SM, Dip F, Castillo M, et al:Intraoperative ureter visualization using a novel near-infrared fluorescent dye. Mol Pharm 2018;15:3442-3447.
P.271 掲載の参考文献
1) 井上明子, 井之口昭:メチレンブルーを用いた副甲状腺腺腫摘出術. 耳鼻咽喉科臨床 2008;101:652-653.
2) Majithia A, Stearns MP:Methylene blue toxicity following infusion to localize parathyroid adenoma. J Laryngol Otol 2006;120:138-140.
3) Takeuchi S, Shimizu K, Shimizu K Jr, et al:Identification of pathological and normal parathyroid tissue by fluorescent labeling with 5-aminolevulinic acid during endocrine neck surgery. J Nippon Med Sch 2014;81:84-93.
4) Zaidi N, Bucak E, Yazici P, et al:The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy. J Surg Oncol 2016;113:775-778.
5) Sound S, Okoh A, Yigitbas H, et al:Utility of Indocyanine Green Fluorescence Imaging for Intraoperative Localization in Reoperative Parathyroid Surgery. Surg Innov 2019;26:774-779.
6) Rudin AV, Berber E:Impact of fluorescence and autofluorescence on surgical strategy in benign and malignant neck endocrine diseases. Best Pract Res Clin Endocrinol Metab 2019;33:101311.
7) Solorzano CC, Thomas G, Baregamian N, et al:Detecting the Near Infrared Autofluorescence of the Human Parathyroid:Hype or Opportunity?:Ann Surg Dec 2019 [ahead of print].
8) Ladurner R, Hallfeldt KK, Al Arabi N, et al:Optical coherence tomography as a method to identify parathyroid glands. Lasers Surg Med 2013;45:654-659.
9) White WM, Tearney GJ, Pilch BZ, et al:A novel, noninvasive imaging technique for intraoperative assessment of parathyroid glands:confocal reflectance microscopy. Surgery 2000;128:1088-1101.
10) Das K, Stone N, Kendall C, et al:Raman spectroscopy of parathyroid tissue pathology. Lasers Med Sci 2006;21:192-197.
11) Paras C, Keller M, White L, et al:Near-infrared autofluorescence for the detectionof parathyroid glands. Biomed Opt 2011;16:067012.
12) McWade MA, Paras C, White LM, et al:A novel optical approach to intraoperative detection of parathyroid glands. Surgery 2013;154:1371-1377.
13) McWade MA, Paras C, White LM, et al:Label-free intraoperative parathyroid localization with near-infrared autofluorescence imaging. J Clin Endocrinol Metab 2014;99:4574-4580.
14) McWade MA, Sanders ME, Broome JT, et al:Establishing the clinical utility of autofluorescence spectroscopy for parathyroid detection. Surgery 2016;159:193-203.
15) De Leeuw F, Breuskin I, Abbaci M, et al:Intraoperative near-infrared imaging for parathyroid gland identification by auto-fluorescence:a feasibility study. World J Surg 2016;40:2131-2138.
16) Shinden Y, Nakajo A, Arima H, et al:Intraoperative identification of the parathyroid gland with a fluorescence detection system. World J Surg 2017;41:1506-1512.
17) R Ladurner, N Al Arabi, U Guendogar, et al:Near-infrared autofluorescence imaging to detect parathyroid glands in thyroid surgery. Ann R Coll Surg Engl 2018;100:33-36.
18) B Kahramangil, E Berber:Comparison of indocyanine green fluorescence and parathyroid autofluorescence imaging in the identification of parathyroid glands during thyroidectomy. Gland Surg 2017;6:644-648.
19) Ladurner R, Sommerey S, Al Arabi N, et al:Intraoperative near-infrared autofluorescence imaging of parathyroid glands. Surg Endosc 2017;31:3140-3145.
P.275 掲載の参考文献
1) Araki K, Namikawa K, Mizutani J, et al:Indocyanine green staining for visualization of the biliary system during laparoscopic cholecystectomy. Endoscopy 1992;24:803.
2) Dip FD, Ishizawa T, Kokudo N, Rosenthal R (Eds.):Fluorescence imaging for surgeons. Springer International Publishing Switzerland, 2015.
3) McCulloch P, Altman DG, Campbell WB, et al:No surgical innovation without evaluation:the IDEAL recommendations. Lancet 2009;374:1105-1112.

III 術中蛍光イメージングの実際 [ 開発編 ]

P.290 掲載の参考文献
1) Urano Y, Sakabe M, Kosaka N, et al:Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci Transl Med 2011;3:110ra119.
2) Sakabe M, Asanuma D, Kamiya M, et al:Rational design of highly sensitive fluorescence probes for protease and glycosidase based on precisely controlled spirocyclization. J Am Chem Soc 2013;135:409-414.
3) Ueo H, Shinden Y, Tobo T, et al:Rapid intraoperative visualization of breast lesions with γ-glutamyl hydroxymethyl rhodamine green. Sci Rep 2015;5:12080.
4) Shinden Y, Ueo H, Tobo T, et al:Rapid diagnosis of lymph node metastasis in breast cancer using a new fluorescent method with γ-glutamyl hydroxymethyl rhodamine green. Sci Rep 2016;6:27525.
5) Onoyama H, Kamiya M, Kuriki Y, et al:Rapid and sensitive detection of early esophageal squamous cell carcinoma with fluorescence probe targeting dipeptidylpeptidase IV. Sci Rep 2016;6:26399.
6) Kuriki Y, Kamiya M, Kubo H, et al:Establishment of molecular design strategy to obtain activatable fluorescent probes for carboxypeptidases. J Am Chem Soc 2018;140:1767-1773.
7) Kawatani M, Yamamoto K, Yamada D, et al:Fluorescence detection of prostate cancer by an activatable fluorescence probe for PSMA carboxypeptidase activity. J Am Chem Soc 2019;141:10409-10416.
P.298 掲載の参考文献
1) Landsman ML, Kwant G, Mook GA, et al:Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 1976;40:575-583.
2) Aoki T, Yasuda D, Shimizu Y, et al:Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg 2008;32:1763-1767.
3) Ishizawa T, Fukushima N, Shibahara J, et al:Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 2009;115:2491-2504.
4) Ishizawa T, Bandai Y, Ijichi M, et al:Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg 2010;97:1369-1377.
5) Nishino H, Hatano E, Seo S, et al:Real-time navigation for liver surgery using projection mapping with indocyanine green fluorescence:development of the novel Medical Imaging Projection System. Ann Surg 2018;267:1134-1140.
6) Takada M, Takeuchi M, Suzuki E, et al:Real-time navigation system for sentinel lymph node biopsy in breast cancer patients using projection mapping with indocyanine green fluorescence. Breast Cancer 2018;25:650-655.
7) Chen-Yoshikawa TF, Hatano E, Yoshizawa A, et al:Clinical application of projection mapping technology for surgical resection of lung metastasis. Interact Cardiovasc Thorac Surg 2017;25:1010-1011.
P.309 掲載の参考文献
1) Nakaji H, Kouyama N, Muragaki Y, et al:Localization of Nerve Fiber Bundles by Polarization-Sensitive Optical Coherence Tomography. J Neurosci Methods 2008;174:82-90.
2) Kojima S, Sakamoto T, Nagai Y, et al:Laser Speckle Contrast Imaging for Intraoperative Quantitative Assessment of Intestinal Blood Perfusion During Colorectal Surgery:A Prospective Pilot Study. Surgical Innovation 2019;26:293-301.
3) Weerakkody RA, Cheshire NJ, Riga C, et al:Surgical Technology and Operating-Room Safety Failures:A Systematic Review of Quantitative Studies. BMJ Qual Saf 2013;22:710-718.
4) 村垣善浩, 吉光喜太郎:総特集 手術室が新しくなければいけない理由. 最新鋭のスマート治療室が提供する安心治療と高精度意思決定. 新医療 2017;44:32-35.
5) 岡本 淳, 正宗 賢, 伊関 洋, ほか:次世代手術室 SCOT(Smart Cyber Operating Theater)の開発. MEDIX 2017;66:4-8.
6) Muragaki Y, Iseki H, Maruyama T, et al:Information-guided Surgical Management of Gliomas Using Low-Field-Strength Intraoperative MRI. Acta Neurochir Suppl 2011;109:67-72.
7) Muragaki Y, Iseki H, Maruyama T, et al:Usefulness of Intraoperative Magnetic Resonance Imaging for Glioma Surgery. Acta Neurochir Suppl 2006;98:67-75.
8) Okamoto J, Masamune K, Iseki H, et al:Development Concepts of a Smart Cyber Operating Theater (SCOT) Using ORiN Technology. Biomed Tech (Berl) 2018;63:31-37.
9) Muragaki Y, Akimoto J, Maruyama T, et al:Phase II Clinical Study on Intraoperative Photodynamic Therapy With Talaporfin Sodium and Semiconductor Laser in Patients With Malignant Brain Tumors. J Neurosurg 2013;119:845-852.
10) Maeda M, Muragaki Y, Okamoto J, et al:Sonodynamic Therapy Based on Combined Use of Low Dose Administration of Epirubicin-Incorporating Drug Delivery System and Focused Ultrasound. Ultrasound Med Biol 2017;43:2295-2301.
11) 田村 学, 生田聡子, 岡本 淳, ほか:(TWIns プロジェクト紹介 <特集 III>) プロジェクトの活動推進状況先端工学外科(FATS)の最新プロジェクト. 未来医学 2017;30:84-98.
P.319 掲載の参考文献
1) Hilf R, Warne NW, Smail DB, et al:Photodynamic inactivation of selected intracellular enzymes by hematoporphyrin derivative and their relationship to tumor cell viability in vitro. Cancer Lett 1984;24:165-172.
2) Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 1976;36:2326-2329.
3) Fingar VH, Siegel KA, Wieman TJ, et al:The effects of thromboxane inhibitors on the microvascular and tumor response to photodynamic therapy. Photochem Photobiol 1993;58:393-399.
4) McMahon KS, Wieman TJ, Moore PH, et al:Effects of photodynamic therapy using mono-L-aspartyl chlorin e6 on vessel constriction, vessel leakage, and tumor response. Cancer Res 1994;54:5374-5379.
5) Gilissen MJ, van de Merbel-de Wit LE, Star WM, et al:Effect of photodynamic therapy on the endothelium-dependent relaxation of isolated rat aortas. Cancer Res 1993;53:2548-2552.
6) de Vree WJ, Essers MC, Koster JF, et al:Role of interleukin 1 and granulocyte colony-stimulating factor in photofrin-based photodynamic therapy of rat rhabdomyosarcoma tumors. Cancer Res 1997;57:2555-2558.
7) Evans S, Matthews W, Perry R, et al:Effect of photodynamic therapy on tumor necrosis factor production by murine macrophages. J Natl Cancer Inst 1990;82:34-39.
8) Korbelik M:Induction of tumor immunity by photodynamic therapy. J Clin Laser Med Surg 1996;14:329-334.
9) 坂本 優, 嘉屋隆介, 三宅清彦, ほか:子宮頸部諸祈願並びに異形成に対する光線力学療法の現状と展望. 日レ医誌 2012;33:117-121.
10) 下山康之, 栗林志行, 保坂浩子, ほか:胃癌PDTの適応と適応拡大の可能性. 日レ医誌 2015;36:133-137.
11) Furuse K, Fukuoka M, Kato H, et al:A prospective phase II study on photodynamic therapy with photofrin II for centrally located early-stage lung cancer. The Japan Lung Cancer Photodynamic Therapy Study Group. J Clin Oncol 1993;11:1852-1857.
12) Kato H, Furukawa K, Sato M, et al:Phase II clinical study of photodynamic therapy using mono-L-aspartyl chlorin e6 and diode laser for early superficial squamous cell carcinoma of the lung. Lung Cancer 2003;42:103-111.
13) Usuda J, Ichinose S, Ishizumi T, et al:Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin Cancer Res 2010;16:2198-2204.
14) Yano T, Muto M, Minashi K, et al:Photodynamic therapy as salvage treatment for local failure after chemoradiotherapy in patients with esophageal squamous cell carcinoma:a phase II study. Int J Cancer 2012;131:1228-1234.
15) Yano T, Kasai H, Horimatsu T, et al:A multicenter phase II study of salvage photodynamic therapy using talaporfin sodium (ME2906) and a diode laser (PNL6405EPG) for local failure after chemoradiotherapy or radiotherapy for esophageal cancer. Oncotarget 2017;8:22135-22144.
16) 天沼祐介, 堀松高博, 大橋真也, ほか:薬事承認後の食道癌に対するレザフィリン PDTの臨床成績. 日レ医誌 2019;40:57-61.
17) Muragaki Y, Akimoto J, Maruyama T, et al:Phase II clinical study on intraoperative photodynamic therapy with talaporfin sodium and semiconductor laser in patients with malignant brain tumors. J Neurosurg 2013;119:845-852.
18) Stepp H, Beck T, Pongratz T, et al:ALA and malignant glioma:fluorescence-guided resection and photodynamic treatment. J Environ Pathol Toxicol Oncol 2007;26:157-164.
19) Tetard MC, Vermandel M, Mordon S, et al:Experimental use of photodynamic therapy in high grade gliomas:a review focused on 5-aminolevulinic acid. Photodiagnosis Photodyn Ther 2014;11:319-330.
20) Nanashima A, Abo T, Nonaka T, et al:Photodynamic therapy using talaporfin sodium (Leserphyrin(R))for bile ductcarcinoma:a preliminary clinical trial. Anticancer Res 2012;32:4931-4938.
21) Suzuki S, Inaba K, Yokoi Y, et al:Photodynamic therapy for malignant biliary obstruction:a case series. Endoscopy 2004;36:83-87.
22) Ortner ME, Caca K, Berr F, et al:Successful photodynamic therapy for nonresectable cholangiocarcinoma:a randomized prospective study. Gastroenterology 2003;125:1355-1363.
23) Berr F, Wiedmann M, Tannapfel A, et al:Photodynamic therapy for advanced bile duct cancer:evidence for improved palliation and extended survival. Hepatology 2000;31:291-298.
24) Nonaka Y, Nanashima A, Nonaka T, et al:Synergic effect of photodynamic therapy using talaporfin sodium with conventional anticancer chemotherapy for the treatment of bile duct carcinoma. J Surg Res 2013;181:234-241.
25) 峯田周幸:頭頚部癌治療に対する光線力学的治療. MB ENT 2014;174:57-64.
26) 松山豪泰:光力学的診断・治療の泌尿器科癌への応用. Drug Delivery System 2014;29:315-321.
27) Vrouenraets MB, Visser GW, Loup C, et al:Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies:A new possibility for use in photodynamic therapy. Int J Cancer 2000;88:108-114.
28) Tanaka M, Kataoka H, Yano S, et al:Antitumor effects in gastrointestinal stromal tumors using photodynamic therapy with a novel glucose-conjugated chlorin. Mol Cancer Ther 2014;13:767-775.
29) Matsumoto J, Suzuki K, Yasuda M, et al:Photodynamic therapy of human biliary cancer cell line using combination of phosphorus porphyrins and light emitting diode. Med Chem 2017;25:6536-6541.
P.335 掲載の参考文献
1) Chinnathambi S, Shirahata N:Recent advances on fluorescent biomarkers of near-infrared quantum dots for in vitro and in vivoimaging. Sci Technol Adv Mater 2019;20:337-355.
2) Sato K, Ando K, Okuyama S, et al:Photoinduced Ligand Release from a Silicon Phthalocyanine Dye Conjugated with Monoclonal Antibodies:A Mechanism of Cancer Cell Cytotoxicity after Near-Infrared Photoimmunotherapy. ACS Cent Sci 2018;4:1559-1569.
3) Suganami A, Toyota T, Okazaki S, et al:Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe. Bioorg Med Chem Lett 2012;22:7481-7485.
4) Toyota T, Fujito H, Suganami A, et al:Near-infrared-fluorescence imaging of lymph nodes by using liposomally formulated indocyanine green derivatives. Bioorg Med Chem 2014;22:721-727.
5) Matsumura Y, Maeda H:A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387-6392.
6) Suganami A, Iwadate Y, Shibata S, et al:Liposomally formulated phospholipid-conjugated indocyanine green for intra-operative brain tumor detection and resection. Int J Pharm 2015;496:401-406.
7) Castano AP, Mroz P, Hamblin MR:Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 2006;6:535-545.
8) Starosolski Z, Bhavane R, Ghaghada KB, et al:Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One 2017;12:e0187563.
9) Ding F, Zhan Y, Lu X, et al:Recent advances in near-infrared II fluorophores for multifunctional biomedical imaging. Chem Sci 2018;9:4370-4380.
10) 上村真生, 曽我公平:近赤外蛍光プローブによる生体内イメージング法の開発. ぶんせき 2019;3:114-117.

最近チェックした商品履歴

Loading...