大豆と日本人の健康

出版社: 幸書房
著者:
発行日: 2014-08-10
分野: 衛生・公衆衛生  >  食品衛生
ISBN: 9784782103883
電子書籍版: 2014-08-10 (初版第1刷)
電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

1,375 円(税込)

商品紹介

各種疾病と大豆食品、大豆食品の健康における働き、大豆成分の健康機能、大豆の生産と遺伝子資源、の4つの分野から大豆をとらえその最新の全体像を明らかにした。

目次

  • 表紙
  • 監修・執筆 / 執筆者
  • はじめに
  • 目次
  • 第1部 日本人の健康と大豆食品
  • 第1章 がん予防
  • 1.1 乳がん患者とイソフラボン摂取
  • 1.2 イソフラボンの乳がん遺伝子への影響
  • 1.3 イソフラボンサプリメントの安全性
  • 1.4 前立腺がん予防
  • 1.5 男性の生殖とホルモン効果
  • 1.6 男性ホルモンへのイソフラボン影響のメタアナリシス
  • 1.7 エクオールの前立腺がん予防
  • 1.8 その他のがん
  • 第2章 更年期障害
  • 2.1 女性のライフサイクルとホルモン
  • 2.2 閉経前後に起こる身体・精神機能の変化
  • 2.3 更年期障害
  • 2.4 更年期障害緩和のためのホルモン補充療法
  • 2.5 大豆イソフラボンによる更年期症状の軽減効果
  • 2.6 エクオールと更年期症状
  • 第3章 循環器疾患 ( 高血圧・動脈硬化 )
  • 3.1 はじめに
  • 3.2 大豆・大豆製品の概要とその成分
  • 3.3 大豆製品と循環器疾患の関連
  • 3.4 生活習慣病の予防
  • 第4章 骨粗鬆症
  • 4.1 骨の役割
  • 4.2 骨粗鬆症と生活習慣
  • 4.3 大豆の摂取と骨の健康
  • 4.3.1 観察研究
  • 4.3.2 介入研究
  • 4.4 骨粗鬆症のリスク低減に有用な栄養成分
  • 4.4.1 カルシウム
  • 4.4.2 ビタミンK
  • 4.4.3 ビタミンB群およびビタミンC
  • 4.4.4 ビタミンD
  • 4.4.5 タンパク質
  • 4.4.6 大豆イソフラボン
  • 4.5 骨粗鬆症のリスク因子となる食品成分
  • 第5章 大豆と肥満, 糖尿病
  • 5.1 大豆食品摂取と糖尿病
  • 5.2 エネルギー源の糖質, 脂質, タンパク質の最適割合
  • 5.3 血糖値のコントロール目標
  • 5.4 糖尿病合併症としての腎不全予防
  • 第2部 大豆食品の健康的側面
  • 第1章 納豆
  • 1.1 ナットウキナーゼ
  • 1.2 t - PA活性の増強作用
  • 1.3 抗菌作用
  • 1.4 ビタミンK2
  • 1.5 粘質物 ( γ - ポリグルタミン酸 )
  • 1.6 ポリアミン
  • 1.7 プロバイオティクス効果
  • 1.8 その他
  • 第2章 みそ・醤油
  • 2.1 がん抑制効果
  • 2.2 抗酸化能
  • 2.3 降圧効果など
  • 2.4 放射能除去効果
  • 2.5 メラノイジン類の機能性
  • 2.6 その他
  • 第3章 豆乳・豆腐
  • 3.1 豆乳
  • 3.1.1 概要
  • 3.1.2 豆乳の主な成分
  • 3.1.3 豆乳製造技術の進歩
  • 3.2 豆腐
  • 3.2.1 豆腐の歴史
  • 3.2.2 豆腐の製造法
  • 3.2.3 豆腐の成分
  • 3.2.4 豆腐の構造
  • 第4章 大豆タンパク食品
  • 4.1 大豆タンパク質誕生の背景
  • 4.1.1 脱脂大豆
  • 4.1.2 分離大豆タンパク質 ( SPI : Soy Protein Isolate )
  • 4.1.3 濃縮大豆タンパク質 ( CSP : Concentrated Soy Protein )
  • 4.1.4 組織状植物タンパク質 ( TVP : Textured Vegetable Protein )
  • 4.2 大豆タンパク質の用途
  • 4.2.1 健康機能を活かした用途
  • 4.2.2 食品物性への効果
  • 4.2.3 組織状植物タンパク質
  • 第3部 大豆の成分と健康機能
  • 第1章 大豆の構造と成分
  • 1.1 大豆種子に含まれる成分
  • 1.2 大豆種子の構造
  • 1.3 種皮
  • 1.4 胚軸
  • 1.5 子葉
  • 第2章 大豆タンパク質とペプチド, アミノ酸
  • 2.1 大豆タンパク質, ペプチドおよびアミノ酸の栄養機能
  • 2.2 大豆タンパク質の生理機能
  • 2.2.1 コレステロール低下作用
  • 2.2.2 中性脂肪低下および抗糖尿作用
  • 2.2.3 抗がん作用およびがん浸潤・転移抑制作用
  • 2.2.4 アレルゲン
  • 2.3 大豆タンパク質から派生するペプチドの生理機能
  • 2.3.1 コレステロール低下ペプチド
  • 2.3.2 中性脂肪低下および抗糖尿ペプチド
  • 2.3.3 オピオイドペプチド
  • 2.3.4 摂食調節ペプチド
  • 2.3.5 免疫増強ペプチド
  • 2.3.6 ACE阻害ペプチド
  • 2.3.7 ユビキチンリガーゼ阻害ペプチド
  • 2.3.8 抗酸化ペプチド
  • 2.4 まとめ
  • 第3章 大豆イソフラボン
  • 3.1 大豆摂取とがん死亡率
  • 3.2 イソフラボンの骨格とレセプター
  • 3.3 イソフラボンの代謝とサプリメント
  • 3.4 エクオールサプリメント
  • 3.5 エクオールサプリメントの安全性
  • 第4章 大豆サポニン
  • 4.1 大豆サポニン
  • 4.1.1 大豆の起源
  • 4.1.2 大豆サポニンの嗜好性
  • 4.2 大豆サポニンの構造
  • 4.2.1 グループAサポニン
  • 4.2.2 DDMPサポニン
  • 4.2.3 大豆サポニンの構造特性
  • 4.3 大豆サポニンの機能性
  • 4.3.1 抗がん作用
  • 4.3.2 抗高血圧作用
  • 4.3.3 脂質代謝改善作用
  • 4.3.4 抗肥満作用
  • 第5章 大豆レシチン
  • 5.1 はじめに
  • 5.2 製造工程
  • 5.3 用途と種類
  • 5.4 生理活性と健康機能
  • 5.5 おわりに
  • 第6章 大豆脂質 ( リノール酸, α - リノレン酸 ) の機能性
  • 6.1 必須脂肪酸とは
  • 6.2 必須脂肪酸の代謝と機能
  • 6.3 大豆に含まれるリノール酸およびα - リノレン酸とその栄養特性
  • 6.3.1 リノール酸
  • 6.3.2 α - リノレン酸
  • 6.3.3 n - 6 / n - 3比
  • 6.4 おわりに
  • 第4部 日本食を支える大豆の生産と遺伝子資源
  • 第1章 大豆の食糧価値と生産・消費
  • 1.1 大豆の食糧としての価値
  • 1.2 大豆の生産
  • 1.2.1 世界の地域別生産量と単収
  • 1.2.2 日本の地域別生産量と単収
  • 1.3 大豆の利用
  • 1.3.1 世界
  • 1.3.2 日本
  • 第2章 日本の大豆の育種と遺伝資源
  • 2.1 日本の大豆育種の現状
  • 2.1.1 国内の主要品種
  • 2.1.2 大豆の育種体制
  • 2.1.3 育種目標
  • 2.1.4 大豆の育種法
  • 2.2 大豆の遺伝資源
  • 2.2.1 大豆の遺伝資源の現状
  • 2.2.2 遺伝資源の多様性
  • 2.2.3 遺伝資源の収集
  • 2.2.4 遺伝資源の活用例
  • 2.2.5 突然変異による新たな育種素材の作出
  • 2.3 新たな育種の動き
  • 2.3.1 ゲノム情報の解読とピンポイント改良
  • 2.3.2 多収化に向けた新たな育種の動き
  • 第3章 遺伝子組換え大豆の状況
  • 3.1 遺伝子組換え大豆を開発する技術
  • 3.2 実用的な遺伝子組換え大豆の開発と利用
  • 3.3 遺伝子組換え大豆の利用
  • 3.4 遺伝子組換え大豆の今後
  • 第4章 大豆のこれから
  • 4.1 はじめに
  • 4.2 国際貿易と大豆 : 南米と中国の台頭
  • 4.3 大豆をめぐる科学技術と社会的受容 : 食のコミュニケーションへ
  • 4.4 おわりに
  • 奥付

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1部 日本人の健康と大豆食品

P.11 掲載の参考文献
1) Haba R, Watanabe S, Arai Y, Chiba H, Miura T. Suppression of lipid-hydroperoxide and DNA-adduct formation by isoflavone-containing soy hypocotyl tea in rats. Environ Health Prev Med. 2002 ; 7 (2) : 64-73.
2) Haba R, Watanabe S, Wada M, Udaka S. Effects of lactoferrin, soya germ and polyamine on 2-amino-1-methyl-6-phenylimidazo [4,5-b] -pyridine (PhIP) -induced breast carcinogenesis in rats. Biofactors. 2004 ; 22 (1-4) : 127-131.
3) Messina M, Barnes S. The role of soy products in reducing risk of cancer. J Natl Cancer Inst. 1991 ; 83 : 541-546.
4) Messina M, McCaskill-Stevens W, Lampe JW. Addressing the soy and breast cancer relationship : review, commentary, and workshop proceedings. J Natl Cancer Inst. 2006 ; 98 : 1275-1284.
5) Ohsumi S, Sakamoto G, Takashima S, et al. Long-term results of breast-conserving treatment for early-stage breast cancer in Japanese women from multicenter investigation. Jpn J Clin Oncol. 2003 ; 33 : 61-67.
6) Helferich WG, Andrade JE, Hoagland MS. Phytoestrogens and breast cancer : a complex story. Inflammopharmacology. 2008 ; 16 : 219-226.
7) Yamamoto S, Sobue T, Kobayashi M, et al. Soy, isofavones, and breast cancer risk in Japan. J Natl Cancer Inst. 2003 ; 95 : 906-913.
8) Zhang C, Li JP, Zhou P. Soy consumption and breast cancer risk : four recent meta-analyses. Breast Cancer Res Treat. 2011 ; 127 : 573-576.
9) Shu XO, Zheng Y, Cai H, et al. Soy food intake and breast cancer survival. JAMA. 2009 ; 302 (22) : 2437-2443.
10) Doyle C, Kushi LH, Byers T, et al. Nutrition and physical activity during and after cancer treatment : an American cancer society guide for informed choices. CA Cancer J Clin. 2006 ; 56 : 323-353.
11) Messina M, Watanabe S, Setchell KD. Report on the 8th International Symposium on the Role of Soy in Health Promotion and Chronic Disease Prevention and Treatment. J Nutr. 2009 ; 139 (4) : 796S-802S.
12) Maskarinec G, Verheus M, Steinberg FM, et al. Various doses of soy isoflavones do not modify mammographic density in postmenopausal women. J Nutr. 2009 ; 139 : 981-986.
13) Huber J, Imhof M, Schmidt M. Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women : a systematic review and meta-analysis. Hum Reprod Update. 2010 ; 16 (1) : 110-111
14) Watanabe S, Uesugi S, Zhuo X, Kimira M. Phytoestrogen and cancer prevention. Gan To Kagaku Ryoho. 2003 ; 30 (7) : 902-908.
15) Weihua Z, Lathe R, Warner M, et al. An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta, 17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci USA. 2002 ; 99 : 13589-13594.
16) Muthyala RS, Ju YH, Sheng S, et al. Equol, a natural estrogenic metabolite from soy isoflavones : convenient preparation and resolution of R- and S-equols and their differing binding and biological activity through estrogen receptors alpha and beta. Bioorg Med Chem. 2004 ; 12 : 1559-1567.
17) Lund TD, Munson DJ, Haldy ME, et al. Equol is a novel anti-androgen that inhibits prostate growth and hormone feedback. Biol Reprod. 2004 ; 70 : 1188-1195.
18) Miyanaga N, Akaza H, Hinotsu S, et al. Prostate cancer chemoprevention study : an investigative randomized control study using purified isoflavones in men with rising prostate-specific antigen. Cancer Sci. 2012 ; 103 (1) : 125-130.
19) Messina M. Soybean isoflavone exposure does not have feminizing effects on men : a critical examination of the clinical evidence. Fertil Steril. 2010 ; 93 : 2095-2104.
20) Cederroth CR, Auger J, Zimmermann C, et al. Soy, phyto-oestrogens and male reproductive function : a review. Int J Androl. 2010 Apr ; 33 (2) : 304-316.
21) 陳瑞東, 大豆イソフラボンの発がん抑制, 於 : 家森幸男, 渡邊昌編, 大豆イソフラボン. 東京 : 幸書房 2001 ; 107-125.
P.23 掲載の参考文献
1) 総務省. 住民基本台帳にもとづく人口, 人口動態及び世帯数 (平成24年3月31日). http://www.soumu.go.jp/main_content/000170583.pdf
2) Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone replacement therapy : scientific review. JAMA. 2002 ; 288 : 872-881.
3) 玉舎輝彦. 女性ホルモンの作用と性差の出現. 京都 : 金芳堂 2006 ; 171.
4) 水沼英樹. 更年期障害の取り扱い. 日産婦誌 2003 ; 9 : N312-314.
5) Kupperman HS, Blatt MH, Wiesbader H, Filler W. Comparative clinical evaluation of estrogenic preparations by the menopausal and amenorrheal indices. J Clin Endcrinol Metab. 1953 ; 13 : 688-703.
6) 小山嵩夫, 麻生武志. 更年期婦人における漢方治療 ; 簡略化した更年期指数による評価. 産婦人科漢方研究のあゆみ 1992 ; 9 :30-34.
7) 日本産科婦人科学会生殖・内分泌委員会. 日本人女性の更年期症状評価表. 日産婦誌 2001 ; 53 : 13-14.
8) 吉形玲美. 加齢・ライフステージ別にみる発症しやすい疾患・部位. 於 : 太田博明編. ウェルエイジングのための女性医療. 東京 : メディカルレビュー社 2011 ; 83.
9) Lundberg V, Tolonen H, Stegmayr B, Kuulasmaa K, Asplund K ; WHO MONICA Project. Use of oral contraceptives and hormone replacement therapy in the WHO MONICA project. Maturitas. 2004 ; 48 : 39-49.
10) 6th International Menopause Society Expert Workshop 2006. http://www.imsociety.org/pdf_files/comments_and_press_statements/ims_press_statement_11_04_06.pdf
11) Stefanick ML, Anderson GL, Margolis KL, et al. Effects of conjugated equine estrogens on breast cancer and mammography screening in postmenopausal women with hysterectomy. JAMA. 2006 ; 295 : 1647-1657.
12) Nagata C, Takatsuka N, Kawakami N, Shimizu H. Soy product intake and hot flashes in Japanese women : results from a community-based prospective study. Am J Epidemiol. 2001 ; 153 : 790-793.
13) Somekawa Y, Chiguchi M, Ishibashi T, Aso T. Soy intake related to menopausal symptoms, serum lipids, and bone mineral density in postmenopausal Japanese women. Obstet Gynecol. 2001 ; 97 : 109-15.
14) Uesugi S, Watanabe S, Ishiwata N, Uehara M, Ouch K. Effects of isoflavone supplements on bone metabolic markers and climacteric symptoms in Japanese women. Bio Foctors. 2004 ; 22 : 221-228.
15) Howes LG, Howes JB, Knight DC. Isoflavone therapy for menopausal flushes : a systematic review and meta-analysis. Maturitas. 2006 ; 55 : 203-211.
16) Taku K, Melby MK, Kronenberg F, Kurzer MS, Messina M. Extracted or synthesized soybean isoflavones reduce menopausal hot flash frequency and severity : systematic review and meta-analysis of randomized controlled trials. Menopause. 2012 ; 19 : 776-790.
17) Jacobs A, Wegewitz U, Sommerfeld C, Grossklaus R, Lampen A. Efficacy of isoflavones in relieving vasomotor menopausal symptoms-A systematic review. Mol Nutr Food Res. 2009 ; 53 : 1084-1097.
18) North American Monopause Society. The role of soy isoflavones in menopausal health : report of The North American Menopause Society/Wulf H. Utian Transnational Science Symposium in Chicago, IL (October 2010). Menopause. 2011 ; 18 : 732-753.
19) Hwang CS, Kwak HS, Lim HJ, et al. Isoflavone metabolites and their in vitro dual functions : they can act as an estrogenic agonist or antagonist depending on the estrogen concentration. J Steroid Biochem Mol Biol. 2006 : 101 : 246-253.
20) Aso T, Uchiyama S, Matsumura Y, et al. A natural S-equol supplement alleviates hot flushes and other menopausal symptoms in equol nonproducing postmenopausal Japanes women. J Womens Health (Larchmt) 2012 ; 21 : 92-100.
21) Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans : influence of habitual diet on equol production by the gut microflora. Nutr Cancer. 2000 ; 36 : 27-32.
22) Atkinson C, Frankenfeld CL, Lampe JW. Gut bacterial metabolism of the soy isoflavone daidzein : exploring the relevance to human health. Exp Biol Med (Maywood). 2005 ; 230 : 155-170.
23) Richard LJ, Jeffrey SG, Richard JS. Emerging evidence of the health benefits of S-equol, an estrogen receptor β agonist. Nutr Rev. 2012, 69 ; 432-448.
24) Uehara M, Ohta A, Sakai K, Suzuki K, Watanabe S, Adlercreutz H. Dietary fructooligosaccharides modify intestinal bioavailability of a single dose of genistein and daidzein and affect their urinary excretion and kinetics in blood of rats. J Nutr. 2001 ; 131 : 787-795.
25) Hedlund TE, Maroni PD, Ferucci PG, Long-term dietary habits affect soy isoflavone metabolism and accumulation in prostatic fluid in Caucasian men. J Nutr. 2005 ; 135 : 1400-1406.
26) Frankenfeld CL, Atkinson C, Thomas WK. Familial correlations, segregation analysis, and nongenetic correlates of soy isoflavone-metabolizing phenotypes. Exp Biol Med (Maywood). 2004 ; 229 : 902-913.
27) 内山成人, 上野友美, 正木恭介, 清水清一, 麻生武志, 城田知子. 日本人女性における大豆イソフラボンおよびエクオールと更年期症状の関係に関する調査研究. 日本更年期医学会雑誌 2007 ; 15 : 28-37.
28) Ishiwata N, Melby MK, Mizuno S, Watanabe S. New equol supplement for relieving menopausal symptoms : randomized, placebo-controlled trial of Japanese women. Menopause. 2009 ; 16 : 141-148.
P.33 掲載の参考文献
1) 厚生労働省. 平成23年簡易生命表の概況. http://www.mhlw.go.jp/toukei/saikin/hw/life/life11/
2) 厚生労働省. 平成23年国民健康・栄養調査報告. http://www.mhlw.go.jp/bunya/kenkou/eiyou/h23-houkoku.html
3) Erdman JW Jr. AHA Science Advisory : Soy Protein and Cardiovascular Disease. Circulation 2000 ; 102 : 2555-2559.
4) 厚生労働省. 健康日本 21. http://www1.mhlw.go.jp/topics/kenko21_11/pdf/b1.pdf
5) 新しい食生活を考える会. 食品解説つき 新ビジュアル食品成分表. 新訂版. 東京 : 大修館書院 2011 ; 34-39.
6) Yamashita T, Oda E, Giddings JC, Yamamoto J.The effect of dietary Bacillus natto productive protein on in vivo endogenous thrombolysis. Pathophysiol Haemost Thromb. 2003 ; 33 (3) : 138-143.
7) Hayashi W, Nagao K, Tosa S, Yoshioka S. Studies on Natto Science. Natto Kagaku Kaishi. 1977 ; 1 : 83-93.
8) Hanagata Y, Okamoto A, Koizumi Y, Yanagida T. Basic and Clinical Aspects of Japanese Traditional Food Natto. Japan Functional food research 1994 ; 1 : 89-99.
9) Maruyama M, Sumi H. Effect of Natto Diet on Blood Pressure. JTTAS 1995.
10) Tamakoshi A, Yoshimura T, Inaba Y, et al. ; JACC Study Group. Profile of the JACC study. J Epidemiol. 2005 ; 15 Suppl 1 : S4-S8.
11) Potter SM. Soy protein and serum lipids, Curr Opin Lipidol. 1996 ; 7 (4) : 260-264
12) Summary of the second report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. JAMA. 1993 ; 269 : 3015-3023.
13) West of Scotland Coronary Prevention Study : identification of high-risk groups and comparison with other cardiovascular intervention trials. Lancet. 1996 ; 348 : 1339-1342.
14) Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels : results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998 ; 279 : 1615-1622.
15) Carroll KK. Review of clinical studies on cholesterol-lowering response to soy protein. J Am Diet Assoc. 1991 ; 91 : 820-827.
16) Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995 ; 333 : 276-282.
17) Katan MB, Grundy SM, Jones P, Law M, Miettinen T, Paoletti R. Efficacy and safety of plant stanols and sterols in the management of blood cholesterol levels. Mayo Clin Proc. 2003 ; 78 : 965-978.
18) Weggemans RM, Trautwein EA. Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans : a meta-analysis. Eur J Clin Nutr. 2003 ; 57 : 940-946.
19) Clarlson TB, Anthony MS. Phytoestrogens and coronary heart disease. Baillieres Clin Endocrinol Metab. 1998 ; 12 : 589-604.
20) Zhuo XG, Melby MK, Watanabe S. Soy Isoflavone intake lowers serum LDL cholesterol : Meta-analysis of 8 randomized controlled trials in humans. J Nutr. 2004 ; 134 : 2395-2400
21) Vasdev S, Stuckless J. Antihypertensive effects of dietary protein and its mechanism. Int J Angiol. 2010 ; 19 (1) : e7-e20.
22) Nagata C, Takatsuka N, Shimizu H. Soy and fish oil intake and mortality in a Japanese community. Am J Epidemiol. 2002 ; 156 : 824-831.
23) Taku K, Umegaki K, Ishimi Y, Watanabe S. Effects of extracted soy isoflavone alone on blood total and LDL cholesterol : Meta-analysis of randomized controlled trials. Ther Clin Risk Manag. 2008 ; 4 : 1097-1103.
24) Kokubo Y, Iso H, Ishihara J, et al. ; JPHC Study Group. Association of dietary intake of soy, beans,and isoflavones with risk of cerebral and myocardial infarctions in Japanese populations : the Japan Public Health Center-based (JPHC) study cohort I. Circulation. 2007 ; 116 : 2553-2562.
P.49 掲載の参考文献
1) Osteoporosis preventon, Diagnosis, and Therapy. NIH Consensus Statement 2000 ; 17 : 1-45.
2) 骨粗鬆症の予防と治療ガイドライン作成委員会編. 骨粗鬆症の予防と治療ガイドライン 2011年版. ライフサイエンス出版 2011.
3) Ho SC, Chan SG, Yi Q, Wong E, Leung PC. Soy intake and the maintenance of peak bone mass in Hong Kong Chinese women. J Bone Miner Res. 2001 ; 16 : 1363-1369.
4) Zhang X, Shu X-O, Li H, Yang G, Gao Y-T, Zheng W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med. 2005 ; 165 : 1890-1895.
5) Reinwald S, Weaver CM. Soy components vs. whole soy : are we betting our bones on a long shot? J Nutr. 2010 ; 140 : 2312S-2317S.
6) Ikeda Y, Iki M, Morita A, et al. Intake of fermented soybeans, natto, is associated with reduced bone loss in postmenopausal women : Japanese Population-Based Osteoporosis (JPOS) Study.J Nutr 2006 ; 136 : 1323-1328.
7) Song Y, Paik HY, Joung H. Soybean and soy isoflavone intake indicate a positive change in bone mineral density for 2 years in young Korean women. Nutr Res. 2008 ; 28 : 25-30.
8) Koh WP, Wu AH, Ang LW, Heng D, Yuan JM, Yu MC. Gender-specific associations between soy and risk of hip fracture in the Singapore Chinese Health Study. Am J Epidemiol. 2009 ; 170 : 901-909.
9) Uehara M. Isoflavone metabolism and bone-sparing effects of daidzein-metabolites. J Clin Biochem Nutr. 2013 ; 52 : 193-201.
10) Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J. Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms : a randomized, double-blind trial. Arch Intern Med. 2011 ; 171 : 1363-1369.
11) Wu J, Oka J, Tabata I, et al. Effects of isoflavone and exercise on BMD and fat mass in postmenopausal Japanese women : a 1-year randomized placebo-controlled trial. J Bone Miner Res. 2006 ; 21 : 780-789.
12) 日本食品標準成分表 2010. 文部科学省 科学技術・学術審議会 資源調査分科会報告, 2010.
13) 日本人の食事摂取基準 (2015年版). 厚生労働省, 2014.
14) Kaneki M, Hodges SJ, Hosoi T, et al. Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2 : possible implications for hip-fracture risk. Nutrition. 2001 ; 17 : 315-321.
15) Saito M. Nutrition and bone health. Roles of vitamin C and vitamin B as regulators of bone mass and quality. Clin Calcium. 2009 ; 19 : 1192-1199.
16) Wei P, Liu M, Chen Y, Chen DC. Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med. 2012 ; 5 : 243-248.
17) Ma DF, Katoh R. Soy isoflavone intake inhibits bone resorption and stimulates bone formation in menopausal women : meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2008 ; 62 : 155-161.
18) Taku K, Melby MK, Takebayashi J, et al. Effect of soy isoflavone extract supplements on bone mineral density in menopausal women : meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr. 2010 ; 19 : 33-42.
19) Lampe JW. Emerging research on equol and cancer. J Nutr. 2010 ; 140 : 1369S-1372S
20) Wu J, Oka J, Ezaki J, et al. Possible role of equol status in the effects of isoflavone on bone and fat mass in postmenopausal Japanese women : a double-blind, randomized control trial. Menopause. 2007 ; 14 : 866-874.
21) Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi Y. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women : a pilot randomized, placebo-controlled trial. Menopause. 2011 ; 18 : 563-574.
22) Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E. Retinol intake and bone mineral density in the elderly : the Rancho Bernardo Study. J Bone Miner Res. 2002 ; 17 : 1349-1358.
P.62 掲載の参考文献
1) Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995 ; 333 : 276-282.
2) Federal Drug Administration. Food labeling : Health Claims ; Soya Protein and Coronary Heart Disease ; Final Rule. Federal Register : (Volume 64, Number 206), 1999 : 57699-57733.
3) Taku K, Umegaki K, Watanabe S, et al. Soy isoflavones lower serum total and LDL cholesterol in humans : a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007 ; 85 : 1148-1156.
4) Jenkins DJ, Kendall CW, Mehling CC, et al. Combined effect of vegetable protein (soy) and soluble fiber added to a standard cholesterol-lowering diet. Metabolism. 1999 ; 48 (6) : 809-816.
5) Nanri A, Mizoue T, Takahashi Y, et al. Soy product and isoflavone intakes are associated with a lower risk of type 2 diabetes in overweight Japanese women. J Nutr. 2010 ; 140 : 580-586.
6) Morimoto A, Ohno Y, Tatsumi Y, et al. Effects of healthy dietary pattern and other lifestyle factors on incidence of diabetes in a rural Japanese population. Asia Pac J Clin Nutr. 2012 ; 21 : 601-608.
7) Lagiou P, Sandin S, Lof M, Trichopoulos D, Adami HO, Weiderpass E. Low carbohydrate-high protein diet and incidence of cardiovascular diseases in Swedish women : prospective cohort study. BMJ. 2012 ; 344 : e4026
8) Fung TT, van Dam RM, Hankinson SE, Stampfer M, Willett WC, Hu FB. Low-carbohydrate diets and all-cause and cause-specific mortality : two cohort studies. Ann Intern Med. 2010 ; 153 (5) : 289-298.
9) Floegel A, Pischon T. Low carbohydrate-high protein diets. BMJ. 2012 ; 344 : e3801.
10) 山田悟, 糖質制限食をめぐる議論の沸騰 <1> 低糖質・高タンパク質摂取で心血管イベントが上昇!? MT Pro. Medical Tribune. mtpro-mail@medical-tribune.co.jp
11) The ADVANCE Collaborative Group ; Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008 ; 358 (24) : 2560-2572.
12) Iris Shai RD, Dan Schwarzfuchs MD, Yaakov Henkin MD, et al. Weight Loss with a Low-Carbohydrate, Mediterranean, or Low-Fat Diet. N Engl J Med. 2008 ; 359 : 229-241.
13) 渡邊昌, テーラーメイド・ヌトリション「まごたち食の栄養評価」, 医と食 2010 ; 2 (3) : 162-167.
14) Ebbeling CB, Swain JF, Feldman HA, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012 ; 307 : 2627-2634.
15) Brown AF, Mangione CM, Saliba D, Sarkisian CA ; California Healthcare Foundation/American Geriatrics Society Panel on Improving Care for Elders with Diabetes. Guidelines for improving the care of the older person with diabetes mellitus. J Am Geriatr Soc. 2003 ; 51 (5 Suppl Guidelines) : S265-S280.
16) Brown AF, Mangione CM, Saiba D, Sarkisian CA. Guidelines for improving the care of the older person with diabetes mellitus. California Helthcare Foundation/American Geriatrics Society Panel on Improving Care for Elders with Diabetes. J Am Geriatr Soc. 2003 ; 51 (5 Suppl guidelines) : S265-S280.
17) Yau CK, Eng C, Cenzer IS, Boscardin WJ, Rice-Trumble K, Lee SJ. Glycosylated hemoglobin and functional decline community-dwelling nursing home-eligible elderly adults with diabetes mellitus. J Am Geriatr Soc. 2012 ; 60 : 1215-1221.
18) Terry T, Raravikar K, Chokrungvaranon N, Reaven PD. Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? Insights from ACCORD, ADVANCE, and VADT. Curr Cardiol Rep. 2012 ; 14 (1) : 79-88.
19) Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008 ; 359 (15) : 1577-1589.
20) 渡邊昌, 低タンパク食の効果を探る, 医と食 2009 ; 1 (5) : 247-255.
21) Watanabe S, Noboru M, Yasunari M, Ideura T. A cross-sectional study on the effects of long term very low protein diets in patients with chronic kidney disease : serum and urine DEXA and amino acid profile. Anti-aging Medicine. 2010 ; 7 (2) : 7-13.
22) Azadbakht L, Atabak S, Esmaillzadeh A. Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy : a longitudinal randomized clinical trial. Diabetes Care. 2008 ; 31 (4) : 648-654.
23) Sandberg AS. Bioavailability of minerals in legumes. Br J Nutr. 2002 ; 88 Suppl 3 : S281-S285.

第2部 大豆食品の健康的側面

P.77 掲載の参考文献
1) フーズパイオニア編. 納豆沿革史. 東京 : 全国納豆協同組合連合会 1975.
2) 木内幹, 永井利郎, 木村啓太郎編著. 納豆の科学-最新情報による総合的考察-. 東京 : 建帛社 2008.
3) Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto ; a typical and popular soybean in food of the Japanese diet. Experientia. 1987 ; 43 : 1110-1111.
4) Sumi H, Hamada H, Nakanishi H, Hiratani H. Enhancement of fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 1990 ; 84 : 139-143.
5) 天然物・生理機能素材研究委員会編. 納豆の機能成分, 及び治療, 予防に関する研究 (I). 東京 : 日本工業技術振興協会 1994.
6) 天然物・生理機能素材研究委員会編. 納豆の機能成分, 及び治療, 予防に関する研究 (II). 東京 : 日本工業技術振興協会 1998.
7) Sumi H, Taya N, Nakajima N, Hiratani H. Structure fibrinolytic properties of nattokiase. Fibrinolysis. 1992 ; 6 : 86.
8) 須見洋行. 納豆の機能性. 日本醸造協会誌 1990 ; 85 : 518-524.
9) Sumi H, Yatagai C. Fermented soybean components and disease prevention. In : Sugano M. Ed. Soy in Health and Disease Prevention. New York : Taylor & Francis 2005 : 251-278.
10) 須見洋行. ナットウキナーゼの合成アミドに対する基質特異性, 並びにキニン産生能 (血圧降下, 循環改善). 和光純薬時報 2010 ; 78 (4) : 8-10.
11) Sumi H, Naito S, Yatagai C, et al. Nattokinase derived from Bacillus subtilis natto promoted t-PA release from human cells. XIIIth International Workshop on Molecular & Cellular Biology of Plasminogen Activation. Cambridge, England, 2011.
12) 須見洋行, 内藤佐和, 矢田貝智恵子他. 納豆酵素の強力な血栓溶解能 : ナットウキナーゼが有する基質特異性について. New Food Industry. 2011 ; 53 (1) : 33-38.
13) Maruyama M, Sumi H. Effect of diet on blood pressure. Basic and Clinical Aspects of Japanese Traditional Food Natto. 1994 ; 2 : 1-3.
14) Sumi H, Naito S, Saito J, Maruyama M. Elastase activity and elastatinal inhibition of nattokinase. XXIII Congress of ISTH, P-TU-269, Kyoto, 2011.
15) Yanagisawa Y, Chatake T, Naito S, et al. X-ray structure determination and deuteration of Nattokinase. J Synchrotron Rad. 2013 ; 20 : 875-879.
16) Yatagai C, Maruyama M, Kawahara T, Sumi H. Nattokinase-promoted tissue plasminogen activator release from human cells. Pathophysiol Haemost Thromb. 2009 ; 36 : 227-232.
17) 須見洋行, 内藤佐和, 矢田貝智恵子他. 納豆が有するt-PA産生能-心筋梗塞, 脳血栓の治療薬および中枢神経系における可能性-. New Food Industry. 2013 ; 55 (8) : 11-15.
18) 須見洋行. 病原性大腸菌 (O-157) に対する納豆の抗菌作用. 食生活研究 1997 ; 17 (6) : 42-46.
19) 有働繁三. 納豆の成分について. 納豆中のジピコリン酸の存在とその影響. 日本農芸化学会誌 1936 ; 12 : 386-394.
20) Ohsugi T, Ikeda S, Sumi H. Anti-platelet aggrega tion and anti-blood coagulation activities of dipico linic acid, a sporal component of Bacillus subtilis natto. Food Sci Tech Res. 2005 ; 11 : 308-310.
21) 須見洋行, 矢田貝智恵子. 納豆中の溶菌酵素リゾチームの研究. 納豆連会報 (平成12年度全国納豆協同組合連合会委託研究報告書) 2001.
22) 折茂肇. 骨粗鬆症についての最近の知見. 日本医事新報 1996 ; No.3767 : 1-11.
23) Sumi H. Accumulation of vitamin K (menaquinone-7) in plasma after ingestion of natto and natto bacilli (B. subtilis natto). Food Sci Technol Res. 1999 ; 5 : 48-50.
24) 須見洋行. 納豆菌発酵, および納豆摂取時の被験者血液中のビタミンK (メナキノン-7) 濃度. 日本家政誌 1999 ; 50 : 309-312.
25) 須見洋行, 浅野倫和, 矢田貝智恵子. 無蒸煮麦類の納豆菌処理による栄養価及び生理活性の付加. 日本醸造協会誌 2005 ; 100 : 449-453.
26) 須見洋行, 池田志織, 今井雅敏, 矢田貝智恵子. 酒粕類, 特に焼酎蒸留粕を原料としたナットウキナーゼ及びビタミンK2 (メナキノン-7) の発酵生産, 日本醸造協会誌 2004 ; 99 : 867-872.
27) 魚谷和道. ポリグルタミン酸と唾液分泌促進作用, Food Style 21. 2005 ; 9 : 47-49.
28) 須見洋行, 瀬良田充, 矢田貝智恵子, 内藤佐和, 今井雅敏, 丸山眞杉. 真の納豆 (納豆菌) は抗老化物質ポリアミン含量が高い, New Food Industry. 2012 ; 54 : 35-39.
29) Terada A, Yamamoto M, Yoshimura E. Effect of the fermented soybean product "Natto" on the composition and metabolic activity of the human fecal flora. Jpn J Food Microbiol. 1999 ; 16 : 221-230.
30) 赤田圭司. 納豆の機能性-納豆と皮膚の関係. 日本醸造協会誌 2006 ; 101 : 749-754.
31) 須見洋行. "納豆" の国際化に向けて. 日本醸造協会誌 2011 ; 106 : 793.
P.88 掲載の参考文献
1) Hirayama T. A large scale short study on cancer risks by diet with special reference to the risk reducing effects of green yellow vegetable consumption. In : Hayashi Y, Ed. Diet Nutrition and Cancer, Tokyo : Japan Scientific Societies Press 1986 ; 41-53.
2) Hirota A, Taki S, Kawaii S, Yano M, Abe N. 1,1-Diphenyl-2-picrylhydrazyl Radicalscavenging Compounds from Soybean Miso and Antiproliferative Activity of Isoflavones from Soybean Miso toward the Cancer Cell Lines, Biosci Biotechnol Biochem. 2000 ; 64 : 1038-1040.
3) Ito A, Watanabe H, Basaran N. Effects of soy products in reducing risk of spontaneous and neutron-induce liver tumors in mice. Int J Oncol. 1993 ; 2 : 773-776.
4) Nagahara A, Benjyamin H, Storkson J, et al. Inhibition of benzo[a]pyrene-induced mouse forestomach neoplasia by a principal flavor component of Japanese-style fermented soy sauce. Cancer Res. 1992 ; 52 : 1754-1756.
5) 吉城由美子, 大久保一良. 新規微弱発酵系によるみそ等の活性酵素ラジカル消去能. 日本醸造協会誌 1998 ; 93 : 702-708.
6) 加藤博通. みその成分が細胞の老化を予防する. みそサイエンス最前線 1999 ; No.6 : 30-38.
7) Santiago LA, Hiramatsu M, Mori A. Japanese soybean paste miso scavenges free radicals and inhibis lipid peroxidation. J Nutr Sci Vitaminol. 1992 ; 38 : 297-304.
8) 堀井正治, 井手隆, 川島賢二, 山本忠志. 高コレステロール胆汁酸ラットにおける脱塩みその血清コレステロール低下作用. 日本食品工業学会誌 1990 ; 37 : 148-153.
9) 井出隆, 家納定雄, 森内祐士. 脱塩みそ摂食ラット肝臓コレステロール合成系と分解系の鍵酵素の活性. 日本食品工業学会誌 1991 ; 38 : 435-440.
10) 山口直彦. 味噌の抗酸化機能について. 日本醸造協会誌 1992 ; 87 : 721-725.
11) 松尾眞砂子, 人見英理. 味噌の種類・調理法および添加香辛料による抗酸化力の変化. 食科工誌 2007 ; 54 : 503-508.
12) 松田茂樹. 醤油粕に含まれる抗酸化性物質について. 日本醸造協会誌 1998 ; 93 : 263-269.
13) 山口直彦, 横尾良夫, 藤巻正生. 味そ及びしょう油のリノール酸に対する抗酸化力. 日本食品工業学会誌 1979 ; 26 : 71-75.
14) 江崎秀男, 川岸舜朗. 大豆発酵食品におけるO-ジヒドロキシイソフラボンの形成とその抗酸化的役割-豆みそを中心として-. 日本醸造協会誌 2002 ; 97 : 39-45.
15) Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem. 1997 ; 61 : 1582-1584.
16) 須見洋行, 瀬良田充, 矢田貝智恵子, 内藤佐和, 今井雅敏, 丸山眞杉. 真の納豆 (納豆菌) は抗老化物質ポリアミン含量が高い. New Food Industry. 2012 ; 54 : 1-5.
17) 八丁みそエキスを共同開発 バルク供給開始へ. 健康産業速報 2008 ; No.1285 : 4.
18) Kiyosawa I, Miura W, Sato T, Yonenaga M, Ebine H. Suppressive effects of the methanol extract from Miso on SOS response of Salmonella typhimurium induced by mutagens and their isoflavone contents. Food Sci Technol Int. 1996 ; 2 (4) ; 181-183.
19) 岩下敦子, 高橋裕司, 河村幸雄. 味噌の機能性. 日本醸造協会誌 1994 ; 89 : 869-872.
20) 岩下敦子, 岡野智子, 高浜昭博, 高橋裕司, 中塚正博, 河村幸雄. みそ熱水抽出物の経口投与によるSHRの血圧上昇抑制効果. 1993年度日本農芸化学会大会講演要旨集 1993 ; 67 : 84.
21) 梶本義衛. 醤油の血圧下降. 食品衛生誌 1963 ; 4 : 123-129.
22) 木下恵美子, 山越純, 菊地 譲. 醤油中の血圧降下物質について. 日本醸造協会誌 1994 ; 89 : 126-130.
23) Nakamura M, Aoki N, Yamada T, Kubo N. Feasibility and effect on blood pressure of 6-week trial of low sodium soy sauce and miso (fermented soybean paste). Circ J. 2003 ; 67 : 530-534.
24) 小島猛男. 醤油の胃液分泌に及ぼす影響について (第1報). 臨床消化病 1954 ; 2 : 728-732.
25) Tsuchiya H, Sato M, Watanabe I. Antiplatelet activity of soy sauce as functional seasoning. J Agric Food Chem. 1999 ; 47 : 4167-4174.
26) 秋月辰一郎. 体質と食物 健康への道. クリエー出版 2010.
27) 伊藤明弘. 放射性物質を除去するみその効用. みそサイエンス最前線 1993 ; No.1 ; 1-6.
28) 渡辺敦光, 高橋忠照. マウスのX線照射による小腸障害に対する味噌の効果. 味噌の科学と技術 1991 ; 39 : 29-32.
29) 佐藤幸男. 放射線誘発胎児死亡および奇形発生抑制を指標としての醤油の生物学的効果の側面. 広島文化女子短期大学紀要 1997 ; 30 : 31-38.
30) 有賀敏明. 味噌・醤油・メイラード反応生成物. 於 : 高宮和彦編. 色から見た食品のサイエンス. 東京 : サイエンスフォーラム 2004 ; 298-300.
31) 酒向史行, 勝田啓子. 練り味噌調製による褐変化と抗酸化活性. 日本調理科学会誌 2001 ; 34 : 73-79.
32) 村田容常. 醤油の低分子黄色色素2,4-ジヒドロキシ-2,5-ジメチル-3 (2H) -チオフェノンについて. 日本醸造協会誌 2012 ; 107 : 733-739.
33) 秋葉朝一郎, 氏家冬深, 横山繁. 醤油及びソースの腸管病原菌に対する殺菌効果について. 調味科学 1957 ; 4 (4) : 1-9.
34) Masuda S, Hara-Kudo Y, Kumagai S. Reduction of Escherichia coli O157 : H7 populations in soy sauce, a fermented seasoning. J Food Prot. 1989 ; 61 : 657-661.
35) Kobayashi M, Matsushita H, Tsukiyama R, Saito M, Sugita T. Shoyu polysaccharides from soy sauce improve quality of life for patients with seasonal allergic rhinitis : a double-blind placebo-controlled clinical study. Int J Mol Med. 2005 ; 15 : 463-467.
36) Matsushita H, Kobayashi M, Tsukiyama R, Yamamoto K. In vitro and in vivo immunomodulating activities of Shoyu polysaccharides from soy sauce. Int J Mol Med. 2006 ; 17 : 905-909.
P.100 掲載の参考文献
1) FAOSTAT. http://faostat3.fao.org/home/index.html
2) Wilkens WF, Mattick LR, Hand DB. Effect of processing method on oxidative off-flavors of soybean milk. Food Technol. 1967 ; 21 : 1630-1633.
3) 大久保一良. 大豆の健康宣言. 東京 : 日本食品出版 2000 ; 198.
4) Huang AHC. Oilbodies and oleosins in seeds. Annu Rev Plant Physiol Plant Mol Biol. 1992 ; 43 : 177-200.
5) Ono T, Choi MR, Ikeda A, Odagiri S. Changes in the composition and size distribution of soymilk protein particles by heating. Agric Biol Chem. 1991 ; 55 : 2291-2297.
6) Ren C, Tang L, Zhang M, Guo S. Structural characterization of heat-induced protein particles in soy milk. J Agric Food Chem. 2009 ; 57 : 1921-1926.
7) Joint FAO/WHO/UNU Expert consultation. WHO Technical Report 2007 ; 935.
8) 河南省文物研究所編. 密県打虎亭漢墓. 北京 : 文物出版社 1993.
9) 小野伴忠. 牛乳と豆乳におけるタンパク質会合体. New Food Industry. 1999 ; 41 : 65-78.
10) 小野伴忠. 大豆から豆乳・豆腐が生成する機構とそれに影響を与える諸因子. 食科工 2008 ; 55 : 39-48.
P.116 掲載の参考文献
1) FAO/WHO. Protein Quality Evaluation : Report of Joint FAO/WHO Expert Consultation 1989.
2) Hamilton RH, Carroll KK. Plasma cholesterol levels in rabbits fed low fat, low cholesterol diets ; effects of dietary proteins, carbohydrates and fiber from different sources. Atheroscrelosis. 1976 ; 24 (1-2) : 47-62.
3) Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995 ; 333 : 276-282.
4) Kohno M, Hirotsuka M, Kito M, Matsuzawa Y. Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean β-conglycinin. J Atheroscler Thromb. 2006 ; 13 : 247-255.
5) Fukui K, Kojima M, Tachibana N, et al. Effects of soybean β-conglycinin on hepatic lipid metabolism and fecal lipid excretion in normal adult ats. Biosci Biotechnol Biochem. 2004 ; 68 : 1153-1155.
6) 福井健介, 小松良哉, 岡島哲彦他. メタボリックシンドローム患者へのβ-コングリシニン長期摂取による効果. 日本農芸化学会大会 2005 ; 講演 No 29E115α.
7) Maebuchi M, Samoto M, Khono M, et. al. Improvement in the intestinal absorption of soy protein by enzymatic digestion to oligopeptide in healthy adult men. Food Sci Technol Res. 2007 ; 13 : 45-53.

第3部 大豆の成分と健康機能

P.131 掲載の参考文献
1) 後藤寛治. 栽培の起源と分化. 農業技術大系作物編 第6巻. 東京 : 農文協 1976 ; 17-18.
2) 御子柴公人. ダイズの日本史. 農業技術大系作物編 第6巻. 東京 : 農文協 1976 ; 3-8.
3) Liu K. Chemistry and Nutritional Value of Soybean Components. In : Soybeans : Chemistry, Technology, and Utilization. New York : Chapman and Hall 1997 ; 4-5.
4) Ma F, Cholewa E, Mohamed T, Peterson CA, Gijzen M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Annals of Botany. 2004 ; 94 : 213-228.
5) 斎尾恭子. 加工特性と加工用途. 食品加工総覧 第9巻. 東京 : 農文協 1999 ; 487-497.
6) Yaklich RW, Vigil EL, Wergin WP. Pore development and seed coat permeability in soybean. Crop Science. 1986 ; 26 : 616-624.
7) Chachalis D, Smith ML. Seed coat regulation of water uptake during imbibition in soybeans (Glycine max (L.) Merr.). Seed Sci Technol. 2001 ; 29 : 401-412.
8) Wolf WJ, Baker FL, Bernard RL. Soybean seed-coat structural features : pits, deposits and cracks. Scanning Electron Microscopy. 1981 (III), 1981 ; 531-544.
9) Gijzen M, Miller SS, Kuflu K, Buzzell RI, Miki LA. Hydrophobic protein synthesized in the pod endocarp adheres to the seed surface. Plant Physiology. 1999 ; 120 : 951-959.
10) Gijzen M, Weng C, Kuflu K, Woodrow L, Yu K, Poysa V. Soybean seed luster phenotype and surface protein cosegregate and map to linkage group E. Genome, 2003 ; 46 : 659-664.
11) Shao S, Meyer CJ, Ma F, Peterson CA, Bernards MA. The outermost cuticle of soybean seeds : chemical composition and function during imbibition. Exp Bot. 2007 ; 58 : 1071-1082.
12) Lindstrom JT, Vodkin LO. A soybean cell wall protein is affected by seed color genotype. The Plant Cell. 1991 ; 3 : 561-571.
13) 杉田律子, 笹川薫, 鈴木真一. 走査型電子顕微鏡を用いたマメ類種皮の断面形態. 法科学技術 2005 ; 10 : 77-82.
14) Pereira LAG, Andrews CH. Comparison of non-wrinkled and wrinkled soybean seed coats by scanning electron microscopy. Seed Sci Technol. 1985 ; 13 : 853-860.
15) Meyer CJ, Steudle E, Peterson CA. Patterns and kinetics of water uptake by soybean seeds. J. Exp Bot. 2007 ; 58 : 717-732.
16) McDonald Jr. MB, Vertucci CW, Roos EE. Seed coat regulation of soybean seed imbibition. Crop Sci. 1988 ; 28 : 987-992.
17) 松井美預子, 上中登紀子, 豊沢功, 福田満. 大豆種子の吸水時におけるアリューロン層の特徴的役割. Nippon Nogeikagaku Kaishi 1996 ; 70 : 663-669.
18) Miller SS, Bowman LA, Gijzen M, Miki BLA. Early development of the seed coat of soybean (Glycine max). Annals of Botany 1999 ; 84 : 297-304.
19) Hyde EOC. The function of the hilum in some papilionaceae in relation to the ripening of the seed and the permeability of the testa. Annals of Botany 1954 ; 18 : 241-256.
20) Lersten RN. Tracheid bar and vestured pits in legume seeds (Leguminosae : Papilinoideae). Am J of Bot. 1982 ; 69 : 98-107.
21) 星川清親. 大豆. 新編食用作物. 東京 : 養賢堂 1980 ; 416-459.
22) Kulik MM, Yaklich RW. Soybean seed coat structures : Relationship to weathering resistance and infection by the fungus Phomopsis phaseoli. Crop Sci. 1991 ; 31 : 108-113.
23) Kudou S, Fleury Y, Welti D, et al. isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric Biol Chem. 1991 ; 55 : 2227-2233.
24) 谷山登志男, 吉川雅之, 北川勲. サポニン及びサポゲノール (第44報). 各種大豆におけるサポニン組成とサポニンの存在部位, 大豆胚軸から得られたSoyasaponin Vの化学構造. 薬学雑誌 1998 ; 108 : 562-571.
25) Sugimoto T, Momma M, Hashizume K, Saio K. Components of storage protein in hypocotyl-radicle axis of soybean (Glycine max. cv. Enrei) seeds. Agric Biol Chem. 1987 ; 51 : 1231-1238.
26) Yoshikawa T, Ozawa S, Sentoku N, Itoh J, Nagato Y, Yokoi S. Change of shoot architecture during juvenile-to-adult phase transition in soybean. Planta. 2013 ; 238 (1) : 229-237.
27) Peters J. Classification and Structure. The Tetrazolium Subcommittee of the Association of Official Seed Analysts. Tetrazolium Testing Handbook. USA : Association of Official Seed Analysts 2002 ; 3-4.
28) Zabala G, Vodkin LO. A rearrangement resulting in small tandem repeats in the F3'5'H gene of white flower genotypes is associated with the soybean W1 locus. Crop Sci. 2007 ; 47 (S2) : S113-S124.
29) Bewlwy JD, Black M. Seed Structure. In : Seeds : Physiology of Development and Germination. New York and London : Plenum Press 1994 ; 5-10.
30) 文部科学省. 科学技術・学術審議会・資源調査分科会報告書. 五訂増補日本食品標準成分表 2005.
31) Lichtner FT, Spanswick RM. Sucrose uptake by developing soybean cotyledons. Plant Physiol. 1981 ; 68 : 693-698.
32) 佐藤庚, 池田武, 皆川知. 登熟から発芽までの大豆子葉の内部構造の変化. 日作紀 1983 ; 52 : 65-72.
33) Kuensting H, Ogawa Y, Sugiyama J. Structural details in soybeans : A new threedimensional visualization method. J Food Sci. 2002 ; 67 : 721-724.
P.145 掲載の参考文献
1) Sacks FM, Lichtenstein A, Van Horn L, Harris W, Kris-Etherton P, Winston M. American Heart Association Nutrition Committee. Soy protein, isoflavones, and cardiovascular health : an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation. 2006 ; 113 : 1034-1044.
2) Carrol KK, Hamilton RMG. Effects of dietary protein and carbohydrate on plasma cholesterol levels in relation to atheroscrerosis. J Food Sci. 1975 ; 40 : 18-23.
3) Sugano M, Yamada Y, Yoshida K, Hashimoto Y, Matsuo T, Kimoto M. The hypocholesterolemic action of the undigested fraction of soybean protein in rats. Atheroscler. 1988 ; 72 : 115-122. Erratum in Atherosclerosis. 1988 ; 74 : 187.
4) Potter SM. Overview of proposed mechanisms for the hypocholesterolemic effect of soy. J Nutr. 1995 ; 125 : 606S-611S.
5) Ikeda I, Kudo M, Hamada T, et al. Dietary soy protein isolate and its undigested high molecular fraction upregulate hepatic ATP-binding cassette transporter G5 and ATP-binding cassette transporter G8 mRNA and increase biliary secretion of cholesterol in rats. J Nutr Sci Vitaminol. 2009 ; 55 : 252-256.
6) Iwami K, Sakakibara K, Ibuki F. Involvement of post-digestion 'hydrophobic' peptides in cholesterol-lowering effect of plant proteins. Agric Biol Chem. 1986 ; 50 : 1217-1222.
7) Minami K, Moriyama R, Kitagawa Y, Makino S. Identification of soybean protein components that modulate the action of insulin in vitro. Agric Biol Chem. 1990 ; 54 : 511-517.
8) Aoyama T, Kohno M, Saito T, et al. Reduction by phytate-reduced soybean beta-conglycinin of plasma triglyceride level of young and adult rats. Biosci Biotechnol Biochem. 2001 ; 65 : 1071-1075.
9) Ferreira Ede S, Silva MA, Demonte A, Neves VA. Soy β-conglycinin (7S globulin) reduces plasma and liver cholesterol in rats fed hypercholesterolemic diet. J Med Food. 2011 ; 14 : 94-100.
10) Duranti M, Lovati MR, Dani V, et al. The α' subunit from soybean 7S globulin lowers plasma lipids and upregulates liver β-VLDL receptors in rats fed a hypercholesterolemic diet. J Nutr. 2004 ; 134 : 1334-1339.
11) Adams MR, Golden DL, Franke AA, Potter SM, Smith HS, Anthony MS. Dietary soy β-conglycinin (7S globulin) inhibits atherosclerosis in mice. J Nutr. 2004 ; 134 : 511-516.
12) 金本龍平, 木村真也, 岡村岳. 大豆極性脂質結合たん白質のコレステロール低下作用. 大豆たん白質研究 2007 ; 10 : 83-87.
13) Samoto M, Maebuchi M, Miyazaki C, et al. Abundant proteins associated with lecithin in soy protein isolate. Food Chem. 2007 ; 192 : 317-322.
14) O'mullane JE, Hawthorne JN. A comparison of the effects of feeding linoleic acid-rich lecithin or corn oil on cholesterol absorption and metabolism in the rat. Atherosclerosis. 1982 ; 45 : 81-90.
15) Sirtori C R, Zucchi-Dentone C, Sirtori M, et al. Cholesterol-lowering and HDL-raising properties of lecithinated soy proteins in type II hyperlipidemic patients. Ann Nutr Metab. 1985 ; 29 : 348-357.
16) 小田裕昭. アミノ酸によるコレステロール代謝の制御. 化学と生物 2007 ; 45 : 347-354.
17) Huang YS, Cunnane SC, Horrobin DF. Effect of different dietary proteins on plasma and liver fatty acid compositions in growing rats. Proc Soc Exp Biol Med. 1986 ; 181 : 399-403.
18) 木場一哲, 菅野道廣. ラットにおける脂質代謝に及ぼす食餌タンパク質とコレステロールの相互作用. 必須アミノ酸研究 2002 ; 164 : 52-55.
19) Aoyama T, Fukui K, Takamatsu K, Hashimoto Y, Yamamoto T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition. 2000 ; 16 : 349-354.
20) Iritani N, Sugimoto T, Fukuda H, Tomoe K. Changes in UCP family expressions in rat tissues due to diet and aging. J Nutr Sci Vitaminol. 2002 ; 48 : 410-416.
21) Ishihara K, Oyaizu S, Fukuchi Y, Mizunoya W, Segawa K, Takahashi M. A soybean peptide isolate diet promotes postprandial carbohydrate oxidation and energy expenditure in type II diabetic mice. J Nutr. 2003 ; 133 : 752-757.
22) Matsuzawa Y. Adiponectin : Identification, physiology and clinical relevance in metabolic and vascular disease. Atheroscler Suppl. 2005 ; 6 : 7-14.
23) Nagasawa A, Fukui K, Funahashi T, et al. Effects of soy protein diet on the expression of adipose genes and plasma adiponectin. Horm Metab Res. 2002 ; 34 : 635-639.
24) Nagasawa A, Fukui K, Kojima M, et al. Divergent effects of soy protein diet on the expression of adipocytokines. Biochem Biophys Res Commun. 2003 ; 311 : 909-914.
25) Moriyama T, Kishimoto K, Nagai K, et al. Soybean β-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of β-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci Biotechnol Biochem. 2004 ; 68 : 352-359.
26) Tachibana N, Iwaoka Y, Hirotsuka M, Horio F, Kohno M. β-conglycinin lowers very-low-density lipoprotein-triglyceride levels by increasing adiponectin and insulin sensitivity in rats. Biosci Biotechnol Biochem. 2010 ; 74 : 1250-1255.
27) Yamazaki T, Kishimoto K, Miura S, Ezaki O. Dietary β-conglycinin prevents fatty liver induced by a high-fat diet by a decrease in peroxisome proliferator-activated receptor γ2 protein. J Nutr Biochem. 2012 ; 23 : 123-132.
28) Kohno M, Hirotsuka M, Kito M, Matsuzawa Y. Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean β-conglycinin. J Atheroscler Thromb. 2006 ; 13 : 247-255.
29) Kennedy AR, Billings PC, Wan XS, Newberne PM. Effects of Bowman-Birk inhibitor on rat colon carcinogenesis. Nutr Cancer. 2002 ; 43 : 174-186.
30) Sakurai N, Suzuki K, Nagaoka T, et al. Connexin 43-dependent tumor-suppressing effect of the Bowman-Birk protease inhibitor on M5076 ovarian sarcoma-bearing mice. Mol Med Rep. 2008 ; 1 : 689-693.
31) Kobayashi H, Suzuki M, Kanayama N, Terao T. A soybean Kunitz trypsin inhibitor suppresses ovarian cancer cell invasion by blocking urokinase upregulation. Clin Exp Metastasis. 2004 ; 21 : 159-166.
32) Ganguly C, Das S. Plant lectins as inhibitors of tumour growth and modulators of host immune response. Chemotherapy. 1994 ; 40 : 272-278.
33) Galvez AF, de Lumen BO. A soybean cDNA encoding a chromatin-binding peptide inhibits mitosis of mammalian cells. Nat Biotechnol. 1999 ; 17 : 495-500.
34) Jeong HJ, Park JH, Lam Y, de Lumen BO. Characterization of lunasin isolated from soybean. J Agric Food Chem. 2003 ; 51 (27) : 7901-7906.
35) Galvez AF, Chen N, Macasieb J, de Lumen BO. Chemopreventive property of a soybean peptide (lunasin) that binds to deacetylated histones and inhibits acetylation. Cancer Res. 2001 ; 61 : 7473-7478.
36) Jeong HJ, Lam Y, de Lumen BO. Barley lunasin suppresses ras-induced colony formation and inhibits core histone acetylation in mammalian cells. J Agric Food Chem. 2002 ; 50 : 5903-5908.
37) de Lumen BO. Lunasin : a cancer-preventive soy peptide. Nutr Rev. 2005 ; 63 : 16-21.
38) Hernandez-Ledesma B, Hsieh CC, de Lumen BO. Chemopreventive properties of Peptide Lunasin : a review. Protein Pept Lett. 2013 ; 20 ; 424-432.
39) de Mejia EG, Wang W, Dia VP. Lunasin, with an arginine-glycine-aspartic acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. Mol Nutr Food Res. 2010 ; 54 : 406-414.
40) Hernandez-Ledesma B, Hsieh CC, de Lumen BO. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem Biophys Res Commun. 2009 ; 390 : 803-808.
41) de Mejia EG, Dia VP. Lunasin and lunasin-like peptides inhibit inflammation through suppression of NF-kappaB pathway in the macrophage. Peptides. 2009 ; 30 : 2388-2398.
42) Jeong JB, De Lumen BO, Jeong HJ. Lunasin peptide purified from Solanum nigrum L. protects DNA from oxidative damage by suppressing the generation of hydroxyl radical via blocking fenton reaction. Cancer Lett. 2010 ; 293 : 58-64.
43) Kanamoto R, Azuma N, Miyamoto T, Saeki T, Tsuchihashi Y, Iwami K. Soybean resistant proteins interrupt an enterohepatic circulation of bile acids and suppress liver tumorigenesis induced by azoxymethane and dietary deoxycholate in rats. Biosci Biotechnol Biochem. 2001 ; 65 : 999-1002.
44) 小川正. 日本人と食品アレルギー-大豆アレルギーの低減化. 於 : 上野川修一, 吉川正明編. 食と健康のための免疫学入門. 東京 : 建帛社 2012 ; 95-120.
45) Choi SK, Adachi M, Utsumi S. Identification of the bile acid-binding region in the soy glycinin A1aB1b subunit. Biosci Biotechnol Biochem. 2002 ; 66 : 2395-2401.
46) Nagaoka S, Nakamura A, Shibata H, Kanamaru Y. Soystatin (VAWWMY), a novel bile acid-binding peptide, decreased micellar solubility and inhibited cholesterol absorption in rats. Biosci Biotechnol Biochem. 2010 ; 74 : 1738-1741.
47) 吉川正明, 山本大地, 竹中康之. 血中コレステロール低下作用を持つ大豆たん白質由来低分子ペプチドに関する研究. 大豆たん白質研究 1999 ; 20 : 125-128.
48) 竹中康之, 中村太志, 吉川正明. 大豆たん白質から派生する低分子ペプチドによる脂質代謝調節に関する研究. 大豆たん白質研究 2000 ; 21 : 105-109.
49) Momma T, Negoro T, Hirano H, Matsumoto A, Udaka K, Fukazawa C. Glycinin A5A4B3 mRNA : cDNA cloning and nucleotide sequencing of a splitting storage protein subunit of soybean. Eur J Biochem. 1985 ; 149 : 491-496.
50) Nishizawa K, Kita A, Doi C, et al. Accumulation of the bioactive peptides, novokinin, LPYPR and rubiscolin, in seeds of genetically modified soybean. Biosci Biotechnol Biochem. 2008 ; 72 : 3301-3305.
51) Lovati MR, Manzoni C, Gianazza E, et al. Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J Nutr. 2000 ; 130 : 2543-2549.
52) Consonni A, Lovati MR, Manzoni C, Pizzagalli A, Morazzoni P, Duranti M. Cloning, yeast expression, purification and biological activity of a truncated form of the soybean 7S globulin alpha' subunit involved in Hep G2 cell cholesterol homeostasis. J Nutr Biochem. 2010 ; 21 ; 887-891.
53) Cho SJ, Juillerat MA, Lee CH. Cholesterol lowering mechanism of soybean protein hydrolysate. J Agric Food Chem. 2008 ; 56 : 4372-4376
54) Mochizuki Y, Maebuchi M, Kohno M, et al. Changes in lipid metabolism by soy β-conglycinin-derived peptides in HepG2 cells. J Agric Food Chem. 2009 ; 57 : 1473-1480.
55) Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and caco-2 cells. J Nutr. 1999 ; 129 : 1725-1730.
56) Hori G, Wang MF, Chan YC, et al. Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem. 2001 ; 65 : 72-78.
57) 倉山貴行, 窄野昌信, 福田亘博. 水溶性大豆ペプチド画分の肝臓脂肪酸代謝改善作用-肝臓および血清トリグリセリド濃度低下作用-. 大豆たん白質研究 2003 ; 6 : 83-87.
58) Inoue N, Nagao K, Sakata K, et al. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo. Lipids Health Dis. 2011 ; 10 : 85-94
59) Yamada Y, Muraki A, Oie M, et al. Soymorphin-5, a soy-derived μ-opioid peptide, decreases glucose and triglyceride levels through activating adiponectin and PPARα systems in diabetic KKAy mice. Am J Physiol Endocrinol Metab. 2012 ; 302 : E433-E440.
60) Ohinata K, Agui S, Yoshikawa M. Soymorphins, novel mu opioid peptides derived from soy β-conglycinin β-subunit, have anxiolytic activities. Biosci Biotechnol Biochem. 2007 ; 71 : 2616-2621.
61) 畠山英子, 山口政人, 村本光二, 伊藤豪, 本橋豊, 樋口重和. 脳科学を基礎とした大豆たん白質・ペプチドの学習・記憶・情緒への寄与に関する研究. 大豆たん白質研究 2003 ; 6 : 147-152.
62) 大日向耕作, 岩崎将志, 金子賢太朗, 金川典正, 吉川正明. 生活習慣病予防作用を有する大豆たん白質由来の新規ペプチドの探索. 大豆たん白質研究 2008 ; 11 : 132-135.
63) Nishi T, Hara H, Tomita F. Soybean β-conglycinin peptone suppresses food intake and gastric emptying by increasing plasma cholecystokinin levels in rats. J Nutr. 2003 ; 133 : 352-357.
64) Nakajima S, Hira T, Eto Y, Asano K, Hara H. Soybean β51-63 peptide stimulates cholecystokinin secretion via a calcium-sensing receptor in enteroendocrine STC-1 cells. Regul Pept. 2010 ; 159 : 148-155.
65) Sufian KN, Hira T, Nakamori T, Furuta H, Asano K, Hara H. Soybean β-conglycinin bromelain hydrolysate stimulates cholecystokinin secretion by enteroendocrine STC-1 cells to suppress the appetite of rats under meal-feeding conditions. Biosci Biotechnol Biochem. 2011 ; 75 : 848-853.
66) Hira T, Mori N, Nakamori T, et al. Acute effect of soybean β-conglycinin hydrolysate ingestion on appetite sensations in healthy humans. Appetite. 2011 ; 57 : 765-768.
67) Tsuruki T, Kishi K, Takahashi M, Tanaka M, Matsukawa T, Yoshikawa M. Soymetide, an immunostimulating peptide derived from soybean b-conglycinin, is an fMLP agonist. FEBS Lett. 2003 ; 540 : 206-210.
68) Tsuruki T, Takahata K, Yoshikawa M. A soy-derived immunostimulating peptide inhibits etoposide-induced alopecia in neonatal rats. J Invest Dermatol. 2004 ; 122 : 848-850.
69) Tsuruki T, Takahata K, Yoshikawa M. Anti-alopecia mechanisms of soymetide-4, an immunostimulating peptide derived from soy β-conglycinin. Peptides. 2005 ; 26 : 707-711.
70) Wu J, Ding X. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy protein on spontaneously hypertensive rats. J Agric Food Chem. 2001 ; 49 : 501-506.
71) Martin DS, Williams JL, Breitkopf NP, Eyster KM. Pressor responsiveness to angiotensin in soy-fed spontaneously hypertensive rats. Can J Physiol Pharmacol. 2002 ; 80 : 1180-1186.
72) Fujita H, Yokoyama K, Yoshikawa M. Classification and antihypertensive activity of angiotensin I-converting enzyme inhibitory peptides derived from food proteins. J Food Sci. 2000 ; 65 : 564-569.
73) Shin ZI, Yu R, Park SA, et al. His-His-Leu, an angiotensin I-converting enzyme inhibitory peptide derived from Korean soybean paste, exert antihypertensive activity in vivo. J Agric Food Chem. 2001 ; 49 : 3004-3009.
74) Wu J, Ding X. Characterization of inhibitors and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res Int. 2002 ; 35 : 367-375.
75) Tomatsu M, Shimakage A, Shinbo M, Yamada S, Takahashi S. Novel angiotensin I-converting enzyme inhibitory peptides derived from soya milk. Food Chem. 2013 ; 136 : 612-616.
76) Kinoshita E, Yamakoshi J, Kikuchi M. Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci Biotechnol Biochem. 1993 ; 57 : 1107-1110.
77) Abe T, Kohno S, Yama T, et al. Soy glycinin contains a functional inhibitory sequence against muscle-atrophy-associated ubiquitin ligase Cbl-b. Int J Endocrinol. 2013 ; vol. 2013, Article ID 907565
78) Chen HM, Muramoto K, Yamauchi F. Structural analysis of antioxidative peptides from soybean β-conglycinin. J Agric Biol Chem. 1995 ; 43 : 574-578.
P.157 掲載の参考文献
1) Watanabe S, Kobayashi Y. Exogenous hormones and human cancer. Jpn J Clin Oncol. 1993 ; 23 : 1-13.
2) Adlercreutz H, Markkanen H, Watanabe S. Plasma concentration of phyto-oestrogens in Japanese men. Lancet. 1993 ; 342 (8881) : 1209-1210.
3) 渡邊昌. イソフラボンのがん予防効果. 於 : 家森幸夫, 太田静行, 渡邊昌編, 大豆イソフラボン. 東京 : 幸書房 2001 ; 61-106
4) Ishiwata N, Melby MK, Watanabe S, et al. New equol supplement for relieving menopausal symptoms : randomized, placebo-controlled trial of Japanese women. Menopause. 2009 ; 16 (1) : 141-148.
5) Axelson M, Setchell KD. The excretion of lignans in rats -- evidence for an intestinal bacterial source for this new group of compounds. FEBS Lett. 1981 ; 123 : 337-342.
6) Watanabe S, Uesugi S, Kikuchi Y. Isoflavones for prevention of cancer, cardiovascular diseases, gynecological problems and possible immune potentiation. Biomed Pharmacother. 2002 ; 56 (6) : 302-312.
7) Watanabe S, Yamaguchi M, Sobue T, et al. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60g baked soybean powder (kinako). J Nutr. 1998 ; 128 : 1710-1715.
8) Watanabe S, Noboru M, Yasunari M, et al. A cross-sectional study on the effects of long term very low protein diets in patients with chronic kidney disease : serum and urine DEXA and amino acid profiles. Anti-Aging Med. 2010 ; 7 (2) : 7-13
9) Melby MK, Sievert LL, Anderson D, et al. Overview of methods used in cross-cultural comparisons of menopausal symptoms and their determinants : Guidelines for Strengthning the Reporting of Menopause and Aging (STROMA) Studies. Maturitas. 2011 ; 70 : 99-109.
10) Messina M, Watanabe S, Setchell KD.Report on the 8th International Symposium on the Role of Soy in Health Promotion and Chronic Disease Prevention and Treatment. J Nutr. 2009 ; 139 (4) : 796S-802S.
11) Setchell KD, Borriello SP, Hulme P, et al. Nonsteroidal estrogens of dietary origin : possible roles in hormone- dependent disease. Am J Clin Nutr. 1984 ; 40 : 569-578.
12) Lampe JW, Karr SC, Hutchins AM, et al. Urinar y equol excretion with a soy challenge : influence of habitual diet. Proc Soc Exp Biol Med. 1998 ; 217 : 335-339.
13) Arai Y, Uehara M, Watanabe S, et al. Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol. 2000 ; 10 : 127-135.
14) Setchell KD, Cole SJ. Method of defining equol-producer status and its frequency among vegetarians. J Nutr. 2006 ; 136 : 2188-2193.
15) Setchell KD, Clerici C, Lephart ED, et al. S-equol, a potent ligand for estrogen receptor beta, is the exclusive enantiomeric form of the soy isoflavone metabolite produced by human intestinal bacterial flora. Am J Clin Nutr 2005 ; 81 : 1072-1079.
16) Setchell KDR, Brown NH, Summer S, et al. Dietary Factors influence production of the soy isoflavone metabolite S- (-) equol in healthy adults. J Nutr. 2013 ; 143 : 1950-1958.
17) Setchell KD, Faughnan MS, Avades T, et al. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr. 2003 ; 77 : 411-419.
18) Bennetts HW, Underwood EJ, Shier FL. A specific breeding problem of sheep on subterranean clover pastures in Western Australia. Aust J Agric Res. 1946 ; 22 : 131-138.
19) Constantinou AI, White BE, Tonetti D, et al. The soy isoflavone daidzein improve the capacity of tamoxifen to prevent mammary tumor. Eur J Cancer. 2005 ; 41 : 647-654.
20) Brown NM, Setchell KD. Animal models impacted by phytoestrogens in commercial chow : implications for pathways influenced by hormones. Lab Invest. 2001 ; 81 : 735-747.
21) Hooper L, Kroon PA, Rimm EB, et al. Flavonoids, flavonoid-rich foods, and cardiovascular risk : a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2008 ; 88 : 38-50.
P.168 掲載の参考文献
1) Shiraiwa M, Yamauchi F, Harada K, Okubo K. Inheritance of "Group A saponin" in soybean seed. Agric Biol Chem. 1990 ; 54 : 1347-1352.
2) Aykroyd WR, Doughty J, Walker A. History of Legumes. Legumes in human nutrition. Food and Agriculture Organization (FAO) of the United Nations, Rome.1982 : 3-8.
3) 大豆関連データ集. 農林水産省. http://www.maff.go.jp/j/seisan/ryutu/daizu/d_data/
4) 平成23年国民健康・栄養調査結果の概要. 厚生労働省. http://www.mhlw.go.jp/stf/houdou/2r9852000002q1st.html
5) Shiraiwa S, Kudou S, Shimoyamada M, Harada K, Okubo K. Composition and structure of 'group A saponins' in soybean. Agric Biol Chem. 1991 ; 55 : 315-322.
6) Kudou S, Tonomura M, Tsukamoto C, et al. Isolation and structural elucidation of DDMP-conjugated soyasaponins as genuine saponins from soyabean seeds, Biosci Biotechnol Biochem. 1993 ; 57 : 546-550.
7) Yoshiki Y, Kahara T, Okubo K, Sakabe T. Superoxide- and 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activities of soyasaponin βg related to gallic acid. Biosci Biotechnol Biochem. 2001 ; 65 : 2162-2165.
8) Kerwin SM. Soy saponins and the anticancer effects of soybeans and soy-based foods. Curr Med Chem Anticancer Agents. 2004 ; 4 : 263-272.
9) Kim J. Protective effects of Asian dietary items on cancers-soy and ginseng. Asian Pac J Cancer Prev. 2008 ; 9 : 543-548.
10) Xiao JX, Huang GQ, Zhu CP, Ren DD, Zhang SH. Morphological study on apoptosis Hela cells induced by soyasaponins. Toxicol In Vitro. 2007 ; 21 : 820-826.
11) Xiao JX, Huang GQ, Zhang SH. Soyasaponins inhibit the proliferation of Hela cells by inducing apoptosis. Exp Toxicol Pathol. 2007 ; 59 : 35-42.
12) Yanamondra N, Berthow MA, Konduri S, et al. Triterpenoids from Glycine max decrease invasiveness and induce caspase-mediated cell death in human SNB19 glioma cell. Clin Exp Metastasis. 2003 ; 20 : 375-383.
13) Tsai CY, Chen YH, Chien YW, Huang WH, Lin SH. Effect of soya saponin on the growth of human colon cancer cells. World J Gastroenterol. 2010 ; 16 : 3371-3376.
14) Oh YJ, Sung MK. Soybean saponins inhibit cell proliferation by suppressing PKC activation and induce differentiation of HT-29 human colon adenocarcinoma cells. Nutr Cancer. 2001 ; 39 : 132-138.
15) Takahashi S, Hori K, Shinbo M, Hiwatashi K, Gotoh T, Yamada S. Isolation of human renin inhibitor from soybean : Soyasaponin I is the novel human renin inhibitor in soybean. Biosci Biotechnol Biochem. 2008 ; 72 : 3232-3236.
16) Hiwatashi K, Shirakawa H, Hori K, et al. Reductionn of blood pressure by soybean saponins, renin inhibitors from soybean, in spontaneously hypertensive rats. Biosci Biotechnol Biochem. 2010 ; 74 : 2310-2312.
17) Takahashi S, Hori K, Hokari M, Gotoh T, Sugiyama T. Inhibition of human renin activity by saponins. Biomedic Res. 2010 ; 31 : 155-159.
18) Yang X, Dong C, Ren G. Effect of soyasaponins-rich extract from soybean on acute alcohol-induced hepatotoxicity in mice. J Agric Food Chem. 2011 ; 59 : 1138-1144.
19) Lee SO, Simons AL, Murphy PA, Hendrich S. Soyasaponins lowered plasma cholesterol and increased fecal bile acids in female golden Syrian hamsters. Exp Bio Med. 2005 ; 230 : 472-478.
20) Ishii Y, Tanizawa H. Effects of soyasaponins on lipid peroxidation through the secretion of thyroid hormones. Biol Pharm Bull. 2006 ; 29 (8) : 1759-1763.
21) Manuel TV, Sam JB. Role of dietary soy protein in obesity. Int J Med Sci. 2007 ; 4 : 72-82.
22) Orgaard A, Jensen L. The effects of soy isoflavones on obesity. Exp Biol Med. 2008 ; 233 : 1066-1080.
23) Gu W, Kim KA. Kim DH. Ginsenoside Rh1 ameliorates high fat diet-induced obesity in mice by inhibiting adipocyte differentiation. Biol Pharm Bull. 2013 ; 36 : 102-107.
24) de la Garza AL, Milagro FI, Boque N, Campion J, Martinez JA. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med. 2011 ; 77 : 773-785.
25) Yeo CR, Yang C, Wong TY, Popovich DG. A quantified ginseng (Panax ginseng C. A. Meyer) extract influences lipid acquisition and increases adiponectin expression in 3T3-L1 cells. Molecules. 2011 ; 16 : 477-492.
26) Hwang JT, Lee MS, Kim HJ, et. al. Antiobesity effect of ginsenoside Rg3 involves the AMPK and PPAR-gamma signal pathways. Phytother Res. 2009 ; 23 : 262-266.
P.178 掲載の参考文献
1) 太田静行. レシチン. 油化学 1970 ; 19 : 792-806.
2) 園良治. 大豆レシチンの製造と利用. 油化学 1999 ; 48 : 1161-1168.
3) 園良治. 植物油製造副産物からの複合脂質の製造と利用. オレオサイエンス 2010 ; 10 : 97-101.
4) 菰田衛. レシチン その基礎と応用. 東京 : 幸書房 1991 ; 1-16.
5) 桂木能久, 梅田知重. 公開特許 平8-332050.
6) 酒井正士, 片岡豪人, 工藤聰. ホスファチジルセリンと脳機能. オレオサイエンス 2002 ; 2 : 85-90.
7) 原健次. 生理活性脂質の生化学と応用. 東京 : 幸書房 1993 ; 85-156.
8) ツルーレシチン工業 (株) 研究開発室. 大豆リン脂質 (レシチン) -性状と生理作用-. 1983 ; 1-16.
9) 高行植. 機能性レシチン開発の現状とその利用分野. ジャパンフードサイエンス 1990 ; 29 (1) : 56-59.
10) 高行植. レシチンの生理機能とその利用. 食品と開発 1994 ; 29 (3) : 18-21.
11) 高行植. 高純度レシチンの生理活性と利用. New Food Industry. 1999 ; 41 (7) : 7-14.
12) Nagata T, Yaguchi T, Nishizaki T. DL- and PO-phosphatidylchorines as a promising learning and memory enhancer. Lipids in Health and Disease 2011 ; 10 ; 25 : 1-5.
13) 大豆レシチン食品 品質規格基準. 平成21年3月6日見直し改訂. 財団法人日本健康・栄養食品協会.
14) Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K. Soy Protein Peptic Hydrolysate with Bound Phospholipids Decreases Micellar Solubility and Cholesterol Absorption in Rats and Caco-2 Cells. J Nutr. 1999 ; 129 : 1725-1730.
15) 長岡利. リン脂質結合大豆ペプチドのコレステロール代謝改善機能. 食品と開発 2001 ; 36 (4) : 49-51.
16) Fosshaug LE, Berge RK, Beitnes JO, et al. Krill oil attenuates left ventricular dilatation after myocardial infraction in rats. Lipids in Health and Disease 2011 ; 10 : 245 : 1-9.
17) Grimstad T, Bjorndai B, Cacabelos D, et al. Dietary supplementation of krill oil attenuates inflammation and oxidative stress in experimental ulcerative colitis in rats. Scand J Gastroenterol. 2012 ; 47 (1) : 49-58.
18) 横溝岳彦. 脂質因子による免疫反応の制御. 感染・炎症・免疫 2006 ; 36 (3) : 196-205.
19) 大和田智彦, 岩下真純, 新井洋由, 青木淳賢, 巻出久美子. 特許5140824.
20) 田中直樹. 特集 価格上昇避けられない大豆レシチン. 油脂 2013 ; 66 (7) : 24-27.
21) 宮川早苗. 食品加工のための乳化剤の市場動向. 食品と開発 2012 ; 47 (8) : 25-26.
22) 鴻野健. 別冊フードケミカル 11 乳化剤・増粘安定剤総覧. 東京 : 食品化学新聞社 2013 ; 58-59.
P.186 掲載の参考文献
1) 香川芳子. 新しい「日本食品標準成分表 2010」による食品成分表. 女性栄養大学出版部 2011 ; 222-223.
2) Burr GO, Burr MM. A new deficiency disease produced by the rigid exclusion of fat from the diet. J Biol Chem.1929 ; 82 : 345-367.
3) 菅野道廣. 「あぶら」は訴える 油脂栄養論. 東京 : 講談社 2000 ; 16.
4) 菅野道廣. 「あぶら」は訴える 油脂栄養論. 東京 : 講談社 2000 ; 33.
5) Liu KS. Soy oil modification : products, applications. INFORM. 1999 ; 10 : 868-878.
6) Keys A, Anderson JT, Grande F. Predictions of serum-cholesterol responses in man to changes in fats in the diet. Lancet. 1957 ; 2 : 959-966.
7) Hegsted DM, McGandy RB, Myers ML. Stare FJ. Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr. 1965 ; 17 : 281-295.
8) Brown HB. Food patterns that lower blood lipids in man. J Am Dietet Assoc. 1971 ; 58 : 303-311.
9) Zock PL, Katan MB. Linoleic acid intake and cancer risk : a review and meta-analysis. Am J Clin Nutr. 1998 ; 68 : 142-153.
10) Lewis RA, Austen KF. The biologically active leukotrienes : Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest. 1984 ; 73 : 889-897.
11) DeLany JP, Windhauser MM, Champagne CM, Bray GA. Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr. 2000 ; 72 : 905-911.
12) Djousse L, Hunt SC, Arnett DK, Province MA, Eckfeldt JH, Ellison RC. Dietary linolenic acid is inversely associated with plasma triacylglycerol : the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr. 2003 ; 78 : 1098-1102.
13) Zhao G, Etherton TD, Martin KR, West SG, Gillies PJ, Kris-Etherton PM. Dietary α-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. J Nutr. 2004 ; 134 : 2991-2997.
14) Djousse L, Arnett DK, Carr JJ, et al. Dietary linolenic acid is inversely associated with calcified atherosclerotic plaque in the coronary arteries : the National Heart, Lung, and Blood Institute Family Heart Study. Circulation. 2005 ; 111 : 2921-2926.
15) Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye, J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction-Final Report of the Lyon Diet Heart Study. Circulation. 1999 ; 99 : 779-785.
16) Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor α and interleukin 1β production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr. 1996 ; 63 : 116-122.
17) Rallidis LS, Paschos G, Liakos GK, Velissaridou AH, Anastasiadis G, Zampelas A. Dietary α-linolenic acid decreases C-reactive protein, serum amyloid A and interleukin-6 in dyslipidaemic patients. Atherosclerosis. 2003 ; 167 : 237-242.
18) Maillard V, Bougnoux P, Ferrari P, et al. N-3 and N-6 fatty acids in breast adipose tissue and relative risk of breast cancer in a case-control study in Tours, France. Int J Cancer. 2002 ; 98 : 78-83.
19) Weiss L, Barrett-Connor E, von Muhlen D. Ratio of n-6 to n-3 fatty acids an bone mineral density in older adults : the Rancho Bernardo Study. Am J Clin Nutr. 2005 ; 81 : 934-938.

第4部 日本食を支える大豆の生産と遺伝子資源

P.198 掲載の参考文献
1) 食品成分研究調査会編. 五訂日本食品成分表. 東京 : 医歯薬出版 2001 ; 30-37.
2) FAO (Food and Agriculture Organization). FAOSTAT 2012. http://faostat.fao.org/site/567/default.aspx#ancor
3) 国立天文台編. 理科年表. 東京 : 丸善 2000.
4) 国分牧衛. 世界のダイズ生産技術の現状と展望. 喜多村啓介 他編. 大豆のすべて. 東京 : サイエンスフォーラム 2010 ; 75-92.
5) 農林水産省. 統計情報 2013. http://www.maff.go,jp/j/tokei/
P.210 掲載の参考文献
1) 小島睦男. 1. 育種組織の変遷 (第1編 ダイズの育種, 第1章 歴史と現状). 於 : 小島睦男編. わが国におけるマメ類の育種. 総合農業研究叢書 10号. 農林水産省農業研究センター 1987 ; 1-9.
2) 喜多村啓介. ダイズの成分育種の現状と展望. 於 : 喜多村啓介編. 大豆のすべて. 東京 : サイエンスフォーラム 2010 ; 49-56.
3) 羽鹿牧太. 突然変異育種の成果と展望-豆類における突然変異育種 (6). 農業技術 2000 ; 55 (9) : 424-427.
4) Kumar K, Ablett GR. 北米における大豆育種. 於 : 喜多村啓介編. 大豆のすべて. 東京 : サイエンスフォーラム 2010 ; 23-32.
5) Kuroda Y, Tomooka N, Kaga A, Wanigadeva SMSW, Vaughan DA. Genetic diversity of wild soybean (Glycine soja Sieb. et Zucc.) and Japanese cultivated soybeans [G. max (L.) Merr.] based on microsatellite (SSR) analysis and the selection of a core collection. Gene Resour Crop Evol. 2009 ; 56 (8) : 1045-1055.
6) Kaga A, Shimizu T, Watanabe S, et al. Evaluation of soybean germplasm conserved in NIAS genebank and development of mini core collections. Breeding Science. 2012 ; 61 (5) : 566-592.
7) 田澤暁子, 神野裕信, 佐々木純, 手塚光明. 近年あらたに見出されたダイズわい化病抵抗性遺伝資源. 育種学研究 2002 ; 4 (別2) : 286.
8) Hajika M, Takahashi M, Sakai S, Igita K. A new genotype of 7S globulin (β-conglycinin) detected in wild soybean (Glycine soja Sieb. et Zucc.). Jpn J Breed. 1996 ; 46 (4) : 385-386.
9) Kanamaru K, Li W, Abe J, et al. Simultaneous Accumulation of High Contents of α-Tocopherol and Lutein is Possible in Seeds of Soybean (Glycine max (L.) Merr.). Breeding Science. 2007 ; 57 : 297-304.
10) McCallum CM, Comai L, Greene EA, Henikoff S. Tageted screening for induced mutations. Nature Biotech. 2000 ; 18 : 455-457.
11) McCallum CM, Comai L, Greene EA, Henikoff S. Targeting Induced Local Lesions INGenomes (TILLING) for plant functional genomics. Plant Physiol. 2000 ; 123 (2) : 439-442.
12) Schmutz J, Cannon SB, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010 ; 463 : 178-183.
P.219 掲載の参考文献
1) Clive J. Global Status of Commercialized Biotech/GM Crops : 2012, ISAAA Brief 44. Ithaca : ISAAA 2012.
2) Zambryski P, Joos H, Genetello C, Leemans J, Van Montagu M, Schell J. Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 1983 ; 12 : 2143-2150.
3) McCabe DE, Swain WF, Martinell BJ, Christou P. Stable transformation of soybean (Glycine max) by particle acceleration. Nat Biotechnol. 1988 ; 6 : 923-926.
4) Hinchee MAW, Connor-Ward DV, Newell CA, et al. Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Nat Biotechnol. 1988 ; 6 : 915-922.
5) Yamada T, Takagi K, Ishimoto M. Recent advances in soybean transformation and their application to molecular breeding and genomic analysis. Breed Sci 2012 ; 61 : 480-494.
6) 高木恭子, 山田哲也, 石本政男. ダイズの形質転換プロトコール. 於 : 田部井豊編. 形質転換プロトコール【植物編】. 京都 : 化学同人 2012 ; 40-57.
7) Watanabe S, Harada K, Abe J. Genetic and molecular bases of photoperiod responses of flowering in soybean. Breed Sci. 2012 ; 61 : 531-543.
8) Hartman GL, West ED, Herman TK. Crops that feed the World 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 2011 ; 3 : 5-17.
P.232 掲載の参考文献
1) 萩原浅男, 鴻巣隼雄. 古事記・上代歌謡 (日本古典文学全集 1). 東京 : 小学館 1973 ; 85-86.
2) 喜多村啓介 他編. 大豆のすべて. 東京 : サイエンスフォーラム 2010.
3) USDA. Agricultural Projections to 2023, February 2014.
4) USDA. Oilseeds : World Markets and Trade. June 2014.
5) 農林水産省. 農林水産物輸出入概況 2013年 (平成25年) 確定値. 2014年3月.
6) James C. Global States of Commercialized Biotech/GM Crops : 2013. ISAAA 2014.
7) USDA. Acreage. June 28, 2013.
8) バイテク情報普及会. 日本における承認済み遺伝子組み換え作物 (ダイズ). http://www.cbijapan.com/other/crops_daizu.php (閲覧日 : 2013年7月31日)
9) EuropaBio. Half a century of undue delays in the EU approval of GM products. Brussels : June 3, 2013. http://www.europabio.org/sites/default/files/half_a_century_of_undue_delays_3_june_2013.pdf (閲覧日 : 2013年6月10日)
10) Special Eurobarometer 336. Europeans, Agriculture and the Common Agricultural Policy. March 2010.

最近チェックした商品履歴

Loading...