皮膚科 膠原病 皮疹から全身を診る

出版社: 中山書店
著者:
発行日: 2021-04-10
分野: 臨床医学:内科  >  皮膚科
ISBN: 9784521748627
電子書籍版: 2021-05-10 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

15,400 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

15,400 円(税込)

商品紹介

チーム医療が求められる膠原病診療において,よりよい診療のために皮膚科医として知っておきたい知識を網羅した書.特異的な皮疹が学べる臨床写真を多く盛り込んでアトラス的な要素を充実させるとともに,近年臨床的意義が高まっている自己抗体を大きく取り上げた.
他科における診療のポイント,病態解明研究の最新情報についても解説しており,膠原病の実態をより深く理解できる.

目次

  • 1章 臨床の総論
      1.膠原病を疑う皮膚症状
      2.膠原病にみられる口腔粘膜病変
      3.抗核抗体の知識
      4.膠原病と間質性肺疾患
      5.関節炎,関節痛のみかた
      6.膠原病と悪性腫瘍
      Column:Paraneoplastic acral vascular syndrome
      7.膠原病治療に用いられる薬剤
      Column:アザチオプリンのNUDT15遺伝子多型の検査
      8.感染症のモニタリング
      9.妊娠時の注意
      10.限局性強皮症や深在性エリテマトーデスに対する形成外科的治療

    2章 エリテマトーデス
     総論
      1.全身性エリテマトーデス (SLE) のアウトライン
      2.エリテマトーデスにおける皮膚エリテマトーデスの位置づけと分類
     皮疹の理解
      3.皮膚エリテマトーデスのアウトライン
      4.急性型皮疹
      Column:?部皮疹とその鑑別
      5.慢性型皮疹と円板状エリテマトーデス
      Column:円板状エリテマトーデスと悪性腫瘍
      Column:線状皮膚エリテマトーデス
      6.深在性エリテマトーデス
      7.肥厚性エリテマトーデス(疣贅状)
      8.凍瘡状エリテマトーデス
      9.亜急性型皮疹
      Column:家族性凍瘡状狼瘡
      Column:亜急性皮膚エリテマトーデスとSjogren症候群の環状紅斑
      10.新生児エリテマトーデス
      11.結節性皮膚ループスムチン沈着症
      12.エリテマトーデスにおける光線過敏症の機序と診断
      13.Lupus erythematosus tumidus
      14.水疱性エリテマトーデス
      15.薬剤誘発性エリテマトーデス
      Column:Lupus erythematosus/Lichen planus overlap syndrome
          (LE/LP overlap syndrome)
      16.エリテマトーデスと脱毛
      17.エリテマトーデスにおける血管炎―蕁麻疹様血管炎も含めて
      18.エリテマトーデスの病理組織学的所見
     自己抗体
      19.抗DNA抗体と抗Sm抗体
      20.抗リボソームP抗体
     治療・リハビリテーション
      21.SLEの全身病変のマネジメント(1)腎臓
      22.SLEの全身病変のマネジメント(2)腎臓以外
      23.皮膚エリテマトーデスの治療

    3章 全身性強皮症
     総論
      1.全身性強皮症のアウトライン
     皮疹の理解
      2.皮膚硬化
      Column:皮膚硬化を呈する鑑別疾患
      3.皮膚硬化以外の皮膚症状
      4.全身性強皮症の病理組織学的所見
     自己抗体
      5.全身性強皮症の自己抗体
      6.抗Topo I抗体(抗トポイソメラーゼ抗体)
      Column:抗セントリオール抗体
      7.抗セントロメア抗体
      8.抗RNAポリメラーゼ抗体
      9.抗核小体抗体
     治療・リハビリテーション
      10.皮膚硬化に対する治療
      11.難治性潰瘍・壊疽とその治療
      Column:下肢壊疽と抗セントロメア抗体
      12.間質性肺疾患の診断と治療
      13.肺高血圧症の診断と治療
      14.腎クリーゼの診断と治療
      15.消化管病変の診断と治療
      Column:B細胞異常とB細胞標的療法
      Column:造血幹細胞移植による強皮症治療
      16.強皮症のリハビリテーション
      Column:全身性強皮症と原発性胆汁性胆管炎の合併
     特殊な全身性強皮症
      17.Generalized morphea-like scleroderma (GM-like SSc)
      Column:全身性強皮症に伴うmorphea様皮疹
      18.Systemic sclerosis sine scleroderma
      19.薬剤性,職業性や環境因子による強皮症

    4章 限局性強皮症
     総論
      1.限局性強皮症の病型分類と臨床症状
      2.限局性強皮症の免疫学的異常
      3.限局性強皮症の病理組織学的所見
      4.限局性強皮症における皮膚症状以外の症状
      5.限局性強皮症に対する治療
      Column:Congenital morphea
     類縁疾患
      6.Atrophoderma of Pasini and Pierini(Pasini-Pierini型進行性特発性皮膚萎縮症)
      7.Linear atrophoderma of Moulin(Moulin型線状皮膚萎縮症)
      8.進行性顔面片側萎縮症
      9.好酸球性筋膜炎
      Column:好酸球性筋膜炎と悪性腫瘍
      10.硬化性苔癬
      Column:硬化性苔癬と悪性腫瘍

    5章 皮膚筋炎
     総論  
      1.筋炎の概念とその分類
      2.皮膚筋炎のアウトライン
      皮疹の理解  
      3.皮膚症状
      Column:ヘリオトロープ疹とその鑑別
      Column:皮膚筋炎に伴う脂肪織炎
      Column:Wong-type dermatomyositis
      4.皮膚筋炎の病理組織学的所見
     筋病変・合併症・特殊型
      5.筋病変の評価
      6.筋炎の筋病理
      7.嚥下障害
      8.悪性腫瘍
      9.間質性肺疾患
      10.若年性皮膚筋炎
      11.薬剤による筋炎
     自己抗体
      12.皮膚筋炎の自己抗体
      13.抗ARS抗体と抗ARS抗体症候群
      14.抗MDA5抗体
      15.抗TIF1抗体
      Column:抗TIF1β抗体
      16.抗Mi-2抗体
      17.抗NXP2抗体
      18.抗SAE抗体
     治療・リハビリテーション
      19.皮膚筋炎の治療:全身のマネジメント
      20.皮膚筋炎の治療:皮膚のマネジメント
      21.筋炎のリハビリテーション

    6章 混合性結合組織病(MCTD)/オーバーラップ症候群
      1.混合性結合組織病/オーバーラップ症候群のアウトライン
      2.抗U1 RNP抗体
      3.混合性結合組織病の治療
      Column:強皮症と筋炎のオーバーラップとその抗体

    7章 Sjogren症候群
      1.Sjogren症候群のアウトライン
      2.皮膚症状
      Column:環状紅斑の鑑別
      3.皮膚以外の症状
      4.抗Ro/SS-A抗体と抗La/SS-B抗体
      5.皮膚病理組織学的所見
      6.Sjogren症候群の治療

    8章 関節リウマチ
      1.関節リウマチに伴う皮膚症状
      2.関節リウマチの皮膚潰瘍

    9章 その他
      1.抗リン脂質抗体症候群(全身)
      2.抗リン脂質抗体症候群の皮膚症状
      3.成人Still病
      4.Behcet病(全身)
      Column:自己免疫疾患とぶどう膜炎
      5.Behcet病,Sweet病,好中球性皮膚症の皮膚症状
      6.再発性多発軟骨炎
      7.サルコイドーシス
      8.IgG4関連疾患(全身)
      9.IgG4関連疾患(皮膚)
      10.菊池病(組織球性壊死性リンパ節炎)
      11.自己炎症性疾患

    10章 病態メカニズムの最前線
      1.HLAと自己免疫疾患
      Column:HLAについて
      2.HLA以外の遺伝因子
      3.樹状細胞とI型インターフェロンの自己免疫疾患における役割
      4.核酸とその受容体を介した自己免疫機序
      5.制御性T細胞と膠原病
      6.B細胞・抗体と膠原病
      7.線維化にかかわるマクロファージと非免疫系のクロストーク
      8.腸内細菌叢

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1章 臨床の総論

P.9 掲載の参考文献
1) Aringer M, Costenbader K, Daikh, D, et al. 2019 EULAR/ACR Classification Criteria for Systemic Lupus Erythematosus. Ann Rheum Dis 2019 ; 78 : 736-45.
2) David F, Lorinda C, Jeff Z, et al. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140) : A retrospective study. J Am Acad Dermatol 2011 ; 65 : 25-34.
P.13 掲載の参考文献
1) Hargraves MM, Richmond H, Morton R. Presentation of two bone marrow elements ; the tart cell and the L.E. cell. Proc Staff Meet Mayo Clin 1948 ; 23 : 25-8.
2) Holman HR, Kunkel HG. Affinity between the lupus erythematosus serum factor and cell nuclei and nucleoprotein. Science 1957 ; 126 : 162-3.
3) Friou GJ. Clinical application of lupus serum-nucreoprotein reaction using fluorescent antibody technique. J Clin Invest 1957 ; 36 : 890-8.
4) Terao C, Ohmura K, Yamada R, et al. Association between antinuclear antibodies and the HLA class II locus and heterogeneous characteristics of staining patterns : the Nagahama study. Arthritis Rheumatol 2014 ; 66 : 3395-403.
5) Aringer M, Costenbader K, David D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol 2019 ; 71 : 1400-12.
6) ICAP. https://www.anapatterns.org
7) ICAP Nomenclature and Classification Trees. https://www.anapatterns.org/trees-full.php
8) Damoiseaux J, Andrade LEC, Carballo OG, et al. Clinical relevance of HEp-2 indirect immunofluorescent patterns : the International Consensus on ANA patterns (ICAP) perspective. Ann Rheum Dis 2019 ; 78 : 879-89.
9) Mariz HA, Sato EI, Barbosa SH, et al. Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthritis Rheum 2011 ; 63 : 191-200.
10) Andrade LEC, Klotz W, Herold M, et al. International consensus on antinuclear antibody patterns : definition of the AC-29 pattern associated with antibodies to DNA topoisomerase I. Clin Chem Lab Med 2018 ; 56 : 1783-8.
P.20 掲載の参考文献
1) Fischer A, du Bois R. Interstitial pneumonia in connective tissue disorders. Lancet 2012 ; 380 : 689-98.
2) 坂東政司. 間質性肺炎と合併症肺癌からメタボリック症候群まで膠原病肺に合併する肺癌. 医学のあゆみ 2009 ; 229 : 584-8.
3) Fischer A, Antoniou KM, Brown KK, et al. An official European Respiratory Society/American Thoracic Society research statement : interstitial pneumonia with autoimmune features. Eur Respir J 2015 ; 46 : 976-87.
4) Shaw M, Collins BF, Ho LA, et al. Rheumatoid arthritis-associated lung disease. Eur Respir Rev 2015 ; 135 : 1-16.
5) Herzog EL, Mathur A, Tager AM, et al. Interstitial lung disease associated with systemic sclerosis and idiopathic pulmonary fibrosis. How similar and distinct? Arthritis & Rheumatology 2014 ; 66 : 1967-78.
6) Gono T, Miyake K, Kawaguchi Y, et al. Hyperferritinaemia and macrophage activation in a patient with interstitial lung disease with clinically amyopathic DM. Rheumatology 2012 ; 51 : 1336-8.
7) 日本呼吸器学会びまん性肺疾患診断・治療ガイドライン作成委員会編. 特発性間質性肺炎診断・治療の手引き, 改訂第3版. 南江堂 ; 2016.
8) 日本呼吸器学会・日本リウマチ学会合同作成委員会. 膠原病に伴う間質性肺疾患診断・治療指針 2020. メディカルレビュー社 ; 2020.
9) Distler O, Highland KB, Gahlemann M, et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 2019 ; 380 : 2518-28.
10) Flaherty KR, Wells AU, Cottin V, et al. Nintedanib in progressive fibrosing interstitial lung diseases. N Engl J Med 2019 ; 381 : 1718-27.
11) Wijsenbeek M, Cottin V. Spectrum of fibrotic lung diseases. N Engl J Med 2020 ; 383 : 958-68.
P.23 掲載の参考文献
1) 日本リウマチ財団教育研修委員会, 日本リウマチ学会生涯教育委員会. リウマチ病学テキスト, 改訂第2版. 診断と治療社 ; 2016.
2) Schett G, Lories RJ, D'Agostino MA, et al. Enthesitis : from pathophysiology to treatment. Nat Rev Rheumatol 2017 ; 13 : 731-41.
P.28 掲載の参考文献
1) Bernatsky S, Ramsey-Goldman R, Labrecque J, et al. Cancer risk in systemic lupus : an updated international multicentre cohort study. Autoimmun 2013 ; 42 : 130-5.
2) Choi MY, Flood K, Bernatsky S, et al. A review on SLE and malignancy. Best Pract Res Clin Rheumatol 2017 ; 31 : 373-96.
3) Song L, Wang Y, Zhang Z, et al. The risks of cancer development in systemic lupus erythematosus (SLE) patients : a systematic review and meta-analysis. Arthritis Res Ther 2018 ; 20 : 270.
4) Dreyer L, Faurschou M, Mogensen M, et al. High incidence of potentially virus-induced malignancies in systemic lupus erythematosus : a long-term followup study in a Danish cohort. Arthritis Rheum 2011 ; 63 : 3032-7.
5) Bernatsky S, Ramsey-Goldman R, Joseph L, et al. Lymphoma risk in systemic lupus : effects of disease activity versus treatment. Ann Rheum Dis 2014 ; 73 : 138-42.
6) Zard E, Arnaud l, Mathian A, et al. Increased risk of high grade cervical squamous intraepithelial lesions in systemic lupus erythematosus : A meta-analysis of the literature. Autoimmun Rev 2014 ; 13 : 730-5.
7) Wadstrom H, ArkemaEV, Sjowall C, et al. Cervical neoplasia in systemic lupus erythematosus : a nationwide study. Rheumatology (Oxford) 2017 ; 56 : 613-9.
8) Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women's health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann Rheum Dis 2017 ; 76 : 476-85.
9) Khosroshahi A, Wallace ZS, Crowe JL, et al. International Consensus Guidance Statement on the Management and Treatment of IgG4-Related Disease. Arthritis Rheumatol 2015 ; 67 : 1688-99.
10) Yamamoto M, Takahashi H, Tabeya T, et al. Risk of malignancies in IgG4-related disease.Mod Rheumatol 2012 ; 22 : 414-8.
11) Asano J, Watanabe T, Oguchi T, et al. Association between immunoglobulin G4-related disease and malignancy within 12 years after diagnosis : An analysis after longterm followup. J Rheumatol 2015 ; 42 : 2135-42.
12) Wallace ZS, Wallace CJ, Lu N, et al. Association of IgG4-related disease with history of malignancy. Arthritis Rheumatol 2016 ; 68 : 2283-9.
13) Shiokawa M, Kodama Y, Yoshimura K, et al. Risk of cancer in patients with autoimmune pancreatitis. Am J Gastroenterol 2013 ; 108 : 610-7.
14) Poo SX, Tham CSW, Smith C, et al. IgG4-related disease in a multi-ethnic community : clinical characteristics and association with malignancy. QJM 2019 ; 112 : 763-9.
15) Simon TA, Thompson A, Gandhi KK, et al. Incidence of malignancy in adult patients with rheumatoid arthritis : a meta-analysis. Arthritis Res Ther 2015 ; 17 : 212.
16) Hashimoto A, Chiba N, Tsuno H, et al. Incidence of malignancy and the risk of lymphoma in Japanese patients with rheumatoid arthritis compared to the general population. J Rheumatol 2015 ; 42 : 564-71.
17) Harigai M, Nanki T, Koike R, et al. Clinical characteristics and risk factors for Pneumocystis jirovecii pneumonia in patients with rheumatoid arthritis receiving adalimumab : a retrospective review and case-control study of 17 patients. Mod Rheumatol 2013 ; 23 : 1085-93.
18) Kameda T, Dobashi H, Miyatake N, et al. Association of higher methotrexate dose with lymphoproliferative disease onset in rheumatoid arthritis patients. Arthritis Care Res (Hoboken) 2014 ; 66 : 1302-9.
19) Inui Y, Matsuoka H, Yakushijin K, et al. Methotrexate-associated lymphoproliferative disorders : management by watchful waiting and observation of early lymphocyte recovery after methotrexate withdrawal. Leuk Lymphoma 2015 ; 56 : 3045-51.
20) Baimpa E, Dahabreh IJ, Voulgarelis M, et al. Hematologic manifestations and predictors of lymphoma development in primary Sjogren syndrome. Medicine (Baltimore) 2009 ; 88 : 284-93.
21) Theander E, Henriksson G, Ljungberg O, et al. Lymphoma and other malignancies in primary Sjogren's syndrome : a cohort study on cancer incidence and lymphoma predictors. Ann Rheum Dis 2006 ; 65 : 796-803.
22) Kang J, Kim H, Kim J, et al. Risk of malignancy in Korean patients with primary Sjogren's syndrome. Int J Rheum Dis 2020 Aug 25. doi : 10.1111/1756-185X.13927.
23) Turesson C, Matteson EL. Malignancy as a comorbidity in rheumatic diseases. Rheumatology (Oxford) 2013 ; 52 : 5-14.
24) Hashimoto A, Arinuma Y, Nagai T, et al. Incidence and the risk factor of malignancy in Japanese patients with systemic sclerosis. Intern Med 2012 ; 51 : 1683-8.
25) Colaci M, Giuggioli D, Sebastiani M, et al. Lung cancer in scleroderma : Results from an Italian rheumatologic center and review of the literature. Autoimmun Rev 2013 ; 12 : 374-9.
26) Bonifazi M, Tramacere I, Pomponio G, et al. Systemic sclerosis (scleroderma) and cancer risk : systematic review and meta-analysis of observational studies. Rheumatology (Oxford) 2013 ; 52 : 143-54.
27) Saigusa R, Asano Y, Nakamura K, et al. Association of anti-RNA polymerase III antibody and malignancy in Japanese patients with systemic sclerosis. J Dermatol 2015 ; 42 : 524-7.
28) Olsen NJ, Wortmann RL. Inflammatory and metabolic disease of muscle. Klippel JH, Weyand CM, Wortmann RL editors. Primer on the Rheumatic Diseases, 11th edition. Arthritis Foundation ; 1997. pp.276-82.
29) Sigurgeirsson B, Lindelof B, Edhag O, et al. Risk of cancer in patients with dermatomyositis or polymyositis. A population-based study. N Engl J Med 1992 ; 326 : 363-7.
30) Stockton D, Doherty VR, Brewster DH. Risk of cancer in patients with dermatomyositis or polymyositis, and followup implications : a Scottish population-based cohort study. Br J Cancer 2001 ; 85 : 41-5.
31) Lu X, Yang H, Shu X, et al. Factors predicting malignancy in patients with polymyositis and dermatomyostis : a systematic review and meta-analysis. PLoS One 2014 ; 9 : e94128.
32) Buchbinder R, Forbes A, Hall S, et al. Incidence of malignant disease in biopsy-proven inflammatory myopathy : a population-based cohort study. Ann Intern Med 2001 ; 134 : 1087-95.
33) Zampieri S, Valente M, Adami N, et al. Polymyositis, dermatomyositis and malignancy : A further intriguing link. Autoimmun Rev 2010 ; 9 : 449-53.
34) 難病情報センター. 皮膚筋炎/多発筋炎. https://www.nanbyou.or.jp/entry/4080
35) Ikeda S, Arita M, Misaki K. Incidence and impact of interstitial lung disease and malignancy in patients with polymyositis, dermatomyositis, and clinically amyopathic dermatomyositis : a retrospective cohort study. Springerplus 2015 ; 4 : 240.
36) Hoesly PM, Sluzevich JC, Jambusaria-Pahlajani A, et al. Association of antinuclear antibody status with clinical features and malignancy risk in adult-onset dermatomyositis. J Am Acad Dermatol 2019 ; 80 : 1364-70.
37) Yang Z, Lin F, Qin B, et al. Polymyositis/dermatomyositis and malignancy risk : A metaanalysis study. J Rheumatol 2015 ; 42 : 282-91.
38) Leatham H, Schadt C, Chisolm S, et al. Evidence supports blind screening for internal malignancy in dermatomyositis Data from 2 large US dermatology cohorts. Medicine (Baltimore) 2018 ; 97 : e9639.
39) Fiorentino DF, Chung LS, Christopher-Stine L, et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum 2013 ; 65 : 2954-62.
P.29 掲載の参考文献
1) Poszepczynska-Guigne E, Viguier M, Chosidow O, et al. Paraneoplastic acral vascular syndrome : Epidemiologic features, clinical manifestations, and disease sequelae. J Am Acad Dermatol 2002 ; 47 : 47-52.
2) Le Besnerais M, Miranda S, Cailleux N, et al. Digital ischemia associated with cancer : Results from a cohort study. Medicine (Baltimore) 2014 ; 93 : e47.
P.37 掲載の参考文献
1) Yang SK, Hong M, Baek J, et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat Genet 2014 ; 46 : 1017-20.
2) Moriyama T, Nishii R, Perez-Andreu V, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet 2016 ; 48 : 367-73.
3) Kakuta Y, Kawai Y, Okamoto D, et al. NUDT15 codon 139 is the best pharmacogenetic marker for predicting thiopurine-induced severe adverse events in Japanese patients with inflammatory bowel disease : a multicenter study. J Gastroenterol 2018 ; 53 : 1065-78.
4) Kakuta Y, Naito T, Onodera M, et al. NUDT15 R139C causes thiopurine-induced early severe hair loss and leukopenia in Japanese patients with IBD. Pharmacogenomics J 2016 ; 16 : 280-5.
P.41 掲載の参考文献
1) 三森明夫. 膠原病診療ノート, 第4版. 日本医事新報社 ; 2019. p.604.
2) 日本リウマチ学会. 関節リウマチ (RA) に対するTNF阻害薬使用の手引き. 2020. https://www.ryumachi-jp.com/publish/guide/guideline_tnf/
3) 日本臨床腫瘍学会編. 発熱性好中球減少症 (FN) の診療ガイドライン, 改訂第2版. 南江堂 ; 2017.
4) Baulier G, Issa N, Gabriel F, et al. Guidelines for prophylaxis of pheumocystis pneumonia cannot rely solely on CD4- cell count in autoimmune and inflammatory disease. Clin Exp Rheumatol 2018 ; 36 : 490-3.
5) Wijetilleka S, Jayne DR, Mukhtyar C, et al. Recommendations for the management of secondary hypogammaglobulinaemia due to B cell targeted therapies in autoimmune rheumatic diseases. Rheumatology 2019 ; 58 : 889-96.
6) 深在性真菌症のガイドライン作成委員会編. 深在性真菌症の診断・治療ガイドライン 2014. 協和企画 ; 2014.
7) 日本造血細胞移植学会. 造血細胞移植ガイドラインウイルス感染症の予防と治療サイトメガロウイルス感染症, 第4版. 日本造血細胞移植学会 ; 2018.
8) 日本造血細胞移植学会. 造血細胞移植ガイドラインウイルス感染症の予防と治療EBウイルス関連リンパ増殖症. 日本造血細胞移植学会 ; 2018.
9) 日本呼吸器学会編. 炎症性疾患に対する生物学的製剤と呼吸器疾患診療の手引き, 第2版. 日本呼吸器学会 ; 2020.
P.46 掲載の参考文献
1) Andreoli L, Bertsias GK, Agmon-Levin N, et al. EULAR recommendations for women's health and the management of family planning, assisted reproduction, pregnancy and menopause in patients with systemic lupus erythematosus and/or antiphospholipid syndrome. Ann Rheum Dis 2017 ; 76 : 476-85.
2) Gotestam Skorpen C, Hoeltzenbein M, Tincani A, et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann Rheum Dis 2016 ; 75 : 795-810.
3) Sammaritano LR, Bermas BL, Chakravarty EE, et al. 2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases. Arthritis Rheumatol 2020 ; 72 : 529-56.
4) 厚生労働科学研究費補助金難治性疾患等政策研究事業 (難治性疾患政策研究事業) 「関節リウマチ (RA) や炎症性腸疾患 (IBD) 罹患女性患者の妊娠, 出産を考えた治療指針の作成」研究班. 全身性エリテマトーデス (SLE), 関節リウマチ (RA), 若年性特発性関節炎 (JIA) や炎症性腸疾患 (IBD), 罹患女性患者の妊娠, 出産を考えた治療指針. 2018. https://ra-ibd-sle-pregnancy.org/data/sisin201803.pdf
5) Ostensen M. Connective tissue diseases : Contraception counseling in SLE-an often forgotten duty? Nat Rev Rheumatol 2011 ; 7 : 315-6.
6) Bharti B, Lee SJ, Lindsay SP, et al. Disease severity and pregnancy outcomes in women with rheumatoid arthritis : Results from the Organization of Teratology Information Specialists Autoimmune Diseases in Pregnancy Project. J Rheumatol 2015 ; 42 : 1376-82.
7) Buyon JP, Kim MY, Guerra MM, et al. Predictors of pregnancy outcomes in patients with lupus : A cohort study. Ann Intern Med 2015 ; 163 : 153-63.
8) 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究 (自己免疫班) 編. 全身性エリテマトーデス診療ガイドライン 2019. 南山堂 ; 2019.
9) Clowse MEB, Scheuerle AE, Chambers C, et al. Pregnancy outcomes after exposure to certolizumab pegol : Updated results from a pharmacovigilance safety database. Arthritis Rheumatol 2018 ; 70 : 1399-407.
10) Murashima A, Watanabe N, Ozawa N, et al. Etanercept during pregnancy and lactation in a patient with rheumatoid arthritis : drug levels in maternal serum, cord blood, breast milk and the infant's serum. Ann Rheum Dis 2009 ; 68 : 1793-4.
11) Banhidy F, Lowry RB, Czeizel AE. Risk and benefit of drug use during pregnancy. Int J Med Sci 2005 ; 2 : 100-6.
12) Cunningham FG, Leveno KJ, Bloom SL, et al. Teratology, drugs, and other medications. Williams Obstetric, 22nd edition, McGraw-Hill ; 2005. pp.341-71.
13) Ostensen M, Forger F. Management of RA medications in pregnant patients. Nat Rev Rheumatol 2009 ; 5 : 382-90.
14) Zemlickis D, Lishner M, Erlich R, et al. Teratogenicity and carcinogenicity in a twin exposed in utero to cyclophosphamide. Teratog Carcinog Mutagen 1993 ; 13 : 139-43.
15) Saito J, Yakuwa N, Kaneko K, et al. Tocilizumab during pregnancy and lactation : drug levels in maternal serum, cord blood, breast milk and infant serum. Rheumatology (Oxford) 2019 ; 58 : 1505-7.
16) Saito J, Yakuwa N, Ishizuka T, et al. Belimumab concentrations in maternal serum and breast milk during breastfeeding and the safety assessment of the infant : A case study. Breastfeed Med 2020 ; 15 : 475-7.
P.51 掲載の参考文献
1) 浅野善英, 藤本学, 石川治, ほか. 日本皮膚科学会ガイドライン限局性強皮症診断基準・重症度分類・診療ガイドライン. 日本皮膚科学会雑誌 2016 ; 126 : 2039-67.
2) 石井徹, 青山久, 佐々田健四郎, ほか. 限局性強皮症 (剣創状強皮症) に対する手術療法. 皮膚科の臨床 1990 ; 32 : 283-5.
3) 池田智行, 小室明人, 北野佑, ほか. 頬部の陥凹病変に対し脂肪移植を行ったループス脂肪織炎の2例. 臨床皮膚科 2020 ; 74 : 119-25.
4) 瀬野久和, 都筑賢一, 坂東行洋, ほか. Tissue expanderを用いて再建した剣傷状鞏皮症の2例. 形成外科 1993 ; 36 : 507-11.
5) Lee JH, Lim SY, Lee JH, et al. Surgical management of localized scleroderma. Arch Craniofac Surg 2017 ; 18 : 166-71.
6) 芳賀貴裕, 高橋隼也, 相場節也, 部分切除およびZ形成術により治療した剣創状強皮症の1例. 皮膚科の臨床 2009 ; 51 : 631-3.
7) 芳賀貴裕, 糸魚川彩, 相場節也. Z形成術とステロイド内服により治療した剣創状強皮症の1例. 臨床皮膚科 2010 ; 64 : 1021-4.
8) 原田正, 吉田正己, 手塚正. 剣創状強皮症の1例. 皮膚 1986 ; 28 : 171-3.
9) 天野正宏, 内沼栄樹, 高山敦子, ほか. 剣創状強皮症の1例. 臨床皮膚科 1997 ; 51 : 821-3.
10) 宮内俊, 小野紗耶香, 松村一. 剣創状強皮症に対し, 真皮脂肪移植を行った1例. 日本形成外科学会会誌 2018 ; 38 : 140-4.
11) Palmero ML, Uziel Y, Laxer RM, et al. En coup de sabre scleroderma and Parry-Romberg syndrome in adolescents : surgical options and patient-related outcomes. J Rheumatol 2010 ; 37 : 2174-9.
12) 桑原大彰, 岩切致, 百束比古, ほか. 深在性エリテマトーデスによる顔面陥凹変形に対し深下腹壁動脈真皮脂肪弁を施行した1症例. 日本マイクロサージャリー学会会誌 2012 ; 25 : 48-52.
13) 貝淵早智子, 佐々木雅英. 剣創状強皮症病巣に牛真皮コラーゲン注入を行った1症例. 皮膚 1990 ; 32 : 515-8.
14) 大森康高, 松尾光馬, 高見洋, ほか. ヒアルロン酸注入により良好な治療効果を得た剣創状強皮症の2例. 臨床皮膚科 2014 ; 68 : 180-4.
15) Robitschek J, Wang D, Hall D. Treatment of linear scleroderma "en coup de sabre" with AlloDerm tissue matrix. Otolaryngol Head Neck Surg 2008 ; 138 : 540-1.
16) 黒川正人, 玉井求宣, 神野千鶴, ほか. 剣創状強皮症に対してリン酸カルシウム骨ペースト (バイオペックス) を注入して治療した1例. Medical Postgraduates 2007 ; 45 : 337-40.
17) 飯田直成, 渡邊理子. リン酸カルシウム骨ペーストを用いた顔面の限局性強皮症の治療経験. 日本頭蓋顎顔面外科学会誌 2012 ; 28 : 134-40.
18) Coleman SR, Katzel EB. Fat grafting for facial filling and regeneration. Clin Plast Surg 2015 ; 42 : 289-300, vii.
19) 吉村浩太郎. 注入剤による治療実践マニュアル-陥凹の治療 : 自己脂肪注入, 幹細胞注入について. Monthly Book Derma 2010 ; 168 : 21-8.
20) 大原国章, 中西浩, 竹原和彦. 剣創状強皮症の瘢痕性脱毛に対する側頭動脈皮弁による植毛例. 皮膚科の臨床 1985 ; 27 : 1173-6.

2章 エリテマトーデス

P.59 掲載の参考文献
1) Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 2020 ; 21 : 605-14.
2) Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016 ; 22 : 146-53.
3) Kono M, Yoshida N, Tsokos GC. Metabolic control of T cells in autoimmunity. Curr Opin Rheumatol 2019 ; 32 : 192-9.
4) Vukelic M, Kono M, Tsokos GC. T cell Metabolism in Lupus. Immunometabolism. 2020 ; 2 : e200009.
5) Kono M, Yoshida N, Maeda K, et al. Transcriptional factor ICER promotes glutaminolysis and the generation of Th17 cells. Proc Natl Acad Sci U S A 2018 ; 115 : 2478-83.
6) Kono M, Yoshida N, Maeda K, et al. Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation. Proc Natl Acad Sci U S A 2018 ; 115 : 9288-93.
7) Kono M, Maeda K, Stocton-Gavanescu I, et al. Pyruvate kinase M2 is requisite for Th1 and Th17 differentiation. JCI Insight 2019 ; 4 : e127395.
8) Kono M, Yoshida N, Maeda K, et al. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus-like disease in MRL/lpr mice and experimental autoimmune encephalomyelitis. Arthritis Rheumatol 2019 ; 71 : 1869-78.
9) Yin Y, Choi SC, Xu Z, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 2015 ; 7 : 274ra18.
10) Choi SC, Titov AA, Abboud G, et al. Inhibition of glucose metabolism selectively targets autoreactive follicular helper T cells. Nat Commun 2018 ; 9 : 4369.
11) Kono M, Yasuda S, Kato M, et al. Long-term outcome in Japanese patients with lupus nephritis. Lupus 2014 ; 23 : 1124-32.
12) Maeda K, Otomo K, Yoshida N, et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J Clin Invest 2018 ; 128 : 3445-59.
13) Aso K, Kono M, Kono M, et al. Low C4 as a risk factor for severe neuropsychiatric flare in patients with systemic lupus erythematosus. Lupus 2020 ; 29 : 1238-47.
14) Nestor J, Arinuma Y, Huerta TS, et al. Lupus antibodies induce behavioral changes mediated by microglia and blocked by ACE inhibitors. J Exp Med 2018 ; 215 : 2554-66.
16) Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol 2002 ; 29 : 288-91.
18) Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol 2019 ; 71 : 1400-12.
P.62 掲載の参考文献
1) Watanabe T, Tsuchida T. Classification of lupus erythematosus based upon cutaneous manifestations. Dermatology 1995 ; 190 : 277-83.
P.67 掲載の参考文献
1) 土田哲也, 盛岡奈緒子, 上田純嗣, ほか. エリテマトーデスの診断名と皮疹名. 皮膚科の臨床 1990 ; 32 : 1139-49.
2) 土田哲也. エリテマトーデスの皮疹と病型の関連性. 古江増隆, 佐藤伸一編. 皮膚科臨床アセット 7, 皮膚科膠原病診療のすべて, 第1版. 中山書店 ; 2011. pp.30-33.
3) 盛岡奈緒子, 土田哲也, 上田純嗣, ほか. 男性全身性エリテマトーデスの臨床像について-当科22例の総括-. 日皮会誌 1990 ; 10 : 761-72.
4) 石黒直子. 日常診療にひそむ小児リウマチ性疾患 I. 臨床症状からの小児リウマチ性疾患の診断へのアプローチ皮膚所見. 小児科診療 2018 ; 81 : 707-12.
6) Sontheimer RD, Provost TT. Lupus erythematosus. Sontheimer RD, Provost TT editors. Cutaneous Manifestations of Rheumatic Diseases, Williams & Wilkins ; 1996. pp.1-71.
7) 衛藤光, 新井春枝, 浅井俊弥, ほか. SLEの症状の統計. 皮膚病診療 1996 ; 18 : 543-7.
8) Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013 ; 65 : 1-11.
P.71 掲載の参考文献
2) Patricio P, Ferreira C, M, Gomes MM, et al. Autoimmune bullous dermatoses : a review. Ann N Y Acad Sci 2009 ; 1173 : 203-10.
3) Alahlafi AM, Wordsworth P, Lakasing L, et al. The basement membrane zone in patients with systemic lupus erythematosus : immunofluorescence studies in the skin, kidney and amniochorion. Lupus 2004 ; 13 : 594-600.
5) Jonsson R, Heyden G, Westberg NG, et al. Oral mucosal lesions in systemic lupus erythematosus-a clinical, histopathological and immunopathological study. J Rheum 1984 ; 11 : 38-42.
P.76 掲載の参考文献
1) Arai S, Katsuoka K. Clinical entity of Lupus erythematosus panniculitis/Lupus erythematosus profundus. Autoimmun Rev 2009 ; 8 : 449-52.
2) Walling HW, Sontheimer RD. Cutaneous lupus erythematosus : Issues in diagnosis and treatment. Am J Clin Dermatol 2009 ; 10 : 365-81.
3) Samotij D, Szczech J, Kushner CJ, et al. Prevalence of pruritus in cutaneous lupus erythematosus : Brief report of a multicenter, multinational cross-sectional study. Biomed Res Int 2018 ; 2018 : 3491798.
4) Chong BF, Song J, Olsen NJ. Determining risk factors for developing systemic lupus erythematosus in patients with DLE. Br J Dermatol 2012 ; 166 : 29-35
5) Vera-Recabarren MA, Garcia-Carrasco M, Ramos-Casals M, et al. Comparative analysis of subacute cutaneous lupus erythematosus and chronic cutaneous lupus erythematosus : clinical and immunological study of 270 patients. Br J Dermatol 2010 ; 162 : 91-101.
6) Filotico R, Mastrandrea R. Cutaneous lupus erythematosus : clinico-pathologic correlation. G Ital Dermatol Venereol 2018 ; 153 : 216-29.
7) Okon LG, Werth VP. Cutaneous lupus erythematosus : Diagnosis and treatment. Best Pract Res Clin Rheumatol 2013 ; 27 : 391-404.
8) 古川福実, 衛藤光, 谷川瑛子, ほか. ヒドロキシクロロキン適正使用の手引き. 日皮会誌 2015 ; 125 : 2049-60.
P.77 掲載の参考文献
1) Karin M, Lawrence T, Innate immunity gone awry : linking microbial infections to chronic inflammation and cancer. Cell 2006 ; 124 : 823-35.
2) Koebel CM, Vermi W, Swann JB, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007 ; 450 : 903-7.
3) Pinkus H. Lichenoid tissue reactions. A speculative review of the clinical spectrum of epidermal basal cell damage with special reference to erythema dyschromicum perstans. Arch Dermatol 1973 ; 107 : 840-6.
P.78 掲載の参考文献
1) Abe M, Ishikawa O, Miyachi Y. Linear cutaneous lupus erythematosus following the lines of Blaschko. Br J Dermatol 1998 ; 139 : 307-10.
2) Jin H, Zhang G, Zhou Y, et al. Old lines tell new tales : Blaschko linear lupus erythematosis. Autoimmun Rev 2016 ; 15 : 291-306.
P.81 掲載の参考文献
2) Khoury T, Arayssi T, Kibbi AG, et al. Extensive fat necrosis with lipomembranous changes and calcification in lupus erythematosus panniculitis is not necessarily associated with systemic lupus erythematosus. Am J Dermatopathol 2010 ; 32 : 742-3.
3) Voizarda B, Lucie Lalondea L, Sanchez LM, et al. Lupus mastitis as a first manifestation of systemic disease : About two cases with a review of the literature. Eur J Radiol 2017 ; 92 : 124-31.
4) Miyashita A, Fukushima S, Ihn H, et al. The proportion of lymphocytic inflammation with CD123-positive cells in lupus erythematous profundus predict a clinical response to treatment. Acta Derm Venereol 2014 ; 94 : 563-7.
5) LeBlanc RE, Tavallaee M, Kim YH, et al. Useful parameters for distinguishing subcutaneous panniculitis-like T-cell lymphoma from lupus erythematosus panniculitis. Am J Surg Pathol 2016 ; 40 : 745-54.
6) Sitthinamsuwan P, Pattanaprichakul P, Treetipsatit J, et al. Subcutaneous panniculitis-Like T-cell lymphoma versus lupus erythematosus panniculitis : Distinction by means of the periadipocytic cell proliferation index. Am J Dermatopathol 2018 ; 40 : 567-74.
7) 古川福実, 衛藤光, 谷川瑛子, ほか. ヒドロキシクロロキン適正使用の手引き. 日皮会誌. 2015 ; 125 : 2049-60.
8) Ohashi T, Matsumura N, Yamamoto T. Successful treatment with dapsone for lupus profundus accompanied by xanthomatous reaction. Clin Exp Dermatol 2019 ; 44 : e3-e4.
P.83 掲載の参考文献
1) Behcet PE. Hypertrophic lupus erythematosus. Arch Derm Syph 1940 ; 42 : 211.
2) Behcet PE. Lupus erythematosus hypertrophicus et profundus. Arch Derm Syph 1942 ; 45 : 33-9.
3) Alps DP, Patel RM. Cutaneous hypertrophic lupus erythematosus : a challenging histopathologic diagnosis in the absence of clinical information. Arch Pathol LabMed 2013 ; 137 : 1205-10.
4) Daldon PEC, de Souza EM, Cintra ML. Hypertrophic lupus erythematosus : a clinicopathological study of 14 cases. J Cutan Pathol. 2003 ; 30 : 443-448.
5) Perniciaro C, Randle HW, Perry HO. Hypertrophic discoid lupus erythematosus resembling squamous cell carcinoma. Dermatol Surg 1995 ; 21 : 255-7.
6) Christine JK, Srivastava B, Braverman I, et al. Hypertrophic lupus erythematosus : the diagnostic utility of CD123 staining. J Cutan Pathol 2011 ; 38 : 889-92.
7) Civatte J. Pseudo-carcinomatous hyperplasia. J Cutan Pathol 1985 ; 12 : 214-23.
8) Yoshimoto N, Shinkuma S, Ujiie H, et al. Hypertrophic lupus erythematosus successfully treated with hydroxychloroquine. J Dermatol 2017 ; 44 : e48-e49.
9) Rubenstein DJ, Huntley AC. Keratotic lupus erythematosus : treatment with isotretinoin. J Am Acad Dermatol 1986 ; 14 : 910-4.
10) Sharma NL, et al. Thalidomide : An experience in therapeutic outcome and adverse reactions. J Dermatol Treat 2007 ; 18 : 335-40.
11) Garza-Mayers AC, McClurkin M, Smith JP. Review of treatment for discoid lupus erythematosus. Dermatol Therapy 2016 ; 29 : 274-83.
P.85 掲載の参考文献
1) Hutchinson J. Harveian Lectures on Lupus. Br Med J 1888 ; 1 : 58-63.
2) Millard LG, Rowell NR. Chilblain lupus erythematosus (Hutchinson). A clinical and laboratory study of 17 patients. Br J Dermatol 1978 ; 98 : 497-506.
3) Boehm I, Bieber T. Chilblain lupus erythematosus Hutchinson : successful treatment with mycophenolate mofetil. Arch Dermatol 2001 ; 137 : 235-6.
4) Lee-Kirsch MA, ChowdhuryD, Harvey S, et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J Mol Med 2007 ; 85 : 531-7.
5) Hedrich CM, Fiebig B, Hauck FH, et al. Chilblain lupus erythematosus-a review of literature. Clin Rheumatol 2008 ; 27 : 949-54.
6) Doutre MS, Beylot C, Beylot J, et al. Chilblain lupus erythematosus : report of 15 cases. Dermatology 1992 ; 184 : 26-8.
7) Su WPD, Perniciaro C, Rogers RS 3rd, et al. Chilblain lupus erythematosus (lupus pernio) : clinical review of the Mayo Clinic experience and proposal of diagnostic criteria. Cutis 1994 ; 54 : 395-9.
8) Franceschini F, Calzavara-Pinton P, Quinzanini M, et al. Chilblain lupus erythematosus is associated with antibodies to SSA/Ro. Lupus 1999 ; 8 : 215-9.
P.88 掲載の参考文献
2) 新井達. エリテマトーデスを診る : 亜急性皮膚エリテマトーデスのみかた. Monthly Book Derma 2015 ; 235 : 21-5.
3) Stavropoulos PG, Goules AV, Avgerinou G, et al. Pathogenesis of subacute cutaneous lupus erythematosus. J Eur Acad Dermatol Venereol 2008 ; 22 : 1281-9.
4) Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019 ; 78 : 736-45.
5) Chasset F, Bouaziz JD, Costedoat-Chalumeau N, et al. Efficacy and comparison of antimalarials in cutaneous lupus erythematosus subtypes : a systematic review and metaanalysis. Br J Dermatol 2017 ; 177 : 188-96.
6) Petersen MP, Moller S, Bygum A, et al. Epidemiology of cutaneous lupus erythematosus and the associated risk of systemic lupus erythematosus : a nationwide cohort study in Denmark. Lupus 2018 ; 27 : 1424-30.
P.89 掲載の参考文献
1) Lee-Kirsch MA, Gong M, Schulz H, et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am J Hum Genet 2006 ; 79 : 731-7.
2) Rice G, Newman WG, Dean J, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am J Hum Genet 2007 ; 80 : 811-5.
3) Sugiura K, Takeichi T, Kono M, et al. Severe chilblain lupus is associated with heterozygous missense mutations of catalytic amino acids or their adjacent mutations in the exonuclease domains of 3'-repair exonuclease 1. J Invest Dermatol 2012 ; 132 : 2855-7.
4) Ravenscroft JC, Suri M, Rice GI, et al. Autosomal dominant inheritance of a heterozygous mutation in SAMHD1 causing familial chilblain lupus. Am J Med Genet A 2011 ; 155a : 235-7.
5) Konig N, Fiehn C, Wolf C, et al. Familial chilblain lupus due to a gain-of-function mutation in STING. Ann Rheum Dis 2017 ; 76 : 468-72.
6) Zimmermann N,Wolf C, Schwenke R, et al. Assessment of clinical response to Janus kinase inhibition in patients with familial chilblain lupus and TREX1 mutation. JAMA Dermatol 2019 ; 155 : 342-6.
P.91 掲載の参考文献
1) 金山拓誉, 清水真樹, 岩井艶子, ほか. 口腔内潰瘍と体重増加不良が初発症状であった抗U1RNP抗体陽性新生児ループスの1女児例. 小児リウマチ 2014 ; 5 : 44-7.
2) 臼田俊和, 長島正実. 先天性完全房室ブロックとSjogren症候群. 皮膚病診療 1993 ; 15 : 69-72.
3) 衛藤光. 新生児エリテマトーデス. 玉置邦彦総編集. 最新皮膚科学大系 9 膠原病非感染性肉芽腫. 中山書店 ; 2002. pp.72-4.
4) 坪井洋人, 住田孝之. 自己免疫検査抗SS-A抗体, 抗SS-B抗体. 内科 2013 ; 111 : 1377-8.
5) 小中理会, 新井達, 衛藤光. 自然消褪する皮膚病臨床例 : 新生児エリテマトーデス. 皮膚病診療 2003 ; 25 : 743-6.
6) 新井達. 知っておくべき・知っておきたい小児の皮膚疾患/症状全身疾患・薬による皮膚疾患/症状 : エリテマトーデス・Sjoegren症候群. 小児科診療 2019 ; 82 : 1563-9.
P.95 掲載の参考文献
2) 長島正治, 古川徹, 小林勝, ほか. 結節性ループスムチン症-結節性ムチン沈着を示した男子SLEの3例. 皮膚科の臨床 1985 ; 27 : 621-7.
3) Rongioletti F, Rebora A. Papular and nodular mucinosis associated with systemic lupus erythematosus. Br J Dermatol 1986 ; 115 : 631-6.
4) Kanda N, Tsuchida T, Tamaki K, et al. Clinical features of systemic lupus erythematosus in men. Characteristics of the cutaneous manifestations. Dermatology 1996 ; 193 : 6-10.
5) 木村恭一, 原郁夫. 結節状ムチン沈着を示したSLE. 皮膚科の臨床 1987 ; 29 : 216-7.
6) 田中千洋, 佐藤伸一, 竹原和彦, ほか. 組織学的にLeukocytoclastic Vasculitisを認めた結節性皮膚ループスムチン症の1例. 皮膚科の臨床 2003 ; 45 : 771-4.
7) Pugashetti R, Rajendran R, Berger T, et al. Dermal mucinosis as a sign of venous insufficiency. J Cutan Pathol 2010 ; 37 : 292-6.
8) 野口知子, 五十嵐稔, 斎藤慎太郎. SLEに合併した結節性粘液水腫の1例. 皮膚科の臨床 1980 ; 22 : 1223-5.
9) 神田奈緒子. 結節性皮膚ループスムチン症とはどのような疾患か. 古江増隆. 皮膚科臨床アセット 7, 皮膚科膠原病診療のすべて, 第1版. 中山書店 ; 2011. pp.89-93.
10) Kanda N, Tsuchida T, Tamaki K, et al. Cutaneous lupus mucinosis : a review of our cases and the possible pathogenesis. J Cutan Pathol 1997 ; 24 : 553-8.
11) Egawa E, Tada J, Arata J, et al. Nodular cutaneous lupus mucinosis associated with atrophie blanche-like lesions in a patient with systemic lupus erythematosus. J Dermatol 1994 ; 21 : 6749.
12) Kobayashi T, Harada T, Nishikawa T, et al. Plaquelike cutaneous lupus mucinosis. Arch Dermatol 1993 ; 129 : 383-4.
13) 薄木晶子, 上田正登, 市橋正光, ほか. 結節性皮膚ループスプチン症の1例, 皮膚科の臨床 2003 ; 45 : 457-60.
14) Wang N, Pei Z, Wang K, et al. A case report of atypical nodular cutaneous lupus mucinosis.Medicine (Baltimore) 2017 ; 96 : e8391.
15) 中山未奈子, 中野敏明, 新井達, ほか. 結節性皮膚ループスムチン症の1例. 臨床皮膚科 2017 ; 71 : 976-80.
P.97 掲載の参考文献
1) Kim A, Chong BF. Photosensitivity in cutaneous lupus erythematosus. Photoderm Photoimmunol Photomed 2013 ; 29 : 4-11.
2) Yoshimatsu T, Nishide T, Seo N, et al. Susceptibility of T cell receptor-α-chain knock-out mice to ultraviolet B light and fluorouracil : a novel model for drug-induced cutaneous lupus erythematosus. Clin Exp Dermatol 2004 ; 136 : 245-54.
3) Furukawa F, Kashiwara-Sawami M, Lyons M, et al. Binding of autoantibodies to the extractable nuclear antigens SSA/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL) : implications for the pathogenesis of photosensitive cutaneous lupus. J Invest Dermatol 1990 ; 94 : 77-85.
4) Furukawa F, Itoh T, Wakita H, et al Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody-mediated cytotoxicity. Clin Exp Dermatol 1999 ; 118 : 164-70.
5) Emmert I, Michelson AM. Mechanism of photosensitivity in systemic lupus erythematosus patients. Proc Natl Acad Sci 1981 ; 17 : 2537-40.
P.99 掲載の参考文献
1) Gougerot H, Burnier R. Lupus erythemateux "tumidus". Bull Soc Fr Dermatol Syph 1930 ; 37 : 1291-2.
2) Kuhn A, Bein D, Bonsmann G. The 100th anniversary of lupus erythematosus tumidus. Autoimmun Rev 2009 ; 8 : 441-8.
3) Rodriguez-Caruncho C, Bielsa I, Fernandez-Figueras MT. Lupus erythematosus tumidus : a clinical and histological study of 25 cases. Lupus 2015 ; 24 : 751-5.
4) Kuhn A, Richter-Hintz D, Oslislo C, et al. Lupus erythematosus tumidus : A neglected subset of cutaneous lupus erythematosus : Report of 40 cases. Arch Dermatol 2000 ; 136 : 1033-41.
5) Kuhn A, Sonntag M, Ruzicka T, et al. Histopathologic findings in lupus erythematosus tumidus : Review of 80 patients. J Am Acad Dermatol 2003 ; 48 : 901-8.
6) Kuhn A, Richter-Hintz D, Oslislo C, et al. Phototesting in lupus erythematosus tumidus-Review of 60 patients. Photochem Photobiol 2001 ; 73 : 532-6.
7) Verma P, Sharma S, Yadav P, et al. Tumid lupus erythematosus : An intriguing dermatopathological connotation treated successfully with topical tacrolimus and hydroxyxhloroquine combination. Indian J Dermatol 2014 ; 59 : 210.
8) Kreuter A, Tigges C, Hunzelmann N, et al. Rituximab in the treatment of recalcitrant generalized lupus erythematosus tumidus. J Ger Soc Dermatology 2017 ; 15 : 729-31.
9) Ismail FF, Sinclair RD, Pinczewski J. Refractory lupus erythematosus tumidus responsive to tildrakizumab. Dermatol Ther 2019 ; 32 : e13070.
10) Cozzani E, Christana K, Rongioletti F, et al. Lupus erythematosus tumidus : Clinical, histopathological and serological aspects and therapy response of 21 patients. Eur J Dermatology 2010 ; 20 : 797-801.
11) Patsinakidis N, Kautz O, Gibbs BF, et al. Lupus erythematosus tumidus : clinical perspectives. Clin Cosmet Investig Dermatol 2019 ; 12 : 707-19.
12) 窪田茶月, 飯島正文. Lupus erythematosus tumidus の1例. 皮膚の科学 2018 ; 17 : 98-104.
13) Nishiyama M, Kanazawa N, Hiroi A, et al. Lupus erythematosus tumidus in Japan : a case report and a review of the literature. Mod Rheumatol 2009 ; 19 : 567-72.
P.101 掲載の参考文献
1) Vassileva S. Bullous systemic lupus erythematosus. Clin Dermatol 2004 ; 22 : 129-38.
3) Bernard P, Vaillant L, Labeille B, et al. Incidence and distribution of subepidermal autoimmune bullous skin diseases in three French regions. Bullous Diseases French Study Group. Arch Dermatol 1995 ; 131 : 48-52.
4) Gammon WR, Briggaman RA. Bullous SLE : a phenotypically distinctive but immunologically heterogeneous bullous disorder. J Invest Dermatol 1993 ; 100 : 28s-34s.
P.105 掲載の参考文献
1) Hoffman BJ. Sensitivity to sulfadiazine resembling acute disseminated lupus erythematosus. Arch Dermatol Syph 1945 ; 51 ; 190-2.
2) He Y, Sawalha AH. Drug-induced lupus erythematosus : an update on drugs and mechanisms. Curr Opin Rheumatol 2018 ; 30 : 490-7.
3) Borchers AT, Keen CL, Gershwin ME. Drug-induced lupus. Ann N Y Acad Sci 2007 ; 1108 : 166-82.
4) Araujo-Fernandez S, Ahijon-Lana M, Isenberg DA. Druginduced lupus : Including anti-tumour necrosis factor and interferon induced. Lupus 2014 ; 23 : 545-53.
5) Arnaud L, Mertz P, Gavand PE, et al. Drug-induced systemic lupus : revisiting the ever-changing spectrum of the disease using the WHO pharmacovigilance database. Ann Rheum Dis 2019 ; 78 : 504-8.
6) Vaglio A, Grayson PC, Fenaroli P, et al. Drug-induced lupus : Traditional and new concepts. Autoimmun Rev 2018 ; 17 : 912-8.
7) Irizarry-Caro JA, Carmona-Rivera C, Schwartz DM, et al. Drugs implicated in systemic autoimmunity modulate neutrophil extracellular trap formation. Arthritis Rheumatol 2018 ; 70 : 468-74.
8) De Bandt M. Lessons for lupus from tumor necrosis factor blockade. Lupus 2006 ; 15 : 762-7.
9) Williams EL, Gadola S, Edwards CJ. Anti-TNF-induced lupus. Rheumatology 2009 ; 48 : 716-20.
10) Ferraccioli G, Mecchia F, Di Poi E, et al. Anticardiolipin antibodies in rheumatoid patients treated with etanercept or conventional combination therapy : direct and indirect evidence for a possible association with infections. Ann Rheum Dis 2002 ; 61 : 358-61.
11) Ramos-Casals M, Brito-Zeron P, Munoz S, et al. Autoimmune diseases induced by TNF-targeted therapies : analysis of 233 cases. Medicine 2007 ; 86 : 242-51.
13) De Bandt M, Sibilia J, Le Loet X, et al. Systemic lupus erythematosus induced by anti-tumour necrosis factor alpha therapy : a French national survey. Arthritis Res Ther 2005 ; 7 : 545-51.
14) Vermeire S, Noman M, Van Assche G, et al. Autoimmunity associated with anti-tumor necrosis factor alpha treatment in Crohn's disease : a prospective cohort study. Gastroenterology 2003 ; 125 : 32-9.
15) Williams VL, Cohen PR. TNF alpha antagonist-induced lupus-like syndrome : report and review of the literature with implications for treatment with alternative TNF alpha antagonists. Int J Dermatol 2011 ; 50 : 619-25.
16) 岡思帆, 松尾佳美, 原田直江, ほか. スルピリドによる薬剤誘発性ループスの1例. J Environ Dermatol Cutan Allergol 2017 ; 11 : 45-9.
P.106 掲載の参考文献
1) Gorouhi F, Davari P, Fazel N. Cutaneous and mucosal lichen planus : a comprehensive review of clinical subtypes, risk factors, diagnosis, and prognosis. Scientific WorldJournal 2014 ; 30 : 742826.
2) Rees F, Doherty M, Grainge M, et al. The incidence and prevalence of systemic lupus erythematosus in the UK, 1999-2012. Rheum Dis 2016 ; 75 : 136-41.
3) Van der Horst JC, PK Cirkel, Nieboer C. Mixed lichen planus-lupus erythematosus disease : a distinct entity? Clinical, histopathological and immunopathological studies in six patients Clin Exp Dermatol 1983 ; 8 : 631-40.
4) Copeman PW, Schroeter AL, Kierland RR. An unusual variant of lupus erythematosus or lichen planus. Br J Dermatol 1970 ; 83 : 269-72.
5) Camisa C, Neff JC, Olsen RG. Use of indirect immunofluorescence in the lupus erythematosus/lichen planus overlap syndrome : an additional diagnostic clue. Am Acad Dermatol 1984 ; 11 : 1050-9.
6) Nagao K, Chen KR. A case of lupus erythematosus/lichen planus overlap syndrome. J Dermatol 2006 ; 33 : 187-90.
7) Piamphongsant T, Sawannapreecha S, Arangson PG, et al. Mixed lichen planus-lupus erythematosus disease. J Cutan Pathol 1978 ; 5 : 209-15.
8) Uitto J, Santa-Cruz DJ, EisenAZ, et al. Verrucous lesion in patients with discoid lupus erythematosus. Clinical, histopathological and immunofluorescence studies. Br J Dermatol 1978 ; 98 : 507-20.
9) Nieboer C. The reliability of immunofluorescence and histopathology in the diagnosis of discoid lupus erythematosus and lichen planus Br J Dermatol 1987 ; 116 : 189-98.
P.112 掲載の参考文献
1) Udompanich S, Chanprapaph K, Suchonwanit P. Hair and scalp changes in cutaneous and systemic lupus erythematosus. Am J Clin Dermatol 2018 ; 19 : 679-94.
2) Dahlstrom O, Sjowall C. The diagnostic accuracies of the 2012 SLICC criteria and the proposed EULAR/ACR criteria for systemic lupus erythematosus classification are comparable. Lupus 2019 ; 28 : 778-82.
3) Gong Y, Ye Y, Zhao Y, et al. Severe diffuse non-scarring hair loss in systemic lupus erythematosus-clinical and histopathological analysis of four cases. J Eur Acad Dermatol Venereol 2013 ; 27 : 651-4.
4) Moghadam-Kia S, Franks AG Jr. Autoimmune disease and hair loss. Dermatol Clin 2013 ; 31 : 75-91.
5) Yun SJ, Lee JW, Yoon HJ, et al. Cross-sectional study of hair loss patterns in 122 Korean systemic lupus erythematosus patients : a frequent finding of non-scarring patch alopecia. J Dermatol 2007 ; 34 : 451-5.
6) Wysenbeek AJ, Leibovici L, Amit M, et al. Alopecia in systemic lupus erythematosus. Relation to disease manifestations. J Rheumatol 1991 ; 18 : 1185-6.
7) Bunagan MJK, Banka N, Shapiro J. Hair loss in lupus erythematosus. Mackay IR, Rose NR, Diamond B, et al, editors. Encyclopedia of Medical Immunology-Autoimmune Diseases, Springer Science ; 2014. pp.455-9.
8) Harries MJ, Meyer KC, Paus R. Hair loss as a result of cutaneous autoimmunity : frontiers in the immunopathogenesis of primary cicatricial alopecia. Autoimmun Rev 2009 ; 8 : 478-83.
9) Garza-Mayers AC, McClurkin M, Smith GP. Review of treatment for discoid lupus erythematosus. Dermatol Ther 2016 ; 29 : 274-83.
10) Piette EW, Foering KP, Chang AY, et al. Impact of smoking in cutaneous lupus erythematosus. Arch Dermatol 2012 ; 148 : 317-22.
12) Grossberg E, Scherschun L, Fivenson DP. Lupus profundus : not a benign disease. Lupus 2001 ; 10 : 514-6.
13) Lueangarun S, Subpayasarn U, Chakavittumrong P, et al. Lupus panniculitis of the scalp presenting with linear alopecia along the lines of Blaschko. Clin Exp Dermatol 2017 ; 42 : 705-7.
14) Marzano AV, Tanzi C, Caputo R, et al. Sclerodermic linear lupus panniculitis : report of two cases. Dermatology 2005 ; 210 : 329-32.
15) Armas-Cruz R, Harnecker J, Ducach G, et al. Clinical diagnosis of systemic lupus erythematosus. Am J Med 1958 ; 25 : 409-419.
16) Kossard S, Lee MS, Wilkinson B. Postmenopausal frontal fibrosing alopecia : a frontal variant of lichen planopilaris. J Am Acad Dermatol 1997 ; 36 : 59-66.
17) Trueb RM, El Shabrawi-Caelen L, Kempf W. Cutaneous lupus erythematosus presenting as frontal fibrosing alopecia : Report of 2 Patients. Skin Appendage Disord 2017 ; 3 : 205-10.
18) Alarcon-Segovia D, Cetina JA. Lupus hair. Am J Med Sci 1974 ; 267 : 241-2.
19) Ye Y, Zhao Y, Gong Y, et al. Non-scarring patchy alopecia in patients with systemic lupus erythematosus differs from that of alopecia areata. Lupus 2013 ; 22 : 1439-45.
20) Trueb RM. Involvement of scalp and nails in lupus erythematosus. Lupus 2010 ; 19 : 1078-86.
21) Litt JZ, Shear N. Litt's Drug Eruptions and Reactions Manual, 22nd ed. CRC Press, Taylor & Francis Group ; 2016.
P.116 掲載の参考文献
1) Ramos-Casals M, Nardi N, Lagrutta M, et al. Vasculitis in systemic lupus erythematosus : prevalence and clinical characteristics in 670 patients. Medicine (Baltimore). 2006 ; 85 : 95-104.
2) Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013 ; 65 : 1-11.
4) Davis MD, Daoud MS, Kirby B, et al. Clinicopathological correlation of hypocomplementemic and normocomplementemic urticarial vasculitis. J Am Acad Dermatol 1998 ; 38 : 899-905.
5) Wisnieski JJ, Jones SM. IgG autoantibody to the collagen-like region of C1q in hypocomplementemic urticarial vasculitis syndrome, systemic lupus erythematosus, and 6 other musculoskeletal or rheumatic diseases. J Rheumatol 1992 ; 19 : 884-8.
6) Mehregan DR, Hall MJ, Gibson LE, et al. Urticarial vasculitis : A histopathological and clinical review of 72 cases. J Am Acad Dermatol 1992 ; 26 : 441-8.
P.120 掲載の参考文献
1) 新井栄一, 土田哲也. コツが学べる実践皮膚病理診断 第7回炎症性疾患シリーズ (7) 結合境界パターン. 皮膚科の臨床 2013 ; 55 : 1309-23.
2) 黒瀬信行. エリテマトーデスの皮膚病理. Monthly Book Derma 1997 ; 5 : 19-25.
3) 橋本健. 皮膚病理のみかた (32) 膠原病 (1) エリテマトーデス. 皮膚の科学 2010 ; 9 : 199-228.
4) 城田祐子, 石井智徳. 皮疹の診断にループスバンドテストは有用か? 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究 (自己免疫班), 日本リウマチ学会編. 全身性エリテマトーデス診療ガイドライン 2019, 第1版. 南山堂 ; 2019. pp.88-9.
P.124 掲載の参考文献
1) Gladman D, Ibanez D, Urowitz MB. Systemic Lupus Erythematosus Disease Activity Index 2000. J Rheumatol 2002 ; 29 : 288.
2) 佐々木毅. 臨床検査値読み方・考え方のポイント免疫学的検査自己免疫関連検査抗DNA抗体. Modern Physician 2004 ; 24 : 902-3.
3) Kavanaugh AF, Solomon DH. Guidelines for immunologic laboratory testing in the rheumatic diseases : anti-DNA antibody tests. American College of Rheumatology Ad Hoc Committee on Immunologic Testing Guidelines. Arthritis Rheum 2002 ; 47 : 546-55.
4) Migliorini P, Baldini C, Rocchi V, et al. Anti-Sm and anti-RNP antibodies. Autoimmunity 2005 ; 38 : 47-54.
5) Aringer M, Costenbader K, Daikh D, et al. 2019 European Leasge Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis 2019 ; 78 : 1151-9.
7) Poole BD, Templeton AK, Guthridge JM, et al. Aberrant Epstein-Barr viral infection in systemic lupus erythematosus. Autoimmun Rev 2009 ; 8 : 337-42.
8) Yadav P, Tran H, Ebegbe R, et al. Antibodies elicited in response to EBNA-1 may cross-react with dsDNA. PLoS One 2011 ; 6 : e14488.
9) Riemekasten G, Marell J, Trebeljahr G, et al. A novel epitope on the C-terminus of SmD1 is recognized by the majority of sera from patients with systemic lupus erythematosus. J Clin Invest 1998 ; 102 : 754-63.
10) Ishii M, Muramoto Y, Kosaka H, et al. A serological switching from anti-dsDNA to anti-Sm antibodies coincided with severe clinical manifestations of systemic lupus erythematosus (hemophagocytosis, profundus and psychosis). Lupus 2007 ; 16 : 67-9.
P.127 掲載の参考文献
1) Koffler D, Faiferman I, Gerber MA. Radioimmunoassay for antibodies to cytoplasmic ribosomes in human serum. Science 1977 ; 198 : 741-3.
2) Elkon KB, Parnassa AP, Foster CL. Lupus autoantibodies target ribosomal P proteins. J Exp Med 1985 ; 162 : 459-71.
3) Francoeur AM, Peebles CL, Heckman KJ, et al. Identification of ribosomal protein autoantigens. J Immunol 1985 ; 135 : 2378-84.
4) Bonfa E, Golombek SJ, Kaufman LD, et al. Association between lupus psychosis and anti-ribosomal P protein antibodies. N Engl J Med 1987 ; 317 : 265-71.
5) Elkon K, Bonfa E, Llovet R, et al. Properties of the ribosomal P2 protein autoantigen are similar to those of foreign protein antigens. Proc Natl Acad Sci U S A 1988 ; 85 : 5186-9.
6) Chindalore V, Neas B, Reichlin M. The association between anti-ribosomal P antibodies and active nephritis in systemic lupus erythematosus. Clin Immunol Immunopathol 1998 ; 87 : 292-6.
7) Nagai T, Arinuma Y, Yanagida T, et al. Anti-ribosomal P protein antibody in human systemic lupus erythematosus up-regulates the expression of proinflammatory cytokines by human peripheral blood monocytes. Arthritis Rheum 2005 ; 52 : 847-55.
8) The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum 1999 ; 42 : 599-608.
9) Massardo L, Bravo-Zehnder M, Calderon J, et al. Anti-N-methyl-D-aspartate receptor and anti-ribosomal-P autoantibodies contribute to cognitive dysfunction in systemic lupus erythematosus. Lupus 2015 ; 24 : 558-68.
10) Hanly JG, Urowitz MB, Su L, et al. Autoantibodies as biomarkers for the prediction of neuropsychiatric events in systemic lupus erythematosus. Ann Rheum Dis 2011 ; 70 : 1726-32.
11) Shi ZR, Cao CX, Tan GZ, et al. The association of serum anti-ribosomal P antibody with clinical and serological disorders in systemic lupus erythematosus : a systematic review and meta-analysis. Lupus 2015 ; 24 : 588-96.
12) Hulsey M, Goldstein R, Scully L, et al. Anti-ribosomal P antibodies in systemic lupus erythematosus : a case-control study correlating hepatic and renal disease. Clin Immunol Immunopathol 1995 ; 74 : 252-6.
13) de Macedo PA, Borba EF, Viana VdosS, et al. Antibodies to ribosomal P proteins in lupus nephritis : a surrogate marker for a better renal survival? Autoimmun Rev 2011 ; 10 : 126-30.
14) Massardo L, Burgos P, Martinez ME, et al. Antiribosomal P protein antibodies in Chilean SLE patients : no association with renal disease. Lupus 2002 ; 11 : 379-83.
15) Koscec M, Koren E, Wolfson-Reichlin M, et al. Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J Immunol 1997 ; 159 : 2033-41.
16) Isshi K, Hirohata S. Differential roles of the anti-ribosomal P antibody and antineuronal antibody in the pathogenesis of central nervous system involvement in systemic lupus erythematosus. Arthritis Rheum 1998 ; 41 : 1819-27.
17) Koren E, Reichlin MW, Koscec M, et al. Autoantibodies to the ribosomal P proteins react with a plasma membrane-related target on human cells. J Clin Invest 1992 ; 89 : 1236-41.
18) Katzav A, Solodeev I, Brodsky O, et al. Induction of autoimmune depression in mice by anti-ribosomal P antibodies via the limbic system. Arthritis Rheum 2007 ; 56 : 938-48.
19) Matus S, Burgos PV, Bravo-Zehnder M, et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J Exp Med 2007 ; 204 : 3221-34.
20) Bravo-Zehnder M, Toledo EM, Segovia-Miranda F, et al. Anti-ribosomal P protein autoantibodies from patients with neuropsychiatric lupus impair memory in mice. Arthritis Rheumatol 2015 ; 67 : 204-14.
21) Lakhan SE, Caro M, Hadzimichalis N. NMDA receptor activity in neuropsychiatric disorders. Front Psychiatry 2013 ; 4 : 52.
22) Segovia-Miranda F, Serrano F, Dyrda A, et al. Pathogenicity of lupus anti-ribosomal P antibodies : role of crossreacting neuronal surface P antigen in glutamatergic transmission and plasticity in a mouse model. Arthritis Rheumatol 2015 ; 67 : 1598-610.
23) Reichlin M, Wolfson-Reichlin M. Evidence for the participation of anti-ribosomal P antibodies in lupus nephritis. Arthritis Rheum 1999 ; 42 : 2728-9.
P.133 掲載の参考文献
1) Jakes RW, Bae SC, Louthrenoo W, et al. Systematic review of the epidemiology of systemic lupus erythematosus in the Asia-Pacific region : prevalence, incidence, clinical features, and mortality. Arthritis Care Res (Hoboken) 2012 ; 64 : 159-68.
2) Kostopoulou M, Adamichou C, Bertsias G. An update on the diagnosis and management of lupus nephritis. Curr Rheumatol Rep 2020 ; 22 : 30.
3) Hiromura K, Ikeuchi H, Kayakabe K, et al. Clinical and histological features of lupus nephritis in Japan : A crosssectional analysis of the Japan Renal Biopsy Registry (J-RBR). Nephrology (Carlton) 2017 ; 22 : 885-91.
4) Weening JJ, D'Agati VD, Schwartz MM, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. Kidney Int 2004 ; 65 : 521-30.
6) Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol 2019 ; 71 : 1400-12.
7) Tsokos GC, Lo MS, Costa Reis P, et al. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol 2016 ; 12 : 716-30.
8) Bertsias GK, TektonidouM, Amoura Z, et al. Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 2012 ; 71 : 1771-82.
9) Bajema IM, Wilhelmus S, Alpers CE, et al. Revision of the International Society of Nephrology/Renal Pathology Society classification for lupus nephritis : clarification of definitions, and modified National Institutes of Health activity and chronicity indices. Kidney Int 2018 ; 93 : 789-96.
10) Hahn BH, McMahon MA, Wilkinson A, et al. American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken) 2012 ; 64 : 797-808.
11) Fanouriakis A, KostopoulouM, Cheema K, et al. 2019 Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis 2020 ; 79 : 713-23.
12) 厚生労働科学研究費補助金難治性疾患など政策研究事業自己免疫疾患に関する調査研究 (自己免疫班), 日本リウマチ学会編. 全身性エリテマトーデス診療ガイドライン 2019. 南山堂 ; 2019.
13) Furie R, Rovin BH, Houssiau F, et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med 2020 ; 383 : 1117-28.
14) Alshaiki F, Obaid E, Almuallim A, et al. Outcomes of rituximab therapy in refractory lupus : A meta-analysis. Eur J Rheumatol 2018 ; 5 : 118-26.
15) Liu Z, Zhang H, Liu Z, et al. Multitarget therapy for induction treatment of lupus nephritis : a randomized trial. Ann Intern Med 2015 ; 162 : 18-26.
16) Hanly JG, O'Keeffe AG, Su L, et al. The frequency and outcome of lupus nephritis : results from an international inception cohort study. Rheumatology (Oxford) 2016 ; 55 : 252-62.
17) Tektonidou MG, Dasgupta A, Ward MM. Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015 : A systematic review and Bayesian meta-analysis. Arthritis Rheumatol 2016 ; 68 : 1432-41.
18) Wang H, Ren YL, Chang J, et al. A systematic review and meta-analysis of prevalence of biopsy-proven lupus nephritis. Arch Rheumatol 2018 ; 33 : 17-25.
19) Yap DY, Tang CS, Ma MK, et al. Survival analysis and causes of mortality in patients with lupus nephritis. Nephrol Dial Transplant 2012 ; 27 : 3248-54.
P.138 掲載の参考文献
1) 厚生労働省科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究 (自己免疫班) 編. 全身性エリテマトーデス診療ガイドライン 2019. 南山堂 ; 2019.
2) 東京女子医科大学病院膠原病リウマチ痛風センター編. 膠原病・リウマチ診療, 第4版. メジカルビュー社 ; 2020.
3) Fanouriakis A, KostopoulouM, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019 ; 78 : 736-45.
4) Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol 2002 ; 29 : 288-91.
5) Franklyn K, Lau CS, Navarra SV, et al ; Asia-Pacific Lupus Collaboration. Definition and initial validation of a Lupus Low Disease Activity State (LLDAS). Ann Rheum Dis 2016 ; 75 : 1615-21.

3章 全身性強皮症

P.148 掲載の参考文献
1) Denton CP, Khanna D. Systemic sclerosis. Lancet 2017 ; 390 : 1685-99.
2) Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis : a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010 ; 69 : 1809-15.
3) Lazzaroni MG, Cavazzana I, Colombo E, et al. Malignancies in patients with anti-RNA polymerase III antibodies and systemic sclerosis : Analysis of the EULAR Scleroderma Trials and Research Cohort and Possible Recommendations for Screening. J Rheumatol 2017 ; 44 : 639-47.
4) Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009 ; 360 : 1989-2003.
5) Arnett FC, Howard RF, Tan F, et al. Increased prevalence of systemic sclerosis in a Native American tribe in Oklahoma. Association with an Amerindian HLA haplotype. Arthritis Rheum 1996 ; 39 : 1362-70.
6) LeRoy EC, Black C, Fleischmajer R, et al. Scleroderma (systemic sclerosis) : classification, subsets and pathogenesis. J Rheumatol 1988 ; 15 : 202-5.
7) Herrick AL. Raynaud's phenomenon. J Scleroderma Relat Dis 2019 ; 42 : 89-101.
8) Meier FM, Frommer KW, Dinser R, et al. Update on the profile of the EUSTAR cohort : an analysis of the EULAR Scleroderma Trials and Research group database. Ann Rheum Dis 2012 ; 71 : 1355-60.
9) Wigley FM, Flavahan NA. Raynaud's Phenomenon. N Engl J Med 2016 ; 375 : 556-65.
10) Medsger TA. Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being. Rheum Dis Clin North Am 2003 ; 29 : 255-73, vi.
11) 桑名正隆. 全身性硬化症 (強皮症) の早期診断と治療. 日内会誌 105 ; 9 ; 1864-9.
12) Salazar GA, Assassi S, Wigley F, et al. Antinuclear antibody-negative systemic sclerosis. Semin Arthritis Rheum 2015 ; 44 : 680-6.
13) Kuwana M. Circulating anti-nuclear antibodies in systemic sclerosis : utility in diagnosis and disease subsetting. J Nippon Med Sch 2017 ; 84 : 56-63.
15) Steele R, Hudson M, Lo E, et al. Clinical decision rule to predict the presence of interstitial lung disease in systemic sclerosis. Arthritis Care Res (Hoboken) 2012 ; 64 : 519-24.
17) Launary D, Remy-Jardin M, Michon-Pasturel U, et al. High resolution computed tomography in fibrosing alveolitis associated with systemic sclerosis. J Rheumatol 2006 ; 33 : 1789-801.
18) Mathai SC, Hummers LK, Champion HC, et al. Survival in pulmonary hypertension associated with the scleroderma spectrum of diseases : impact of interstitial lung disease. Arthritis Rheum 2009 ; 60 : 569-77.
19) Kahan A, Coghlan G, McLaughlin V, Cardiac complications of systemic sclerosis. Rheumatology 2009 ; 48 : iii45-8.
20) Ioannidis JP, Vlachoyiannopoulos PG, Haidich AB, et al. Mortality in systemic sclerosis : an international meta-analysis of individual patient data. Am J Med 2005 ; 118 : 2-10.
21) Bourji KI, Kelemen BW, Mathai SC, et al. Poor survival in patients with scleroderma and pulmonary hypertension due to heart failure with preserved ejection fraction. Pulm Circ 2017 ; 7 : 409-20.
22) Fischer A, Bull TM, Steen VD. Practical approach to screening for scleroderma-associated pulmonary arterial hypertension. Arthritis Care Res (Hoboken) 2012 ; 64 : 303-10.
23) Avouac J, Airo P, Meune C, et al. Prevalence of pulmonary hypertension in systemic sclerosis in European Caucasians and metaanalysis of 5 studies. J Rheumatol 2010 ; 37 : 2290-8.
24) Woodworth TG, Suliman YA, Li W, et al. Scleroderma renal crisis and renal involvement in systemic sclerosis. Nat Rev Nephrol 2016 ; 12 : 678-91.
25) Bunn CC, Denton CP, Shi-Wen X, et al. Anti-RNA polymerases and other autoantibody specificities in systemic sclerosis. Br J Rheumatol 1998 ; 37 : 15-20.
26) Hamaguchi Y, Kodera M, Matsushita T, et al. Clinical and immunologic predictors of scleroderma renal crisis in Japanese systemic sclerosis patients with anti-RNA polymerase III autoantibodies. Arthritis Rheumatol 2015 ; 67 : 1045-52.
27) Turk M, Pope JE. The Frequency of Scleroderma Renal Crisis over Time : A Metaanalysis. J Rheumatol 2016 ; 43 : 1350-5.
28) Nishimagi E, Tochimoto A, Kawaguchi Y, et al. Characteristics of patients with early systemic sclerosis and severe gastrointestinal tract involvement. J Rheumatol 2007 ; 34 : 2050-5.
29) Raja J, Ng CT, Sujau I, et al. High-resolution oesophageal manometry and 24-hour impedance-pH study in systemic sclerosis patients : association with clinical features, symptoms and severity. Clin Exp Rheumatol 2016 ; 34 Suppl 100 : 115-21.
30) Kumar S, Singh J, Rattan S, et al. Review article : pathogenesis and clinical manifestations of gastrointestinal involvement in systemic sclerosis. Aliment Pharmacol Ther 2017 ; 45 : 883-98.
31) Marie I, Ducrotte P, Denis P, et al. Small intestinal bacterial overgrowth in systemic sclerosis. Rheumatology (Oxford) 2009 ; 48 : 1314-9.
32) Valenzuela A, Li S, Becker L, et al. Intestinal pseudo-obstruction in patients with systemic sclerosis : an analysis of the Nationwide Inpatient Sample. Rheumatology (Oxford) 2016 ; 55 : 654-8.
33) Kaneko M, Sasaki S, Teruya S, et al. Pneumatosis cystoides intestinalis in patients with systemic sclerosis : A case report and review of 39 Japanese cases. Case Rep Gastrointest Med 2016 ; 2016 : 2474515.
34) Krause L, Becker MO, Brueckner CS, et al. Nutritional status as marker for disease activity and severity predicting mortality in patients with systemic sclerosis. Ann Rheum Dis 2010 ; 69 : 1951-7.
35) Dore A, Lucas M, Ivanco D, et al. Significance of palpable tendon friction rubs in early diffuse cutaneous systemic sclerosis. Arthritis Care Res 2013 ; 65 : 1385-9.
36) Avouac J, Clements P, Khanna D, et al. Articular involvement in systemic sclerosis. Rheumatology (Oxford) 2012 ; 51 : 1347-56.
37) van den Hoogen F, Khanna D, Fransen J, et al. 2013 Classification criteria for systemic sclerosis : an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013 ; 65 : 2737-47.
P.152 掲載の参考文献
1) van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis : an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013 ; 65 : 2737-47.
2) LeRoy EC, Black C, Fleischmajer R, et al. Scleroderma (systemic sclerosis) : classification, subsets and pathogenesis. J Rheumatol 1988 ; 15 : 202-5.
3) Clements PJ, Hurwitz EL, Wong WK, et al. Skin thickness score as a predictor and correlate of outcome in systemic sclerosis : high-dose versus low-dose penicillamine trial. Arthritis Rheum 2000 ; 43 : 2445.
4) Perera A, Fertig N, Lucas M, et al. Clinical subsets, skin thickness progression rate, and serum antibody levels in systemic sclerosis patients with anti-topoisomerase I antibody. Arthritis Rheum 2007 ; 56 : 2740.
P.159 掲載の参考文献
1) 全身性強皮症診断基準・重症度分類・診療ガイドライン委員会. 全身性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 1831-96.
P.161 掲載の参考文献
1) Salazar GA, AssassiS, Wigley F, et al. Antinuclear antibody-negative systemic slcerosis. Semin Arthritis Rheum 2015 ; 44 : 680-6.
P.164 掲載の参考文献
1) Mack GJ, Rees J, Sandblom O, et al. Autoantibodies to a group of centrosomal proteins in human autoimmune sera reactive with the centrosome. Arthritis Rheum 1998 ; 41 : 551-8.
2) Hamaguchi Y, Matsushita T, Hasegawa M, et al. High incidence of pulmonary arterial hypertension in systemic sclerosis patients with anti-centriole autoantibodies. Mod Rheumatol 2015 ; 25 : 798-801.
2) Sato S, Hamaguchi Y, Hasegawa M, et al. Clinical significance of anti-topoisomerase I antibody levels determined by ELISA in systemic sclerosis. Rheumatology (Oxford). 2001 ; 40 : 1135-40.
3) Ishii Y, Fujii H, Sugimura K, et al. Successful treatment of pulmonary arterial hypertension in systemic sclerosis with anticentriole antibody. Case Rep Rheumatol 2020 Feb 25 ; 2020 : 1926908.
3) Kuwana M, Kaburaki J, MimoriT, et al. Longitudinal analysis of autoantibody response to topoisomerase I in systemic sclerosis. Arthritis Rheum 2000 ; 43 : 1074-84.
4) Maki H, Kubota K, Hatano M, et al. Characteristics of pulmonary arterial hypertension in patients with systemic sclerosis and anticentriole autoantibodies. Int Heart J 2020 ; 61 : 413-8.
P.166 掲載の参考文献
1) Moroi Y, Peebles C, Fritzler MJ, et al. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci U S A 1980 ; 77 : 1627-31.
3) Burbelo PD, Gordon SM, Waldman M, et al. Autoantibodies are present before the clinical diagnosis of systemic sclerosis. PLoS One 2019 26 ; 14 : e0214202.
P.169 掲載の参考文献
1) Okano Y, Steen VD, Medsger TA Jr. Autoantibody reactive with RNA polymerase III in systemic sclerosis. Ann Intern Med 1993 ; 119 : 1005-13.
2) Kuwana M, Kaburaki J, MimoriT, et al. Autoantibody reactive with three classes of RNA polymerases in sera from patients with systemic sclerosis. J Clin Invest 1993 ; 91 : 1399-404.
4) Satoh T, Ishikawa O, Ihn H, et al. Clinical usefulness of anti-RNA polymerase III antibody measurement by enzymelinked immunosorbent assay. Rheumatology (Oxford) 2009 ; 48 : 1570-4.
5) Hamaguchi Y, Kodera M, Matsushita T, et al. Clinical and immunologic predictors of scleroderma renal crisis in Japanese systemic sclerosis patients with anti-RNA polymerase III autoantibodies. Arthritis Rheumatol 2015 ; 67 : 1045-52.
6) El-Gendy H, Shohdy KS, Maghraby GG, et al. Gastric antral vascular ectasia in systemic sclerosis : Where do we stand? Int J Rheum Dis 2017 ; 20 : 2133-9.
7) Shah AA, Rosen A, Hummers L, et al. Close temporal relationship between onset of cancer and scleroderma in patients with RNA polymerase I/III antibodies. Arthritis Rheum 2010 ; 62 : 2787-95.
8) Airo P, Ceribelli A, Cavazzana I, et al. Malignancies in Italian patients with systemic sclerosis positive for anti-RNA polymerase III antibodies. J Rheumatol 2011 ; 38 : 1329-34.
9) Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer. Science 2014 ; 343 : 152-7.
P.171 掲載の参考文献
4) Nishimagi E, Tochimoto A, Kawaguchi Y, et al. Characteristics of patients with early systemic sclerosis and severe gastrointestinal tract involvement. J Rheumatol 2007 ; 34 : 2050-5.
5) Dagher JH, Scheer U, Voit R, et al. Autoantibodies to NOR 90/hUBF : longterm clinical and serological followup in a patient with limited systemic sclerosis suggests an antigen driven immune response. J Rheumatol 2002 ; 29 : 1543-7.
P.175 掲載の参考文献
1) 全身性強皮症診断基準・重症度分類・診療ガイドライン委員会. 全身性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 1831-96.
2) Sharada B, Kumar A, Kakker R, et al. Intravenous dexamethasone pulse therapy in diffuse systemic sclerosis. A randomized placebo-controlled study. Rheumatol Int 1994 ; 14 : 91-4.
3) Takehara K. Treatment of early diffuse cutaneous systemic sclerosis patients in Japan by low-dose corticosteroids for skin involvement. Clin Exp Rheumatol 2004 ; 22 : S87-9.
4) Steen VD, Medsger TA Jr. Case-control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum 1998 ; 41 : 1613-9.
6) Bruni C, Tashkin D, Steen V, et al. Intravenous versus oral cyclophosphamide for lung and/or skin fibrosis in systemic sclerosis : an indirect comparison from EUSTAR and randomised controlled trials. Clin Exp Reumatol 2020 ; 38 : S161-8.
7) van den Hoogen FH, Boerbooms AM, Swaak AJ, et al. Comparison of methotrexate with placebo in the treatment of systemic sclerosis : a 24 week randomized double-blind trial, followed by a 24 week observational trial. Br J Rheumatol 1996 ; 35 : 364-72.
8) Pope JE, Bellamy N, Seibold JR, et al. A randomized, controlled trial of methotrexate versus placebo in early diffuse scleroderma. Arthritis Rheum 2001 ; 44 : 1351-8.
10) Denton CP, Sweny P, Abdulla A, et al. Acute renal failure occurring in scleroderma treated with cyclosporin A : a report of three cases. Br J Rheumatol 1994 ; 33 : 90-2.
12) Tashkin D, Roth M, Clements P, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II) : a randomised controlled, double-blind, parallel group trial. Lancet Respir Med 2016 ; 708 : 708-19.
13) Nadashkevich O, Davis P, Fritzler M, et al. A randomized unblinded trial of cyclophosphamide versus azathioprine in the treatment of systemic sclerosis. Clin Rheumatol 2006 ; 25 : 205-12.
14) Harris ED Jr, Sjoerdsma A. Effect of penicillamine on human collagen and its possible application to treatment of scleroderma. Lancet 1966 ; 2 : 996-9.
16) Distler O, Highland K, Gahlemann M, et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 2019 ; 380 : 2518-28.
17) Khanna D, Denton C, Jahreis A, et al. Safety and efficacy of subcutaneous tocilizumab in adults with systemic sclerosis (fascinate) : a phase 2, randomised, controlled trial. Lancet 2016 ; 387 : 2630-40.
18) Khanna D, Lin C, Furst D, et al. Tocilizumab in systemic sclerosis : a randomised, double-blind, placebo-controlled, phase 3 trial. Lacet Respir Med 2020 ; 8 : 963-74.
19) Takehara K, Ihn H, Sato S. A randomized, double-blind, placebo-controlled trial : intravenous immunoglobulin treatment in patients with diffuse cutaneous systemic sclerosis. Clin Exp Rheumatol 2013 ; 31 : 151-6.
20) Sullivan K, Goldmuntz E, Keyes-Elstein L, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med 2018 ; 378 : 35-47.
P.179 掲載の参考文献
1) 長谷川稔. 膠原病の末梢循環障害. 分子リウマチ 2007 ; 4 : 204-10.
2) Kuwana M, Okazaki Y, Yasuoka H et al. Defective vasculogenesis in systemic sclerosis. Lancet 2004 ; 364 : 603-10.
3) Motegi S, Toki S, Hattori T, et al. No association of atherosclerosis with digital ulcers in Japanese patients with systemic sclerosis : evaluation of carotid intima-media thickness and plaque characteristics. J Dermatol 2014 ; 41 : 604-8.
5) Thompson AE, Pope JE. Calcium channel blockers for primary Raynaud's phenomenon : a meta-analysis. Rheumatology (Oxford) 2005 ; 44 : 145-50.
6) 小川文秀, 佐藤伸一. 末梢循環不全, 全身性強皮症に対する塩酸サルポグレラートの効果-レイノー症状・末梢循環障害を中心に. Angiology Frontier 2006 ; 5 : 65.
7) 佐藤伸一, 室井英二, 小村一浩, ほか. 全身性強皮症に伴うレイノー症状に対するシロスタゾールの有効性. 臨床と研究 2007 ; 84 : 984.
8) Hamaguchi Y, Sumida T, Kawaguchi Y, et al. Safety and tolerability of bosentan for digital ulcers in Japanese patients with systemic sclerosis : Prospective, multicenter, open-label study. J Dermatol 2017 ; 44 : 13-7.
9) Sutej PG, O'Rourke KS. Severe refractory fingertip ulcerations in a patient with scleroderma : successful treatment with sildenafil. J Rheumatol 2005 ; 32 : 2440-2.
10) Bell MJ, Evans AW. Ischemic scleroderma wounds successfully treated with hyperbaric oxygen therapy. J Rheumatol 2006 ; 33 : 1694-6.
11) 茂木精一郎. 全身性強皮症の末梢循環障害の特徴と治療. 西日皮膚 2016 ; 78 : 343-6.
12) 佐藤伸一, 藤本学, 桑名正隆, ほか. 全身性強皮症診療ガイドラインにおける血管病変の診療ガイドライン. 日皮会誌 2012 ; 122 : 1293-345.
13) Motegi S, Yamada K, Toki S, et al. Beneficial effect of botulinum toxin A on Raynaud's phenomenon in Japanese patients with systemic sclerosis : A prospective, case series study. J Dermatol 2016 ; 43 : 56-62.
14) Motegi S, Uehara A, Yamada K, et al. Efficacy of botulinum toxin B injection for Raynaud's phenomenon and digital ulcers in patients with systemic sclerosis. Acta Derm Venereol 2017 ; 97 : 843-50.
15) Motegi S, Sekiguchi A, Saito S, et al. Successful treatment of Raynaud's phenomenon and digital ulcers in systemic sclerosis patients with botulinum toxin B injection : Assessment of peripheral vascular disorder by angiography and dermoscopic image of nail fold capillary. J Dermatol 2018 ; 45 : 349-52.
P.181 掲載の参考文献
1) Shiraki T, Iida O, Takahara M, et al. Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis. Eur J Vasc Endovasc Surg 2015 ; 49 : 565-73.
2) Shiraki T, Iida O, Okamoto S, et al. Long-term clinical outcomes after endovascular therapy for anti-centromere antibody positive patients with critical limb-threatening ischemia. J Vasc Interv Radiol 2020 ; 31 : 1993-7.
P.184 掲載の参考文献
1) Man A, Davidyock T, Ferguson LT, et al. Changes in forced vital capacity over time in systemic sclerosis : application of group-based trajectory modelling. Rheumatology 2015 ; 54 : 1464-71.
2) Goh NS, Desai SR, Veeraraghavan S, et al. Interstitial lung disease in systemic sclerosis in systemic sclerosis : a simple staging system. Am J Respir Crit Care Med 2008 ; 177 : 1248-54.
3) Bonhomme O, Andre B, Gester F, et al. Biomarkers in systemic sclerosis-associated interstitial lung disease : review of the literature. Rheumatology 2019 ; 58 : 1534-46.
4) Elhai m, Hoffmann-Vold Am, Avouac J, et al. Performance of candidate serum biomarkers for systemic sclerosis-interstitial lung disease. Arthritis Rheumotol 2019 ; 71 : 972-82.
5) Mona E, Julio C, Pedroza C, et al. Can serum surfactant protein D or CC-chemokine ligand 18 predict outcome of interstitial lung disease in patients with early systemic sclerosis? J Rheumatol 2013 ; 40 : 1114-20.
8) Yanaba K, Hasegawa M, Takehara K, et al. Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers of monitoring activity of pulmonary fibrosis. J Rheumatol 2004 ; 31 : 1112-20.
9) Sumida H, Asano Y, Tamaki Z, et al. Prediction of therapeutic response before and during i.v. cyclophosphamide pulse therapy for interstitial lung disease in systemic sclerosis : a longitudinal observational study. J Dermatol 2018 ; 45 : 1425-33.
10) Satoh H, Kurishima K, Ishikawa H, et al. Increased levels of KL-6 and subsequent mortality in patients with interstitial lung disease. J Intern Med 2006 ; 260 : 429-34.
11) Volkmann ER, Tashkin DP, Kuwana M, et al. Progression of interstitial lung disease in systemic sclerosis : The importance of pneumoproteins Krebs von den Lungen 6 and CCL18. Arthritis Rheumatol 2019 ; 71 : 2059-67.
12) Kuwana M, Shirai Y, Takeuchi T. Elevated serum Krebs von den Lungen-6 in early disease predicts subsequent deterioration of pulmonary function in patients with systemic sclerosis and interstitial lung disease. J Rheumatol 2016 ; 43 : 1825-31.
13) Salazar GA, KuwanaM,WuM, et al. KL-6 but not CCL-18 is a predictor of early progression in systemic sclerosis-related interstitial lung disease. J Rheumatol 2018 ; 45 : 1153-8.
14) Tiev KP, Hua-Huy T, Kettaneh A, et al. Serum CC chemokine ligand-18 predicts lung disease worsening in systemic sclerosis. Eur Respir J 2011 ; 38 : 1355-60.
15) Schupp J, Becker M, Gunther J, et al. Serum CCL18 is predictive for lung disease progression and mortality in systemic sclerosis. Eur Respir J 2014 ; 43 : 1530-2.
16) Hoffmann-Vold AM, Tennoe AH, Garen T, et al. High level of chemokine CCL18 is associated with pulmonary function deterioration, lung fibrosis progression, and reduced survival in systemic sclerosis. Chest 2016 ; 150 : 299-306.
18) Bouros D, Wells AU, Nicholson AG, et al. Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome. Am J Respir Crit Care Med 2002 ; 165 : 1581-6.
19) Distler O, Highland KB, Gahlemann M, et al. Nintedanib for systemic sclerosis-associated interstitial lung disease. N Engl J Med 2019 ; 380 : 2518-28.
20) Nannini C,West CP, Erwin PJ, et al. Effects of cyclophosphamide on pulmonary function in patients with scleroderma and intersitial lung disease : a systematic review and meta-analysis of randomized controlled trials and observational prospective cohort studies. Arthritis Res Ther 2008 ; 10 : R124.
21) Volkmann ER, Tashkin DP, Sim M, et al. Short-term progression of interstitial lung disease in systemic sclerosis predicts long-term survival in two independent clinical trial cohorts. Ann Rheum Dis 2019 ; 78 : 122-30.
22) Kim GHJ, Tashkin DP, Lo Pechin, et al. Using transitional changes on High-Resolution Computed Tomography to monitor the impact of cyclophosphamide or mycophenolate on systemic sclerosis-related interstitial lung disease. Arthritis Rheumatol 2019 ; 72 : 316-25.
23) Volkmann ER, Tashkin DP, Sim M, et al. Cyclophosphamide for systemic sclerosis-related interstitial lung disease : a comparison of scleroderma lung study I and II. J Rheumatol 2019 ; 46 : 1316-25.
24) Volkmann ER, Tashkin DP, Li N, et al. Mycophenolate mofetil versus placebo for systemic sclerosis-related interstitial lung disease. An analysis of scleroderma lung studies I and II. Arthritis Rheumatol 2017 ; 69 : 1451-60.
25) Tashkin DP, Roth MD, Clements PJ, et al. Mycophenolate mofetil versus oral cyclophosphamide in scleroderma-related interstitial lung disease (SLS II) : a randomized controlled, double-blind, parallel group trial. Lancet Respir Med 2016 ; 4 : 708-19.
26) Kowal-Bielecka O, Fransen J, Avouac J, et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann Rheum Dis 2017 ; 76 : 1327-39.
27) Fernandeaz-Codina A, Walker KM, Pope JE. Treatment algorithms for systemic sclerosis according to experts. Arthritis Rheumatol 2018 ; 70 : 1820-8.
28) 日本呼吸器学会・日本リウマチ学会合同膠原病に伴う間質性肺疾患診断・治療指針作成委員会2020編. 膠原病に伴う間質性肺疾患診断・治療指針 2020. メディカルレビュー社 ; 2020. pp.90-102.
P.190 掲載の参考文献
1) Peene I, Van Ael W, Vandenbossche M, et al. Sensitivity of the HEp-2000 substrate for the detection of anti-SSA/Ro60 antibodies. Clin Rheumatol 2000 ; 19 : 291-5.
2) Coghlan JG, Denton CP, Grunig E, et al. DETECT study group. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis : the DETECT study. Ann Rheum Dis 2014 ; 73 : 1340-9.
3) Fox BD, Shimony A, Langleben D, et al. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. Eur Respir J 2013 ; 42 : 1083-91.
P.193 掲載の参考文献
2) Steen VD, Medsger TA. Changes in causes of death in systemic sclerosis, 1972-2002. Ann Rheum Dis 2007 ; 66 : 940-4.
3) Hashimoto A, Endo H, Kondo H, et al. Clinical features of 405 Japanese patients with systemic sclerosis. Mod Rheumatol 2012 ; 22 : 272-9.
4) Kuwana M. Circulating anti-nuclear antibodies in systemic sclerosis : Utility in diagnosis and disease subsetting. J Nippon Med Sch 2017 ; 84 : 56-63.
5) Steen VD, Medsger TA Jr. Case-control study of corticosteroids and other drugs that either precipitate or protect from the development of scleroderma renal crisis. Arthritis Rheum 1998 ; 41 : 1613-9.
6) Lynch BM, Stern EP, Ong V, et al. UK Scleroderma Study Group (UKSSG) guidelines on the diagnosis and management of scleroderma renal crisis. Clin Exp Rheumatol 2016 ; 34 Suppl 100 : 106-9.
7) Hudson M, Baron M, Tatibouet S, et al, International Scleroderma Renal Crisis Study I. Exposure to ACE inhibitors prior to the onset of scleroderma renal crisis-results from the International Scleroderma Renal Crisis Survey. Semin Arthritis Rheum 2014 ; 43 : 666-72.
8) Steen VD, Costantino JP, Shapiro AP, et al. Outcome of renal crisis in systemic sclerosis : relation to availability of angiotensin converting enzyme (ACE) inhibitors. Ann Intern Med 1990 ; 113 : 352-7.
9) Bussone G, Berezne A, Pestre V, et al. The scleroderma kidney : progress in risk factors, therapy, and prevention. Curr Rheumatol Rep 2011 ; 13 : 37-43.
10) Zanattaa E, Politoa P, Favaroa M, et al. Therapy of scleroderma renal crisis : State of the art. Autoimmune Rev 2018 ; 17 : 882-9.
11) Montrief T, Koyfman A, Long B, Scleroderma renal crisis : a review for emergency physicians. Intern Emerg Med 2019 ; 14 : 561-70.
12) Steen VD, Medsger Jr TA. Long-term outcomes of scleroderma renal crisis. Ann Intern Med 2000 ; 133 : 600-3.
P.197 掲載の参考文献
1) Thoua NM, Bunce C, Brough G, et al. Assessment of gastrointestinal symptoms in patients with systemic sclerosis in a UK tertiary referral centre. Rheumatology (Oxford) 2010 ; 49 : 1770-5.
2) Nietert PJ, Mitchell HC, Bolster MB, et al. Correlates of depression, including overall and gastrointestinal functional status, among patients with systemic sclerosis. J Rheumatol 2005 ; 32 : 51-7.
3) Paolino S, Pacini G, Schenone C, et al. Nutritional status and bone microarchitecture in a cohort of systemic sclerosis patients. Nutrients 2020 ; 12 : 1632.
4) 八尾隆史. 消化管の基本構造・機能・発生. 北川昌伸, 仁木利郎編. 標準病理学, 第6版. 医学書院 ; 2019. pp.439-65.
5) Clark JO, Pandolfino JE. Upper gastrointestinal tract : manifestations of systemic sclerosis. Varga J, Denton CP, Wigley FM, et al editors. Scleroderma, 2nd edition. Springer ; 2017, pp.427-42.
6) 日本小児消化管機能研究会. 24時間食道pHモニタリングのガイドライン. 日小外会誌 1997 ; 33 : 1159-60.
7) Pandolfino JE, Richter JE, Ours T, et al. Ambulatory esophageal pH monitoring using a wireless system. Am J Gastroenterol 2003 ; 98 : 740-9.
8) Galmiche JP, Scarpignato C. Modern diagnosis of gastroesophageal reflux disease (GERD). Hepatogastroenterology 1998 ; 45 : 1308-15.
9) Hirsh EH, Brandenburg D, Hersh T, et al. Chronic intestinal pseudo-obstruction. J Clin Gastroenterol 1981 ; 3 : 247-54.
10) Marie I, Ducrotte P, Denis P, et al. Small intestinal bacterial overgrowth in systemic sclerosis. Rheumatology (Oxford) 2009 ; 48 : 1314-9.
11) 片田夏也, 渡邊昌彦. 外科的治療の実. 寺野彰, 木下芳一編. GERD診療ガイド. 南江堂 ; 2005. pp.75-83.
12) Feussner H, Kauer W, Siewert JR. The surgical management of motility disorders. Dysphagia 1993 ; 8 : 135-45.
13) 後藤大輔, 浅野善英, 川口鎮司, ほか. 全身性強皮症消化管重症度分類・診療ガイドライン・診療アルゴリズム. 研究代表者 : 尹浩信. 難治性疾患等政策研究事業強皮症・皮膚線維化疾患の診断基準・重症度分類・診療ガイドライン作成事業. 2017, pp.61-70.
14) Soudah HC, Hasler WL, Owyang C. Effect of octreotide on intestinal motility and bacterial overgrowth in scleroderma. N Engl J Med 1991 ; 325 : 1461-7.
15) 日本消化器病学会関連研究会慢性便秘の診断・治療研究会編. 慢性便秘症診療ガイドライン. 南江堂 ; 2017. pp.66-73.
P.199 掲載の参考文献
1) Sato S, Hasegawa M, Fujimoto M, et al. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 2000 ; 165 : 6635-43.
2) Sato S, Fujimoto M, Hasegawa M, et al. Altered blood B lymphocyte homeostasis in systemic sclerosis : Expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 2004 ; 50 : 1918-27.
3) Saito E, Fujimoto M, Hasegawa M, et al. CD19-dependent B lymphocyte signaling thresholds influence skin fibrosis and autoimmunity in the tight-skin mouse. J Clin Invest 2002 ; 109 : 1453-62.
5) Ebata S, Yoshizaki A, Fukasawa T, et al. Rituximab therapy is more effective than cyclophosphamide therapy for Japanese patients with anti-topoisomerase I-positive systemic sclerosis-associated interstitial lung disease. J Dermatol 2019 ; 46 : 1006-13.
P.200 掲載の参考文献
1) Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009 ; 360 : 1989-2003.
2) Denton CP, Khanna D. Systemic sclerosis. Lancet 2017 ; 390 : 1685-99.
3) Kelsey PJ, Oliveira MC, Badoglio M, et al. Haematopoietic stem cell transplantation in autoimmune diseases : From basic science to clinical practice. Curr Res Transl Med 2016 ; 64 : 71-82.
4) Burt RK, Shah SJ, Dill K, et al. Autologous non-myeloablative haemopoietic stem-cell transplantation compared with pulse cyclophosphamide once per month for systemic sclerosis (ASSIST) : an open-label, randomised phase 2 trial. Lancet 2011 ; 378 : 498-506.
5) van Laar JM, Farge D, Sont JK, et al. Autologous hematopoietic stem cell transplantation vs intravenous pulse cyclophosphamide in diffuse cutaneous systemic sclerosis : a randomized clinical trial. JAMA 2014 ; 311 : 2490-8.
6) Sullivan KM, Goldmuntz EA, Keyes-Elstein L, et al. Myeloablative autologous stem-cell transplantation for severe scleroderma. N Engl J Med 2018 ; 378 : 35-47.
7) Tsukamoto H, Nagafuji K, Horiuchi T, et al. A phase I‐II trial of autologous peripheral blood stem cell transplantation in the treatment of refractory autoimmune disease. Ann Rheum Dis 2006 ; 65 : 508-14.
8) 塚本浩. 自己免疫性血液疾患 : 診断と治療の進歩最近の話題自己免疫疾患に対する造血幹細胞移植. 日内会誌 2014 ; 103 : 1669-76.
9) Ayano M, Tsukamoto H, Mitoma H, et al. CD34-selected versus unmanipulated autologous haematopoietic stem cell transplantation in the treatment of severe systemic sclerosis : a post hoc analysis of a phase I/II clinical trial conducted in Japan. Arthritis Res Ther 2019 ; 21 : 30.
10) 三苫弘喜, 綾野雅宏. 全身性硬化症における造血幹細胞移植の現状と将来. リウマチ科 2020 ; 63 : 557-64.
P.204 掲載の参考文献
1) Galan MF, Rises LL, Alfonso BMJ, et al. Reynolds' syndrome ; primary biliary cirrhosis with CREST syndrome. Rev Esp Enferm Dig 1990 ; 78 : 311-3.
1) Poole JL, Steen VD. The use of the Health Assessment Questionnaire (HAQ) to determine physical disability in systemic sclerosis. Arthritis Care Res 1991 ; 4 : 27-31.
2) 麦井直樹, 生田宗博, 佐藤伸一, ほか. 全身性強皮症の活動制限の特徴. OTジャーナル 2004 ; 38 : 1237-40.
2) Powell FC, Schroeter AL, Dickson ER. Primary biliary cirrhosis and the CREST syndrome : a report of 22 cases. Q J Med 1987 ; 62 : 75-82.
3) 麦井直樹, 澤田幸恵, 竹原和彦, ほか. 全身性強皮症患者の調理動作の活動制限. OTジャーナル 2017 ; 51 : 1317-22.
3) Fujimoto M, Sato S, Ihn H, et al. Autoantibodies to pyruvate dehydrogenase complex in patients with systemic sclerosis. Possible role of anti-E1 alpha antibody as a serologic indicator for development of primary biliary cirrhosis. Arthritis Rheum 1995 ; 38 : 985-9.
4) 麦井直樹, 藤本学, 竹原和彦, ほか. 全身性強皮症の顔に対するリハビリテーション 第2報. 厚生労働科学研究費補助金難治性疾患克服研究事業強皮症における病因解明と根治的治療法の開発平成22年度総括・分担研究報告書. 強皮症調査研究班事務局 ; 2011. pp.191-8.
4) Imura-Kumada S, Hasegawa M, Matsushita T, et al. High prevalence of primary biliary cirrhosis and disease-associated autoantibodies in Japanese patients with systemic sclerosis. Mod Rheumatol 2012 ; 22 : 892-8.
5) 浅野善英, 麦井直樹, 尹浩信, ほか. 強皮症・皮膚線維化疾患の診断基準・重症度分類・診療ガイドライン作成委員会編. 全身性強皮症・限局性強皮症・好酸球性筋膜炎・硬化性萎縮性苔癬の診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 1831-96.
6) LeRoy EC, Black C, Medsger TA Jr, et al. Scleroderma (systemic sclerosis) : classification, subsets and pathogenesis. J Rheumatol 1988 ; 15 : 202-4.
7) Mugii N, Hasegawa M, Takehara K, et al. The efficacy of self-administered stretching for finger joint motion in Japanese patients with systemic sclerosis. J Rheumatol 2006 ; 33 : 1586-92.
8) Mugii N, Hamaguchi Y, Takehara K, et al. Long-term follow-up of finger passive range of motion in Japanese systemic sclerosis patients treated with self-administered stretching. Mod Rheumatol 2019 ; 29 : 484-90.
9) Seeger MW, Furst DE. Effects of splinting in the treatment of hand contractures in progressive systemic sclerosis. AJOT 1987 ; 41 : 118-21.
10) 麦井直樹, 生田宗博, 佐藤伸一, ほか. 間質性肺炎を伴った全身性強皮症のリハビリテーション. 総合リハ 2002 ; 30 : 563-6.
11) Mugii N, Someya F, Hasegawa M, et al. Reduced hypoxia risk in a systemic sclerosis patient with interstitial lung disease after long-term pulmonary rehabilitation. Clin Med Insights Case Rep 2011 ; 4 : 53-6.
P.207 掲載の参考文献
2) 北畠雅人, 田村多絵子, 石川英一. 当教室で経験したgeneralized morphea-like PSS. 厚生省特定疾患強皮症調査研究班昭和61年度研究報告書. 1986. p.284.
3) 石川治, 田村多絵子, 樋口忠義, ほか. generalized morphea-like scleroderma. 皮膚病診療 1996 ; 18 : 729-32.
4) Silman AJ, Jones S. What is the contribution of occupational environmental factors to the occurrence of scleroderma in men? Ann Rheum Dis 1992 ; 51 : 1322-4.
5) 浅野祐介, 水川良子, 塩原哲夫. ハーブ類摂取の関与が示唆されたgeneralized morphea-like systemic sclerosisの1例. 臨床皮膚科 2005 ; 59 : 503-6.
6) 野坂睦子, 大野貴司, 岩月啓氏. 下着による圧迫部位に皮膚硬化を認めたgeneralized morphea-like SSc. J Visual Dermatol 2009 ; 8 : 46-7.
7) 石川英一, 山蔭明生. 有機溶媒曝露との関連性が考えられる全身性強皮症. 厚生省特定疾患強皮症調査研究班昭和57年度研究報告書. 1983. pp.76-8.
P.209 掲載の参考文献
1) 佐藤伸一. 限局性強皮症の診断と治療. 皮膚科の臨床 2010 ; 52 : 1047-56.
2) 矢澤徳仁, 久保正英, 尹浩信ほか. モルフェア様皮疹を伴った男性汎発性強皮症の1例. 皮膚科の臨床 1999 ; 41 : 443-6.
3) Saigusa R, Asano Y, Yamashita T, et al. Systemic sclerosis complicated with localized scleroderma-like lesions induced by Kobner phenomenon. J Dermatol Sci 2018 ; 89 : 282-9.
4) Asano Y, Sato S. Localized scleroderma-like lesions induced by the Kobner phenomenon in a patient with systemic sclerosis positive for anticentromere antibody. Eur J Dermatol 2020 ; 30 : 431-2.
5) 石川英一, 山蔭明生. 厚生省特定疾患強皮症調査研究班平成元年度研究報告書. 1989. p.147.
P.211 掲載の参考文献
1) Abrams HL, Carnes WH, Eaton J. Alimentary tract in disseminated scleroderma with emphasis on small bowel. AMA Arch Inter Medi 1954 ; 94 : 61-81.
2) Rodnan GP, Fennell RH, Jr. Progressive systemic sclerosis sine scleroderma. JAMA 1962 ; 180 : 665-70.
3) 浅野善英, 神人正寿, 川口鎮司ら. 全身性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 1831-96.
4) van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis : an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2013 ; 65 : 2737-47.
5) Kucharz EJ, Kopec-Medrek M. Systemic sclerosis sine scleroderma. Adv Clin Exp Med 2017 ; 26 : 875-80.
6) Toya SP, Tzelepis GE. The many faces of scleroderma sine scleroderma : a literature review focusing on cardiopulmonary complications. Rheumatol Int 2009 ; 29 : 861-8.
7) Poormoghim H, Lucas M, Fertig N, et al. Systemic sclerosis sine scleroderma : demographic, clinical, and serologic features and survival in forty-eight patients. Arthritis Rheum 2000 ; 43 : 444-51.
8) Diab S, Dostrovsky N, Hudson M, et al. Systemic sclerosis sine scleroderma : a multicenter study of 1417 subjects. J Rheumatol 2014 ; 41 : 2179-85.
9) Fischer A, Pfalzgraf FJ, Feghali-Bostwick CA, et al. Anti-th/to-positivity in a cohort of patients with idiopathic pulmonary fibrosis. J Rheumatol 2006 ; 33 : 1600-5.
P.214 掲載の参考文献
1) 簗場広一, 伊藤宗成, 谷戸克己, ほか. タキサン製剤による強皮症様皮膚硬化. 日皮会誌 2006 ; 116 : 963-8.
2) 簗場広一. 強皮症は薬剤によって誘発されることがあるか. 佐藤伸一編. 皮膚科臨床アセット 7, 皮膚科膠原病診療のすべて, 第1版. 中山書店 ; 2011. pp.203-5.
3) Inaoki M, Kawabata C, Nishijima C, et al. Case of bleomycin-induced scleroderma. J Dermatol 2011 ; 39 : 482-4.
4) Bramwell B. Diffuse scleroderma : its frequency, its occuerrence, in stonemasons, its treatment by fibrinolysis, elevations of temperature due to fibrinolysin injections. Edinbg Med J 1914 ; 12 : 387-401.
5) Erasmus LD. Scleroderma in goldminers on the Witwatersrand with particular reference to pulmonary manifestations. S Afr J Lab Clin Med 1957 ; 3 : 209-31.
6) Freire M, Alonso A, Rivera A, et al. Clinical peculiarities of patients with scleroderma exposed to silica : A systematic review of the literature. Semin Arthritis Rheum 2015 ; 45 : 294-300.
7) Rubio-Rivas M, Moreno Rafael, Corbella X. Occupational and environmental scleroderma. Systematic review and meta-analysis Clin Rheumatol 2017 ; 36 : 569-82.
8) Marie I, Menard JF, Duval-Modeste AB, et al. Association of occupational exposure with features of systemic sclerosis. J Am Acad Dermatol 2015 ; 72 : 456-64.
9) Yamakage A, Ishikawa H, Saito Y, et al. Occupational scleroderma-like disorder occuring in men engaged in the polymerization of epoxy resin. Dermatologica 1980 ; 161 : 33-44.

4章 限局性強皮症

P.222 掲載の参考文献
1) Tuffanelli DL, Winkelmann RK. Systemic scleroderma, A clinical study of 727 cases. Arch Dermatol 1961 ; 84 : 359-71.
3) Zulian F, Woo P, Athreya BH, et al. The Pediatric Rheumatology European Society/American College of Rheumatology/European League against Rheumatism provisional classification criteria for juvenile systemic sclerosis. Arthritis Rheum 2007 ; 57 : 203-12.
4) 限局性強皮症診断基準・重症度分類・診療ガイドライン委員会. 限局性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2039-67.
P.225 掲載の参考文献
2) Falanga V, Medsger TA, Reichlin M. Antinuclear and anti-single-stranded DNA antibodies in morphea and generalized morphea. Arch Dermatol 1987 ; 123 : 350-3.
3) Dharamsi JW, Victor S, Aguwa N, et al. Morphea in adults and children cohort III : nested case-control study-the clinical significance of autoantibodies in morphea. JAMA Dermatol 2013 ; 149 : 1159-65.
7) Mimura Y, Ihn H, JinninM, et al. Rheumatoid factor isotypes in localized scleroderma. Clin Exp Dermatol 2005 ; 30 : 405-8.
9) Kikuchi K, Sato S, Kadono T, et al. Serum concentration of procollagen type I carboxyterminal propeptide in localized scleroderma. Arch Dermatol 1994 ; 130 : 1269-72.
12) Wolska-Gawron K, Bartosinska J, Krasowska D. MicroRNA in localized scleroderma : a review of literature. Arch Dermatol Res 2020 ; 312 : 317-24.
13) Etoh M, Jinnin M, Makino K, et al. microRNA-7 down-regulation mediates excessive collagen expression in localized scleroderma. Arch Dermatol Res 2013 ; 305 : 9-15.
14) Makino K, Jinnin M, Hirano A, et al. The downregulation of microRNA let-7a contributes to the excessive expression of type I collagen in systemic and localized scleroderma. J Immunol 2013 ; 190 : 3905-15.
15) Makino T, Jinnin M, Etoh M, et al. Down-regulation of microRNA-196a in the sera and involved skin of localized scleroderma patients. Eur J Dermatol. 2014 ; 24 : 470-6.
P.227 掲載の参考文献
1) 限局性強皮症診断基準・重症度分類・診療ガイドライン委員会. 限局性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2039-67.
P.230 掲載の参考文献
1) Hsieh M, Tokoro S, Ugajin T, et al. Ultrasonography as an auxiliary diagnostic tool for morphea profunda : A case report. J Dermatol 2019 ; 46 : 626-30.
2) Rigante D, Battaglia D, Contaldo I, et al. Longstanding epileptic encephalopathy and linear localized scleroderma : two distinct pathologic processes in an adolescent. Rheumatol Int 2008 ; 28 : 925-9.
3) Unterberger I, Trinka E, Engelhardt K, et al. Linear scleroderma "en coup de sabre" coexisting with plaque-morphea : neuroradiological manifestation and response to corticosteroids. J Neurol Neurosurg Psychiatry 2003 ; 74 : 661-4.
4) Amaral TN, Peres FA, Lapa AT, et al. Neurologic involvement in scleroderma : a systematic review. Semin Arthritis Rheum 2013 ; 43 : 335-47.
5) Zulian F, Athreya BH, Laxer R, et al. Juvenile localized scleroderma : clinical and epidemiological features in 750 children. An international study. Rheumatology (Oxford). 2006 ; 45 : 614-20.
P.234 掲載の参考文献
1) 限局性強皮症診断基準・重症度分類・診療ガイドライン委員会. 限局性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2039-67.
2) Peterson LS, Nelson AM, Su WP, et al. The epidemiology of morphea (localized scleroderma) in Olmsted County 1960-1993. J Rheumatol 1997 ; 24 : 73-80.
3) Li SC, Torok KS, Pope E, et al. Development of consensus treatment plans for juvenile localized scleroderma : a roadmap toward comparative effectiveness studies in juvenile localized scleroderma. Arthritis Care Res 2012 ; 64 : 1175-85.
4) Schanz S, Fierlbeck G, Ulmer A, et al. Localized scleroderma : MR findings and clinical features. Radiology 2011 ; 260 : 817-24.
5) Martini G, Murray KJ, Howell KJ, et al. Juvenile-onset localized scleroderma activity detection by infrared thermography. Rheumatology (Oxford) 2002 ; 41 : 1178-82.
6) Shaw LJ, Shipley J, Newell EL, et al. Scanning laser Doppler imaging may predict disease progression of localized scleroderma in children and young adults. Br J Dermatol 2013 ; 169 : 152-5.
7) 竹原和彦, 尹浩信, 佐藤伸一, ほか. 限局性強皮症における抗1本鎖DNA抗体抗体価の推移が治療上の参考となった2例. 皮膚科の臨床 1993 ; 35 : 737-40.
8) Zwischenberger BA, Jacobe HT. A systematic review of morphea treatments and therapeutic algorithm. J Am Acad Dermatol 2011 ; 65 : 925-41.
9) Dytoc MT, Kossintseva I, Ting PT. First case series on the use of calcipotriol-betamethasone dipropionate for morphoea. Br J Dermatol 2007 ; 157 : 615-8.
10) Sapadin AN, Fleischmajer R. Treatment of scleroderma. Arch Dermatol 2002 ; 138 : 99-105.
11) Fett N, Werth VP. Update on morphea : part II. Outcome measures and treatment. J Am Acad Dermatol 2011 ; 64 : 231-42.
12) Kroft EB, Groeneveld TJ, Seyger MM, et al. Efficacy of topical tacrolimus 0.1% in active plaque morphea : randomized, double-blind, emollient-controlled pilot study. Am J Clin Dermatol 2009 ; 10 : 181-7.
13) Stefanaki C, Stefanaki K, Kontochristopoulos G, et al. Topical tacrolimus 0.1% ointment in the treatment of localized scleroderma. An open label clinical and histological study. J Dermatol 2008 ; 35 : 712-8.
14) Cantisani C, Miraglia E, Richetta AG, et al. Generalized morphea successfully treated with tacrolimus 0.1% ointment. J Drugs Dermatol 2013 ; 12 : 14-5.
15) Joly P, Bamberger N, Crickx B, et al. Treatment of severe forms of localized scleroderma with oral corticosteroids : follow-up study on 17 patients. Arch Dermatol 1994 ; 130 : 663-4.
16) Zulian F, Martini G, Vallongo C, et al. Methotrexate treatment in juvenile localized scleroderma : a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2011 ; 63 : 1998-2006.
17) Strauss RM, Bhushan M, Goodfield MJ. Good response of linear scleroderma in a child to ciclosporin. Br J Dermatol 2004 ; 150 : 790-2.
18) Perez Crespo M, Betlloch Mas I, Mataix Diaz J, et al. Rapid response to cyclosporine and maintenance with methotrexate in linear scleroderma in a young girl. Pediatr Dermatol 2009 ; 26 : 118-20.
19) Martini G, Ramanan AV, Falcini F, et al. Successful treatment of severe or methotrexate-resistant juvenile localized scleroderma with mycophenolate mofetil. Rheumatology (Oxford) 2009 ; 48 : 1410-3.
P.235 掲載の参考文献
1) Zulian F, Vallongo C, de Oliveira SKF, et al. Congenital localized scleroderma. J Pediatr 2006 ; 149 : 248-51.
2) Mansour M, Wong CL, Zulian F, et al. Natural history and extracutaneous involvement of congenital morphea : Multicenter retrospective cohort study and literature review. Pediatr Dermatol 2018 ; 35 : 761-8.
3) Weibel L, Harper JI. Linear morphoea follows Blaschko's lines. Br J Dermatol 2008 ; 159 : 175-81.
4) Miura S, Someya M, Toyama S, et al. A case of scleroderma en coup de sabre with ipsilateral hearing loss and aphakia. Eur J Dermatol 2019 ; 29 : 423-5.
5) Lipson J, O'Toole A, Kapur S. Delay in diagnosis of congenital linear scleroderma until adulthood. J Cutan Med Surg 2015 ; 19 : 156-8.
6) Zulian F, Martini G, Vallongo C, et al. Methotrexate treatment in juvenile localized scleroderma : a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2011 ; 63 : 1998-2006.
7) Zulian F, Vallongo C, Patrizi A, et al. A long-term followup study of methotrexate in juvenile localized scleroderma (morphea). J Am Acad Dermatol 2012 ; 67 : 1151-6.
8) Joshi A, Al-Mutairi N, Nour-Eldin O. Congenital skin lesions presenting as morphea in a 4-year-old. Pediatr Dermatol 2006 ; 23 : 94-5.
9) 水野結花, 三浦俊介, 遠山聡, ほか. 先天性限局性強皮症の1例. 第118回日本皮膚科学会総会. 2019.
P.238 掲載の参考文献
1) Pasini A. Atrofodermia idiopathica progressive. G Ital Dermatol 1923 ; 58 : 75.
2) Bassi A, Remaschi G, Difonzo EM, et al. Idiopathic congenital atrophoderma of Pasini and Pierini. Arch Dis Child 2015 ; 100 : 1184.
3) Pullara TJ, Lober CW, Fenske NA. Idiopathic atrophoderma of Pasini and Pierini. Int J Dermatol 1984 ; 23 : 643-5.
4) Gonzalez-Moran A, Martin-Lopez R, Ramos ML, et al. Idiopathic atrophoderma of Pasini and Pierini. Study of 4 cases. Actas Dermosifiliogr 2005 ; 96 : 303-6.
5) Pierini L, Vivoli D. Atrofodermia progressive (Pasini). G Ital Dermatol 1923 ; 77 : 403.
6) Kencka D, Blaszczyk M, Jablonska S. Atrophoderma Pasini-Pierini is a primary atrophic abortive morphea. Dermatology 1995 ; 190 : 203-6.
7) Vieira-Damiani G, Lage D, Christofoletti Daldon PE, et al. Idiopathic atrophoderma of Pasini and Pierini : A case study of collagen and elastin texture by multiphoton microscopy. J Am Acad Dermatol 2017 ; 77 : 930-7.
8) Moulin G, Hill MP, Guillaud V, et al. Acquired atrophic pigmented band-like lesions following Blaschko's lines. Ann Dermatol Venereol 1992 ; 119 : 729-36.
9) Honda M, Oyama N, Uesugi-Uchida S, et al. Successful treatment with oral minocycline in a case with a long-standing idiopathic atrophoderma of Pasini and Pierini : Histopathological comparison with the contralateral normal skin. J Dermatol 2019 ; 46 : e472-4.
10) Arpey CJ, Patel DS, Stone MS, et al. Treatment of atrophoderma of Pasini and Pierini-associated hyperpigmentation with the Q-switched alexandrite laser : a clinical, histologic, and ultrastructural appraisal. Lasers Surg Med 2000 ; 27 : 206-12.
P.240 掲載の参考文献
1) Moulin G, Hill MP, Guillaud V, et al. Acquired atrophic pigmented band-like lesions following Blaschko's line. Ann Dermatol Venereol 1992 ; 119 : 729-36.
2) Tan SK, Tay YK. Linear atrophdermaofMoulin. JAAD Case Rep 2016 ; 2 : 10-2.
3) 黒田瑛里, 門野岳史, 川上民裕, ほか. Moulin型線状皮膚萎縮症の1例. 皮膚科の臨床 2019 ; 61 : 361-4.
4) Norisugi O, Makino T, Hara H, et al. Evaluation of skin atrophy associated with linear atrophderma of Moulin by ultrasound imaging. J Am Acad Dermatol 2011 ; 65 : 232-3.
5) de Golian E, Echols K, Pearl H, et al. Linear atrophderma of Moulin : a distinct entity? Pediatolr Dermatol 2014 ; 31 : 373-7.
6) Wang WM, Zeng YP. Linear atrophoderma of Moulin. JAMA Dermatol 2020 ; 156 : 581.
P.243 掲載の参考文献
1) El-Kehdy J, Abbas O, Rubeiz N. A review of Parry-Romberg syndrome. J Am Acad Dermatol 2012 ; 67 : 769-84.
2) 堀口葉子, 三宅真実, 棟田加奈子, ほか. 進行性顔面片側萎縮症. 皮膚病診療 2014 ; 36 : 605-8.
3) 田村敦志, 石川治. 進行性顔面片側萎縮症. 玉置邦彦編. 最新皮膚科学大系 10 内分泌・代謝異常症脂肪織疾患形成異常症異物沈着症. 中山書店 ; 2003. pp.183-5.
4) 限局性強皮症診断基準・重症度分類・診療ガイドライン委員会. 限局性強皮症診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2039-67.
5) 松本圭子, 白石研, 藤山幹子, ほか. 剣創状強皮症を伴ったParry-Romberg 症候群の1例. 西日皮膚 2017 ; 79 : 473-7.
6) Doolittle DA, Lehman VT, Schwartz KM, et al. CNS imaging findings associated with Parry-Romberg syndrome and en coup de sabre : correlation to dermatologic and neurologic abnormalities. Neuroradiology 2015 ; 57 : 21-34.
7) 野村和夫, 橋本功. 限局性強皮症様皮膚病変を呈した進行性顔面半側萎縮症の1例-発症基盤からみた分類の検討. 臨床皮膚科 1997 ; 51 : 444-7.
8) Garcia-De La Torre I, Castello-Sendra J, Esgleyes-Ribot T, et al. Autoantibodies in Parry-Romberg syndrome : a serologic study of 14 patients. J Rheumatol 1995 ; 22 : 73-7.
9) 松尾光馬, 伊東秀記, 高見洋, ほか. ヒアルロン酸注入が有効であった進行性顔面片側萎縮症の1例. 臨床皮膚科 2010 ; 64 : 713-7.
10) 木花いづみ, 栗原誠一. 限局性強皮症を合併した進行性顔面片側萎縮症の1例. 臨床皮膚科 1996 ; 50 : 1093-6.
11) 藤原昭宏, 堀義幸, 任書楷, ほか. 星状神経節ブロックが有効であったParry-Romberg症候群の1症例. ペインクリニック 1989 ; 10 : 661-4.
P.247 掲載の参考文献
1) Shulman LE. Diffuse fasciitis with eosinophilia : a new syndrome? Trans Assoc Am Physicians 1975 ; 88 : 70-86.
2) Rodnan GP, DiBartolomeo A, Medsger TA. Proceedings : Eosinophilic fasciitis. Report of six cases of a newly recognized scleroderma-like syndrome. Arthritis Rheum 1975 ; 18 : 525.
4) Chazerain P, Vigneron AM, Grossin M, et al. Posttraumatic diffuse eosinophilic fasciitis accepted for workers' compensation. Rev Rhum Engl Ed 1997 ; 64 : 433-4.
5) Pinal-Fernandez I, Selva-O' Callaghan A, Grau JM. Diagnosis and classification of eosinophilic fasciitis. Autoimmun Rev 2014 ; 13 : 379-82.
6) Sillo P, Pinter D, Ostorhazi E et al. Eosinophilic fasciitis associated with Mycoplasma arginini infection. J Clin Microbiol 2012 ; 50 : 1113-7.
7) Hashimoto Y, Takahashi H, Matsuo S, et al. Polymerase chain reaction of Borrelia burgdorferi flagellin gene in Shulman syndrome. Dermatology 1996 ; 192 : 136-9.
8) Lebeaux D, Frances C, Barete S, et al. Eosinophilic fasciitis (Shulman disease) : new insights into the therapeutic management from a series of 34 patients. Rheumatology (Oxford) 2012 ; 51 : 557-61.
9) Berianu F, Cohen MD, Abril A, et al. Eosinophilic fasciitis : clinical characteristics and response to methotrexate. Int J Rheum Dis 2015 ; 18 : 91-8.
10) Lebeaux D, Sene D. Eosinophilic fasciitis (Shulman disease). Best Pract Res Clin Rheumatol 2012 ; 26 : 449-58.
11) de Masson A, Bouaziz JD, Peffault de Latour R, et al. Severe aplastic anemia associated with eosinophilic fasciitis : report of 4 cases and review of the literature. Medicine (Baltimore) 2013 ; 92 : 69-81.
12) Nassonova VA, Ivanova MM, Akhnazarova VD, et al. Eosinophilic fasciitis. Review and report of six cases. Scand J Rheumatol 1979 ; 8 : 225-33.
13) Barnes L, Rodnan GP, Medsger TA, et al. Eosinophilic fasciitis. A pathologic study of twenty cases. Am J Pathol 1979 ; 96 : 493-518.
15) Nashel J, Steen V. The use of an elevated aldolase in diagnosing and managing eosinophilic fasciitis. Clin Rheumatol 2015 ; 34 : 1481-4.
16) 好酸球性筋膜炎診断基準・重症度分類・診療ガイドライン委員会. 好酸球性筋膜炎診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2241-50.
P.248 掲載の参考文献
1) Ihn H. Eosinophilic fasciitis : From pathophysiology to treatment. Allergol Int 2019 ; 68 : 437-9.
2) Hoffman R, Young N, Ershler WB, et al. Diffuse fasciitis and aplastic anemia : a report of four cases revealing an unusual association between rheumatologic and hematologic disorders. Medicine 1982 ; 61 : 373-81.
3) Haddad H, Sundaram S, Magro C, et al. Eosinophilic fasciitis as a paraneoplastic syndrome, a case report and review of the literature. Oncol Stem Cell Ther 2014 ; 7 : 90-2.
4) Lakhanpal S, Ginsburg WW, Michet CJ, et al. Eosinophilic fasciitis : clinical spectrum and therapeutic response in 52 cases. Semin Arthritis Rheum 1988 ; 17 : 221-31.
5) Yamamoto T, Ito T, Asano Y, et al. Characteristics of Japanese patients with eosinophilic fasciitis : A brief multicenter study. J Dermatol 2020 ; 47 : 1391-4.
P.251 掲載の参考文献
1) 硬化性萎縮性苔癬診断基準・重症度分類・診療ガイドライン委員会. 硬化性萎縮性苔癬診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2251-7.
P.252 掲載の参考文献
1) Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002 ; 2 : 735-47.
3) 硬化性萎縮性苔癬診断基準・重症度分類・診療ガイドライン委員会. 硬化性萎縮性苔癬診断基準・重症度分類・診療ガイドライン. 日皮会誌 2016 ; 126 : 2251-7.

5章 皮膚筋炎

P.259 掲載の参考文献
1) Lundberg IE, Tjarnlund A, Bottai M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann Rheum Dis 2017 ; 76 : 1955-64.
2) Jinnin M, Ohta A, Ishihara S, et al. First external validation of sensitivity and specificity of the European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) classification criteria for idiopathic inflammatory myopathies with a Japanese cohort. Ann Rheum Dis 2020 ; 79 : 387-92.
P.263 掲載の参考文献
1) Bendewald MJ, Wetter DA, Li X, et al. Incidence of dermatomyositis and clinically amyopathic dermatomyositis : a population-based study in Olmsted County, Minnesota. Arch Dermatol 2010 ; 146 : 26-30.
2) Furst DE, Amato AA, Iorga SR, et al. Epidemiology of adult idiopathic inflammatory myopathies in a U.S. managed care plan. Muscle Nerve 2012 ; 45 : 676-83.
3) Kuo CF, See LC, Yu KH, et al. Incidence, cancer risk and mortality of dermatomyositis and polymyositis in Taiwan : a nationwide population study. Br J Dermatol 2011 ; 165 : 1273-9.
4) Aussy A, Boyer O, Cordel N. Dermatomyositis and immune-mediated necrotizing myopathies : a window on autoimmunity and cancer. Front Immunol 2017 ; 8 : 992.
5) Mendez EP, Lipton R, Ramsey-Goldman R, et al. US incidence of juvenile dermatomyositis, 1995-1998 : results from the National Institute of Arthritis and Musculoskeletal and Skin Diseases Registry. Arthritis Rheum 2003 ; 49 : 300-5.
6) Ohta A, Nagai M, Nishina M, et al. Prevalence and incidence of polymyositis and dermatomyositis in Japan. Mod Rheumatol 2014 ; 24 : 477-80.
7) Tomimitsu H, Ohta A, Nagai M, et al. Epidemiologic analysis of the clinical features of Japanese patients with polymyositis and dermatomyositis. Mod Rheumatol 2016 ; 26 : 398-402.
8) Hengstman GJ, van Venrooij WJ, Vencovsky J, et al. The relative prevalence of dermatomyositis and polymyositis in Europe exhibits a latitudinal gradient. Ann Rheum Dis 2000 ; 59 : 141-2.
9) Bernatsky S, Joseph L, Pineau CA, et al. Estimating the prevalence of polymyositis and dermatomyositis from administrative data : age, sex and regional differences. Ann Rheum Dis 2009 ; 68 : 1192-6.
10) Pearson DR, Werth VP. Geospatial correlation of amyopathic dermatomyositis with fixed sources of airborne pollution : a retrospective cohort study. Front Med (Lausanne) 2019 ; 6 : 85.
11) Muro Y, Sugiura K, Hoshino K, et al. Epidemiologic study of clinically amyopathic dermatomyositis and anti-melanoma differentiation-associated gene 5 antibodies in central Japan. Arthritis Res Ther 2011 ; 13 : R214.
12) Nishina N, Sato S, Masui K, et al. Seasonal and residential clustering at disease onset of anti-MDA5-associated interstitial lung disease. RMD Open 2020 ; 6 : e001202.
13) Hengstman GJ, van Venrooij WJ, Vencovsky J, et al. The relative prevalence of dermatomyositis and polymyositis in Europe exhibits a latitudinal gradient. Ann Rheum Dis 2000 ; 59 : 141-2.
14) Bernatsky S, Joseph L, Pineau CA, et al. Estimating the prevalence of polymyositis and dermatomyositis from administrative data : age, sex and regional differences. Ann Rheum Dis 2009 ; 68 : 1192-6.
15) Gao X, Han L, Yuan L, et al. HLA class II alleles may influence susceptibility to adult dermatomyositis and polymyositis in a Han Chinese population. BMC Dermatol 2014 ; 14 : 9.
16) Emslie-Smith AM, Engel AG. Microvascular changes in early and advanced dermatomyositis : a quantitative study. Ann Neurol 1990 ; 27 : 343-56.
17) O'Hanlon TP, Carrick DM, Targoff IN, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies : distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine (Baltimore) 2006 ; 85 : 111-27.
18) Chen Z, Wang Y, Kuwana M, et al. HLA-DRB1 alleles as genetic risk factors for the development of anti-MDA5 antibodies in patients with dermatomyositis. J Rheumatol 2017 ; 44 : 1389-93.
19) Miller FW, Cooper RG, Vencovsky J, et al. Genome-wide association study of dermatomyositis reveals genetic overlap with other autoimmune disorders. Arthritis Rheum 2013 ; 65 : 3239-47.
20) Rothwell S, Cooper RG, Lundberg IE, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016 ; 75 : 1558-66.
21) Gao S, Luo H, Zhang H, et al. Using multi-omics methods to understand dermatomyositis/polymyositis. Autoimmun Rev 2017 ; 16 : 1044-8.
22) Adler BL, Christopher-Stine L. Triggers of inflammatory myopathy : insights into pathogenesis. Discov Med 2018 ; 25 : 75-83.
23) Dourmishev AL, Dourmishev LA. Dermatomyositis and drugs. Adv Exp Med Biol 1999 ; 455 : 187-91.
24) Moghadam-Kia S, Oddis CV, Aggarwal R. Modern therapies for idiopathic inflammatory myopathies (IIMs) : role of biologics. Clin Rev Allergy Immunol 2017 ; 52 : 81-7
25) Love LA, Weinberg CR, McConnaughey DR, et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum 2009 ; 60 : 2499-504.
26) ShahM, Targoff IN, RiceMM, et al. Brief report : ultraviolet radiation exposure is associated with clinical and autoantibody phenotypes in juvenile myositis. Arthritis Rheum 2013 ; 65 : 1934-41.
27) Mamyrova G, Rider LG, Ehrlich A, et al. Environmental factors associated with disease flare in juvenile and adult dermatomyositis. Rheumatology (Oxford) 2017 ; 56 : 1342-7.
28) Zeidi M, Chansky PB, Werth VP. Acute onset/flares of dermatomyositis following ingestion of IsaLean herbal supplement : Clinical and immunostimulatory findings. J Am Acad Dermatol 2019 ; 80 : 801-4.
29) Kissel JT, Mendell JR, Rammohan KW. Microvascular deposition of complement membrane attack complex in dermatomyositis. N Engl J Med. 1986 ; 314 : 329-34.
30) Dalakas MC. Immunotherapy of myositis : issues, concerns and future prospects.Nat Rev Rheumatol 2010 ; 6 : 129-37.
31) Emslie-Smith AM, Engel AG. Microvascular changes in early and advanced dermatomyositis : a quantitative study. Ann Neurol. 1990 ; 27 : 343-56.
32) Vattemi G, Mirabella M, Guglielmi V, et al. Muscle biopsy features of idiopathic inflammatory myopathies and differential diagnosis. Auto Immun Highlights 2014 ; 5 : 77-85.
33) David Wong, Bory Kea, Rob Pesich, et al. Interferon and biologic signatures in dermatomyositis skin : specificity and heterogeneity across diseases. PLoS One 2012 ; 7 : e29161.
34) Xie S, Luo H, Zhang H, et al. Discovery of key genes in dermatomyositis based on the gene expression omnibus database. DNA Cell Biol 2018 ; 37 : 982-92.
35) Greenberg SA, Higgs BW, Morehouse C, et al. Relationship between disease activity and type 1 interferon- and other cytokine-inducible gene expression in blood in dermatomyositis and polymyositis. Genes Immun 2012 ; 13 : 207-13.
36) Huard C, Gulla SV, Bennett DV, et al. Correlation of cutaneous disease activity with type 1 interferon gene signature and interferon β in dermatomyositis. Br J Dermatol 2017 ; 176 : 1224-30.
37) Moneta GM, Marafon DP, Marasco E, et al. Muscle expression of type I and type II interferons is increased in juvenile dermatomyositis and related to clinical and histologic features. Arthritis Rheumatol 2019 ; 71 : 1011-21.
38) Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014 ; 14 : 36-49.
39) Pinal-Fernandez I, Amici DR, Parks CA, et al. Myositis autoantigen expression correlates with muscle regeneration but not autoantibody specificity. Arthritis Rheumatol 2019 ; 71 : 1371-6.
40) De Vooght J, Vulsteke JB, De Haes P, et al. Anti-TIF1-γ autoantibodies : warning lights of a tumour autoantigen. Rheumatology (Oxford) 2020 ; 59 : 469-77.
P.270 掲載の参考文献
1) Okiyama N, Yamaguchi Y, Kodera M, et al. Distinct histopathologic patterns of finger eruptions in dermatomyositis based on myositis-specific autoantibody profiles. JAMA Dermatol 2019 ; 155 : 1080-2.
2) Mugii N, Hasegawa M, Matsushita T, et al. Association between nail-fold capillary findings and disease activity in dermatomyositis. Rheumatology (Oxford) 2011 ; 50 : 1091-8.
3) Inoue S, Okiyama N, Shobo M, et al. Diffuse erythema with 'angel wings' sign in Japanese patients with anti-small ubiquitin-like modifier activating enzyme antibody-associated dermatomyositis. Br J Dermatol 2018 ; 179 : 1414-5.
4) Narang NS, Casciola-Rosen L, Li S, et al. Cutaneous ulceration in dermatomyositis : association with anti-melanoma differentiation-associated gene 5 antibodies and interstitial lung disease. Arthritis Care Res (Hoboken) 2015 ; 67 : 667-72.
5) Ishigaki K, Maruyama J, Hagino N, et al. Skin ulcer is a predictive and prognostic factor of acute or subacute interstitial lung disease in dermatomyositis. Rheumatol Int 2013 ; 33 : 2381-9.
P.272 掲載の参考文献
1) 岸史子, 永井弥生, 曽我部陽子, ほか. 脂肪織炎を初発症状とした皮膚筋炎. 皮膚病診療 2009 ; 31 : 1035-8.
2) 神人正寿, 河野志保美, 尹浩信, ほか. 脂肪織炎を伴った皮膚筋炎の1例. 皮膚科の臨床 2003 ; 45 : 59-62.
3) 安藤佐土美, 秋山真志, 大田光仁, ほか. 脂肪織炎で発症した皮膚筋炎の1例. 臨床皮膚科 2008 ; 62 : 549-51.
4) 土田哲也, 玉置邦彦, 安藤巌夫, ほか. 皮膚筋炎における皮下脂肪織炎と間質性肺炎の関連について. 日皮会誌 1987 ; 97 : 1521-30.
5) 秋津美帆, 石黒直子, 杉本直樹, ほか. 脂肪織炎と間質性肺炎を合併した皮膚筋炎. 皮膚病診療 2013 ; 35 : 771-4.
P.273 掲載の参考文献
1) Wong KO. Dermatomyositis : a clinical investigation of twenty three cases in Hong Kong. Br J Dermatol 1969 ; 81 : 544-7.
2) MutasimDF, Egesi A, Spicknail KE. Wong-type dermatomyositis : a mimic of many dermatoses. J Cutan Pathol 2016 ; 43 : 781-6.
3) Umanoff N, Fisher A, Carlson JA. Wong-type dermatomyositis showing porokeratosis-like changes (columnar dyskeratosis) : a case report and review of the literature. Dermatopathology 2015 ; 2 : 1-8.
4) Matsumoto A, Wang R, Carlson JA. Columnar dyskeratosis-A clue to Wong-type dermatomyositis? J Cutan Pathol 2017 ; 44 : 813-4.
5) Haro R, Revelles JM, del Carmen Farina M, et al. Wong's dermatomyositis : a new case and review of the literature. Int J Dermatol 2013 ; 52 : 466-70.
6) IshikawaM, Yamamoto T. Wong-type dermatomyositis : a first report from Japan. J Dermatol 2017 ; 44 : e336-7.
P.276 掲載の参考文献
1) Okiyama N, Yamaguchi Y, Kodera M, et al. Distinct histopathologic patterns of finger eruptions in dermatomyositis based on myositis-specific autoantibody profiles. JAMA Dermatol 2019 ; 155 : 1080-2.
2) Smith ES, Hallman JR, DeLuca AM, et al. Dermatomyositis : a clinicopathological study of 40 patients. Am J Dermatopathol 2009 ; 31 : 61-7.
3) Wolstencroft PW, Rieger KE, Leatham HW, et al. Clinical factors associated with cutaneous histopathologic findings in dermatomyositis. J Cutan Pathol 2019 ; 46 : 401-10.
4) Hanno R, Callen JP. Histopathology of Gottron's papules. J Cutan Pathol 1985 ; 12 : 389-94.
5) Mii S, Kobayashi R, Nakano T, et al. A histopathologic study of mechanic's hands associated with dermatomyositis : a report of five cases. Int J Dermatol 2009 ; 48 : 1177-82.
6) Ito A, Yamada N, Yoshida Y, et al. Pseudocheckerboard pattern : an interesting histopathological finding in mechanic's hands. J Cutan Pathol 2016 ; 43 : 5-11.
7) Fiorentino D, Chung L, Zwerner J, et al. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140) : a retrospective study. J Am Acad Dermatol 2011 ; 65 : 25-34.
8) Jasso-Olivares J, Diaz-Gonzalez JM, Miteva M, et al. Horizontal and vertical sections of scalp biopsy specimens from dermatomyositis patients with scalp involvement. J Am Acad Dermatol 2018 ; 78 : 1178-84.
9) Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005 ; 57 : 664-78.
10) Uruha A, Nishikawa A, Tsuburaya RS, et al. Sarcoplasmic MxA expression : A valuable marker of dermatomyositis. Neurology 2017 ; 88 : 493-500.
11) Wong D, Kea B, Pesich R, et al. Interferon and biologic signatures in dermatomyositis skin : specificity and heterogeneity across diseases. PLoS One 2012 ; 7 : e29161.
12) Zhang SH, Zhao Y, Xie QB, et al. Aberrant activation of the type I interferon system may contribute to the pathogenesis of anti-melanoma differentiation‐associated gene 5 dermatomyositis. Br J Dermatol 2019 ; 180 : 1090-8.
P.280 掲載の参考文献
1) 上阪等. 三科で診る多発性筋炎・皮膚筋炎. 医学のあゆみ. 2011 : 239 ; 1-5.
2) Dimachkie MM. Idiopathic inflammatory myopathies. J Neuroimmunol 2011 ; 231 : 32-42.
3) Labirua A, Lundberg IE. Interstitial lung disease and idiopathic inflammatory myopathies : progress and pitfalls. Curr Opin Rheumatol 2010 ; 22 : 633-8.
4) 塚本浩. 皮膚筋炎・多発性筋炎. 日内会誌 2015 ; 104 : 2125-31.
5) Sanmarti R, Collado A, Gratacos J, et al. Reduced serum creatine kinase activity in inflammatory rheumatic diseases. J Rheumatol 1996 ; 23 : 310-2.
6) 清水潤. 多発筋炎/皮膚筋炎と筋MRI. 神経内科 2004 ; 60 : 240246.
7) 中山貴博. 運動と筋のMRI. 神経内科 2004 ; 60 : 223-9.
8) Reimers CD, Schedel H, Fleckenstein JL, et al. Magnetic resonance imaging of skeletal muscles in idiopathic inflammatory myopathies of adults. J Neurol 1994 ; 241 : 306-11.
9) 廣瀬和彦. 筋電図判読テキスト. 文光堂 ; 1992.
10) 東原真奈, 園生雅弘. 筋電図検査. 筋炎-What's new? Clin Neurosci 2012 ; 30 : 270-2.
11) 東原真奈, 園生雅弘. 炎症性筋疾患の電気診断. 医学のあゆみ 2011 ; 239 : 88-94.
P.284 掲載の参考文献
1) Mescam-Mancini L, Allenbach Y, Hervier B, et al. Anti-Jo-1 antibody-positive patients show a characteristic necrotizing perifascicular myositis. Brain 2015 ; 138 : 2485-92.
2) Uruha A, Allenbach Y, Charuel JL, et al. Diagnostic potential of sarcoplasmic MxA expression in subsets of dermatomyositis. Neuropathol Appl Neurobiol 2019 ; 45 : 513-22.
3) Inoue M, Tanboon J, Okubo M, et al. Absence of sarcoplasmic myxovirus resistance protein A (MxA) expression in antisynthetase 1 syndrome in a cohort of 194 cases. Neuropathol Appl Neurobiol 2019 ; 45 : 523-4.
4) Luo Y-B, Mastaglia FL. Dermatomyositis, polymyositis and immune-mediated necrotising myopathies. Biochim Biophys Acta 2015 ; 1852 : 622-32.
5) Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol 2005 ; 57 : 664-78.
6) Ladislau L, Suarez-Calvet X, Toquet S, et al. JAK inhibitor improves type I interferon induced damage : proof of concept in dermatomyositis. Brain 2018 ; 141 : 1609-21.
7) Uruha A, Nishikawa A, Tsuburaya RS, et al. Sarcoplasmic MxA expression : A valuable marker of dermatomyositis. Neurology 2017 ; 88 : 493-500.
8) Mammen AL, Allenbach Y, Stenzel W, et al. 239th ENMC International Workshop : Classification of dermatomyositis, Amsterdam, the Netherlands, 14-16 December 2018. Neuromuscul Disord 2020 ; 30 : 70-92.
9) Tanboon J, Uruha A, StenzelW, et al. Where are we moving in the classification of idiopathic inflammatory myopathies? Cur Opin Neurol 2020 ; 33 : 590-603.
10) Tanboon J, Inoue M, Hirakawa S, et al. Pathological features of anti-Mi-2 dermatomyositis. Neurology, in press.
11) Uruha A, Suzuki S, Suzuki N, et al. Perifascicular necrosis in anti-synthetase syndrome beyond anti-Jo-1. Brain 2016 ; 139 : e50.
12) Aouizerate J, De Antonio M, Bassez G, et al. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta Neuropathol Commun 2014 ; 2 : 154.
P.287 掲載の参考文献
1) Scola RH, Werneck LC, Prevedello DM, et al. Diagnosis of dermatomyositis and polymyositis : a study of 102 cases. Arq Neuropsiquiatr 2000 ; 58 : 789-99.
2) Mugii N, Hasegawa M, Matsushita T, et al. Oropharyngeal dysphagia in dermatomyositis : associations with clinical and laboratory features including autoantibodies. PLoS One 2016 ; 11 : e0154746.
3) Kim SJ, Han TR, Jeong SJ, et al. Comparison between swallowing-related and limb muscle involvement in dermatomyositis patients. Scand J Rheumatol 2010 ; 39 : 336-40.
4) 巨島文子, 山本敏之. 炎症性筋疾患. 才藤栄一, 植田耕一郎監修. 摂食嚥下リハビリテーション, 第3版. 医歯薬出版 ; 2016. pp.312-4.
5) 唐帆健浩, 兵頭義博, 松村優子, ほか. 皮膚筋炎に伴う嚥下障害の検討. 耳鼻 2004 ; 50 : 88-92.
6) Porubsky ES, Murray JP, Pratt LL. Cricopharyngeal achalasia in dermatomyositis. Arch Otolaryngol 1973 ; 98 : 428-9.
7) de Merieux P, Verity MA, Clements PJ, et al. Esophageal abnormalities and dysphagia in polymyositis and dermatomyositis. Arthritis Rheum 1983 ; 26 : 961-8.
8) Marie I, Menard JF, Hatron PY, et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis : a series of 73 patients. Arthritis Care Res (Hoboken) 2010 ; 62 : 1748-55.
9) 柳輝希, 有田賢, 浦上祐司, ほか. 嚥下障害に対し嚥下リハビリテーションを施した皮膚筋炎の2例. 皮膚科の臨床 2005 ; 47 : 157-61.
10) Vencovsky J, Rehak F, Pafko P, et al. Acute cricopharyngeal obstruction in dermatomyositis. J Rheumatol 1988 ; 15 : 1016-8.
P.291 掲載の参考文献
1) Barnes BE, Mawr B. Dermatomyositis and malignancy. A review of the literature. Ann Intern Med 1976 ; 84 : 68-76.
2) Sigurgeirsson B, Lindelof B, Edhag O, et al. Risk of cancer in patients with dermatomyositis or polymyositis. A population-based study. N Engl J Med 1992 ; 326 : 363-7.
3) Olazagasti JM, Baez PJ, Wetter DA, et al. Cancer risk in dermatomyositis : a meta-analysis of cohort studies. Am J Clin Dermatol 2015 ; 16 : 89-98.
4) Hill CL, Zhang Y, Sigurgeirsson B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis : a population-based study. Lancet 2001 ; 357 : 96-100.
6) Gono T, Kuwana M. Current understanding and recent advances in myositis-specific and -associated autoantibodies detected in patients with dermatomyositis Expert Rev Clin Immunol 2020 ; 16 : 79-89.
7) Fiorentino DF, Chung LS, Christopher-Stine L, et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1γ. Arthritis Rheum 2013 ; 65 : 2954-62.
8) Kaji K, Fujimoto M, Hasegawa M, et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis : an association with malignancy. Rheumatology 2007 ; 46 : 25-8.
9) Fujimoto M, Hamaguchi Y, Kaji K, et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins Arthritis Rheum 2012 ; 64 : 513-22.
10) Trallero-Araguas E, Rodrigo-Pendas JA, Selva-O'Callaghan A, et al. Usefulness of antip155 autoantibody for diagnosing cancer-associated dermatomyositis : a systematic review and meta-analysis. Arthritis Rheum 2012 ; 64 : 523-32.
11) Lu X, Yang H, Shu X, et al. Factors predicting malignancy in patients with polymyositis and dermatomyostis : a systematic review and meta-analysis. PLoS One 2014 ; 9 : e94128.
12) Kooistra L, Ricotti C, Galimberti F, et al. Malignancy-associated dermatomyositis : Retrospective case-control study from a single tertiary care center. J Am Acad Dermatol 2018 ; 79 : 152-5.
13) Mugii N, Hasegawa M, Matsushita T, et al. Oropharyngeal dysphagia in dermatomyositis : Associations with clinical and laboratory features including autoantibodies. PLoS One 2016 ; 11 : e0154746.
14) Kang EH, Lee SJ, Ascherman DP, et al. Temporal relationship between cancer and myositis identifies two distinctive subgroups of cancers : impact on cancer risk and survival in patients with myositis. Rheumatology (Oxford) 2016 ; 55 : 1631-41.
15) Oldroyd A, Sergeant JC, New P, et al. The temporal relationship between cancer and adult onset anti-transcriptional intermediary factor 1 antibody-positive dermatomyositis. Rheumatology (Oxford) 2019 ; 58 : 650-5.
16) Pinal-Fernandez I, Ferrer-Fabregas B, Trallero-Araguas E, et al. Tumour TIF1 mutations and loss of heterozygosity related to cancer-associated myositis. Rheumatology (Oxford) 2018 ; 57 : 388-96.
17) Kohsaka H, Mimori T, Kanda T, et al. Treatment consensus for management of polymyositis and dermatomyositis among rheumatologists, neurologists and dermatologists. Mod Rheumatol 2019 ; 29 : 1-19.
P.295 掲載の参考文献
1) Marie I. Morbidity and mortality in adult polymyositis and dermatomyositis. Curr Rheumatol Rep 2012 ; 14 : 275-85.
3) Sato S, Masui K, Nishina N, et al. Initial predictors of poor survival in myositis-associated interstitial lung disease : a multicentre cohort of 497 patients. Rheumatology (Oxford) 2018 ; 57 : 1212-21.
4) Kaieda S, Gono T, Masui K, et al. Evaluation of usefulness in surfactant protein D as a predictor of mortality in myositis-associated interstitial lung disease. PLoS One 2020 ; 15 : e0234523.
5) Zuo Y, Lifang Ye L, Liu M, et al. Clinical significance of radiological patterns of HRCT and their association with macrophage activation in dermatomyositis. Rheumatology (Oxford) 2020 ; 59 : 2829-37.
6) Tanizawa K, Handa T, Nakashima R, et al. HRCT features of interstitial lung disease in dermatomyositis with anti-CADM-140 antibody. Respir Med 2011 ; 105 : 1380-7.
7) Fujisawa T, Hozumi H, Kono M, et al. Prognostic factors for myositis-associated interstitial lung disease. PLoS One 2014 6 ; 9 : e98824.
P.299 掲載の参考文献
1) Rider LG, Nistala K. The juvenile idiopathic inflammatory myopathies : pathogenesis, clinical and autoantibody phenotypes, and outcomes. J Intern Med 2016 ; 280 : 24-38.
2) 厚生労働科学研究費補助金難治性疾患等政策研究事業「若年性特発性関節炎を主とした小児リウマチ性疾患の診断基準・重症度分類の標準化とエビデンスに基づいたガイドラインの策定に関する研究班」若年性皮膚筋炎分担班編. 若年性皮膚筋炎診療の手引き 2018年版. 羊土社 ; 2018.
3) Fujikawa S, Okuni M. A nationwide surveillance study of rheumatic diseases among Japanese children. Acta Paediatr Jpn 1997 ; 39 : 242-4.
4) Bohan A, Peter JB. Polymyositis and dermatomyositis. N Engl J Med 1975 ; 292 : 344-7.
5) Balin SJ, Wetter DA, Anderson LK, et al. Calcinosis cutis occurring in association with autoimmune connective tissue disease : The Mayo Clinic experience with 78 patients 1996-2009. Arch Dermatol 2012 ; 148 : 455-62.
6) Tansley SL, Betteridge ZE, Shaddick G, et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology 2014 ; 53 : 2204-8.
7) Ueki M, Kobayashi I, Takezaki S, et al. Myositis-specific autoantibodies in Japanese patients with juvenile idiopathic inflammatory myopathies. Mod Rheumatol 2019 ; 29 : 351-5.
8) Iwata N, Nakaseko H, Kohagura T, et al. Clinical subsets of juvenile dermatomyositis classified by myositis-specific autoantibodies : Experience at a single center in Japan. Mod Rheumatol 2019 ; 29 : 802-7.
9) Tansley SL, Betteridge ZE, Gunawardena H, et al. Anti-MDA5 autoantibodies in juvenile dermatomyositis identify a distinct clinical phenotype : a prospective cohort study. Arthritis Res Ther 2014 ; 16 : 1-8.
10) Kobayashi I, Yamada M, Takahashi Y, et al. Interstitial lung disease associated with juvenile dermatomyositis ; clinical features and efficacy of cyclosporine A. Rheumatology 2003 ; 43 : 371-4.
11) Kobayashi N, Takezaki S, Kobayashi I, et al. Clinical and laboratory features of fatal rapidly progressive interstitial lung diseases associated with juvenile dermatomyositis. Rheumatology 2015 ; 54 : 784-91.
12) Yamazaki K, Ohta A, Akioka S, et al, External validation of the EULAR/ACR idiopathic inflammatory myopathies classification criteria with a Japanese paediatric cohort. Rheumatology 2021 ; 60 : 802-8.
13) Kobayashi I, Akioka S, Kobayashi N, et al. Clinical practice guidance for juvenile dermatomyositis (JDM) 2018-Update. Mod Rheumatol 2020 ; 30 : 411-23.
14) Deakin CT, Campanilho-Marques R, Simou S, et al. Efficacy and safety of cyclophosphamide treatment in severe juvenile dermatomyositis shown by marginal structural modeling. Arthritis Rheumatol 2018 ; 70 : 785-93.
15) Ruperto N, Pistorio A, Oliveira S, et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis : a randomized trial. Lancet 2016 ; 387 : 671-8.
16) Kobayashi I, Mori M, Yamaguchi K, et al. Pediatric Rheumatology Association of Japan (PRAJ) recommendation for vaccination in pediatric rheumatic diseases. Mod Rheumatol 2015 ; 25 : 335-43.
P.301 掲載の参考文献
1) Mammen AL. Statin-associated autoimmune myopathy. N Engl J Med 2016 ; 374 : 664-9.
2) Watanabe Y, Uruha A, Suzuki S, et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotizing myopathy. J Neurol Neurosurg Psychiatry 2016 ; 87 : 1038-04.
3) Suzuki S, Ishikawa N, Konoeda F, et al. Nivolumab-related myasthenia gravis with myositis and myocarditis in Japan. Neurology 2017 ; 89 : 1127-34.
4) Seki M, Uruha A, Ohnuki Y, et al. Inflammatory myopathy associated with PD-1 inhibitors. J Autoimmun 2019 ; 100 : 105-13.
P.308 掲載の参考文献
1) Nakashima R, Imura Y, Hosono Y, et al. The multicenter study of a new assay for simultaneous detection of multiple anti-aminoacyl-tRNA synthetases in myositis and interstitial pneumonia. PLoS One 2014 ; 9 : e85062.
3) Hashish LTE, Trieu EP, Sadanandan P, et al. Identification of autoantibodies to tyrosyl-tRNA synthetase in dermatomyositis with features consistent with antisynthetase syndrome [abstract]. Arthritis Rheum 2005 ; 52 : S312.
4) Yoshifuji H, Fujii T, Kobayashi S, et al. Anti-aminoacyl-tRNA synthetase antibodies in clinical course prediction of interstitial lung disease complicated with idiopathic inflammatory myopathies. Autoimmunity 2006 ; 39 : 233-41.
5) Waseda Y, Johkoh T, Egashira R, et al. Antisynthetase syndrome : Pulmonary computed tomography findings of adult patients with antibodies to aminoacyl-tRNA synthetases. Eur J Radiol 2016 ; 85 : 1421-6.
6) Hozumi H, Enomoto N, Kono M, et al. Prognostic significance of anti-aminoacyl-tRNA synthetase antibodies in polymyositis/dermatomyositis-associated interstitial lung disease : a retrospective case control study. PLoS One 2015 ; 10 : e0120313.
7) Nakazawa M, Kaneko Y, Takeuchi T. Risk factors for the recurrence of interstitial lung disease in patients with polymyositis and dermatomyositis : a retrospective cohort study. Clin Rheumatol 2018 ; 37 : 765-71.
8) Tanizawa K, Handa T, Nakashima R, et al. The long-term outcome of interstitial lung disease with anti-aminoacyl-tRNA synthetase antibodies. Respir Med 2017 ; 127 : 57-64.
9) Hozumi H, Fujisawa T, Nakashima R, et al. Efficacy of glucocorticoids and calcineurin inhibitors for anti-aminoacyl-tRNA synthetase antibody-positive polymyositis/dermatomyositis-associated interstitial lung disease : A propensity score-matched analysis. J Rheumatol 2019 ; 46 : 509-17.
10) Hervier B, Devilliers H, Stanciu R, et al. Hierarchical cluster and survival analyses of antisynthetase syndrome : phenotype and outcome are correlated with anti-tRNA synthetase antibody specificity. Autoimmun Rev 2012 ; 12 : 210-7.
11) Lega JC, Fabien N, Reynaud Q, et al. The clinical phenotype associated with myositis-specific and associated autoantibodies : a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmun Rev 2014 ; 13 : 883-91.
12) Hamaguchi Y, Fujimoto M, Matsushita T, et al. Common and distinct clinical features in adult patients with antiaminoacyl-tRNA synthetase antibodies : heterogeneity within the syndrome. PLoS One 2013 ; 8 : e60442.
13) Aggarwal R, Cassidy E, Fertig N, et al. Patients with non-Jo-1 anti-tRNA-synthetase autoantibodies have worse survival than Jo-1 positive patients. Ann Rheum Dis 2014 ; 73 : 227-32.
14) Pinal-Fernandez I, Casal-Dominguez M, Huapaya JA, et al. A longitudinal cohort study of the anti-synthetase syndrome : increased severity of interstitial lung disease in black patients and patients with anti-PL7 and anti-PL12 autoantibodies. Rheumatology (Oxford) 2017 ; 56 : 999-1007.
15) Rojas-Serrano J, Herrera-Bringas D, Mejia M, et al. Prognostic factors in a cohort of antisynthetase syndrome (ASS) : serologic profile is associated with mortality in patients with interstitial lung disease (ILD). Clin Rheumatol 2015 ; 34 : 1563-9.
16) Shi J, Li S, Yang H, et al. Clinical profiles and prognosis of patients with distinct antisynthetase autoantibodies. J Rheumatol 2017 ; 44 : 1051-7.
17) Liu H, Xie S, Liang T, et al. Prognostic factors of interstitial lung disease progression at sequential HRCT in anti-synthetase syndrome. Eur Radiol 2019 ; 29 : 5349-57.
18) 中嶋蘭, 谷口雅. リウマチ性疾患の肺病変 : 多発性筋炎・皮膚筋炎における間質性肺炎. リウマチ科 2018 ; 60 : 39-46.
19) Miller FW, Waite KA, Biswas T, Plotz PH. The role of an autoantigen, histidyl-tRNA synthetase, in the induction and maintenance of autoimmunity. Proc Natl Acad Sci U S A 1990 ; 87 : 9933-7.
20) Ascherman DP, Oriss TB, Oddis CV, Wright TM. Critical requirement for professional APCs in eliciting T cell responses to novel fragments of histidyl-tRNA synthetase (Jo-1) in Jo-1 antibody-positive polymyositis. J Immunol 2002 ; 169 : 7127-34.
21) Casciola-Rosen L, Nagaraju K, Plotz P, et al. Enhanced autoantigen expression in regenerating muscle cells in idiopathic inflammatory myopathy. J Exp Med 2005 ; 201 : 591-601.
23) Eloranta ML, Barbasso Helmers S, Ulfgren AK, et al. A possible mechanism for endogenous activation of the type I interferon system in myositis patients with anti-Jo-1 or anti-Ro 52/anti-Ro 60 autoantibodies. Arthritis Rheum 2007 ; 56 : 3112-24.
24) Soejima M, Kang EH, Gu X, et al. Role of innate immunity in a murine model of histidyl-transfer RNA synthetase (Jo-1) -mediated myositis. Arthritis Rheum 2011 ; 63 : 479-87.
P.314 掲載の参考文献
1) Peason C. Holander's Arthritis and Conditions. Lea & Febiger, 1979.
2) Euwer RL, Sontheimer RD. Amyopathic dermatomyositis : a review. J Invest Dermatol 1993 ; 100 : 124S-127S.
3) Richard D Sontheimer. Would a new name hasten the acceptance of amyopathic dermatomyositis (dermatomyositis sine myositis) as a distinctive subset within the idiopathic inflammatory dermatomyopathies spectrum of clinical illness? J Am Acad Dermatol 2002 ; 46 : 626-36.
4) Nawata Y, Kurasawa K, Takabayashi K, et al. Corticosteroid resistant interstitial pneumonitis in dermatomyositis/polymyositis : prediction and treatment with cyclosporine. J Rheumatol 1999 ; 26 : 1527-33.
7) Sato S, Hoshino K, Satoh T, et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis : Association with rapidly progressive interstitial lung disease. Arthritis Rheum 2009 ; 60 : 2193-200.
8) Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006 ; 441 : 101-5.
9) Blum SI, Tse HM. Innate Viral sensor MDA5 and Coxsackievirus interplay in type 1 diabetes development. Microorganisms 2020 3 ; 8 : 993.
10) Aida K, Nishida Y, Tanaka S, et al. RIG-I- and MDA5-initiated innate immunity linked with adaptive immunity accelerates beta-cell death in fulminant type 1 diabetes. Diabetes 2011 ; 60 : 884-9.
11) Hosono Y, Serada S, Naka T, et al. Splicing factor proline/glutamine-rich is a novel autoantigen of dermatomyositis and associated with anti-melanoma differentiation-associated gene 5 antibody. J Autoimmun 2017 ; 77 : 116-22.
12) Nishina N, Sato S, Masui K, et al. Seasonal and residential clustering at disease onset of anti-MDA5-associated interstitial lung disease. RMD Open 2020 ; 6 : e001202.
13) Endo Y, Koga T, Suzuki T, et al. Successful treatment of plasma exchange for rapidly progressive interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis : A case report. Medicine (Baltimore) 2018 ; 97 : e0436.
14) DeWane ME, Waldman R, Lu J. Dermatomyositis : clinical features and pathogenesis. J Am Acad Dermatol 2020 ; 82 : 267-81.
15) Kurtzman DJ, Vleugels RA. Anti-melanoma differentiation-associated gene 5 (MDA5) dermatomyositis : A concise reviewwith an emphasis on distinctive clinical features. J Am Acad Dermatol 2018 ; 78 : 776-85.
16) Wolstencroft PW, Fiorentino DF. Dermatomyositis clinical and pathological phenotypes associated with myositis-specific autoantibodies. Curr Rheumatol Rep 2018 ; 20 : 28.
17) Xu Y, Yang CS, Li YJ, et al. Predictive factors of rapidly progressive-interstitial lung disease in patients with clinically amyopathic dermatomyositis. Clin Rheumatol 2016 ; 35 : 113-6.
18) Narang NS, Casciola-Rosen L, Li S, et al. Cutaneous ulceration in dermatomyositis : association with anti-melanoma differentiation-associated gene 5 antibodies and interstitial lung disease. Arthritis Care Res (Hoboken) 2015 ; 67 : 667-72.
19) Fiorentino D, Chung L, Zwerner J, et al. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140) : A retrospective study. J Am Acad Dermatol 2011 ; 65 : 25-34.
20) Okiyama N, Yamaguchi Y, Kodera M, et al. Distinct histopathologic patterns of finger eruptions in dermatomyositis based on myositis-specific autoantibody profiles. JAMA Dermatol 2019 ; 155 : 1080-2.
21) Huh JW, Kim DS, Lee CK, et al. Two distinct clinical types of interstitial lung disease associated with polymyositis-dermatomyositis. Respir Med 2007 ; 101 : 1761-9.
22) Tanizawa K, Handa T, Mishima M, et al. HRCT features of interstitial lung disease in dermatomyositis with anti-CADM-140 antibody. Respir Med 2011 ; 105 : 1380-7.
23) Tanizawa K, Handa T, Mishima M, et al. The prognostic value of HRCT in myositis-associated interstitial lung disease. Respir Med 2013 ; 107 : 745-52.
24) Nishioka A, Tsunoda S, Abe T, et al. Serum neopterin as well as ferritin, soluble interleukin-2 receptor, KL-6 and anti-MDA5 antibody titer provide markers of the response to therapy in patients with interstitial lung disease complicating anti-MDA5 antibody-positive dermatomyositis. Mod Rheumatol 2019 ; 29 : 814-20.
25) Ye Y, Fu Q, Wang R, et al. Serum KL-6 level is a prognostic marker in patients with anti-MDA5 antibody-positive dermatomyositis associated with interstitial lung disease. J Clin Lab Anal 2019 ; 33 : e22978.
26) Gono T, Sato S, Kawaguchi Y, et al. Anti-MDA5 antibody, ferritin and IL-18 are useful for the evaluation of response to treatment in interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis. Rheumatology (Oxford) 2012 ; 51 : 1563-70.
27) Kaieda S, Gono T, Masui K, et al. Evaluation of usefulness in surfactant protein D as a predictor of mortality in myositis-associated interstitial lung disease. A Multicenter Retrospective Cohort of Japanese Patients with Myositis-associated ILD (JAMI) investigators. PLoS One 2020 ; 15 : e0234523.
29) Sato S, Kuwana M, Fujita T, et al. Anti-CADM-140/MDA5 autoantibody titer correlates with disease activity and predicts disease outcome in patients with dermatomyositis and rapidly progressive interstitial lung disease. Mod Rheumatol 2013 ; 23 : 496-502.
30) Fujisawa T, Suda T, Nakamura Y, et al. Differences in clinical features and prognosis of interstitial lung diseases between polymyositis and dermatomyositis. J Rheumatol 2005 ; 32 : 58-64.
31) Teruya A, Kawamura K, Ichikado K, et al. Successful polymyxin B hemoperfusion treatment associated with serial reduction of serum anti-CADM-140/MDA5 antibody levels in rapidly progressive interstitial lung disease with amyopathic dermatomyositis. Chest 2013 ; 144 : 1934-6.
32) Shirakashi M, Tsuji H, Mimori T, et al. Efficacy of plasma exchange in anti-MDA5-positive dermatomyositis with interstitial lung disease under combined immunosuppressive treatment. Rheumatology (Oxford) 2020 ; 10 : keaa123.
33) Endo Y, Koga T, Suzuki T, et al. Successful treatment of plasma exchange for rapidly progressive interstitial lung disease with anti-MDA5 antibody-positive dermatomyositis : A case report. Medicine (Baltimore) 2018 ; 97 : e0436.
34) Vuillard C, Pineton de Chambrun M, et al. Clinical features and outcome of patients with acute respiratory failure revealing anti-synthetase or anti-MDA-5 dermato-pulmonary syndrome : a French multicenter retrospective study. Ann Intensive Care 2018 ; 8 : 87.
35) Gorka J, Szczeklik W, Wludarczyk A, et al. Rapidly progressive interstitial lung fibrosis in a patient with amyopathic dermatomyositis and antiMDA5 antibodies. Pol Arch Med Wewn 2015 ; 125 : 685-6.
36) Broome M, Palmer K, Schersten H, et al. Prolonged extracorporeal membrane oxygenation and circulatory support as bridge to lung transplant. Ann Thorac Surg 2008 ; 86 : 1357-60.
37) Leclair V, Labirua-Iturburu A, Lundberg IE. Successful lung transplantation in a case of rapidly progressive interstitial lung disease associated with antimelanoma differentiation-associated gene 5 antibodies. J Rheumatol 2018 ; 45 : 581-3.
38) Deitchman AR, Kalchiem-Dekel O, Todd N, et al. Rapidly progressive interstitial lung disease due to anti-melanoma differentiation associated protein-5 requiring a bilateral lung transplant, and complicated by kennel cough. Respir Med Case Rep 2019 ; 28 : 100886.
39) Huang K, Vinik O, Shojania KY, et al. Clinical spectrum and therapeutics in Canadian patients with anti-melanoma differentiationassociated gene 5 (MDA5) -positive dermatomyositis : a case-based review. Rheumatol Int 2019 ; 39 : 1971-81.
40) Yusen RD, Edwards LB, Dipchand AI, et al. The registry of the international society for heart and lung transplantation : thirty-third adult lung and heart-lung transplant report-2016 ; focus theme : primary diagnostic indications for transplant. J Heart Lung Transplant 2016 ; 35 : 1170-84.
41) Selva-O'Callaghan A, Labrador-Horrillo M, Munoz-Gall X, et al. Polymyositis/dermatomyositis-associated lung disease : analysis of a series of 81 patients. Lupus 2005 ; 14 : 534-42.
42) Shoji T, Bando T, Fujinaga T, et al. Living-donor lobar lung transplantation for rapidly progressive interstitial pneumonia associated with clinically amyopathic dermatomyositis : report of a case. Gen Thorac Cardiovasc Surg 2013 ; 61 : 32-4
43) Zou J, Li T, Huang X, et al. Basiliximab may improve the survival rate of rapidly progressive interstitial pneumonia in patients with clinically amyopathic dermatomyositis with anti-MDA5 antibody. Ann Rheum Dis 2014 ; 73 : 1591-3.
44) Kato M, Ikeda K, Kageyama T, et al. Successful treatment for refractory interstitial lung disease and pneumomediastinum with multidisciplinary therapy including tofacitinib in a patient with anti-MDA5 antibody-positive dermatomyositis. J Clin Rheumatol 2019. Jan 4. doi : 10.1097/RHU.0000000000000984. Online ahead of print.
45) Kurasawa K, Arai S, Namiki Y, et al. Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis. Rheumatology (Oxford) 2018 ; 57 : 2114-9.
46) Romero-Bueno F, del Campo PD, Trallero-Araguas E, et al. Recommendations for the treatment of anti-melanoma differentiation associated gene 5-positive dermatomyositis-associated rapidly progressive interstitial lung disease. Semin Arthritis Rheum 2020 ; 50 : 776-90.
P.318 掲載の参考文献
1) Kotobuki Y, Tonomura K, Fujimoto M. Transcriptional intermediary factor 1 (TIF1) and anti-TIF1γ antibody-positive dermatomyositis : Immunol Med 2021 ; 44 : 23-9.
2) Iyengar S, Farnham PJ. KAP1 protein : an enigmatic master regulator of the genome. J Biol Chem 2011 ; 286 : 26267-76.
3) Venturini L, You J, Stadler M, et al. TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. Oncogene 1999 ; 18 : 1209-17.
5) Kaji K, Fujimoto M, Hasegawa M, et al. Identification of a novel autoantibody reactive with 155 and 140 kDa nuclear proteins in patients with dermatomyositis : an association with malignancy. Rheumatology 2007 ; 46 : 25-8.
6) Pinal-Fernandez I, Ferrer-Fabregas B, Trallero-Araguas E, et al. Tumour TIF1 mutations and loss of heterozygosity related to cancer-associated myositis. Rheumatology 2018 ; 57 : 388-96.
7) Mugii N, Hasegawa M, Matsushita T, et al. Oropharyngeal dysphagia in dermatomyositis : associations with clinical and laboratory features including autoantibodies. PLoS One 2016 ; 11 : e0154746.
8) Fiorentino DF, Kuo K, Chung L, et al. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1c antibodies in adults with dermatomyositis. J Am Acad Dermatol 2015 ; 72 : 449-55.
9) Rider LG, Shah M, Mamyrova G, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine 2013 ; 92 : 223-43.
10) Fujimoto M, Watanabe R, Ishitsuka Y, et al. Recent advances in dermatomyositis-specific auto antibodies. Curr Opin Rheumatol 2016 ; 28 : 636-44.
11) Oya K, Inoue S, Saito A, et al. Pregnancy triggers the onset of anti-transcriptional intermediary factor 1c antibody-positive dermatomyositis : a case series. Rheumatology 2020 ; 59 : 1450-1.
12) Okiyama N, Yamaguchi Y, Kodera M, et al. Distinct histopathologic patterns of finger eruptions in dermatomyositis based on myositis-specific autoantibody profiles. JAMA Dermatol 2019 ; 155 : 1080.
P.320 掲載の参考文献
1) Satoh M, Chan JY, Ross SJ, et al. Autoantibodies to transcription intermediary factor TIF1beta associated with dermatomyositis. Arthritis Res Ther 2012 ; 14 : R79.
2) Fujimoto M, Hamaguchi Y, Kaji K, et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis Rheum 2012 ; 64 : 513-22.
3) Ueda-Hayakawa I, Hamaguchi Y, Okiyama N, et al. Autoantibody to transcriptional intermediary factor-1 beta as a myositis-specific antibody : clinical correlation with clinically amyopathic dermatomyositis or dermatomyositis with mild myopathy. Br J Dermatol 2019 ; 180 : 881-7.
4) Fiorentino D, Casciola-Rosen L. Autoantibodies to transcription intermediary factor 1 in dermatomyositis shed insight into the cancer-myositis connection. Arthritis Rheum 2012 ; 64 : 346-9.
P.324 掲載の参考文献
1) Reichlin M, Mattioli M. Description of a serological reaction characteristic of polymyositis. Clin Immunol Immunopathol 1976 ; 5 : 12-20.
2) Targoff IN, Reichlin M. The association between Mi-2 antibodies and dermatomyositis. Arthritis Rheum 1985 ; 28 : 796-803.
3) Seelig HP, Moosbrugger I, Ehrfeld H, et al. The major dermatomyositis-specific Mi-2 autoantigen is a presumed helicase involved in transcriptional activation. Arthritis Rheum 1995 ; 38 : 1389-99.
4) Ge Q, Nilasena DS, O'Brien CA, et al. Molecular analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen. J Clin Invest 1995 ; 96 : 1730-7.
5) Seelig HP, Renz M, Targoff IN, et al. Two forms of the major antigenic protein of the dermatomyositis-specific Mi-2 autoantigen. Arthritis Rheum 1996 ; 39 : 1769-71.
6) Zhang Y, LeRoy G, Seelig HP, et al. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 1998 ; 95 : 279-89.
7) Fujimoto M, Murakami A, Kurei S, et al. Enzyme-linked immunosorbent assays for detection of anti-transcriptional intermediary factor-1 gamma and anti-Mi-2 autoantibodies in dermatomyositis. J Dermatol Sci 2016 ; 84 : 272-81.
8) Wang HB, Zhang Y. Mi2, an auto-antigen for dermatomyositis, is an ATP-dependent nucleosome remodeling factor. Nucleic Acids Res 2001 ; 29 : 2517-21.
9) Ramirez J, Hagman J. The Mi-2/NuRD complex : a critical epigenetic regulator of hematopoietic development, differentiation and cancer. Epigenetics 2009 ; 4 : 532-6.
10) 室慶直. 抗Mi-2抗体と抗TIF1-γ抗体. 医学のあゆみ 2011 ; 239 : 83-7.
11) Rider LG, Miller FW, Targoff IN, et al. A broadened spectrum of juvenile myositis. Myositis-specific autoantibodies in children. Arthritis Rheum 1994 ; 37 : 1534-8.
12) Feldman BM, Reichlin M, Laxer RM, et al. Clinical significance of specific autoantibodies in juvenile dermatomyositis. J Rheumatol 1996 ; 23 : 1794-7.
13) Wedderburn LR, McHugh NJ, Chinoy H, et al. HLA class II haplotype and autoantibody associations in children with juvenile dermatomyositis and juvenile dermatomyositis-scleroderma overlap. Rheumatology (Oxford) 2007 ; 46 : 1786-91.
14) Betteridge Z, McHugh N. Myositis-specific autoantibodies : an important tool to support diagnosis of myositis. J Intern Med 2016 ; 280 : 8-23.
16) Fujimoto M, Watanabe R, Ishitsuka Y, et al. Recent advances in dermatomyositis-specific autoantibodies. Curr Opin Rheumatol 2016 ; 28 : 636-44.
17) Hausmanowa-Petrusewicz I, Kowalska-Oledzka E, Miller FW, et al. Clinical, serologic, and immunogenetic features in Polish patients with idiopathic inflammatory myopathies. Arthritis Rheum 1997 ; 40 : 1257-66.
18) 藤本学. Antibody Update 2018 皮膚筋炎と自己抗体. Brain and Nerve 2018 ; 70 : 042738.
19) Brouwer R, Hengstman GJ, Vree Egberts W, et al. Autoantibody profiles in the sera of European patients with myositis. Ann Rheum Dis 2001 ; 60 : 116-23.
20) Roux S, Seelig HP, Meyer O. Significance of Mi-2 autoantibodies in polymyositis and dermatomyositis. J Rheumatol 1998 ; 25 : 395-6.
21) Ghirardello A, Rampudda M, Ekholm L, et al. Diagnostic performance and validation of autoantibody testing in myositis by a commercial line blot assay. Rheumatology (Oxford) 2010 ; 49 : 2370-4.
22) Ronnelid J, Barbasso Helmers S, Storfors H, et al. Use of a commercial line blot assay as a screening test for autoantibodies in inflammatory myopathies. Autoimmun Rev 2009 ; 9 : 58-61.
23) Hamaguchi Y, Kuwana M, Takehara K. Performance evaluation of a commercial line blot assay system for detection of myositis- and systemic sclerosis-related autoantibodies. Clin Rheumatol 2020 ; 39 : 3489-97.
24) Montagnese F, Babacic H, Eichhorn P, et al Evaluating the diagnostic utility of new line immunoassays for myositis antibodies in clinical practice : a retrospective study. J Neurol 2019 ; 266 : 1358-66.
26) Nishikai M, Reichlin M. Purification and characterization of a nuclear non-histone basic protein (Mi-1) which reacts with anti-immunoglobulin sera and the sera of patients with dermatomyositis. Mol Immunol 1980 ; 17 : 1129-41.
27) Mierau R, Dick T, Bartz-Bazzanella P, et al. Strong association of dermatomyositis-specific Mi-2 autoantibodies with a tryptophan at position 9 of the HLA-DR beta chain. Arthritis Rheum 1996 ; 39 : 868-76.
28) Matsuda T, Ueda-Hayakawa I, Kambe N, et al. Four cases of anti-Mi-2 antibody-positive dermatomyositis : relationship between anti-Mi-2 antibody titre and disease severity and activity. J Eur Acad Dermatol Venereol 2018 ; 32 : e233-4.
29) Hamaguchi Y, Kuwana M, Hoshino K, et al. Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis : a multicenter cross-sectional study. Arch Dermatol 2011 ; 147 : 391-8.
30) Betteridge Z, Tansley S, Shaddick G, et al. Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients. J Autoimmun 2019 ; 101 : 48-55.
31) Aggarwal R, Oddis CV, Goudeau D, et al. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab. Rheumatology (Oxford) 2016 ; 55 : 991-9.
32) Ogawa-Momohara M, Muro Y, Akiyama M. Anti-Mi-2 antibody titers and cutaneous manifestations in dermatomyositis. Journal of Cutaneous Immunology and Allergy 2019 ; 2 : 49-52.
33) Okada S, Weatherhead E, Targoff IN, et al, Group IMCS. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum 2003 ; 48 : 2285-93.
34) Love LA, Weinberg CR, McConnaughey DR, et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum 2009 ; 60 : 2499-504.
35) Petri MH, Satoh M, Martin-Marquez BT, et al. Implications in the difference of anti-Mi-2 and -p155/140 autoantibody prevalence in two dermatomyositis cohorts from Mexico City and Guadalajara. Arthritis Res Ther 2013 ; 15 : R48.
36) Satoh M, Tanaka S, Ceribelli A, et al. A comprehensive overview on myositis-specific antibodies : New and old biomarkers in idiopathic inflammatory myopathy. Clin Rev Allergy Immunol 2017 ; 52 : 1-19.
37) Ghirardello A, Zampieri S, Iaccarino L, et al. Anti-Mi-2 antibodies. Autoimmunity 2005 ; 38 : 79-83.
38) Selva-O'Callaghan A, Labrador-HorrilloM, Solans-Laque R, et al. Myositis-specific and myositis-associated antibodies in a series of eighty-eight Mediterranean patients with idiopathic inflammatory myopathy. Arthritis Rheum 2006 ; 55 : 791-8.
39) Ceribelli A, Fredi M, Taraborelli M, et al. Anti-MJ/NXP-2 autoantibody specificity in a cohort of adult Italian patients with polymyositis/dermatomyositis. Arthritis Res Ther 2012 ; 14 : R97.
40) Cruellas MG, Viana VoS, Levy-Neto M, et al. Myositis-specific and myositis-associated autoantibody profiles and their clinical associations in a large series of patients with polymyositis and dermatomyositis. Clinics (Sao Paulo) 2013 ; 68 : 909-14.
41) Chen Z, Hu W, Wang Y, et al. Distinct profiles of myositis-specific autoantibodies in Chinese and Japanese patients with polymyositis/dermatomyositis. Clin Rheumatol 2015 ; 34 : 1627-31.
42) Srivastava P, Dwivedi S, Misra R. Myositis-specific and myositis-associated autoantibodies in Indian patients with inflammatory myositis. Rheumatol Int 2016 ; 36 : 935-43.
43) Zampeli E, Venetsanopoulou A, Argyropoulou OD, et al. Myositis autoantibody profiles and their clinical associations in Greek patients with inflammatory myopathies. Clin Rheumatol 2019 ; 38 : 125-32.
44) Li S, Ge Y, Yang H, et al. The spectrum and clinical significance of myositis-specific autoantibodies in Chinese patients with idiopathic inflammatory myopathies. Clin Rheumatol 2019 ; 38 : 2171-9.
P.327 掲載の参考文献
1) Oddis CV, Fertig N, Goel A, et al. Clinical and serological characterization of the anti-MJ antibody in childhood myositis (abstr). Arthritis Rheum 1997 ; 40 : S139.
2) Ichimura Y, Matsushita T, Hamaguchi Y, et al. Anti-NXP2 autoantibodies in adult patients with idiopathic inflammatory myopathies : possible association with malignancy. Ann Rheum Dis 2012 ; 71 : 710-3.
3) Albayda J, Pinal-Fernandez I, Huang W, et al. Antinuclear matrix protein 2 autoantibodies and edema, muscle disease, and malignancy risk in dermatomyositis patients. Arthritis Care Res 2017 ; 69 : 1771-6.
4) Liu Y, Zheng Y, Gang Q, et al. Perimysial microarteriopathy in dermatomyositis with anti-nuclear matrix protein-2 antibodies. Eur J Neurol 2020 ; 27 : 514-21.
5) Inoue M, Tanboon J, Hirakawa S, et al. Association of dermatomyositis sine dermatitis with anti-nuclear matrix protein 2 xutoantibodies. JAMA Neurol 2020 ; 77 : 872-7.
6) Uruha A, Allenbach Y, Charuel JL, et al. Diagnostic potential of sarcoplasmic myxovirus resistance protein A expression in subsets of dermatomyositis. Neuropathol Appl Neurobiol 2018 ; 45 : 513-22.
P.330 掲載の参考文献
1) Betteridge ZE, Gunawardena H, McHugh NJ, et al. Identification of a novel autoantibody directed against small ubiquitin-like modifier activating enzyme in dermatomyositis. Arthritis Rheumatol 2007 ; 56 : 3132-7.
2) Betteridge ZE, Gunawardena H, McHugh NJ, et al. Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann Rheum Dis 2009 ; 68 : 1621-5.
3) Tarricone E, Ghirardello A, Doria A, et al. Anti-SAE antibodies in autoimmune myositis : identification by unlabelled protein immunoprecipitation in an Italian patient cohort. J Immunol Methods 2012 ; 384 : 128-34.
4) Fujimoto M, Matsushita T, Takehara K, et al. Autoantibodies to small ubiquitin-like modifier activating enzymes in Japanese patients with dermatomyositis : comparison with a UK Caucasian cohort. Ann Rheum Dis 2013 ; 72 : 151-3.
5) Ge Y, Lu X, Wang G, et al. Clinical characteristics of anti-SAE antibodies in Chinese patients with dermatomyositis in comparison with different patient cohorts. Sci Rep 2017 ; 7 : 188.
6) Jia E, Wei J, Zhang J, et al. Diffuse pruritic erythema as a clinical manifestation in anti-SAE antibody-associated dermatomyositis : a case report and literature review. Clin Rheumatol 2019 ; 38 : 2189-93.
7) Inoue S, Okiyama N, Fujimoto M, et al. Diffuse erythema with 'angel wings' sign in Japanese patients with anti-small ubiquitin-like modifier activating enzyme antibody-associated dermatomyositis. Br J Dermatol 2018 ; 179 : 1414-5.
8) Gono T, Tanino Y, Kuwana M, et al. Two cases with autoantibodies to small ubiquitin-like modifier activating enzyme : A potential unique subset of dermatomyositis-associated interstitial lung disease. Int J Rheum Dis 2019 ; 22 : 1582-86.
9) Lee L, Sakurai M, Fraser P, et al. SUMO and Alzheimer's disease. Neuromolecular Med 2013 ; 15 : 720-36.
10) Eifler K, Vertegaal AC. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci 2015 ; 40 : 779-93.
11) Kho C, Lee A, Hajjar RJ, et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 2011 ; 477 : 601-5.
P.335 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究班編. 多発性筋炎・皮膚筋炎診療ガイドライン (2020年暫定版).
2) 日本呼吸器学会・日本リウマチ学会合同膠原病に伴う間質性肺疾患診断・治療指針作成委員会. 膠原病に伴う間質性肺疾患診断・治療指針 2020. 日本呼吸器学会 ; 2020.
3) Nzeusseu A, Brion F, Lefebvre C, et al. Functional outcome of myositis patients : Can a low-dose glucocorticoid regimen achieve good functional results? Clin Exp Rheumatol 1999 ; 17 : 441-6.
4) Matsubara S, Sawa Y, Takamori M, et al. Pulsed intravenous methylprednisolone combined with oral steroids as the initial treatment of inflammatory myopathies. J Neurol Neurosurg Psychiatry 1994 ; 57 : 1008.
5) Bunch TW. Prednisolone and azathioprine for polymyositis : long-term follow up. Arthritis Rheum 1981 ; 24 : 45-8.
6) Ruperto N, Pistorio A, Oliveira S, et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis : a randomised trial. Lancet 2016 ; 387 : 671-8.
7) Grau JM,Herrero C, Casademont J, et al. Cyclosporine A as first choice therapy for dermatomyositis. J Rheumatol 1994 ; 31 : 381-2.
9) Marie I, Menard JF, Hatron PY, et al. Intravenous immunoglobulins for steroid-refractory esophageal involvement related to polymyositis and dermatomyositis : a series of 73 patients. Arthritis Care Res (Hoboken) 2010 ; 62 : 1748-55.
10) Alexanderson H. Physical exercise as a treatment for adult and juvenile myositis. J Intern Med 2016 ; 280 : 75-96.
11) Alexanderson H. Exercise in myositis. Curr Treat Options in Rheum 2018 ; 4 : 289-98.
12) Fujisawa T, Hozumi H, Kono M, et al. Prognostic Factors for Myositis-Associated Interstitial Lung Disease. PLoS One 2014 ; 9 : e98824.
13) Sato S, Masui K, Nishina N, et al. Initial predictors of poor survival in myositis-associated interstitial lung disease : A multicentre cohort of 497 patients. Rheumatology (Oxford) 2018 ; 57 : 1212-21.
14) Sugiyama Y, Yoshimi R, Tamura M, et al. The predictive prognostic factors for polymyositis/dermatomyositis-associated interstitial lung diseas. Arthritis Res Ther 2018 ; 20 : 7.
P.338 掲載の参考文献
1) Sontheimer RD. The management of dermatomyositis : current treatment options. Expert Opin Pharmacother 2004 ; 5 : 1083-99.
2) Goreshi R, Chock M, Foering K, et al. Quality of life in dermatomyositis. J Am Acad Dermatol 2011 ; 65 : 1107-16.
3) Yassaee M, Fiorentino D, Okawa J, et al. Modification of the cutaneous dermatomyositis disease area and severity index, an outcome instrument. Br J Dermatol 2010 ; 162 : 669-73.
4) Khanna U, Vaughan H, North J, et al. Quantitative assessment of eosinophils in dermatomyositis skin biopsies with correlation of eosinophils to pruritus and other clinical features. Am J Dermatopathol 2020. doi : 10.1097/DAD.0000000000001765. Online ahead of print.
5) Yahya A, Gideon PS. Characterizing pruritus in autoimmune connective tissue diseases. J Drugs Dermatol 2019 ; 18 : 995-8.
6) Kim HJ, Zeidi M, Bonciani D, et al. Interleukin-31 and itch in dermatomyositis. Br J Dermatol 2018 ; 179 : 669-78.
7) Drake LA, Dinehart SM, Farmer ER, et al. Guidelines of care for dermatomyositis. American Academy of Dermatology. J Am Acad Dermatol 1996 ; 34 : 824-9.
8) Iorizzo LJ 3rd, Jorizzo JL. The treatment and prognosis of dermatomyositis : an updated review. J Am Acad Dermatol 2008 ; 59 : 99-112.
9) Cheong WK, Hughes GR, Norris PG, et al. Cutaneous photosensitivity in dermatomyositis. Br J Dermatol 1994 ; 131 : 205-8.
10) Hollar CB, Jorizzo JL. Topical tacrolimus 0.1% ointment for refractory skin disease in dermatomyositis : a pilot study. J Dermatolog Treat 2004 ; 15 : 35-9.
11) Garcia-Doval I, Cruces M. Topical tacrolimus in cutaneous lesions of dermatomyositis : lack of effect in side-by-side comparison in five patients. Dermatology 2004 ; 209 : 247-8.
12) Anyanwu CO, Chansky PB, Feng R, et al. The systemic management of cutaneous dermatomyositis : Results of a stepwise strategy. Int J Womens Dermatol 2017 ; 3 : 189-94.
13) Ravishankar A, Yan D, Bax CE, et al. Response of dermatomyositis to the antimalarial quinacrine : A retrospective cohort study. J Am Acad Dermatol 2021 ; 84 : 1157-60.
14) Mittal L, Zhang L, Feng R, et al. Antimalarial drug toxicities in patients with cutaneous lupus and dermatomyositis : A retrospective cohort study. J Am Acad Dermatol 2018 ; 78 : 100-6.
15) Cohen JB. Cutaneous involvement of dermatomyositis can respond to Dapsone therapy. Int J Dermatol 2002 ; 41 : 182-4.
16) Kawachi Y, Fujisawa Y, Furuta J, et al. Pruritic poikilodermatous eruption associated with dermatomyositis : successful treatment with dapsone. Eur J Dermatol 2012 ; 22 : 289-90.
17) Ishibuchi H, Motegi S, Amano H, et al. Successful treatment with dapsone for skin lesions of amyopathic dermatomyositis. J Dermatol 2015 ; 42 : 1019-21.
18) Kasteler JS, Callen JP. Low-dose methotrexate administered weekly is an effective corticosteroid-sparing agent for the treatment of the cutaneous manifestations of dermatomyositis. J Am Acad Dermatol 1997 : 36 : 67-71.
19) Gelber AC, Nousari HC, Wigley FM, et al. Mycophenolate mofetil in the treatment of severe skin manifestations of dermatomyositis : a series of 4 cases. J Rheumatol 2000 ; 27 : 1542-5.
20) Edge JC, Outland JD, Dempsey JR, et al. Mycophenolate mofetil as an effective corticosteroid-sparing therapy for recalcitrant dermatomyositis. Arch Dermatol 2006 ; 142 : 65-9.
21) Gottfried I, Seeber A, Anegg B, et al. High dose intravenous immunoglobulin (IVIG) in dermatomyositis : clinical responses and effect on sIL-2R levels. Eur J Dermatol 2000 ; 10 : 29-35.
22) Saito E, Koike T, Hashimoto H, et al. Efficacy of high-dose intravenous immunoglobulin therapy in Japanese patients with steroid-resistant polymyositis and dermatomyositis. Mod Rheumatol 2008 ; 18 : 34-44.
23) Esteve E, Cambie MP, Serpier H, et al. Paraneoplastic dermatomyositis : Efficacy of intravenous gammaglobulin. Br J Dermatol 1994 ; 131 : 917-8.
24) Kikuchi-Numagami K, Sato M, Tagami H. Successful treatment of a therapy-resistant severely pruritic skin eruption of malignancy-associated dermatomyositis with high-dose intravenous immunoglobulin. J Dermatol 1996 ; 23 : 340-3.
25) Muscle Study Group. A randomized, pilot trial of etanercept in dermatomyositis. Ann Neurol 2011 ; 70 : 427-36.
26) Dold S, Justiniano ME, Marquez J, et al. Treatment of early and refractory dermatomyositis with infliximab : a report of two cases. Clin Rheumatol 2007 ; 26 : 1186-8.
27) Yamada-Kanazawa S, Kajihara I, Kobayashi A, et al. Infliximab improved the refractory cutaneous involvement in a patient with dermatomyositis. Dermatol Ther 2019 ; 32 : e12859.
28) Riley P, McCann LJ, Maillard SM, et al. Effectiveness of infliximab in the treatment of refractory juvenile dermatomyositis with calcinosis. Rheumatology (Oxford) 2008 ; 47 : 877-880.
29) Chung L, Genovese MC, Fiorentino DF, et al. A pilot trial of rituximab in the treatment of patients with dermatomyositis. Arch Dermatol 2007 ; 143 : 763-7.
30) Levine TD. Rituximab in the treatment of dermatomyositis : An open-label pilot study. Arthritis Rheum 2005 ; 52 : 601-7.
31) Cooper MA, Willingham DL, Brown DE, et al. Rituximab for the treatment of juvenile dermatomyositis : A report of four pediatric patients. Arthritis Rheum 2007 ; 56 : 3107-11.
32) Bader-Meunier B, Decaluwe H, Barnerias C, et al. Safety and efficacy of rituximab in severe juvenile dermatomyositis : results from 9 patients from the French Autoimmunity and Rituximab registry. J Rheumatol 2011 ; 38 : 1436-40.
33) Montoya CL, Gonzalez ML, Ospina FE, et al. A rare case of amyopathic juvenile dermatomyositis associated with psoriasis successfully treated with ustekinumab. J Clin Rheumatol 2017 ; 23 : 129-30.
34) Kurtzman DJ, Wright NA, Lin J, et al. Tofacitinib citrate for refractory cutaneous dermatomyositis : An alternative treatment. JAMA Dermatol 2016 ; 152 : 944-5.
35) Hornung T, Janzen V, Heidgen FJ, et al. Remission of recalcitrant dermatomyositis treated with ruxolitinib. N Engl J Med 2014 ; 371 : 2537-8.
36) Wendel S, Venhoff N, Frye BC, et al. Successful treatment of extensive calcifications and acute pulmonary involvement in dermatomyositis with the Janus-Kinase inhibitor tofacitinib-A report of two cases. J Autoimmun 2019 ; 100 : 131-6.
37) Bitar C, Maghfour J, Ho-Pham H, et al. Apremilast as a potential treatment for moderate to severe dermatomyositis : A retrospective study of 3 patients. JAAD Case Rep 2019 ; 5 : 191-4.
38) Charlton D, Moghadam-Kia S, Smith K, et al. Refractory cutaneous dermatomyositis with severe scalp pruritus responsive to apremilast. J Clin Rheumatol 2019. doi : 10.1097/RHU.0000000000000999. Online ahead of print.
P.343 掲載の参考文献
1) Hamaguchi Y, Kuwana M, Fujimoto M, et al. Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis a multicenter cross-sectional study. Arch Dermatol 2011 ; 147 : 391-8.
2) Hamaguchi Y, Fujimoto M, Kuwana M, et al. Common and distinct clinical features in adult patients with anti-aminoacyl-tRNA synthetase antibodies : heterogeneity within the syndrome. PLoS One 2013 ; 8 : e60442.
3) Rogers A, Chung L, Fiorentino DF, et al. Cutaneous and systemic findings associated with Nuclear Matrix Protein 2 antibodies in adult dermatomyositis patients. Arthritis Care Res 2017 ; 69 : 1909-14.
4) Suzuki S, Nishikawa A, Kuwana M, et al. Inflammatory myopathy with anti-signal recognition particle antibodies : case series of 100 patients. Orphanet J Rare Dis 2015 ; 13 : 10 : 61.
5) Mugii N, Hasegawa M, Fujimoto M, et al. Oropharyngeal dysphagia in dermatomyositis : associations with clinical and laboratory features including autoantibodies. PLoS One 2016 ; 11 : e0154746.
6) Wiesinger GF, Quittan M, Nuhr M, et al. Aerobic capacity in adult dermatomyositis/polymyositis patients and healthy controls. Arch Phys Med Rehabil 2000 ; 81 : 1-5.
7) Hicks JE, Miller F, Plotz P, et al. Isometric exercise increases strength and does not produce sustained creatinine phosphokinase increases in a patient with polymyositis. J Rheumatol 1993 ; 20 : 1399-401.
8) Varju C, Peth E, Kutas R, et al. The effect of physical exercise following acute disease exacerbation in patients with dermato/polymyositis. Clin Rihabil 2003 ; 17 : 83-7.
9) Alexanderson H, Stenstrom CH, Lundberg I. Safety of a home exercise programme in patients with polymyositis and dermatomyositis : a pilot study. Rheumatology 1999 ; 38 : 608-11.
10) Alexanderson H, Munters LA, Dastmalchi M, et al. Resistive home exercise in patients with recent-onset polymyositis and dermatomyositis-a randomized controlled single-blinded study with a 2-year followup. J Rheumatol 2014 ; 41 : 1124-32.
11) Alexanderson H, Dastmalchi M, Esbjornsson-Liljedahl M, et al. Benefits of intensive resistance training in patients with chronic polymyositis or dermatomyositis. Artritis Care Res 2007 ; 57 : 768-77.

6章 混合性結合組織病 ( MCTD ) / オーバーラップ症候群

P.350 掲載の参考文献
1) Sharp GC, Irvin WS, Tan EM, et al. Mixed connective tissue disease-an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am J Med 1972 ; 52 : 148-59.
2) Tanaka Y, Kuwana M, Fujii T, et al. 2019 diagnositc criteriafor mixed connective tissue disease : from the Japan Research Committee of the Ministry of Health, Labor, and Welfare for systemic autoimmune diseases. Mod Rheumatol 2020 Jan 7 ; 1-5. doi : 10.1080/14397595.2019.1709944. online ahead of print.
3) Nimelstein SH, Brody S, McShane D, et al. Mixed connective tissue disease : a subsequent evaluation of the original 25 patients. Medicine 1980 ; 59 : 239-48.
4) 粕川禮司, 西間木友衛, 吉田浩, ほか. 混合性結合組織病全国2次調査. 個人票からみた病型分類の試み. 厚生省特定疾患混合性結合組織病調査研究班昭和61年度研究報告書. 1987. pp.19-23.
5) 鳥飼勝隆, 深谷修作, 松本美富士, ほか. 肺高血圧症を合併した混合性結合組織病患者の予後の検討. 厚生省特定疾患皮膚・結合組織疾患調査研究班混合性結合組織病分科会平成10年度研究報告書. 1999. pp.20-3.
P.353 掲載の参考文献
1) 高崎芳成. 自己抗体研究の新たな展開混合性結合組織病抗U1 RNP抗体. 分子リウマチ治療 2013 ; 6 : 147-50.
2) Migliorini P, Baldini C, Rocchi V, et al. Anti-Sm and anti-RNP antibodies. Autoimmunity 2005 ; 38 : 47-54.
3) 三森経世, 安岡秀剛, 鈴木美佐子, ほか. 混合性結合組織病の髄膜炎. 日本臨床免疫学会会誌 2000 ; 23 : 647-51.
4) 高崎芳成. 自己抗体とその臨床的意義. 菊地浩吉, 矢田純一, 奥村康編. Annual Review免疫 1992. 中外医学社 ; 1992. pp.266-77.
5) 菊池正俊. 膠原病患者における抗リン脂質抗体の検討. 日本臨床免疫学会会誌 1992 ; 15 : 29-37.
6) Barrat FJ, Meeker T, Gregorio J, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med 2005 ; 202 : 1131-9.
7) Baccala R, Hoebe K, Kono DH, et al. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 2007 ; 13 : 543-51.
8) Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol 2006 ; 6 : 823-35.
9) Christensen SR, Shupe J, Nickerson K, et al. Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006 ; 25 : 417-28.
10) Santiago-Raber ML, Dunand-Sauthier I,Wu T, et al. Critical role of TLR7 in the acceleration of systemic lupus erythematosus in TLR9-deficient mice. J Autoimmun 2010 ; 34 : 339-48.
11) Tapanes FJ, Vasquez M, Ramirez R, et al Cluster analysis of antinuclear autoantibodies in the prognosis of SLE nephropathy : are anti-extractable nuclear antibodies protective? Lupus 2000 ; 9 : 437-44.
P.356 掲載の参考文献
1) 東條毅, 秋谷久美子, 鳥飼勝隆, ほか. 混合性結合組織病 (MCTD) の生命予後調査. 厚生省特定疾患混合性結合組織病調査研究班平成10年度研究報告書. 1999. pp.7-10.
1) Kaji K, Fertig N, Medsger TA Jr, et al. Autoantibodies to RuvBL1 and RuvBL2 : a novel systemic sclerosis-related antibody associated with diffuse cutaneous and skeletal muscle involvement. Arthritis Care Res (Hoboken) 2014 ; 66 : 575-84.
2) Shirai Y, Yasuoka H, Okano Y, et al. Clinical characteristics and survival of Japanese patients with connective tissue disease and pulmonary arterial hypertension : a singlecentre cohort. Rheumatology 2012 ; 51 : 1846-54.
3) 日本肺高血圧・肺循環学会監修. 結合組織病に伴う肺動脈性肺高血圧症診療ガイドライン. 2019.
4) Bennett RM, Bong DM, Spargo BH. Neuropsychiatric problems in mixed connective tissue disease. Am J Med 1978 ; 65 : 955-62.
5) 川畑仁人. III. MCTDの病態別治療指針 10. 神経症状. 厚生労働科学研究費補助金・難治性疾患克服研究事業混合性結合組織病の病態解明と治療法の確立に関する研究班 (研究代表者三森経世) 編. 混合性結合組織病の診療ガイドライン, 改訂第3版. 2011. pp.53-6.
6) 三森経世. シンポジウム 6-2 混合性結合組織病の髄膜炎. 日本臨床免疫学会会誌 2000 ; 23 : 647-51.
7) Okada J, Hamana T, Kondo H. Anti-U1RNP antibody and aseptic meningitis in connective tissue diseases. Scand J Rheumatol 2003 ; 32 : 247-52.
8) Hojaili B, Barland P. Trigeminal neuralgia as the first manifestation of mixed connective tissue disorder. J Clin Rheumatol 2006 ; 12 : 145-7.

7章 Sjogren症候群

P.363 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究班 (研究代表者 : 住田孝之) 編. シェーグレン症候群診療ガイドライン 2017年版, 診断と治療社 ; 2017.
2) 坪井洋人, 浅島弘充, 高橋広行, ほか. Sjogren症候群. 日内会誌 2014 ; 103 : 2507-19.
3) Vitali C,B ombardieri S, Jonsson R, et al. Classification criteria for Sjogren's syndrome : a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002 ; 61 : 554-8.
4) Shiboski SC, Shiboski CH, Criswell LA, et al. American College of Rheumatology Classification Criteria for Sjogren's syndrome : A data-driven, expert consensus approach in the SICCA cohort. Arthritis Care Res 2012 ; 64 : 475-87.
5) Seror R, Bowman SJ,B rito-Zeron P, et al. EULAR Sjogren's syndrome disease activity index (ESSDAI) : a user guide. RMD Open 2015 ; 1 : e000022.
6) Seror R, Ravaud P,M ariette X, et al. EULAR Sjogren's Syndrome Patient Reported Index (ESSPRI) : development of a consensus patient index for primary Sjogren's syndrome. Ann Rheum Dis 2011 ; 70 : 968-72.
7) Mariette X,G ozlan J,C lerc D, et al. Detection of Epstein-Barr virus DNA by in situ hybridisation and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjogren syndrome. Am J Med 1991 ; 90 : 286-94.
8) Konttinen YT, Kasna-Ronkainen L. Sjogren's syndrome : viewpoint on pathogenesis. One of the reasons I was never asked to write a textbook chapter on it. Scand J Rheumatol Suppl 2002 ; 116 : 15-22.
9) Saito I, Servenius B,C ompton T, et al. Detection of Epstein-Barr virus DNA by polymerase chain reaction in blood and tissue biopsies from patients with Sjogren's syndrome. J Exp Med 1989 ; 169 : 2191-8.
10) Bjork A, Mofors J, Wahren-Herlenius M. Environmental factors in the pathogenesis of primary Sjogren's syndrome. J Intern Med 2020 ; 287 : 475-92.
11) Kivity S, Arango MT,Eh renfeld M, et al. Infection and autoimmunity in Sjogren's syndrome : a clinical study and comprehensive review. J Autoimmun 2014 ; 51 : 17-22.
12) Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV) -encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 2009 ; 206 : 2091-9.
13) Murray RJ, Wang D, Young LS, et al. Epstein-Barr virus-specific cytotoxic T-cell recognition of transfectants expressing the virus-coded latent membrane protein LMP. J Virol 1988 ; 62 : 3747-55.
14) Terada K, Katamine S, Eguchi K, et al. Prevalence of serum and salivary antibodies to HTLV-1 in Sjogren's syndrome. Lancet 1994 ; 344 : 1116-9.
15) Flores-Chavez A, Carrion JA, Forns X, et al. Extrahepatic manifestations associated with chronic hepatitis C virus infection. Rev Espanola Sanid Penit 2017 ; 19 : 87-97.
16) Kang HI,F ei HM, Saito I, et al. Comparison of HLA class II genes in Caucasoid,Ch inese, and Japanese patients with primary Sjogren's syndrome. J Immunol 1993 ; 150 : 3615-23.
17) Kerttula TO,C ollin P,P olvi A, et al. Distinct immunologic features of finnish Sjogren's syndrome patients with HLA alleles DRB1*0301, DQA1*0501, and DQB1*0201. Alterations in circulating T cell receptor γ/δ subsets. Arthritis Rheum 1996 ; 39 : 1733-9.
18) Bolstad AI,Wargelius A, Nakken B, et al. Fas and Fas ligand gene polymorphisms in primary Sjogren's syndrome. J Rheumatol 2000 ; 27 : 2397-405.
19) Nakken B,J onsson R, Bolstad AI. Polymorphisms of the Ro52 gene associated with anti-Ro 52-kd autoantibodies in patients with primary Sjogren's syndrome. Arthritis Rheum 2001 ; 44 : 638-46.
20) Nocturne G,T arn J,B oudaoud S, et al. Germline variation of TNFAIP3 in primary Sjogren's syndrome-associated lymphoma. Ann Rheum Dis 2016 ; 75 : 780-3.
21) Fragkioudaki S, Nezos A, Souliotis VL, et al. MTHFR gene variants and non-MALT lymphoma development in primary Sjogren's syndrome. Sci Rep 2017 ; 7 : 7354.
22) McCoy SS, Sampene E,B aer AN. Association of Sjogren's syndrome with reduced lifetime sex hormone exposure : A case-control study. Arthritis Care Res (Hoboken) 2019 ; 72 : 1315-22.
23) Bizzarro A, Valentini G,M artino CD, et al. Influence of testosterone therapy on clinical and immunological features of autoimmune diseases associated with Klinefelter's syndrome. J Clin Endocrinol Metab 1987 ; 64 : 32-6.
24) Morthen MK, Tellefsen S, Richards SM, et al. Testosterone influence on gene expression in lacrimal glands of mouse models of Sjogren syndrome. Invest Ophthalmol Vis Sci 2019 ; 60 : 2181-97.
25) Porola P, Laine M,V irtanen I, et al. Androgens and integrins in salivary glands in Sjogren's syndrome. J Rheumatol 2010 ; 37 : 1181-7.
26) Seminog OO, Seminog AB, Yeates D, et al. Associations between Klinefelter's syndrome and autoimmune diseases : English national record linkage studies. Autoimmunity 2015 ; 48 : 125-8.
27) Ishimaru N, Arakaki R, Watanabe M, et al. Development of autoimmune exocrinopathy resembling Sjogren's syndrome in estrogen-deficient mice of healthy background. Am J Pathol 2003 ; 163 : 1481-90.
28) Ishimaru N, Arakaki R, Omotehara F, et al. Novel role for RbAp48 in tissue-specific, estrogen deficiency-dependent apoptosis in the exocrine glands. Mol Cell Biol 2006 ; 26 : 2924-35.
29) Youinou P, Pers JO. Disturbance of cytokine networks in Sjogren's syndrome. Arthritis Res Ther 2011 ; 13 : 227.
30) Ohlsson M,J onsson R, Brokstad KA. Subcellular redistribution and surface exposure of the Ro52, Ro60 and La48 autoantigens during apoptosis in human ductal epithelial cells : a possible mechanism in the pathogenesis of Sjogren's syndrome. Scand J Immunol 2002 ; 56 : 456-69.
31) Corsiero E, Sutcliffe N,P itzalis C, et al. Accumulation of self-reactive naive and memory B cell reveals sequential defects in B cell tolerance checkpoints in Sjogren's syndrome. PLoS One 2014 ; 9 : e114575.
32) Mackay F, Schneider P, Rennert P, et al. BAFF and APRIL : A tutorial on B cell survival. Annu Rev Immunol 2003 ; 21 : 231-64.
33) Pers JO, Daridon C, Devauchelle V, et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann N Y Acad Sci 2005 ; 1050 : 34-9.
P.369 掲載の参考文献
1) 片山一朗, 西岡清, 西山茂夫. Sjogren症候群の皮膚症状とその臨床的検討. 日皮会誌 1989 ; 99 : 717-23.
2) 藤本学. 第4章 臨床症状 2. 腺外症状 6) 皮膚病変. 日本シェーグレン症候群学会編. シェーグレン症候群の診断と治療マニュアル, 改訂第3版. 診断と治療社 ; 2018. pp.145-50.
3) 濱崎洋一郎. シェーグレン症候群に見られる皮膚症状. 日皮会誌 2009 ; 119 : 2539-43.
4) 濱崎洋一郎. 皮膚科医が診るSjogren症候群. 日臨皮会誌 2016 ; 33 : 483-91.
5) Anaya JM,T alal N. Sjogren's syndrome and connective tissue diseases associated with other immunologic disorders. KoopmanWJ editor. Arthritis and Allied Conditions, A Textbook of Rheumatology, 13th edition. Williams & Wilkins ; 1997, pp.1561-80.
6) 西山進, 宮脇昌二, 橋本武則. 原発性シェーグレン症候群にみられる皮膚病変. 日本臨牀 1995 ; 53 : 2551-6.
7) Katz J,M armary Y, Livneh A, et al. Drug allergy in Sjogren's syndrome. Lancet 1991 ; 337 : 239.
8) 濱崎洋一郎. シェーグレン症候群でみられる紅斑. Monthly Book Derma 2007 ; 122 : 28-35.
9) Koyano S, Hamasaki Y, Ishikawa S, et al. Is annular erythema developing in a pregnant patient with Sjogren's syndrome a predictor of potential neonatal lupus erythematosus in the infant? J Dermatol 2010 ; 37 : 1000-3.
10) 稲垣安紀, 幸田衛, 中川定明, ほか. Sjogren症候群とAmyloidosis cutis nodularis atrophicans (Gottron) の合併例. 臨床皮膚科 1985 ; 39 : 455-60.
11) 五十嵐直弥, 永井弥生, 遠藤雪恵, ほか. 全身性無汗症が契機となり診断したSjogren症候群の1例. 臨床皮膚科 2006 ; 60 : 907-10
12) 山内瑛, 林周次郎, 小池真美, ほか. 片側性に無汗を伴ったSjogren症候群の1例. 皮膚科の臨床 2018 ; 60 : 1845-8.
13) 中里良彦, 田村直俊, 大熊彩, ほか. 「不明熱」を契機に診断された全身性無汗を主徴とするSjogren症候群の2例. 発汗学 2004 ; 11 : 15-7.
14) 遠藤桃子, 片山一朗, 西岡清. 成人凍瘡患者の背景因子の検討. 日皮会誌 1995 ; 105 : 1091-8.
15) 濱崎洋一郎. しもやけ : 凍瘡-鑑別疾患を含めて-. 小児科 2013 ; 54 : 1879-85.
16) 塚崎直子, 前田亜紀, 片山一朗. Sjogren症候群患者の光線過敏症状. 皮膚病診療 2001 ; 23 : 287-90.
17) 五月女聡浩, 濱崎洋一郎, 北村洋平, ほか. 下腿潰瘍を契機に診断された原発性シェーグレン症候群の1例. 西日皮膚 2006 ; 68 : 626-9.
18) Ramos-Casals M, Anaya JM,G arcia-Carrasco M, et al. Cutaneous vasculitis in primary Sjogren syndrome : classification and clinical significance of 52 patients. Medicine 2004 ; 83 : 96-106.
P.372 掲載の参考文献
1) Katayama I,T eramoto N, Arai H, et al. A comparative study of Sjogren syndrome with subacute cutaneous lupus erythematosus. Int J Dermatol 1991 ; 30 : 635-9.
2) 濱崎洋一郎. シェーグレン症候群でみられる紅斑. Monthly Book Derma 2007 ; 122 : 28-35.
3) 宮川幸子. 環状紅斑の病態と分類-20世紀の総括-. 西日皮膚 2001 ; 63 : 3-7.
4) Nishikawa T,P rovost TT. Differences in clinical, serologic, and immunogenetic features of white versus Oriental anti-SS-A/Ro-positive patients. J Am Acad Dermatol 1991 ; 25 : 563-4.
5) 黒坂良枝, 石地尚興, 新村眞人. サルコイド反応を呈したSjogren症候群の1例. 臨床皮膚科 2003 ; 57 : 117-20.
6) 片山一朗. サルコイドーシスと膠原病. 皮膚病診療 2000 ; 22 : 716-22.
7) 山本俊幸. palisaded neutrophilic granulomatous dermatitisとinterstitial granulomatous dermatitis. 皮膚病診療 2015 ; 37 : 728-32.
8) Lee HW,Ch ang SE, Lee MW, et al. Interstitial granulomatous dermatitis with plaques associated with antiphospholipid syndrome. Br J Dermatol 2005 ; 152 : 814-6.
9) 藤野裕美, 松田真弓, 赤坂俊英, ほか. Sjogren症候群を合併したAnnular elastolytic giant cell granulomaの1例. 皮膚科の臨床 1998 ; 40 : 513-5.
10) 坪井廣美, 米元康蔵. 環状肉芽腫-シェーグレン症候群合併例-. 皮膚病診療 1997 ; 19 : 1011-4.
11) 芳賀貴裕, 奥山隆平, 相場節也. 環状肉芽腫を生じたSjogren症候群の1例. 皮膚科の臨床 2006 ; 48 : 785-7.
12) 澄川靖之, 木村鉄宣, 安斎眞一, ほか. Sjogren症候群に伴った環状肉芽腫. 皮膚病診療 2009 ; 31 : 1197-200.
13) 八百坂遵, 小野恵理, 鹿島眞人, ほか. 環状肉芽腫を契機にSjogren症候群と判明した例. 皮膚病診療 2013 ; 35 : 779-82.
14) Sakiyama T, Hirai I, Konohana A, et al. Interstitial-type granuloma annulare associated with Sjogren syndrome. J Dtsch Dermatol Ges 2014 ; 12 : 415-6.
P.377 掲載の参考文献
1) Vitali C,B ombardieri S, Jonsson R, et al. Classification criteria for Sjogren's syndrome : a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002 ; 61 : 554-8.
2) 住田孝之編. EXPERT 膠原病・リウマチ, 改訂第4版. 診断と治療社 ; 2019.
3) 日本シェーグレン症候群学会編. シェーグレン症候群の診断と治療マニュアル, 改訂第3版. 診断と治療社 ; 2018.
4) Seror R, Ravaud P,B owman SJ, et al. EULAR Sjogren's Task Force. EULAR Sjogren's syndrome disease activity index : development of a consensus systemic disease activity index for primary Sjogren's syndrome. Ann Rheum Dis 2010 ; 69 : 1103-9.
5) Seror R,Th eander E,B run JG, et al. EULAR Sjogren's Task Force. Validation of EULAR primary Sjogren's syndrome disease activity (ESSDAI) and patient indexes (ESSPRI). Ann Rheum Dis 2015 ; 74 : 859-66.
6) Seror R, Bootsma H, Saraux A, et al, on behalf of the EULAR Sjogren's Task Force. Defining disease activity states and clinically meaningful improvement in primary Sjogren's syndrome with EULAR primary Sjogren's syndrome disease activity (ESSDAI) and patient-reported indexes (ESSPRI). Ann Rheum Dis 2016 ; 75 : 382-9.
7) Seror R, Bowman SJ,B rito-Zeron P, et al. EULAR Sjogren's syndrome disease activity index (ESSDAI) : a user guide. RMD Open 2015 ; 1 : e000022.
8) 坪井洋人, 住田孝之. Sjogren 症候群. 別冊日本臨牀, 新領域別症候群シリーズ No.9, 呼吸器症候群, 第2版. 日本臨牀社 ; 2009. pp.589-93.
9) Ramos-Casals M, Brito-Zeron P, Seror R, et al. Characterization of systemic disease in primary Sjogren's syndrome : EULAR-SS Task Force recommendations for articular, cutaneous, pulmonary and renal involvements. Rheumatology (Oxford) 2015 ; 54 : 2230-8.
10) Vij R, Strek ME. Diagnosis and treatment of connective tissue disease-associated interstitial lung disease. Chest 2013 ; 143 : 814-24.
11) Boutry N, Hachulla E,F lipo RM, et al. MR imaging findings in hands in early rheumatoid arthritis : comparison with those in systemic lupus erythematosus and primary Sjogren syndrome. Radiology 2005 ; 236 : 593-600.
12) Amezcua-Guerra LM, Hofmann F,V argas A, et al. Joint involvement in primary Sjogren's syndrome : an ultrasound "target area approach to arthritis". Biomed Res Int 2013 ; 2013 : 640265.
P.382 掲載の参考文献
1) Routsias JG,T zioufas AG. Sjogren's syndrome-study of autoantigens and autoantibodies. Clin Rev Allergy Immunol 2007 ; 32 : 238-51.
2) Tzioufas AG,T atouli IP,M outsopoulos HM. Autoantibodies in Sjogren's syndrome : clinical presentation and regulatory mechanisms. Presse Med 2012 ; 41 : e451-60.
3) 日本シェーグレン症候群学会編 : シェーグレン症候群の診断と治療マニュアル, 改訂第3版. 診断と治療社 ; 2018.
4) Bournia VK, Vlachoyiannopoulos PG. Subgroups of Sjogren syndrome patients according to serological profiles. J Autoimmun 2012 ; 39 : 15-26.
5) Rhodes DA, Isenberg DA. TRIM21 and the function of antibodies inside cells. Trends Immunol 2017 ; 38 : 916-26.
6) Kunishita Y, Yoshimi R, Kamiyama R, et al. TRIM21 dysfunction enhances aberrant B-cell differentiation in autoimmune pathogenesis. Front Immunol 2020 ; 11 : 98.
7) 住田孝之編 : EXPERT 膠原病・リウマチ, 改訂第4版. 診断と治療社 ; 2019.
8) Fujibayashi T, Sugai S, Miyasaka N, et al. Revised Japanese criteria for Sjogren's syndrome (1999) : availability and validity. Mod Rheumatol 2004 ; 14 : 425-34.
9) Vitali C,B ombardieri S, Jonsson R, et al. Classification criteria for Sjogren's syndrome : a revised version of the European criteria proposed by the American-European Consensus Group. Ann Rheum Dis 2002 ; 61 : 554-8.
10) Shiboski SC, Shiboski CH, Criswell L, et al. American College of Rheumatology classification criteria for Sjogren's syndrome : a data-driven, expert consensus approach in the Sjogren's International Collaborative Clinical Alliance cohort. Arthritis Care Res 2012 ; 64 : 475-87.
11) Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren's syndrome : A consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis 2017 ; 76 : 9-16.
12) Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjogren's Syndrome : A consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol 2017 ; 69 : 35-45.
13) 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究班 (研究代表者 : 住田孝之) 編. シェーグレン症候群診療ガイドライン 2017年版, 診断と治療社 ; 2017.
14) Sumida T, Azuma N,M oriyama M, et al. Clinical practice guideline for Sjogren's syndrome 2017. Mod Rheumatol 2018 ; 28 : 383-408.
15) Nakamura H, Kawakami A, Eguchi K. Mechanisms of autoantibody production and the relationship between autoantibodies and the clinical manifestations in Sjogren's syndrome. Transl Res 2006 ; 148 : 281-8.
16) Hernandez-Molina G, Leal-Alegre G,M ichel-Peregrina M. The meaning of anti-Ro and anti-La antibodies in primary Sjogren's syndrome. Autoimmun Rev 2011 ; 10 : 123-5.
17) 宮野章, 中山雅弘, 新井次郎, ほか. 酵素免疫測定法による抗SS-A/B抗体標準化の検討. 臨床リウマチ 2012 ; 24 : 247-59.
18) 白石公. 母体由来の抗SSA抗SSB抗体による心筋細胞障害のメカニズムについて. 日本小児循環器学会雑誌 2008 ; 24 : 124-8.
19) Ambrosi A, Sonesson SE, Wahren-Herlenius M. Molecular mechanisms of congenital heart block. Exp Cell Res 2014 ; 325 : 2-9.
20) Ivanchenko M, Thorlacius GE, Hedlund M, et al. Natural killer cells and type II interferon in Ro/SSA and La/SSB autoantibody-exposed newborns at risk of congenital heart block. Ann Rheum Dis 2021 ; 80 : 194-202.
P.386 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究班 (研究代表者 : 住田孝之) : シェーグレン症候群診療ガイドライン 2017年版. 診断と治療社 ; 2017.
2) 萩原宏美, 岩田洋平, 沼田茂樹, ほか. シェーグレン症候群に合併した硬化性脂肪織炎の一例. 臨床皮膚科 2017 ; 71 : 963-6.
P.390 掲載の参考文献
1) Moscovici BK, Holzchuh R, Sakassegawa-Naves FE, et al. Treatment of Sjogren's syndrome dry eye using 0. 03% tacrolimus eye drop : Prospective double-blind randomized study. Cont Lens Anterior Eye 2015 ; 38 : 373-88.
2) Ramos-Casals M,B rito-Zeron P, Siso-Almirall A, et al. Topical and systemic medications for the treatment of primary Sjogren's syndrome. Nat Rev Rheumatol 2012 ; 8 : 399-411.
3) Ring T, Kallenbach M, Praetorius J, et al. Successful treatment of patient with primary Sjogren's syndrome with rituximab. Clin Rheumatol 2006 ; 25 : 891-4.
4) Parisis D,Ch ivasso C,P erret J, et al. Current state of knowledge on primary Sjogren's syndrome, an autoimmune exocrinopathy. J Clin Med 2020 ; 9 : 2299.

8章 関節リウマチ

P.395 掲載の参考文献
1) Andonopoulos AP, Yarmenitis S, Sfountouris H, et al. Baker's cyst in rheumatoid arthritis : an ultrasonographic study with a high resolution technique. Clin Exp Rheumatol 1995 ; 13 : 633-6.
2) Li SJ, Perez-Chada LM, Merola JF. TNF inhibitor-induced psoriasis : Proposed algorithm for treatment and management. J Psoriasis Psoriatic Arthritis 2019 ; 4 : 70-80.
3) Nakagomi D, Ikeda K, Hirotoshi K, et al. Bucillamine-induced yellow nail in Japanese patients with rheumatoid arthritis : two case reports and a review of 36 reported cases. Rheumatol Int 2013 ; 33 : 793-7.
P.399 掲載の参考文献
1) 檜垣祐子. 慢性関節リウマチ. 玉置邦彦総編集. 最新皮膚科学体系 9 膠原病非感染性肉芽腫. 中山書店 ; 2002. pp.211-5.
2) 藤本学, 浅井純, 浅野善英, ほか. 創傷・褥瘡・熱傷ガイドライン-4 : 膠原病・血管炎にともなう皮膚潰瘍診療ガイドライン. 日皮会誌 2017 ; 127 : 2033-75.
3) Wattiaux MJ, Kahn MF, Thevenet JP, et al. Vascular involvement in rheumatoid polyarthritis. Retrospective study of 37 cases of rheumatoid polyarthritis with vascular involvement and review of the literature. Ann Med Interne (Paris) 1987 ; 138 : 566-87.
4) Puechal X, Miceli-Richard C, Mejjad O, et al. Anti-tumor necrosis factor treatment in patients with refractory systemic vasculitis associated with rheumatoid arthritis, Ann Rheum Dis 2008 ; 67 : 880-4.

9章 その他

P.408 掲載の参考文献
2) Atsumi T, Ieko M, Bertolaccini ML, et al. Association of autoantibodies against the phosphatidylserine-prothrombin complex with manifestations of the antiphospholipid syndrome and with the presence of lupus anticoagulant. Arthritis Rheum 2000 ; 43 : 1982-93.
3) Pengo V, Tripodi A, Reber G, et al. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anti-coagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost 2009 ; 7 : 1737-40.
4) Bohgaki M, Atsumi T, Yamashita Y, et al. The p38 mitogenactivated protein kinase (MAPK) pathway mediates induction of the tissue factor gene in monocytes stimulated with human monoclonal anti-beta2Glycoprotein I antibodies. Int Immunol 2004 ; 16 : 1633-41.
5) Oku K, Amengual O, Zigon P, et al. Essential role of the p38 mitogen-activated protein kinase pathway in tissue factor gene expression mediated by the phosphatidylserine-dependent antiprothrombin antibody. Rheumatology (Oxford) 2013 ; 52 : 1775-84.
6) Oku K, Atsumi T, Bohgaki M, et al. Complement activation in patients with primary antiphospholipid syndrome. Ann Rheum Dis 2009 ; 68 : 1030-5.
7) Nakamura H, Oku K, Ogata Y, et al. Alternative pathway activation due to low level of complement factor H in primary antiphospholipid syndrome. Thromb Res 2018 ; 164 : 63-8.
8) Oku K, Amengual O, Hisada R, et al. Autoantibodies against a complement component 1 q subcomponent contribute to complement activation and recurrent thrombosis/pregnancy morbidity in anti-phospholipid syndrome. Rheumatology (Oxford) 2016 ; 55 : 1403-11.
9) Sugiura-Ogasawara M, Nozawa K, Nakanishi T, et al. Complement as a predictor of further miscarriage in couples with recurrent miscarriages. Hum Reprod 2006 ; 21 : 2711-4.
11) Ohmura K, Oku K, Kitaori T, et al. Pathogenic roles of anti-C1q antibodies in recurrent pregnancy loss. Clin Immunol 2019 ; 203 : 37-44.
12) Brey RL. Antiphospholipid antibodies in young adults in stroke. J Thromb Haemost 2005 ; 20 : 105-12.
13) Otomo K, Atsumi T, Amengual O, et al. Efficacy of the antiphospholipid score for the diagnosis of antiphospholipid syndrome and its predictive value for thrombotic events. Arthritis Rheum 2012 ; 64 : 504-12.
14) Farmer-Boatwright K, Rubey R. Venous thrombosis in the antiphospholipid syndrome. Artherioscler Thromb Vasc Biol 2009 ; 29 : 321.
15) Fujieda Y, Atsumi T, Amengual O, et al. Predominant prevalence of arterial thrombosis in Japanese patients with antiphospholipid syndrome. Lupus 2012 ; 21 : 1506-14.
16) Sugiura-Ogasawara M, Ozaki Y, Katano K, et al. Abnormal embryonic karyotype is the most frequent cause of recurrent miscarriage. Hum Reprod 2012 ; 27 : 2297-303.
17) Cervera R, Tektonidou MG, Espinosa G, et al. Task Force on Catastrophic Antiphospholipid Syndrome (APS) and Noncriteria APS Manifestations (I) : catastrophic APS, APS nephropathy and heart valve lesions. Lupus 2011 ; 20 : 165-73.
18) Cervera R, Piette JC, Font J, et al. Antiphospholipid syndrome : clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheuml 2002 ; 46 : 1019-27.
19) Tektonidou MK, Nakapolou L, Vlachoyiannopoulos PG, et al. Antiphospholipid syndrome nephropathy in patients with systemic lupus erythematosus and antiphospholipid antibodies : prevalence, clinical associations, and long-term outcome. Arthritis Rheum 2004 ; 50 : 2569-79.
20) TektonidouMG. Antiphospholipid syndrome nephropathy : from pathogenesis to treatment. Front Immunol 2018 ; 9 : 1181.
21) CuadradoMJ, Mujic F,Munoz E, et al. Thrombocytopenia in the antiphospholipid syndrome. Ann Rhem Dis 1997 ; 56 : 194-6.
22) Hisada R, Kato M, Sugawara E, et al. Thrombotic risk stratification by platelet count in patients with antiphospholipid antibodies : a longitudinal study. J Thromb Haemost 2017 ; 15 : 1782-7.
23) Moulis G, Audemard-Verger A, Arnaud L, et al. Risk of thrombosis in patients with primary immune thrombocytopenia and antiphospholipid antibodies : A systematic review and meta-analysis. Autoimmun Rev 2016 ; 15 : 203-9.
24) 平成27年度日本医療研究開発機構成育疾患克服等総合研究事業「抗リン脂質抗体症候群合併妊娠の治療および予後に関する研究」研究班. 抗リン脂質抗体症候群合併妊娠の診療ガイドライン. 南山堂 ; 2016.
25) Tektonidou MG, Andreoli L, Limper M, et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann Rheum Dis 2019 ; 78 : 1296-304.
26) Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus : a systematic review. Ann Rheum Dis 2010 ; 69 : 20-8.
27) Hsu CY, Lin YS, Su YJ, et al. Effect of long-term hydroxychloroquine on vascular events in patients with systemic lupus erythematosus : a database prospective cohort study. Rheumatology (Oxford) 2017 ; 56 : 2212-21.
28) Barbhaiya M, Feldman CH, Guan H, et al. Race/ethnicity and cardiovascular events among patients with systemic lupus erythematosus. Arthritis Rheumatol 2017 ; 69 : 1823-31.
29) Fujieda Y, Atsumi T, Amengual O, et al. Predominant prevalence of arterial thrombosis in Japanese patients with antiphospholipid syndrome. Lupus 2012 ; 21 : 1506-14.
30) 日本脳卒中学会脳卒中ガイドライン [追補 2019] 委員会. 脳卒中治療ガイドライン 2015. 2015.
33) Ohnishi N, Fujieda Y, Hisada R, et al. Efficacy of dual antiplatelet therapy for preventing recurrence of arterial thrombosis in patients with antiphospholipid syndrome. Rheumatology (Oxford) 2019 ; 58 : 969-74.
34) Hoshino K, Horiuchi H, Tada T, et al. Clopidogrel resistance in Japanese patients scheduled for percutaneous coronary intervention. Circulation J 2009 ; 3 : 336-42.
35) Okuma H, Kitagawa Y, Yasuda T, et al. Comparison between single antiplatelet therapy and combination of antiplatelet and anticoagulation therapy for secondary prevention in ischemic stroke patients with antiphospholipid syndrome. Int J Med Sci 2009 ; 7 : 15-8.
36) Crowther MA, Ginsberg JS, Julian J, et al. A comparison of two intensities of warfarin for the prevention of recurrent thrombosis in patients with the antiphospholipid syndrome. N Engl J Med 2003 ; 349 : 1133-8.
37) Cohen H, Hunt BJ, Efthymiou M, et al. Rivaroxaban versus warfarin to treat patients with thrombotic antiphospholipid syndrome, with or without systemic lupus erythematosus (RAPS) : a randomised, controlled, open-label, phase 2/3, non-inferiority trial. Lancet Haematol 2016 ; 3 : 426-36.
38) Pengo V, Denas G, Zoppellaro G, et al. Rivaroxaban vs warfarin in high-risk patients with antiphospholipid syndrome. Blood 2018 ; 132 : 1365-71.
39) Ordi-Ros J, Saez-Comet L, Perez-Conesa M, et al. Rivaroxaban versus vitamin K antagonist in antiphospholipid syndrome : A randomized noninferiority trial. Ann Intern Med 2019 ; 171 : 685-94.
40) Sato T, Nakamura H, Fujieda Y, et al. Factor Xa inhibitors for preventing recurrent thrombosis in patients with antiphospholipid syndrome : a longitudinal cohort study. Lupus 2019 ; 28 : 1577-82.
41) Platt AB, Localio AR, Brensinger CM, et al. Can we predict daily adherence to warfarin? : Results from the International Normalized Ratio Adherence and Genetics (INRANGE) Study. Chest 2010 ; 137 : 883-9.
42) Chaturvedi S, Brodsky RA, McCrae KR. Complement in the pathphysiology of the antiphospholipid syndrome. Front Immunol 2019 ; 10 : 449.
43) Onuora S. Triple therapy boosts survival in catastrophic APS. Nat Rev Rheumatol 2018 ; 14 : 320.
44) Kello N, Khoury LE, Marder G, et al. Secondary thrombotic microangiopathy in systemic lupus erythematosus and antiphospholipid syndrome, the role of complement and use of eculizumab : Case series and review of literature. Semin Arthritis Rheum 2019 ; 49 : 74-83.
45) Kazzaz NM, McCune WJ, Knight JS. Treatment of catastrophic antiphospholipid syndrome. Curr Opin Rheumatol 2016 ; 28 : 218-27.
P.413 掲載の参考文献
P.417 掲載の参考文献
1) 厚生労働科学研究費補助金難治性疾患等政策研究事業自己免疫疾患に関する調査研究班編. 成人スチル病診療ガイドライン, 2017年版. 診断と治療社 ; 2017. pp.1-99.
2) 調裕次. 成人Still病の非定型疹皮膚筋炎様成人Still病. 医学のあゆみ 2013 ; 244 : 993-4.
3) 調裕次. 成人スティル病. 日皮会誌 2013 : 123 : 2530-2.
4) Asanuma YF, Mimura T, Tsuboi H, et al. Nationwide epidemiological survey of 169 patients with adult Still's disease in Japan. Mod Rheumatol 2015 ; 25 : 393-400.
5) Yamaguchi M, Ohta A, Tsunematsu T, et al. Preliminary criteria for classification of adult Still's disease. J Rheumatol 1992 ; 19 : 424-30.
P.423 掲載の参考文献
1) 岳野光洋. ベーチェット病. 公益財団法人日本リウマチ財団教育研修委員会, 一般財団法人リウマチ学会生涯教育委員会編. リウマチ病学テキスト, 改訂第2版. 診断と治療社 ; 2016. pp.400-8.
2) Yazici H, Seyahi E, Hatemi G, et al. Behcet syndrome : a contemporary view. Nat Rev Rheumatol 2018 ; 14 : 119.
3) 日本ベーチェット病学会監修. ベーチェット病診療ガイドライン 2020. 診断と治療社 ; 2020.
4) Verity DH, Marr JE, Ohno S, et al. Behcet's disease, the Silk Road and HLA-B51 : historical and geographical perspectives. Tissue Antigens 1999 ; 54 : 213-20.
5) Ishido T, Horita N, Takeuchi M, et al. Clinical manifestations of Behcet's disease depending on sex and age : results from Japanese nationwide registration. Rheumatology (Oxford) 2017 ; 56 : 1918-927.
6) Kirino Y, Ideguchi H, Takeno M, et al. Continuous evolution of clinical phenotype in 578 Japanese patients with Behcet's disease : a retrospective observational study. Arthritis Res Ther 2016 ; 18 : 217.
7) Ishigatsubo Y, Takeno M. Overview. Ishigatsubo Y, editor, Behcet's Disease. Springer ; 2015. pp.1-20.
8) Hirohata T, Kuratsune M, Nomura A, et al. Prevalence of Behcet's syndrome in Hawaii. With particular reference to the comparison of the Japanese in Hawaii and Japan. Hawaii Med J 1975 ; 34 : 244-6.
9) Papoutsis NG, Abdel-Naser MB, Altenburg A, et al. Prevalence of Adamantiades-Behcet's disease in Germany and the municipality of Berlin : results of a nationwide survey. Clin Exp Rheum 2006 ; 24 (5 Suppl 42) : S125.
10) Takeuchi M, Kastner DL, Remmers EF. The immunogenetics of Behcet's disease : A comprehensive review. J Autoimmun 2015 ; 64 : 137-14.
11) Ombrello MJ, Kirino Y, de Bakker PI, et al. Behcet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A 2014 ; 111 : 8867-72.
12) Mizuki N, Meguro A, Ota M, et al. Genome-wide association studies identify IL23R- IL12RB2 and IL10 as Behcet's disease susceptibility loci. Nat Genet 2010 ; 42 : 703-6.
13) Remmers EF, Cosan F, Kirino Y, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet's disease. Nat Genet 2010 ; 42 : 698-702.
14) Kirino Y, Bertsias G, Ishigatsubo Y, et al. Genome-wide association analysis identifies new susceptibility loci for Behcet's disease and epistasis between HLA-B*51 and ERAP1. Nat Genet 2013 ; 45 : 202-7.
15) Kirino Y, Zhou Q, Ishigatsubo Y, et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behcet disease. Proc Natl Acad Sci U S A 2013 ; 110 : 8134-9.
16) Takeuchi M, Mizuki N, Meguro A, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behcet's disease susceptibility. Nat Genet 2017 ; 49 : 438-43.
17) McGonagle D, Aydin SZ, Gul A, et al 'MHC-I-opathy' -unified concept for spondyloarthritis and Behcet disease. Nat Rev Rheumatol 2015 ; 11 : 731-40.
18) Ahn JK, Cha H-S, Koh E-M, et al. Behcet's disease associated with bone marrow failure in Korean patients : clinical characteristics and the association of intestinal ulceration and trisomy 8. Rheumatology (Oxford) 2008 ; 47 : 1228-30.
19) Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet 2016 ; 48 : 67-73.
20) Shigemura T, Kaneko N, Kobayashi N, et al. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomal-dominant Behcet's disease. RMD Open 2016 ; 5 : 2.
21) Tsuchida N, Kirino Y, Soejima Y, et al. Haploinsufficiency of A20 caused by a novel nonsense variant or entire deletion of TNFAIP3 is clinically distinct from Behcet's disease. Arthritis Res Ther 2019 ; 21 : 137.
22) Cantarini L, Vitale A, Bersani G, et al. PFAPA syndrome and Behcet's disease : a comparison of two medical entities based on the clinical interviews performed by three different specialists. Clin Rheumatol 2016 ; 35 : 501-5.
23) Hatemi G, Christensen R, Bang D, et al. 2018 update of the EULAR recommendations for the management of Behcet's syndrome. Ann Rheum Dis 2018 ; 77 : 808-18.
P.424 掲載の参考文献
1) Ohguro N, Sonoda KH, Takeuchi M, et al. The 2009 prospective multi-center epidemiologic survey of uveitis in Japan. Jpn J Ophthalmol 2012 ; 56 : 432-5.
2) 楠原仙太郎. 自己免疫疾患・膠原病に随伴するぶどう膜炎. OCLISTA 2019 ; 73 : 47-54.
P.427 掲載の参考文献
1) 中村晃一郎, 岩田洋平, 浅井純, ほか. ベーチェット病の皮膚粘膜病変診療ガイドライン. 日皮会誌 2018 ; 128 : 2087-101.
2) Cohen PR. Sweet's syndrome-a comprehensive review of an acute febrile neutrophilic dermatosis. Orphanet J Rare Dis 2007 ; 2 : 34-61.
3) 溝口昌子. Sweet病. 玉置邦彦総編集. 最新皮膚科学大系 9 膠原病非感染性肉芽腫. 中山書店 ; 2002. pp.233-9.
4) Caughman W, Stern R, Haynes H. Neutrophilic dermatosis of myeloproliferative disorders. Atypical forms of pyoderma gangrenosum and Sweet's syndrome associated with myeloproliferative disorders. J Am Acad Dermatol 1983 ; 9 : 751-8.
5) Nelson CA, Stephen S, Ashchyan HJ, et al. Neutrophilic dermatoses : Pathogenesis, Sweet syndrome, neutrophilic eccrine hidradenitis, and Behcet disease. J Am Acad Dermatol 2018 ; 79 : 987-1006.
6) 林剛生, 瀧本そのこ, 高橋宏治, ほか. Sweet病ともBehcet病とも診断できず, 好中球性皮膚症と診断した1例. 皮膚科の臨床 2018 ; 60 : 1229-33.
P.432 掲載の参考文献
1) Lekpa FK, Chevalier X. Refractory relapsing polychondritis : challenges and solutions. Open Access Rheumatol 2018 ; 10 : 1-11.
2) Oka H, Yamano Y, Shimizu J, et al. A large-scale survey of patients with relapsing polychondritis in Japan. Inflamm Regen 2014 ; 34 : 149-56.
3) Kingdon L, Roscamp J, Sangle S, et al. Relapsing polychondritis : a clinical review for rheumatologists. Rheumatology (Oxford) 2018 ; 57 : 1525-32.
4) 岩元凛々子, 佐久川裕行, 宮城拓也, ほか. 多彩な皮膚症状を呈し多剤免疫抑制剤による治療を要した再発性多発軟骨炎. 西日本皮膚科 2021 ; 83 : 22-5.
5) Watkins S, Magill JM, Ramos-Caro FA. Annular eruption preceding relapsing polychondritis : case report and review of the literature. Int J Dermatol 2009 ; 48 : 356-62.
6) Vitale A, Sota J, Rigante D, et al. Relapsing polychondritis : an update on pathogenesis, clinical features, diagnostic tools, and therapeutic perspectives. Curr Rheumatol Rep 2016 ; 18 : 3.
7) Frances C, Rassi RE, Lapyorte JL, et al. Dermatologic manifestations of relapsing polychondritis. A study of 200 cases at a single center. Medicine (Baltimore) 2001 ; 80 : 173-9.
8) 鈴木登. 再発性多発軟骨炎の最新の知見. 皮膚病診療 2015 ; 37 : 828-34.
9) Terato K, Shimozuru Y, Katayama K, et al. Specificity of antibodies to type II collagen in rheumatoid arthritis. Arthritis Rheum 1990 ; 33 : 1493-500.
10) Smylie AL, Malhotra N, Brassard A. Relapsing polychondritis : A review and guide for the dermatologist. Am J Clin Dermatol 2017 ; 18 : 77-86.
11) Moulis G, Pugnet G, Costedoat-Chalumeau N, et al. Efficacy and safety of biologics in relapsing polychondritis : a French national multicentre study. Ann Rheum Dis 2018 ; 77 : 1172-8.
P.438 掲載の参考文献
1) 福代良一. サルコイドーシス診断の手順. 皮膚病診療 1986 ; 8 : 324-30.
2) Rubin AI, Stiller MJ. A listing of skin conditions exhibiting the koebner and pseudo-koebner phenomena with eliciting stimuli. J Cutan Med Surg 2002 ; 6 : 29-34.
3) 森由弘, 菊池宏, 市川裕久, ほか. Loefgren症候群の2例文献報告例における欧米との比較. 日本サルコイドーシス/肉芽腫性疾患学会雑誌 2013 ; 33 : 91-6.
5) Okamoto H, Mizuno K, Horio T. Langhans-type and foreignbody-type multinucleated giant cells in cutaneous lesions of sarcoidosis. Acta Derm Venereol 2003 ; 83 : 171-4.
7) Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum 2013 ; 65 : 1-11.
8) 山本俊幸. 膠原病の血管炎. 皮膚病診療 2020 ; 42 : 470-7.
9) 四十坊典晴, 山口哲生. わが国におけるサルコイドーシスの診断基準と重症度分類. 日本サルコイドーシス/肉芽腫性疾患学会雑誌 2015 ; 35 : 3-8.
10) 植田郁子. "顔の赤み" 鑑別・治療アトラス : 治りにくい顔の皮疹. Monthly Book Derma 2020 ; (294) : 124-7.
11) Lieberman J. Elevation of serum angiotensin-converting-enzyme (ACE) level in sarcoidosis. Am J Med 1975 ; 59 : 365-72.
12) 古家乾, 山口悦郎, 川上義和. サルコイドーシスの臨床 : 症候, 臨床検査サルコイドーシスにおけるACE遺伝子多型性と血清ACE活性. 日本臨牀 1994 ; 52 : 1561-6.
13) Pascual RS, Gee JB, Finch SC. Usefulness of serum lysozyme measurement in diagnosis and evaluation of sarcoidosis. N Engl J Med. 1973 ; 289 : 1074-6.
14) Tomita H, Sato S, Matsuda R, et al. Serum lysozyme levels and clinical features of sarcoidosis. Lung 1999 ; 177 : 161-7.
15) Lawrence EC, Berger MB, Brousseau KP, et al. Elevated serum levels of soluble interleukin-2 receptors in active pulmonary sarcoidosis : relative specificity and association with hypercalcemia. Sarcoidosis 1987 ; 4 : 87-93.
16) Kita T,Watanabe S, Yano F, et al. Clinical significance of the serum IL-2R level and Ga-67 scan findings in making a differential diagnosis between sarcoidosis and non-Hodgkin's lymphoma. Ann Nucl Med 2007 ; 21 : 499-503.
17) Gungor S, Ozseker F, Yalcinsoy M, et al. Conventional markers in determination of activity of sarcoidosis. Int Immunopharmacol 2015 ; 25 : 174-9.
18) Thi Hong Nguyen C, Kambe N, Kishimoto I, et al. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin-converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol 2017 ; 44 : 789-97.
19) Hunninghake GW, Fulmer JD, Young RC, et al. Localization of the immune response in sarcoidosis. Am Rev Respir Dis 1979 ; 120 : 49-57.
20) Morell F, Levy G, Orriols R, et al. Delayed cutaneous hypersensitivity tests and lymphopenia as activity markers in sarcoidosis. Chest 2002 ; 121 : 1239-44.
21) Jones NP, Tsierkezou L, Patton N. Lymphopenia as a predictor of sarcoidosis in patients with uveitis. Br J Ophthalmol 2016 ; 100 : 1393-6.
22) 館野純生, 小林豊. サルコイドーシスの臨床肺外病変の綜説シリーズ本邦症例文献を中心にサルコイドーシスにおける腎病変. 日本臨牀 1994 ; 52 : 1613-8.
23) Hunninghake GW, Crystal RG. Mechanisms of hypergammaglobulinemia in pulmonary sarcoidosis. Site of increased antibody production and role of T lymphocytes. J Clin Invest 1981 ; 67 : 86-92.
24) Nureki S, Miyazaki E, Ando M, et al. Circulating levels of both Th1 and Th2 chemokines are elevated in patients with sarcoidosis. Respir Med 2008 ; 102 : 239-47.
25) Nguyen CTH, Kambe N, Ueda-Hayakawa I, et al. TARC expression in the circulation and cutaneous granulomas correlates with disease severity and indicates Th2-mediated progression in patients with sarcoidosis. Allergol Int 2018 ; 67 : 487-95.
26) Barnard J, Newman LS. Sarcoidosis : immunology, rheumatic involvement, and therapeutics. Curr Opin Rheumatol 2001 ; 13 : 84-91.
27) Enzenauer RJ, West SG. Sarcoidosis in autoimmune disease. Semin Arthritis Rheum 1992 ; 22 : 1-17.
28) Sharma OP. Sarcoidosis and other autoimmune disorders. Curr Opin Pulm Med 2002 ; 8 : 452-6.
29) 上野麻衣, 植田郁子, 楠山太郎, ほか. 抗RNAポリメラーゼ抗体陽性の全身性強皮症にサルコイドーシスを併発した1例. 皮膚科の臨床 2012 ; 54 : 581-5.
30) Ueda-Hayakawa I, Nguyen CTH, Kishimoto I, et al. Clinical characteristics of sarcoidosis patients with systemic sclerosis-specific autoantibody : Possible involvement of thymus and activation-regulated chemokine and a review of the published works. J Dermatol 2019 ; 46 : 577-83.
31) 由水多津子, 菅一能, 折橋典大, ほか. サルコイドーシスの67Gaシンチグラフィの検討-Lambda & Panda signを中心に. 核医学 1991 ; 28 : 1151-7.
32) Heidelberger V, Ingen-Housz-Oro S, Marquet A, et al. Efficacy and tolerance of anti-tumor necrosis factor α agents in cutaneous sarcoidosis : A French study of 46 cases. JAMA Dermatol 2017 ; 153 : 681-5.
P.443 掲載の参考文献
2) Kamisawa T, Zen Y, Pillai S, et al. IgG4-related disease. Lancet 2015 ; 385 : 1460-71.
3) Khosroshahi A, Wallace ZS, Crowe JL, et al. International consensus guidance statement on the management and treatment of IgG4-related disease. Arthritis Rheumatol 2015 ; 67 : 1688-99.
4) Masaki Y, Dong L, Kurose N, et al. Proposal for a new clinical entity, IgG4-positive multi-organ lymphoproliferative syndrome : Analysis of 64 cases of IgG4-related disorders. Ann Rheum Dis 2009 ; 68 : 1310-5.
5) Wallace ZS, Naden RP, Chari S, et al. The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease. Ann Rheum Dis 2020 ; 79 : 77-87.
6) Ito N, Yagi K, Kawano M, et al. Analysis of pancreatic endocrine function in patients with IgG4-related diseases, in whom autoimmune pancreatitis was ruled out by diagnostic imaging. Endocr J 2014 ; 61 : 765-72.
7) Deshpande V, Zen Y, Chan JK, et al. Consensus statement on the pathology of IgG4-related disease.Mod Pathol 2012 ; 25 : 1181-92.
8) Masaki Y, Kurose N, Yamamoto M, et al. Cutoff values of serum IgG4 and histopathological IgG4+ plasma cells for diagnosis of patients with IgG4-related disease. Int J Rheumatol 2012 ; 2012 : 580814.
9) Kawano M, Saeki T, Nakashima H, et al. Proposal for diagnostic criteria for IgG4-related kidney disease. Clin Exp Nephrol 2011 ; 15 : 615-26.
10) Kawa S, Hamano H. Clinical features of autoimmune pancreatitis. J Gastroenterol 2007 ; 42 Suppl 18 : 9-14.
11) Yamada K, Yamamoto M, Saeki T, et al. New clues to the nature of immunoglobulin G4-related disease : a retrospective Japanese multicenter study of baseline clinical features of 334 cases. Arthritis Res Ther 2017 ; 19 : 262.
12) Kamisawa T, Shimosegawa T, Okazaki K, et al. Standard steroid treatment for autoimmune pancreatitis. Gut 2009 ; 58 : 1504-7.
13) Brito-Zeron P, Kostov B, Bosch X, et al. Therapeutic approach to IgG4-related disease : A systematic review. Medicine (Baltimore) 2016 ; 95 : e4002.
14) Shirakashi M, Yoshifuji H, Kodama Y, et al. Factors in glucocorticoid regimens associated with treatment response and relapses of IgG4-related disease : a multicentre study. Sci Rep 2018 ; 8 : 10262.
15) Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG4-related disease : a prospective, openlabel trial. Ann Rheum Dis 2015 ; 74 : 1171-7.
16) Wallace ZS, Mattoo H, Mahajan VS, et al. Predictors of disease relapse in IgG4-related disease following rituximab. Rheumatology (Oxford) 2016 ; 55 : 1000-8.
P.446 掲載の参考文献
1) Tokura Y, Yagi H, Yamaguchi H, et al. IgG4-related skin disease. Br J Dermatol 2014 ; 171 : 959-67.
2) 中澤慎介, 戸倉新樹. IgG4関連皮膚疾患の病理組織像. 日皮会誌 2020 ; 130 : 207-12.
3) 戸倉新樹. IgG4関連皮膚疾患. 日皮会誌 2016 ; 126 : 1445-51.
4) Yamamoto M, Takahashi H, Shinomura Y. Mechanisms and assessment of IgG4-related disease. Nat Rev Rheumatol 2014 ; 10 : 148-59.
5) Manabe A, Igawa T, Takeuchi M, et al. Immunohistochemical analysis of IgA expression differentiates IgG4-related disease from plasma cell-type Castleman disease. Med Mol Morphol 2017 ; 50 : 34-41.
6) 吉崎和幸, 岡本真一郎, 川端浩, ほか. キャッスルマン病診療の参照ガイド. 臨床血液 2017 ; 58 : 97-107.
7) Lehman JS, Smyrk TC, Pittelkow MR. Increased immunoglobulin (Ig) G4-positive plasma cell density and IgG4/IgG ratio are not specific for IgG4-related disease in the skin. Am J Clin Pathol 2014 ; 141 : 234-8.
8) 正木康史, 清水啓智, 中村智美. IgG4関連疾患の診断と治療. J Environ Dermatol Cutan Allergol 2015 ; 9 : 212-7.
P.449 掲載の参考文献
1) 稲毛康. 頸部腫瘤の診かた : 炎症性疾患菊池病 (組織球性壊死性リンパ節炎). 小児内科 2018 ; 50 : 209-12.
2) Tanaka T, Ohmori M, Yasunaga S, et al. DNA typing of HLA class II genes (HLA-DR, -DQ and -DP) in Japanese patients with histiocytic necrotizing lymphadenitis (Kikuchi's disease). Tissue Antigens 1999 ; 54 : 246-53.
3) 竹下盛. リンパ節非腫瘍性疾患のみかた II : diffuse patternを呈する疾患菊池-藤本病 (組織球性壊死性リンパ節炎). 病理と臨床 2007 ; 25 : 208-13.
4) Kim JH, Kim YB, In SI, et al. The cutaneous lesions of Kikuchi's disease : a comprehensive analysis of 16 cases based on the clinicopathologic, immunohistochemical, and immunofluorescence studies with an emphasis on the differential diagnosis. Hum Pathol 2010 ; 41 : 1245-54.
5) Salamat S, Chan J, Jolly K, et al. Kikuchi-Fujimoto Disease and Prognostic Implications. Head Neck Pathol 2020 ; 14 : 272-5.
P.456 掲載の参考文献
1) Kanazawa N, Furukawa F. Autoinflammatory disorders with a dermatological perspective. J Dermatol 2007 ; 34 : 601-18.
2) Kanazawa N. Designation of autoinflammatory skin manifestations with specific genetic backgrounds. Front Immunol 2020 ; 11 : 475.
3) Saito MK, Fujisawa A, Nishikomori R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum 2005 ; 52 : 3579-85.
4) Saito N, Minami-Hori M, Nagahata H, et al. Novel PSTPIP1 gene mutation in pyoderma gangreneosum, acne, and suppurative hidradenitis syndrome. J Dermatol 2018 ; 45 : e213-4.
5) Kunimoto K, Kimura A, Uede K, et al. A new infant case of Nakajo-Nishimura syndrome with a genetic mutation in the immunoproteasome subunit : an overlapping entity with JMP and CANDLE syndrome related to PSMB8 mutations. Dermatology 2013 ; 227 : 26-30.

10章 病態メカニズムの最前線

P.464 掲載の参考文献
1) Chowell D, Morris LGT, Grigg CM, et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 2018 ; 359 : 582-7.
2) Howell WM. HLA and disease : guilt by association. Int J Immunogenet 2014 ; 41 : 1-12.
3) Kennedy AE, Ozbek U, Dorak MT. What has GWAS done for HLA and disease associations? Int J Immunogenet 2017 ; 44 : 195-211.
4) Matzaraki V, Kumar V, Wijmenga C, et al. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biology 2017 ; 18 : 76.
5) Padyukov L, Seielstad M, Ong RT, et al. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis 2011 ; 70 : 259-65.
6) Hirata J, Hirota T, Ozeki T, et al. Variants at HLA-A, HLAC, and HLA-DQB1 confer risk of psoriasis vulgaris in Japanese. J Invest Dermatol 2018 ; 138 : 542-8.
7) Shiina T, Hosomichi K, Inoko H, et al. The HLA genomic loci map : expression, interaction, diversity and disease. J Hum Genet 2009 ; 54 : 15-39.
8) Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 1987 ; 30 : 1205-13.
9) Raychaudhuri S, Sandor C, Stahl EA, et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 2012 ; 44 : 291-6.
10) Okada Y, Kim K, Han B, et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum Mol Genet 2014 ; 23 : 6916-26.
11) Okada Y, Suzuki A, Ikari K, et al. Contribution of a nonclassical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am J Hum Genet 2016 ; 99 : 366-74.
12) Hill JA, Southwood S, Sette A, et al. Cutting edge : the conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J Immunol 2003 ; 171 : 538-41.
13) Law SC, Street S, Yu CH, et al. T-cell autoreactivity to citrullinated autoantigenic peptides in rheumatoid arthritis patients carrying HLA-DRB1 shared epitope alleles. Arthritis Res Ther 2012 ; 14 : R118.
14) Shoda H, Fujio K, Sakurai K, et al. Autoantigen BiP-derived HLA-DR4 epitopes differentially recognized by effector and regulatory T cells in rheumatoid arthritis. Arthritis Rheumatol 2015 ; 67 : 1171-81.
15) Verheijden GF, Rijnders AW, Bos E, et al. Human cartilage glycoprotein-39 as a candidate autoantigen in rheumatoid arthritis. Arthritis Rheum 1997 ; 40 : 1115-25.
16) Okada Y, Han B, Tsoi LC, et al. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes. Am J Hum Genet 2014 ; 95 : 162-72.
17) Zhou F, Cao H, Zuo X, et al. Deep sequencing of the MHC region in the Chinese population contributes to studies of complex disease. Nat Genet 2016 ; 48 : 740-6.
18) Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet 2007 ; 3 : e192.
19) Kim K, Bang SY, Lee HS, et al. The HLA-DRβ1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat Commun 2014 ; 5 : 5902.
20) Morris DL, Taylor KE, Fernando MM, et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus : model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 2012 ; 91 : 778-93.
21) Sun C, Molineros JE, Looger LL, et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 2016 ; 48 : 323-30.
22) Gorlova O, Martin JE, Rueda B, et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 2011 ; 7 : e1002178.
23) Miller FW, Lamb JA, Schmidt J, et al. Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol 2018 ; 14 : 255-68.
24) Zhang CE, Li Y, Wang ZX, et al. Variation at HLA-DPB1 is associated with dermatomyositis in Chinese population. J Dermatol 2016 ; 43 : 1307-13.
25) Fujimoto M, Watanabe R, Ishitsuka Y, et al. Recent advances in dermatomyositis-specific autoantibodies. Curr Opin Rheumatol 2016 ; 28 : 636-44.
26) Parkes JE, Rothwell S, Oldroyd A, et al. Genetic background may contribute to the latitude-dependent prevalence of dermatomyositis and anti-TIF1-γ autoantibodies in adult patients with myositis. Arthritis Res Ther 2018 ; 20 : 117.
27) Chen Z, Wang Y, Kuwana M, et al. HLA-DRB1 alleles as genetic risk factors for the development of anti-MDA5 antibodies in patients with dermatomyositis. J Rheumatol 2017 ; 44 : 1389-93.
28) Lin JM, Zhang YB, Peng QL, et al. Genetic association of HLA-DRB1 multiple polymorphisms with dermatomyositis in Chinese population. HLA 2017 ; 90 : 354-9.
29) Chinoy H, Lamb JA, Ollier WE, et al. Recent advances in the immunogenetics of idiopathic inflammatory myopathy. Arthritis Res Ther 2011 ; 13 : 216.
30) Zhang SY, Zhou XY, Zhou XL, et al. Subtype-specific inherited predisposition to pemphigus in the Chinese population. Br J Dermatol 2019 ; 180 : 828-35.
31) Jiang Y, Arase N, Kohyama M, et al. Transport of misfolded endoplasmic reticulum proteins to the cell surface by MHC class II molecules. Int Immunol 2013 ; 25 : 235-46.
32) Arase N, Arase H. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases. J Biochem 2015 ; 158 : 367-72.
33) Arase H. Rheumatoid rescue of misfolded cellular proteins by MHC class II molecules : A new hypothesis for autoimmune diseases. Adv Immunol 2016 ; 129 : 1-23.
34) Jin H, Arase N, Hirayasu K, et al. Autoantibodies to IgG/HLA class II complexes are associated with rheumatoid arthritis susceptibility. Proc Natl Acad Sci U S A 2014 ; 111 : 3787-92.
35) Tanimura K, Jin H, Suenaga T, et al. beta2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome. Blood 2015 ; 125 : 2835-44.
36) Tanimura K, Saito S, Nakatsuka M, et al. The beta2-glycoprotein I/HLA-DR complex is the major autoantibody target in obstetric antiphospholipid syndrome. Arthritis Rheumatol 2020 Jun 24. doi : 10.1002/art.41410. Online ahead of print.
37) Arase N, Tanimura K, Jin H, et al. Novel autoantibody against the beta2-glycoprotein I/human leucocyte antigen-DR complex in patients with refractory cutaneous ulcers. Br J Dermatol 2018 ; 178 : 272-5.
38) Hiwa R, Ohmura K, Arase N, et al. Myeloperoxidase/HLA class II complexes recognized by autoantibodies in microscopic polyangiitis. Arthritis Rheumatol 2017 ; 69 : 2069-80.
39) Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease : advances and mechanistic insights. Nat Rev Drug Discov 2021 ; 20 : 179-99.
41) Gao J, Zhu C, Zhang Y, et al. Association study and finemapping major histocompatibility complex analysis of pemphigus vulgaris in a Han Chinese population. J Invest Dermatol 2018 ; 138 : 2307-14.
P.469 掲載の参考文献
1) Okada Y, Wu D, Trynka G, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014 ; 506 : 376-81.
2) Langefeld CD, Ainsworth HC, Cunninghame Graham DS, et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 2017 ; 8 : 16021.
3) Lopez-Isac E, Acosta-Herrera M, Kerick M, et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat Commun 2019 ; 10 : 4955.
4) Rothwell S, Cooper RG, Lundberg IE, et al. Dense genotyping of immune-related loci in idiopathic inflammatory myopathies confirms HLA alleles as the strongest genetic risk factor and suggests different genetic background for major clinical subgroups. Ann Rheum Dis 2016 ; 75 : 1558-66.
5) Adrianto I, Wen F, Templeton A, et al. Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet 2011 ; 43 : 253-8.
6) Graham RR, Kozyrev SV, Baechler EC, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006 ; 38 : 550-5.
7) Zhao J, Ma J, Deng Y, et al. A missense variant in NCF1 is associated with susceptibility to multiple autoimmune diseases. Nat Genet 2017 ; 49 : 433-7.
8) Kamitaki N, Sekar A, Handsaker RE, et al. Complement genes contribute sex-biased vulnerability in diverse disorders. Nature 2020 ; 582 : 577-81.
10) Acosta-Herrera M, Kerick M, Gonzalez-Serna D, et al. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann Rheum Dis 2019 ; 78 : 311-9.
P.475 掲載の参考文献
1) Steinman RM. Decisions about dendritic cells : past, present, and future. Annu Rev Immunol 2012 ; 30 : 1-22.
2) Merad M, Sathe P, Helft J, et al. The dendritic cell lineage : ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013 ; 31 : 563-604.
3) Murphy TL, Grajales-Reyes GE, Wu X, et al. Transcriptional control of dendritic cell development. Annu Rev Immunol 2016 ; 34 : 93-119.
4) See P, Dutertre CA, Chen J, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017 ; 356 : eaag3009.
5) Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017 ; 356 : eaah4573.
6) Takaba H, Takayanagi H. The mechanisms of T cell selection in the thymus. Trends Immunol 2017 ; 38 : 805-16.
7) Bonasio R, Scimone ML, Schaerli P, et al. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 2006 ; 7 : 1092-100.
8) Ganguly D, Haak S, Sisirak V, et al. The role of dendritic cells in autoimmunity. Nat Rev Immunol 2013 ; 13 : 566-77.
9) Esfahani K, Elkrief A, Calabrese C, et al. Moving towards personalized treatments of immune-related adverse events. Nat Rev Clin Oncol 2020 ; 17 : 504-15.
10) Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells : sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008 ; 8 : 594-606.
11) Li S, Wu J, Zhu S, et al. Disease-associated plasmacytoid dendritic cells. Front Immunol 2017 ; 8 : 1268.
12) Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010 ; 140 : 805-20.
13) Zevini A, Olagnier D, Hiscott J. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol 2017 ; 38 : 194-205.
14) Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014 ; 14 : 36-49.
15) Hooks JJ, Moutsopoulos HM, Geis SA, et al. Immune interferon in the circulation of patients with autoimmune disease. N Engl J Med 1979 ; 301 : 5-8.
16) Preble O, Black R, Friedman R, et al. Systemic lupus erythematosus : presence in human serum of an unusual acid-labile leukocyte interferon. Science 1982 ; 216 : 429-31.
17) Banchereau R, Hong S, Cantarel B, et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 2016 ; 165 : 551-65.
18) Gota C, Calabrese L. Induction of clinical autoimmune disease by therapeutic interferon-alpha. Autoimmunity 2003 ; 36 : 511-8.
19) Morand EF, Furie R, Tanaka Y, et al. Trial of anifrolumab in active systemic lupus erythematosus. N Engl J Med 2020 ; 382 : 211-21.
20) Yasutomo K, Horiuchi T, Kagami S, et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 2001 ; 28 : 313-4.
21) Al-Mayouf SM, Sunker A, Abdwani R, et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 2011 ; 43 : 1186-8.
22) Lee-Kirsch MA, Gong M, Chowdhury D, et al. Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 2007 ; 39 : 1065-7.
23) Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 2015 ; 47 : 1457-64.
24) Lood C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 2016 ; 22 : 146-53.
25) Henault J, Riggs JM, Karnell JL, et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat Immunol 2016 ; 17 : 196-203.
26) Means TK, Latz E, Hayashi F, et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 2005 ; 115 : 407-17.
27) Meller S, Di Domizio J, Voo KS, et al. T (H) 17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol 2015 ; 16 : 970-9.
28) Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007 ; 8 : 487-96.
30) Kato Y, Park J, Takamatsu H, et al. Apoptosis-derived membrane vesicles drive the cGAS-STING pathway and enhance type I IFN production in systemic lupus erythematosus. Ann Rheum Dis 2018 ; 77 : 1507-15.
31) Alarcon-Riquelme ME, Ziegler JT, Molineros J, et al. Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol 2016 ; 68 : 932-43.
32) Murayama G, Furusawa N, Chiba A, et al. Enhanced IFN-alpha production is associated with increased TLR7 retention in the lysosomes of palasmacytoid dendritic cells in systemic lupus erythematosus. Arthritis Res Ther 2017 ; 19 : 234.
33) Schrezenmeier E, Dorner T. Mechanisms of action of hydroxychloroquine and chloroquine : implications for rheumatology. Nat Rev Rheumatol 2020 ; 16 : 155-66.
34) Liu Y, Jesus AA, Marrero B, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med 2014 ; 371 : 507-18.
35) DeWane ME, Waldman R, Lu J. Dermatomyositis : Clinical features and pathogenesis. J Am Acad Dermatol 2020 ; 82 : 267-81.
36) Huard C, Gulla SV, Bennett DV, et al. Correlation of cutaneous disease activity with type 1 interferon gene signature and interferon beta in dermatomyositis. Br J Dermatol 2017 ; 176 : 1224-30.
37) Zhang SH, Zhao Y, Xie QB, et al. Aberrant activation of the type I interferon system may contribute to the pathogenesis of anti-melanoma differentiation-associated gene 5 dermatomyositis. Br J Dermatol 2019 ; 180 : 1090-8.
38) Okiyama N, Yamaguchi Y, Kodera M, et al. Distinct histopathologic patterns of finger eruptions in dermatomyositis based on myositis-specific autoantibody profiles. JAMA Dermatol 2019 ; 155 : 1080-2.
39) Kurasawa K, Arai S, Namiki Y, et al. Tofacitinib for refractory interstitial lung diseases in anti-melanoma differentiation-associated 5 gene antibody-positive dermatomyositis. Rheumatology (Oxford) 2018 ; 57 : 2114-9.
40) Allanore Y, Simms R, Distler O, et al. Systemic sclerosis. Nat Rev Dis Primers 2015 ; 1 : 15002.
41) Ah Kioon MD, Tripodo C, Fernandez D, et al. Plasmacytoid dendritic cells promote systemic sclerosis with a key role for TLR8. Sci Transl Med 2018 ; 10 : eaam8458.
42) Sharif R, Mayes MD, Tan FK, et al. IRF5 polymorphism predicts prognosis in patients with systemic sclerosis. Ann Rheum Dis 2012 ; 71 : 1197-202.
43) Carmona FD, Gutala R, Simeon CP, et al. Novel identification of the IRF7 region as an anticentromere autoantibody propensity locus in systemic sclerosis. Ann Rheum Dis 2012 ; 71 : 114-9.
44) Terao C, Ohmura K, Kawaguchi Y, et al. PLD4 as a novel susceptibility gene for systemic sclerosis in a Japanese population. Arthritis Rheum 2013 ; 65 : 472-80.
45) Bhattacharyya S, Tamaki Z, Wang W, et al. Fibronectin EDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med 2014 ; 6 : 232ra50.
46) Bhattacharyya S, Wang W, Morales-Nebreda L, et al. Tenascin-C drives persistence of organ fibrosis. Nat Commun 2016 ; 7 : 11703.
47) Agarwal SK, Wu M, Livingston CK, et al. Toll-like receptor 3 upregulation by type I interferon in healthy and scleroderma dermal fibroblasts. Arthritis Res Ther 2011 ; 13 : R3.
48) Black CM, Silman AJ, Herrick AI, et al. Interferon-alpha does not improve outcome at one year in patients with diffuse cutaneous scleroderma : Results of a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 1999 ; 42 : 299-305.
49) Stifano G, Christmann RB. Macrophage involvement in systemic sclerosis : Do we need more evidence? Curr Rheumatol Rep 2016 ; 18 : 2.
50) Frantz C, Pezet S, Avouac J, et al. Soluble CD163 as a potential biomarker in systemic sclerosis. Dis Markers 2018 ; 2018 : 8509583.
51) Brito-Zeron P, Baldini C, Bootsma H, et al. Sjogren syndrome. Nat Rev Dis Primers 2016 ; 2 : 16047.
52) Yao Y, Liu Z, Jallal B, et al. Type I interferons in Sjogren's syndrome. Autoimmun Rev 2013 ; 12 : 558-66.
53) Nezos A, Gravani F, Tassidou A, et al. Type I and II interferon signatures in Sjogren's syndrome pathogenesis : Contributions in distinct clinical phenotypes and Sjogren's related lymphomagenesis. J Autoimmun 2015 ; 63 : 47-58.
54) Mavragani CP, Sagalovskiy I, Guo Q, et al. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol 2016 ; 68 : 2686-96.
55) Sanchez GAM, Reinhardt A, Ramsey S, et al. JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest 2018 ; 128 : 3041-52.
P.481 掲載の参考文献
1) Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity : update on Toll-like receptors. Nat Immunol 2010 ; 11 : 373-84.
2) Brubaker SW, Bonham KS, Zanoni I, et al. Innate immune pattern recognition : A cell biological perspective. Annu Rev Immunol 2014 ; 33 : 1-34.
3) Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 2002 ; 3 : 667-72.
4) Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010 ; 140 : 805-20.
5) Chen GY, Nunez G. Sterile inflammation : sensing and reacting to damage. Nat Rev Immunol 2010 ; 10 : 826-37.
6) Miyake K, Kaisho T. Homeostatic inflammation in innate immunity. Curr Opin Immunol 2014 ; 30 : 85-90.
7) Fukui R, Miyake K. Controlling systems of nucleic acid sensing-TLRs restrict homeostatic inflammation. Exp Cell Res 2012 ; 318 : 1461-6.
8) Miyake K, Shibata T, Ohto U, et al. Mechanisms controlling nucleic acid-sensing Toll-like receptors. Int Immunol 2018 ; 30 : 43-51.
9) Shibata T, Ohto U, Nomura S, et al. Guanosine and its modified derivatives are endogenous ligands for TLR7. Int Immunol 2016 ; 28 : 211-22.
10) Zhang Z, Ohto U, Shibata T, et al. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 2016 ; 45 : 737-48.
11) Santiago-Raber M-L, Kikuchi S, Borel P, et al. Evidence for genes in addition to Tlr7 in the Yaa translocation linked with acceleration of systemic lupus erythematosus. J Immunol 2008 ; 181 : 1556-62.
12) Pisitkun P, Deane JA, Difilippantonio MJ, et al. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006 ; 312 : 1669-72.
13) Fairhurst A, Hwang S, Wang A, et al. Yaa autoimmune phenotypes are conferred by overexpression of TLR7. Eur J Immunol 2008 ; 38 : 1971-8.
14) Walsh ER, Pisitkun P, Voynova E, et al. Dual signaling by innate and adaptive immune receptors is required for TLR7-induced B-cell-mediated autoimmunity. Proc Natl Acad Sci U S A 2012 ; 109 : 16276-81.
15) Deane JA, Pisitkun P, Barrett RS, et al. Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 2007 ; 27 : 801-10.
16) Yokogawa M, Takaishi M, Nakajima K, et al. Epicutaneous application of Toll-like receptor 7 agonists leads to systemic autoimmunity in wild-type mice : A new model of systemic lupus erythematosus. Arthritis Rheumatol 2014 ; 66 : 694-706.
17) Gilliet M, Lande R. Antimicrobial peptides and self-DNA in autoimmune skin inflammation. Curr Opin Immunol 2008 ; 20 : 401-7.
19) Fits L van der, Mourits S, Voerman JSA, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 2009 ; 182 : 5836-45.
20) Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Medicine 2009 ; 206 : 1983-94.
21) Tai N, Wong SF, Wen L. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun 2016 ; 71 : 26-34.
22) Wong SF, Hu C, Zhang L, et al. The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Ann N Y Acad Sci 2008 ; 1150 : 146-8.
23) Tai N, Wong FS, Wen L. TLR9 deficiency promotes CD73 expression in T cells and diabetes protection in nonobese diabetic mice. J Immunol 2013 ; 191 : 2926-37.
24) Diana J, Simoni Y, Furio L, et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 2012 ; 19 : 65-73.
25) Kim Y-M, Brinkmann MM, Paquet M-E, et al. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 2008 ; 452 : 234-8.
26) Brinkmann MM, Spooner E, Hoebe K, et al. The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 2007 ; 177 : 265-75.
27) Park B, Brinkmann MM, Spooner E, et al. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat Immunol 2008 ; 9 : 1407-14.
28) Matsumoto F, Saitoh S, Fukui R, et al. Cathepsins are required for Toll-like receptor 9 responses. Biochem Biophys Res Commun 2008 ; 367 : 693-9.
29) Sepulveda FE, Maschalidi S, Colisson R, et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity 2009 ; 31 : 737-48.
30) Ewald SE, Engel A, Lee J, et al. Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. J Exp Medicine 2011 ; 208 : 643-51.
31) Onji M, Kanno A, Saitoh S-I, et al. An essential role for the N-terminal fragment of Toll-like receptor 9 in DNA sensing. Nat Commun 2013 ; 4 : 1949.
32) Fukui R, Yamamoto C, Matsumoto F, et al. Cleavage of Toll-like receptor 9 ectodomain is required for in vivo responses to single strand DNA. Front Immunol 2018 ; 9 : 1491.
32) Kanno A, Yamamoto C, Onj i M, et al. Essential role for Toll-like receptor 7 (TLR7) -unique cysteines in an intramolecular disulfide bond, proteolytic cleavage and RNA sensing. Int Immunol 2013 ; 25 : 413-22.
34) Murakami Y, Fukui R, Motoi Y, et al. Roles of the cleaved N-terminal TLR3 fragment and cell surface TLR3 in double-stranded RNA sensing. J Immunol 2014 ; 193 : 5208-17.
35) Lee BL, Moon JE, Shu JH, et al. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife 2013 ; 2 : e00291.
36) Barton GM, Kagan JC, Medzhitov R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat Immunol 2006 ; 7 : 49-56.
37) Kanno A, Tanimura N, Ishizaki M, et al. Targeting cell surface TLR7 for therapeutic intervention in autoimmune diseases. Nat Commun 2015 ; 6 : 6119.
38) Chan M, Onji M, Fukui R, et al. DNase II-dependent DNA digestion is required for DNA sensing by TLR9. Nat Commun 2015 ; 6 : 5853.
39) Ohto U, Shibata T, Tanji H, et al. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 2015 ; 520 : 702-5.
40) Yanai H, Ban T, Wang Z, et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 2009 ; 462 : 99-103.
41) Tian J, Avalos AM, Mao S-Y, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007 ; 8 : ni1457.
42) Fukui R, Saitoh S, Matsumoto F, et al. Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing. J Exp Med 2009 ; 206 : 1339-50.
43) Fukui R, Kanno A, Miyake K. Type I IFN contributes to the phenotype of Unc93b1D34A/D34A mice by regulating TLR7 expression in B cells and dendritic cells. J Immunol 2016 ; 196 : 416-27.
44) Fukui R, Saitoh S-I, Kanno A, et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 2011 ; 35 : 69-81.
45) Gavin AL, Huang D, Huber C, et al. PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nat Immunol 2018 ; 19 : 942-53.
46) Kandimalla ER, Bhagat L, Wang D, et al. Design, synthesis and biological evaluation of novel antagonist compounds of Toll-like receptors 7, 8 and 9. Nucleic Acids Res 2013 ; 41 : 3947-61.
47) Balak D, Doorn M van, Arbeit RD, et al. IMO-8400, a toll-like receptor 7, 8, and 9 antagonist, demonstrates clinical activity in a phase 2a, randomized, placebo-controlled trial in patients with moderate-to-severe plaque psoriasis. Clin Immunol 2017 ; 174 : 63-72.
48) Barrat FJ, Meeker T, Chan JH, et al. Treatment of lupusprone mice with a dual inhibitor of TLR7 and TLR9 leads to reduction of autoantibody production and amelioration of disease symptoms. Eur J Immunol 2007 ; 37 : 3582-6.
49) Pawar RD, Ramanjaneyulu A, Kulkarni OP, et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J Am Soc Nephrol 2007 ; 18 : 1721-31.
50) amphier M, Zheng W, Latz E, et al. Novel small molecule inhibitors of TLR7 and TLR9 : Mechanism of action and efficacy in vivo. Mol Pharmcol 2014 ; 85 : 429-40.
51) Shukla NM, Malladi SS, Day V, et al. Preliminary evaluation of a 3H imidazoquinoline library as dual TLR7/TLR8 antagonists. Bioorg Med Chem 2011 ; 19 : 3801-11.
52) Fukui R, Murakami Y, Miyake K. New application of anti-TLR monoclonal antibodies : detection, inhibition and protection. Inflamm Regen 2018 ; 38 : 11.
53) Murakami Y, Fukui R, Motoi Y, et al. The protective effect of the anti-Toll-like receptor 9 antibody against acute cytokine storm caused by immunostimulatory DNA. Sci Rep 2017 ; 7 : 44042.
54) Sato R, Kato A, Chimura T, et al. Combating herpesvirus encephalitis by potentiating a TLR3-mTORC2 axis. Nat Immunol 2018 ; 19 : 1071-82.
55) Guo Y, Audry M, Ciancanelli M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency : TLR3 is otherwise redundant in protective immunity. J Exp Med 2011 ; 208 : 2083-98.
56) Casrouge A, Zhang S-Y, Eidenschenk C, et al. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 2006 ; 314 : 308-12.
57) Alexopoulou L, Holt AC, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 2001 ; 413 : 732-8.
58) Yu P, Lubben W, Slomka H, et al. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 2012 ; 37 : 867-79.
P.488 掲載の参考文献
1) Wahren-Herlenius M, Dorner T. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 2013 ; 382 : 819-31.
2) Sakaguchi S, Yamaguchi, T Nomura T, et al. Regulatory T cells and immune tolerance. Cell 2008 ; 133 : 775-87.
3) Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995 ; 155 : 1151-64.
4) Nishizuka Y, Sakakura T. Thymus and reproduction : sexlinked dysgenesia of the gonad after neonatal thymectomy in mice. Science 1969 ; 166 : 753-5.
5) Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med 1996 ; 184 : 387-96.
6) Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity : production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol 1999 ; 162 : 5317-26.
7) Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 ; 299 : 1057-61.
8) Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity 2013 ; 38 : 414-23.
9) Plitas G, Rudensky AY. Regulatory T cells : Differentiation and function. Cancer Immunol Res 2016 ; 4 : 721-5.
10) Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+ CD4+ T cells : a common basis between tumor immunity and autoimmunity. J Immunol 1999 ; 163 : 5211-8.
11) Sakaguchi S. Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005 ; 6 : 345-52.
12) Yamazaki S, Inaba K, Tarbell KV, et al. Dendritic cells expand antigen-specific Foxp3+ CD25+ CD4+ regulatory T cells including suppressors of alloreactivity. Immunol Rev 2006 ; 212 : 314-29.
13) Sakaguchi S, Mikami N, Wing JB, et al. Regulatory T cells and human disease. Annu Rev Immunol 2020 ; 8 : 541-66.
14) Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4+ CD25 high regulatory cells in human peripheral blood. J Immunol 2001 ; 167 : 1245-53.
15) Stephens LA, Mottet C, Mason D, et al. Human CD4 (+) CD25 (+) thymocytes and peripheral T cells have immune suppressive activity in vitro. Eur J Immunol 2001 ; 31 : 1247-54.
16) Yagi H, Nomura T, Nakamura K, et al. Crucial role of FOXP3 in the development and function of human CD25+ CD4+ regulatory T cells. Int Immunol 2004 ; 16 : 1643-56.
17) Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001 ; 27 : 20-1.
18) Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001 ; 27 : 18-20.
19) Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+ CD25+ T regulatory cells. Nat Immunol 2003 ; 4 : 337-42.
20) Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001 ; 27 : 68-73.
21) Bacchetta R, Barzaghi F, Roncarolo MG. From IPEX syndrome to FOXP3 mutation : a lesson on immune dysregulation. Ann N Y Acad Sci 2018 ; 1417 : 5-22.
22) Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+ FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007 ; 110 : 2983-90.
23) Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006 ; 203 : 1701-11.
24) Seddiki N, Santner-Nanan B, Martinson J, et al. Expression of interleukin (IL) -2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 2006 ; 203 : 1693-700.
25) Miyara M, Yoshioka Y, Kitoh A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009 ; 30 : 899-911.
26) Sugiyama D, Nishikawa H, Maeda Y, et al. Anti-CCR4 mAb selectively depletes effector-type FoxP3+CD4+ regulatory T cells, evoking antitumor immune responses in humans. Proc Natl Acad Sci U S A 2013 ; 110 : 17945-50.
27) Saito T, Nishikawa H, Wada H, et al. Two FOXP3 (+) CD4 (+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 2016 ; 22 : 679-84.
28) Matoba T, Imai M, Ohkura N, et al. Regulatory T cells expressing abundant CTLA-4 on the cell surface with a proliferative gene profile are key features of human head and neck cancer. Int J Cancer 2019 ; 144 : 2811-22.
29) Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol 2015 ; 45 : 344-55.
30) Morita T, Shima Y, Wing JB, et al. The proportion of regulatory T cells in patients with rheumatoid arthritis : A metaanalysis. PLoS One 2016 ; 11 : e0162306.
31) Miyara M, Chader D, Sage E, et al. Sialyl Lewis x (CD15s) identifies highly differentiated and most suppressive FOXP3high regulatory T cells in humans. Proc Natl Acad Sci U S A 2015 ; 112 : 722530.
32) Ohkura N, Hamaguchi M, Morikawa H, et al. T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 2012 ; 37 : 785-99.
33) Miyao T, Floess S, Setoguchi R, et al. Plasticity of Foxp3 (+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 2012 ; 36 : 262-75.
34) Ohkura N, Yasumizu Y, Kitagawa Y, et al. Regulatory T cell-specific epigenomic region variants are a key determinant of susceptibility to common autoimmune diseases. Immunity 2020 ; 52 : 1119-32. e4
35) Hnisz D, Abraham BJ, Lee TI, et al. Super-enhancers in the control of cell identity and disease. Cell 2013 ; 155 : 934-47.
36) Kitagawa Y, Ohkura N, Kidani Y, et al. Guidance of regulatory T cell development by Satb1-dependent super-enhancer establishment. Nat Immunol 2017 ; 18 : 173-83.
37) Ferreira LMR, Muller YD, Bluestone JA, et al. Next-generation regulatory T cell therapy. Nat Rev Drug Discov 2019 ; 18 : 749-69.
38) Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med 2004 ; 199 : 1455-65.
39) Hoffmann P, Eder R, Kunz-Schughart LA, et al. Large-scale in vitro expansion of polyclonal human CD4 (+) CD25 high regulatory T cells. Blood 2004 ; 104 : 895-903.
40) Bluestone JA, Buckner JH, Fitch M, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med 2015 ; 7 : 315ra189.
41) Dall'Era M, Pauli ML, Remedios K, et al. Adoptive Treg cell therapy in a patient with systemic lupus erythematosus. Arthritis Rheumatol 2019 ; 71 : 431-40.
42) He J, Zhang X, Wei Y, et al. Low-dose interleukin-2 treatment selectively modulates CD4 (+) T cell subsets in patients with systemic lupus erythematosus. Nat Med 2016 ; 22 : 991-3.
43) Yamazaki S, Steinman RM. Dendritic cells as controllers of antigen-specific Foxp3+ regulatory T cells. J Dermatol Sci 2009 ; 54 : 69-75.
44) Yamazaki S, Iyoda T, Tarbell K, et al. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigenprocessing dendritic cells. J Exp Med 2003 ; 198 : 235-47.
45) Yamazaki S, Patel M, Harper A, et al. Effective expansion of alloantigen-specific Foxp3+ CD25+ CD4+ regulatory T cells by dendritic cells during the mixed leukocyte reaction. Proc Natl Acad Sci U S A 2006 ; 103 : 2758-63.
46) Yamazaki S, Bonito AJ, Spisek R, et al. Dendritic cells are specialized accessory cells along with TGF-b for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood 2007 ; 110 : 4293-302.
47) Yamazaki S, Dudziak D, Heidkamp GF, et al. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 2008 ; 181 : 6923-33.
48) Boroughs AC, Larson RC, Choi BD, et al. Chimeric antigen receptor costimulation domains modulate human regulatory T cell function. JCI Insight 2019 ; 5 : e126194.
49) Dawson NA, Lamarche C, Hoeppli RE, et al. Systematic testing and specificity mapping of alloantigen-specific chimeric antigen receptors in regulatory T cells. JCI Insight 2019 ; 4 : e123672.
50) Imura Y, Ando M, Kondo T, et al. CD19-targeted CAR regulatory T cells suppress B cell pathology without GvHD. JCI Insight 2020 ; 5 : e136185.
51) Dawson NAJ, Rosado-Sanchez I, Novakovsky GE, et al. Functional effects of chimeric antigen receptor co-receptor signaling domains in human regulatory T cells. Sci Transl Med 2020 ; 12 : eaaz3866.
52) Akamatsu M, Mikami N, Ohkura N, et al. Conversion of antigen-specific effector/memory T cells into Foxp3-expressing Treg cells by inhibition of CDK8/19. Sci Immunol 2019 ; 4 : eaaw2707.
53) Mikami N, Kawakami R, Chen KY, et al. Epigenetic conversion of conventional T cells into regulatory T cells by CD28 signal deprivation. Proc Natl Acad Sci U S A 2020 ; 117 : 12258-68.
54) He X, Koenen H, Smeets RL, et al. Targeting PKC in human T cells using sotrastaurin (AEB071) preserves regulatory T cells and prevents IL-17 production. J Invest Dermatol 2014 ; 134 : 975-83.
55) Yamazaki S, Nishioka A, Kasuya S, et al. Homeostasis of thymus-derived Foxp3+ regulatory T cells is controlled by ultraviolet B exposure in the skin. J Immunol 2014 ; 193 : 5488-97.
56) Yamazaki S, Odanaka M, Nishioka A, et al. Ultraviolet B-induced maturation of CD11b-type langerin (-) dendritic cells controls the expansion of Foxp3 (+) regulatory T cells in the skin. J Immunol 2018 ; 200 : 119-29.
57) Shime H, Odanaka M, Tsuiji M, et al. Proenkephalin (+) regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function. Proc Natl Acad Sci U S A 2020 ; 117 : 20696-705.
58) Kubo R, Muramatsu S, Sagawa Y, et al. Bath-PUVA therapy improves impaired resting regulatory T cells and increases activated regulatory T cells in psoriasis. J Dermatol Sci 2017 ; 86 : 46-53.
59) Furuhashi T, Torii K, Ikumi K, et al. Ultraviolet A1 phototherapy for the treatment of localized scleroderma. J Dermatol 2020 ; 47 : 792-5.
60) Gambichler T, Schmitz L. Ultraviolet A1 phototherapy for fibrosing conditions. Front Med (Lausanne) 2018 ; 5 : 237.
P.495 掲載の参考文献
1) Bluml S, McKeever K, Ettinger R, et al. B-cell targeted therapeutics in clinical development. Arthritis Res Ther 2013 ; 15 (Suppl 1) : S4.
2) Goodnow CC, Sprent J, Fazekas de St Groth B, et al. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005 ; 435 : 590-7.
3) Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol 2008 ; 20 : 632-8.
4) Isnardi I, Ng Yen-Shing, Srdanovic I, et al. IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity 2008 ; 29 : 746-57.
5) Meffre E. The establishment of eary B cell tolerance in humans : lessons from primary immunodeficiency diseases. Ann N Y Acad Sci 2011 ; 1246 : 1-10.
6) Smulski CR, Eibel H. BAFF and BAFF-receptor in B cell selection and survival. Front Immunol 2018 ; 9 : 2285.
7) Jacobi AM, Huang W, Wang T, et al. Effect of long-term belimumab treatment on B cells in systemic lupus erythematosus : extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum 2010 ; 62 : 201-10.
8) Tiller T, Tsuji M, Yurasov S, et al. Autoreactivity in human IgG+ memory B cells. Immunity 2007 ; 26 : 205-13.
9) Scheid JF, Mouquet H, Kofer J, et al. Differential regulation of self-reactivity discriminates between IgG+ human circulating memory B cells and bone marrow plasma cells. Proc Natl Acad Sci U S A 2011 ; 108 : 18044-8.
10) Meffre E, O'Connor KC. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol Rev 2019 ; 292 : 90-101.
11) Deane KD, El-Gabalawy H. Pathogenesis and prevention of rheumatic disease : focus on preclinical RA and SLE. Nat Rev Rheumatol 2014 ; 10 : 212-28.
12) Jenks SA, Cashman KS, Woodruff MC, et al. Extrafollicular responses in humans and SLE. Immunol Rev 2019 ; 288 : 136-48.
13) Suurmond J, Atisha-FregosoY, Barlev AN, et al. Patterns of ANA+ B cells for SLE patient stratification. JCI insight 2019 ; 4 : e127885.
14) Morbach H,Wiegering V, Richl P, et al. Activated memory B cells may function as antigen-presenting cells in the joints of children with juvenile idiopathic arthritis. Arthritis Rheum 2011 ; 63 : 3458-66.
15) Liu E and Perl A. Pathogenesis and treatment of autoimmune rheumatic diseases. Curr Opin Rheumatol 2019 ; 31 : 307-15.
16) Yoshizaki A, Miyagaki T, DiLillo DJ, et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 2012 ; 491 : 264-8.
17) Ota Y, Niiro H, Ota S, et al. Generation mechanism of RANKL (+) effector memory B cells : relevance to the pathogenesis of rheumatoid arthritis. Arthritis Res Ther 2016 ; 18 : 67.
18) Higashioka K, Kikushige Y, Ayano M, et al. Generation of a novel CD30+ B cell subset producing GM-CSF and its possible link to the pathogenesis of systemic sclerosis. Clin Exp Immunol 2020 ; 201 : 233-43.
P.499 掲載の参考文献
1) Metchnikoff E. Lecon sur la pathologie comparee de l'inflammation. Libraire de L'Academie de Medicine, G. Masson, Paris, 1892.
2) Gordon, S. Alternative activation of macrophages. Nat Rev Immunol 2003 ; 3 : 23-35.
3) Satoh T, Takeuchi O, Vandenbon A, et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 2010 ; 11 : 936-44.
4) Satoh T, Kidoya H, Naito H, et al. Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 2013 ; 495 : 524-8.
5) Carlin LM, Stamatiades EG, Auffray C, et al. Nr4a1-dependent Ly6C (low) monocytes monitor endothelial cells and orchestrate their disposal. Cell 2013 ; 153 : 362-75.
6) Satoh T, Nakagawa K, Sugihara F, et al. Identification of an atypical monocyte and committed progenitor involved in fibrosis. Nature 2017 ; 541 : 96-101.
7) Fukushima, K, Satoh T, Sugihara F, et al. Dysregulated expression of the nuclear exosome targeting complex component RBM7 in non-hematopoietic cells licenses the development of fibrosis. Immunity 2020 ; 52 : 542-56.
P.504 掲載の参考文献
1) Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013 ; 504 : 446-50.
2) Vaahtovuo J, Munukka E, Korkeamaki M, et al. Fecal microbiota in early rheumatoid arthritis. J Rheumatol 2008 ; 35 : 1500-5.
3) Yamamoto K, Okada Y, Suzuki A, et al. Genetic studies of rheumatoid arthritis. Proc Jpn Acad Ser B Phys Biol Sci 2015 ; 91 : 410-22.
4) Karami J, Aslani S, Jamshidi A, et al. Genetic implications in the pathogenesis of rheumatoid arthritis ; an updated review. Gene 2019 ; 702 : 8-16.
5) Wegener N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromaonas gingivalis citrullinates human fibrinogen and alpha-enolase : implications for autoimmunity in rheumatoid arthritis. Arthritis Rheumatol 2010 ; 62 : 2662-72.
6) Stone M, Fortin PR, Pacheco-Tena C, et al. Should tetracycline treatment be used more extensively for rheumatoid arthritis? Metaanalysis demonstrates clinical benefit with reduction in disease activity. J Rheumatol 2003 ; 30 : 2112-22.
7) Sakaguchi N, Takahashi T, Hata H, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 2003 ; 426 : 454-60.
8) Yoshitomi H. et al. A role of for fungal (beta) -glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J Exp Med 2005 ; 201 : 949-60.
9) Rehaume LM, Mondot S, Aguirre de Carcer D, et al. ZAP-70 gennotype disrupts the relationship between microbiota and host, leading to spondyoarthritis and ileitis in SKG mice. Arthritis Rheumatol 2014 ; 66 : 2780-92.
10) Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010 ; 32 : 815-27.
11) Abdollahi-Roodsaz S, Joosten LAB, Koenders MI, et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J Clin Invest 2008 ; 118 : 205-16.
12) Vaahtovuo J, Munukka E, Korkeamaki M, et al. Fecal microbiota in early rheumatoid arthritis. J Rheumatol 2008 ; 35 : 1500-5.
14) Zheng, Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008 ; 14 : 282-9.
15) Kobayashi N, Takahashi D, Takano S, et al. The roles of Peyer's patches and microfold cells in the gut immune system : Relevance to autoimmune diseases. Front Immunol 2019 ; 10 : 2345.
16) Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013 ; 504 : 446-50.
17) Kim DS, Kwon JE, Lee SH, et al. Attenuation of rheumatoid inflammation by sodium butyrate through reciprocal targeting of HDAC2 in osteoclasts and HDAC8 in T cells. Front Immunol 2018 ; 9 : 1525.
18) Scher JU, Sczesnak A, Longman RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013 ; 2 : e01202.
19) Pianta A, Arvikar SL, Strle K, et al. Two rheumatoid arthritis-specific autoantigens correlate microbial immunity with autoimmune responses in joints. J Clin Invest 2017 ; 127 : 2946-56.
20) Zhang H, Liao X, Sparks JB, et al. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol 2014 ; 80 : 7551-60.
21) Luo XM, Edwards MR, Mu Q, et al. Gut microbiota in human systemic lupus erythematosus and a mouse model of lupus. Appl Enbiron Microbiol 2018 ; 84 : e02288-17.
22) Hevia A, Milani C, Lopez P, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. Microbiology 2014 ; 5 : e01548-14.
23) Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 2019 ; 78 : 947-56.
24) Andreasson K, Alrawai Z, Persson A, et al. Intestinal dysbiosis is common in systemic sclerosis and associated with gastrointestinal and extraintestinal features of disease. Arthritis Res Ther 2016 ; 29 : 278-29.
25) Tejesvi MV, Arvonen M, Kangas SM, et al. Faecal microbiome in new-onsete juvenile idiopathic arthritis. Eur J Clin Microbiol Infect Dis 2016 ; 35 : 363-70.
26) Giongo A, Gaono KA, Crabb DB, et al. Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 2011 ; 5 : 82-91.
27) Arvones M, Virta LJ, Pokka T, et al. Repeated exposure to antibiotics in infancy : A predisposing factor for juvenile idiopathic arthritis or a sign of this group's greater susceptibility to infections? J Rheumatol 2015 ; 42 : 521-6.

最近チェックした商品履歴

Loading...