トレーニングとリカバリーの科学的基礎

出版社: 文光堂
著者:
発行日: 2021-11-18
分野: 臨床医学:外科  >  スポーツ医学
ISBN: 9784830651939
電子書籍版: 2021-11-18 (第1版第3刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

4,950 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

4,950 円(税込)

商品紹介

ストレングス&コンディショニングに関わる科学的研究は近年目覚ましい発展を遂げており,“科学的根拠に基づいたトレーニング指導”への関心も高まっている.そこで本書では基礎研究の解説から応用実践まで見据えた内容を盛り込みつつ,近年の「トレーニング」「リカバリー」「身体に関わる情報の活用」に関する数多くの科学的知見を紹介した.トレーニングコーチを目指す学生から,すでに現場に立っているプロのストレングス&コンディショニングコーチやパーソナルトレーナーまで必読の一冊.

目次

  • 序章 アスレティックパフォーマンス向上のための戦略
      1 コンディショニングにおけるトレーニングとリカバリーの位置づけ
      2 トレーニングの要素
      3 多様なリカバリー手法とその使い方
      4 身体に関わる情報の活用
      5 evidence-based practiceの必要性
      6 evidence-based practiceの難しさ

    第1部 トレーニングの科学的基礎
    (1)筋力
     第1章 筋力発揮と筋力増加のメカニズム
      1 発揮筋力の大きさはどのように調整されるのか?
      2 トレーニングによってなぜ最大筋力は高まるのか?─神経適応と筋肥大─
      3 固有筋力は変化するのか?
      4 神経適応・筋肥大以外も最大筋力増加に関わっている
      5 瞬発系・パワー系アスリートに必要なバリスティックな筋力
      6 拮抗筋活動の適応
      7 バリスティックな筋力や筋パワーを一時的に高める方法
     第2章 筋肥大のメカニズムと運動刺激の条件
      1 骨格筋量調節の概要
      2 レジスタンス運動による筋肥大のメカニズム
      3 筋肥大を刺激する運動の条件
     第3章 [トレーニングメソッド]
         エキセントリックトレーニング
      1 なぜエキセントリックトレーニングが注目されているのか?
      2 デメリットはあるか?─筋損傷の誘発とその軽減策─
      3 現場での応用
    (2)スピード
     第4章 スピード獲得の力学的基礎とトレーニング方法
      1 スポーツにおける「スピード」
      2 力学的基礎
      3 スピードを向上させるためには
     第5章 [トレーニングメソッド]
         オリンピックリフティング
      1 オリンピックリフティングとは?
      2 スピードに対するトレーニング効果
      3 スピード向上のためのオリンピックリフティングの実践
     第6章 stretch-shortening cycleによるパフォーマンス増強とそのメカニズム
      1 SSCはどんな動作で生じるのか?
      2 SSCによる2種類のパフォーマンス増強効果
      3 SSCによるパフォーマンス増強のメカニズム
      4 SSCの効果を引き出すためのヒント
     第7章 [トレーニングメソッド]
         プライオメトリクス
      1 プライオメトリックトレーニングによるスピードの向上
      2 プライオメトリックトレーニングによる持久的パフォーマンスの向上
      3 外傷・障害との関係
      4 実施上の考慮事項
    (3)持久力
     第8章 運動を継続・反復するための生理学的基礎
      1 運動時のエネルギー代謝・エネルギー供給機構
      2 身体運動中のエネルギー供給
      3 運動の継続・反復を制限する要因
     第9章 持久力向上のためのトレーニングとそのメカニズム
      1 持久力のとらえ方
      2 持久力と代謝エネルギーおよび効率の関係
      3 持久力を改善するためのトレーニング
     第10章 [トレーニングメソッド]
          high-intensity interval training
      1 high-intensity interval training(HIIT)とは
      2 HIIT処方のためのプログラミング
      3 HIITプログラミングの要素
      4 HIITの種類
      5 HIITの効果的な実践のために

    第2部 リカバリーの科学的基礎
     第11章 栄養・水分摂取
      1 エネルギー供給機構と栄養素の働き
      2 トレーニング期における栄養摂取
      3 試合後のリカバリー
      4 競技種目別の栄養管理
      5 水分摂取
      6 スポーツを専門とする管理栄養士による栄養指導
     第12章 睡眠
      1 疲労の概念と分類
      2 睡眠と疲労回復
      3 運動が睡眠に与える影響
      4 睡眠と疲労からのリカバリー
      5 仮眠と運動パフォーマンス,疲労回復
      6 睡眠環境の最適化
     第13章 積極的なリカバリー介入の効果と回復メカニズム
      1 積極的なリカバリーと関わるパフォーマンス低下の要因
      2 その他のパフォーマンス低下の要因
      3 軽運動
      4 ストレッチング
      5 温熱
      6 冷却
      7 交代浴
      8 コンプレッションウェア
      9 マッサージ
      10 筋膜リリース
     第14章 スポーツ現場における最適なリカバリー戦略
      1 スポーツ現場におけるリカバリー戦略の必要性
      2 スポーツ選手の身体活動に伴う各種生理学的応答
      3 リカバリー戦略を考える際の留意点
      4 スポーツ選手のリカバリー戦略の実践例

    第3部 身体に関わる情報の活用
     第15章 テストとモニタリング
      1 テスト・モニタリングをする前に
      2 測定値の評価
      3 筋量と最大筋力の測定方法
      4 スピードの測定方法
      5 全身持久力の測定方法
      6 日々のモニタリング
     第16章 遺伝情報とトレーニング
      1 遺伝特性は競技パフォーマンスにどの程度影響するか?
      2 トレーニング応答は遺伝的な影響を受けるか?
      3 遺伝情報とは?
      4 遺伝特性とパフォーマンスに関わる科学的根拠
      5 遺伝子特性をトレーニング指導に利用できるか?
      6 遺伝子情報を活用していく上での留意点

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

序章 アスレティックパフォーマンス向上のための戦略

P.9 掲載の参考文献
1) 猪飼道夫 : 運動生理学入門, 第5版, 杏林書院, 東京, 1969
2) Bompa, TO et al : Periodization Training for Sports, 2nd ed, Human Kinetics, Champaign, 2005
3) Bompa, TO et al : Periodization : Theory and Methodology of Training, 6th ed, Human Kinesics, Champaign, 2018

第1部 トレーニングの科学的基礎

P.28 掲載の参考文献
1) Sale, DG : Neural Adaptation to Strength Training. Komi, PV ed., Strength and Power in Sport, 2nd ed, Wiley-Blackwell, Hoboken, 281-314, 2003
2) Ikai, M et al : A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol 28 : 173-180, 1970
3) Moritani, T et al : Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58 : 115-130, 1979
4) Mitchell, CJ et al : Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113 : 71-77, 2012
5) Loenneke, JP et al : Exercise-induced changes in muscle size do not contribute to exercise-induced changes in muscle strength. Sports Med 49 : 987-991, 2019
6) van Wessel, T et al : The muscle fiber type-fiber size paradox : hypertrophy or oxidative metabolism? Eur J Appl Physiol 110 : 665-694, 2010
7) D'Antona, G et al : Skeletal muscle hypertrophy and structure and function of skeletal muscle fibres in male body builders. J Physiol 570 : 611-627, 2006
8) Meijer, JP et al : Single muscle fibre contractile properties differ between body-builders, power athletes and control subjects. Exp Physiol 100 : 1331-1341, 2015
9) Penman, KA : Ultrastructural changes in human striated muscle using three methods of training. Res Q 40 : 764-772, 1969
10) MacDougall, JD et al : Muscle ultrastructural characteristics of elite powerlifters and bodybuilders. Eur J Appl Physiol Occup Physiol 48 : 117-126, 1982
11) Trappe, S et al : Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc 32 : 48-56, 2000
12) Harber, MP et al : Single muscle fiber contractile properties during a competitive season in male runners. Am J Physiol Regul Integr Comp Physiol 287 : R1124-1131, 2004
13) Dankel, SJ et al : Resistance training induced changes in strength and specific force at the fiber and whole muscle level : a meta-analysis. Eur J Appl Physiol 119 : 265-278, 2019
14) Gentry, BA et al : Skeletal muscle weakness in osteogenesis imperfecta mice. Matrix Biol 29 : 638-644, 2010
15) Tillin, NA et al : Neuromuscular performance of explosive power athletes versus untrained individuals. Med Sci Sports Exerc 42 : 781-790, 2010
16) Del Vecchio A et al : Higher muscle fiber conduction velocity and early rate of torque development in chronically strength trained individuals. J Appl Physiol 125 : 1218-1226, 2018
17) Tillin, NA et al : Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci 31 : 66-76, 2013
18) Andersen, LL et al : Influence of maximal muscle strength and intrinsic muscle contractile properties on contractile rate of force development. Eur J Appl Physiol 96 : 46-52, 2006
19) Harridge, SD et al : Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432 : 913-920, 1996
20) Waugh, CM et al : Rapid force production in children and adults : mechanical and neural contributions. Med Sci Sports Exerc 45 : 762-771, 2013
21) Miyamoto, N et al : Muscle stiffness of the vastus lateralis in sprinters and long-distance runners. Med Sci Sports Exerc 51 : 2080-2087, 2019
22) Ando, R et al : Positive relationship between passive muscle stiffness and rapid force production. Hum Mov Sci 66 : 285-291, 2019
23) Desmedt, JE et al : Ballistic contractions in man : characteristic recruitment pattern of single motor units of the tibialis anterior muscle. J Physiol 264 : 673-693, 1977
24) Maffiuletti, NA et al : Rate of force development : physiological and methodological considerations. Eur J Appl Physiol 116 : 1091-1116, 2016
25) Klass, M et al : Age-related decline in rate of torque development is accompanied by lower maximal motor unit discharge frequency during fast contractions. J Appl Physiol (1985) 104 : 739-746, 2008
26) Van Cutsem, M et al : Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513 : 295-305, 1998
27) Vila-Cha, C et al : Motor unit behavior during submaximal contractions following six weeks of either endurance or strength training. J Appl Physiol (1985) 109 : 1455-1466, 2010
28) Methenitis, S et al : Muscle fiber conduction velocity, muscle fiber composition, and power performance. Med Sci Sports Exerc 48 : 1761-1771, 2016
29) Del Vecchio, A et al : The relative strength of common synaptic input to motor neurons is not a determinant of the maximal rate of force development in humans. J Appl Physiol (1985) 127 : 205-214, 2019
30) Balshaw, TG et al : Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci Sports 29 : 348-359, 2019
31) Miyamoto, N : Warm-up procedures to enhance dynamic muscular performance. J Phys Fitness Sports Med 1 : 155-158, 2012
32) Wilson, JM et al : Meta-analysis of postactivation potentiation and power : effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res 27 : 854-859, 2013
33) Fukutani, A et al : Influence of the intensity of squat exercises on the subsequent jump performance. J Strength Cond Res 28 : 2236-2243, 2014
34) Hirayama, K : Acute effects of an ascending intensity squat protocol on vertical jump performance. J Strength Cond Res 28 : 1284-1288, 2014
P.42 掲載の参考文献
1) Glass, DJ : Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5 : 87-90, 2003
2) Phillips, SM et al : Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol 273 : E99-107, 1997
3) Dreyer, HC et al : Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle. J Physiol 576 : 613-624, 2006
4) Figueiredo, VC et al : Impact of resistance exercise on ribosome biogenesis is acutely regulated by post-exercise recovery strategies. Physiol Rep 4 : e12670, 2016
5) Figueiredo, VC et al : Regulation of ribosome biogenesis in skeletal muscle hypertrophy. Physiology (Bethesda) 34 : 30-42, 2019
6) Saxton, RA et al : mTOR Signaling in growth, metabolism, and disease. Cell 169 : 361-371, 2017
7) Bolster, DR et al : Regulation of protein synthesis associated with skeletal muscle hypertrophy by insulin-, amino acid- and exercise-induced signalling. Proc Nutr Soc 63 : 351-356, 2004
8) Fry, CS et al : Aging impairs contraction-induced human skeletal muscle mTORC1 signaling and protein synthesis. Skelet Muscle 1 : 11, 2011
9) You, JS et al : The role of raptor in the mechanical load-induced regulation of mTOR signaling, protein synthesis, and skeletal muscle hypertrophy. FASEB J 33 : 4021-4034, 2019
10) Ogasawara, R et al : The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep 6 : 31142, 2016
11) Marabita, M et al : S6K1 is required for increasing skeletal muscle force during hypertrophy. Cell Rep 17 : 501-513, 2016
12) Ogasawara, R et al : Rapamycin-insensitive mechanistic target of rapamycin regulates basal and resistance exercise-induced muscle protein synthesis. FASEB J 32 : 5824-5834, 2018
13) Bentzinger, CF et al : Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8 : 411-424, 2008
14) Fry, CS et al : Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J Gerontol A Biol Sci Med Sci 68 : 599-607, 2013
15) Stefanetti, RJ et al : Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch 467 : 1523-1537, 2015
16) Rudrappa, SS et al : Human skeletal muscle disuse atrophy : effects on muscle protein synthesis, breakdown, and insulin resistance-a qualitative review. Front Physiol 7 : 361, 2016
17) Kraemer, WJ et al : Responses of IGF-I to endogenous increases in growth hormone after heavy-resistance exercise. J Appl Physiol (1985) 79 : 1310-1315, 1995
18) West, DW et al : Resistance exercise-induced increases in putative anabolic hormones do not enhance muscle protein synthesis or intracellular signalling in young men. J Physiol 587 : 5239-5247, 2009
19) West, DW et al : Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors. J Appl Physiol (1985) 108 : 60-67, 2010
20) Lai, YC et al : A novel PKB/Akt inhibitor, MK-2206, effectively inhibits insulin-stimulated glucose metabolism and protein synthesis in isolated rat skeletal muscle. Biochem J 447 : 137-147, 2012
21) Hornberger, TA et al : Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factorindependent mechanism. Biochem J 380 : 795-804, 2004
22) O'Neil, TK et al : The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587 : 3691-3701, 2009
23) Jacobs, BL et al : Eccentric contractions increase the phosphorylation of tuberous sclerosis complex-2 (TSC2) and alter the targeting of TSC2 and the mechanistic target of rapamycin to the lysosome. J Physiol 591 : 4611-4620, 2013
24) You, JS et al : The role of diacylglycerol kinase zeta and phosphatidic acid in the mechanical activation of mammalian target of rapamycin (mTOR) signaling and skeletal muscle hypertrophy. J Biol Chem 289 : 1551-1563, 2014
25) Joy, JM et al : Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy. Nutr Metab (Lond) 11 : 29, 2014
26) Cerda-Kohler, H et al : Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Physiol Rep 6 : e13800, 2018
27) Byun, JK et al : Oncogenic KRAS signaling activates mTORC1 through COUP-TFII-mediated lactate production. EMBO Rep 20 : e47451, 2019
28) Bolster, DR et al : AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277 : 23977-23980, 2002
29) Mounier, R et al : Antagonistic control of muscle cell size by AMPK and mTORC1. Cell Cycle 10 : 2640-2646, 2011
30) Rose, AJ et al : A Ca2+ -calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. J Physiol 587 : 1547-1563, 2009
31) Ogasawara, R et al : The order of concurrent endurance and resistance exercise modifies mTOR signaling and protein synthesis in rat skeletal muscle. Am J of Physiol Endocrinol Metab 306 : E1155-1162, 2014
32) Camera, DM et al : Exercise-induced skeletal muscle signaling pathways and human athletic performance. Free Radic Biol Med 98 : 131-143, 2016
33) Fujita, S et al : Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol (1985) 103 : 903-910, 2007
34) Pearson, SJ et al : A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med 45 : 187-200, 2015
35) Burd, NA et al : Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol 590 : 351-362, 2012
36) Burd, NA et al : Low-load high volume resistance exercise stimulates muscle protein synthesis more than high-load low volume resistance exercise in young men. PLoS One 5 : e12033, 2010
37) Mitchell, CJ et al : Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol (1985) 113 : 71-77, 2012
38) McKendry, J et al : Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Exp Physiol 101 : 866-882, 2016
39) Grgic, J et al : The effects of short versus long inter-set rest intervals in resistance training on measures of muscle hypertrophy : A systematic review. Eur J Sport Sci 17 : 983-993, 2017
40) Burd, NA et al : Bigger weights may not beget bigger muscles : evidence from acute muscle protein synthetic responses after resistance exercise. Appl Physiol, Nutri Metab 37 : 551-554, 2012
41) Ogasawara, R et al : Relationship between exercise volume and muscle protein synthesis in a rat model of resistance exercise. J Appl Physiol (1985) 123 : 710-716, 2017
42) Moore, DR et al : Myofibrillar and collagen protein synthesis in human skeletal muscle in young men after maximal shortening and lengthening contractions. Am J Physiol Endocrinol Metab 288 : E1153-1159, 2005
43) Moore, DR et al : Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. Eur J Appl Physiol 112 : 1587-1592, 2012
44) Ato, S et al : Contraction mode itself does not determine the level of mTORC1 activity in rat skeletal muscle. Physiol Rep 4 : e12976, 2016
45) Ashida, Y et al : Effects of contraction mode and stimulation frequency on electrical stimulation-induced skeletal muscle hypertrophy. J Appl Physiol (1985) 124 : 341-348, 2018
46) Ato, S et al : The effect of changing the contraction mode during resistance training on mTORC1 signaling and muscle protein synthesis. Front Physiol 10 : 406, 2019
47) Yasuda, T et al : Effects of blood flow restricted low-intensity concentric or eccentric training on muscle size and strength. PLoS One 7 : e52843, 2012
48) Jorgenson, KW et al : The overlooked role of fiber length in mechanical load-induced growth of skeletal muscle. Exerc Sport Sci Rev 47 : 258-259, 2019
49) Takegaki, J et al : Repeated bouts of resistance exercise with short recovery periods activates mTOR signaling, but not protein synthesis, in mouse skeletal muscle. Physiol Rep 5 : e13515, 2017
50) Takegaki, J et al : Influence of shortened recovery between resistance exercise sessions on muscle-hypertrophic effect in rat skeletal muscle. Physiol Rep 7 : e14155, 2019
P.55 掲載の参考文献
1) 前大純朗 : 伸張性運動の特徴とトレーニング効果 : 持久性の運動を中心に. トレーニング科学 31 : 53-59, 2020
2) Herzog, W : Why are muscles strong, and why do they require little energy in eccentric action? J Sport Health Sci 7 : 255-264, 2018
3) Aagaard, P : Neural adaptations to resistance exercise. Cardinale, M et al eds., Strength and Conditioning : Biological Principles and Practical Applications, Wiley-Blackwell, Hoboken, 105-124, 2011
4) Maeo, S et al : Muscular adaptations to short-term low-frequency downhill walking training. Int J Sports Med 36 : 150-156, 2015
5) Westing, SH et al : Effects of electrical stimulation on eccentric and concentric torque-velocity relationships during knee extension in man. Acta Physiol Scand 140 : 17-22, 1990
6) Amiridis, IG et al : Co-activation and tension-regulating phenomena during isokinetic knee extension in sedentary and highly skilled humans. Eur J Appl Physiol Occup Physiol 73 : 149-156, 1996
7) Duchateau, J et al : Neural control of lengthening contractions. J Exp Biol 219 : 197-204, 2016
8) Hortobagyi, T et al : Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol (1985) 80 : 765-772, 1996
9) Maeo, S et al : Neuromuscular adaptations to work-matched maximal eccentric versus concentric training. Med Sci Sports Exerc 50 : 1629-1640, 2018
10) Andersen, LL et al : Neuromuscular adaptations to detraining following resistance training in previously untrained subjects. Eur J Appl Physiol 93 : 511-518, 2005
11) Douglas, J et al : Chronic adaptations to eccentric training : a systematic review. Sports Med 47 : 917-941, 2017
12) Jones, DA et al : Human muscle strength training : the effects of three different regimens and the nature of the resultant changes. J Physiol 391 : 1-11, 1987
13) Balshaw, TG et al : Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci Sports 29 : 348-359, 2019
14) Narici, MV et al : Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157 : 175-186, 1996
15) Maden-Wilkinson, TM et al : What makes long-term resistance-trained individuals so strong? A comparison of skeletal muscle morphology, architecture, and joint mechanics. J Appl Physiol (1985) 128 : 1000-1011, 2020
16) Schoenfeld, BJ et al : Hypertrophic effects of concentric vs. eccentric muscle actions : a systematic review and meta-analysis. J Strength Cond Res 31 : 2599-2608, 2017
17) Moore, DR et al : Similar increases in muscle size and strength in young men after training with maximal shortening or lengthening contractions when matched for total work. Eur J Appl Physiol 112 : 1587-1592, 2012
18) Seger, JY et al : Specific effects of eccentric and concentric training on muscle strength and morphology in humans. Eur J Appl Physiol Occup Physiol 79 : 49-57, 1998
19) Gross, M et al : Effects of eccentric cycle ergometry in alpine skiers. Int J Sports Med 31 : 572-576, 2010
20) Vikne, H et al : Muscular performance after concentric and eccentric exercise in trained men. Med Sci Sports Exerc 38 : 1770-1781, 2006
21) Walker, S et al : Greater strength gains after training with accentuated eccentric than traditional isoinertial loads in already strength-trained men. Front Physiol 7 : 149, 2016
22) Farthing, JP et al : The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89 : 578-586, 2003
23) Higbie, EJ et al : Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol (1985) 81 : 2173-2181, 1996
24) Blazevich, AJ et al : Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol (1985) 103 : 1565-1575, 2007
25) Farup, J et al : Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scand J Med Sci Sports 24 : 788-798, 2014
26) Franchi, MV et al : Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf) 210 : 642-654, 2014
27) Kim, SY et al : Investigation of supraspinatus muscle architecture following concentric and eccentric training. J Sci Med Sport 18 : 378-382, 2015
28) Ahtiainen, JP et al : Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men. Eur J Appl Physiol 89 : 555-563, 2003
29) Roig, M et al : The effects of eccentric versus concentric resistance training on muscle strength and mass in healthy adults : a systematic review with meta-analysis. Br J Sports Med 43 : 556-568, 2009
30) Douglas, J et al : Reactive and eccentric strength contribute to stiffness regulation during maximum velocity sprinting in team sport athletes and highly trained sprinters. J Sports Sci 38 : 29-37, 2020
31) Ishoi, L et al : Effects of the Nordic hamstring exercise on sprint capacity in male football players : a randomized controlled trial. J Sports Sci 36 : 1663-1672, 2018
32) Suarez-Arrones, L et al : Dissociation between changes in sprinting performance and Nordic hamstring strength in professional male football players. PLoS One 14 : e0213375, 2019
33) Bloomfield, J et al : Physical demands of different positions in FA Premier League Soccer. J Sports Sci Med 6 : 63-70, 2007
34) Reilly, T et al : A multidisciplinary approach to talent identification in soccer. J Sports Sci 18 : 695-702, 2000
35) Chaabene, H et al : Change of direction speed : toward a strength training approach with accentuated eccentric muscle actions. Sports Med 48 : 1773-1779, 2018
36) Spiteri, T et al : Contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res 28 : 2415-2423, 2014
37) Harper, DJ et al : Relationships between eccentric and concentric knee strength capacities and maximal linear deceleration ability in male academy soccer players. J Strength Cond Res 35 : 465-472, 2021
38) Toyomura, J et al : Efficacy of downhill running training for improving muscular and aerobic performances. Appl Physiol Nutr Metab 43 : 403-410, 2018
39) de Hoyo, M et al : Effects of 10-week eccentric overload training on kinetic parameters during change of direction in football players. J Sports Sci 34 : 1380-1387, 2016
40) Bridgeman, LA et al : Relationships between concentric and eccentric strength and countermovement jump performance in resistance trained men. J Strength Cond Res 32 : 255-260, 2018
41) Lindstedt, SL et al : Do muscles function as adaptable locomotor springs? J Exp Biol 205 : 2211-2216, 2002
42) Liu, C et al : The effects of passive leg press training on jumping performance, speed, and muscle power. J Strength Cond Res 27 : 1479-1486, 2013
43) Askling, C et al : Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports 13 : 244-250, 2003
44) Gabbe, BJ et al : A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. J Sci Med Sport 9 : 103-109, 2006
45) Green, B et al : Isokinetic strength assessment offers limited predictive validity for detecting risk of future hamstring strain in sport : a systematic review and meta-analysis. Br J Sports Med 52 : 329-336, 2018
46) Bourne, MN et al : An evidence-based framework for strengthening exercises to prevent hamstring injury. Sports Med 48 : 251-267, 2018
47) Timmins, RG et al : Short biceps femoris fascicles and eccentric knee flexor weakness increase the risk of hamstring injury in elite football (soccer) : a prospective cohort study. Br J Sports Med 50 : 1524-1535, 2016
48) Franchi, MV et al : Ultrasound-derived biceps femoris long head fascicle length : extrapolation pitfalls. Med Sci Sports Exerc 52 : 233-243, 2020
49) Damon, BM et al : Skeletal muscle diffusion tensor-MRI fiber tracking : rationale, data acquisition and analysis methods, applications and future directions. NMR Biomed 30 : e3563, 2017
50) McHugh, MP et al : Muscle strain injury vs muscle damage : two mutually exclusive clinical entities Transl Sports Med 2 : 102-108, 2019
51) Nosaka, K et al : Effect of elbow joint angle on the magnitude of muscle damage to the elbow flexors. Med Sci Sports Exerc 33 : 22-29, 2001
52) Chen, TC et al : Intensity of eccentric exercise, shift of optimum angle, and the magnitude of repeated-bout effect. J Appl Physiol (1985) 102 : 992-999, 2007
53) Maeo, S et al : Effect of a prior bout of preconditioning exercise on muscle damage from downhill walking. Appl Physiol Nutr Metab 40 : 274-279, 2015
54) Chapman, D et al : Greater muscle damage induced by fast versus slow velocity eccentric exercise. Int J Sports Med 27 : 591-598, 2006
55) Newton, MJ et al : Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. J Strength Cond Res 22 : 597-607, 2008
56) Proske, U et al : Muscle damage from eccentric exercise : mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537 : 333-345, 2001
57) Friden, J et al : Myofibrillar damage following intense eccentric exercise in man. Int J Sports Med 4 : 170-176, 1983
58) Carmona, G et al : Fibre-type-specific and mitochondrial biomarkers of muscle damage after mountain races. Int J Sports Med 40 : 253-262, 2019
59) Owens, DJ et al : Exercise-induced muscle damage : What is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 19 : 71-85, 2019
60) Flann, KL et al : Muscle damage and muscle remodeling : no pain, no gain? J Exp Biol 214 : 674-679, 2011
61) Folland, JP et al : Acute muscle damage as a stimulus for training-induced gains in strength. Med Sci Sports Exerc 33 : 1200-1205, 2001
62) Maeo, S et al : Downhill walking training with and without exercise-induced muscle damage similarly increase knee extensor strength. J Sports Sci 34 : 2018-2026, 2016
63) Mendiguchia, J et al : Rectus femoris muscle injuries in football : a clinically relevant review of mechanisms of injury, risk factors and preventive strategies. Br J Sports Med 47 : 359-366, 2013
64) Drexel, H et al : Metabolic and anti-inflammatory benefits of eccentric endurance exercise-a pilot study. Eur J Clin Invest 38 : 218-226, 2008
65) Chen, TC et al : Effects of descending stair walking on health and fitness of elderly obese women. Med Sci Sports Exerc 49 : 1614-1622, 2017
P.77 掲載の参考文献
1) Hibbeler, RC : Engineering mechanics : Statics and Dynamics, 13th ed, Pearson Prentice Hall, London, 2013
2) Harman, E : レジスタンスエクササイズのバイオメカニクス. ストレングストレーニング & コンディショニング, 第3版, Baechle, TR ほか (編), 金久博昭 (日本語版総監修), ブックハウスHD, 東京, 73-101, 2010
3) McLellan, CP et al : The role of rate of force development on vertical jump performance. J Strength Cond Res 25 : 379-385, 2011
4) Van Cutsem, M et al : Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans. J Physiol 513 : 295-305, 1998
5) Patten, C et al : Adaptation in maximal motor unit discharge rate to strength training in young and older adults. Muscle Nerve 24 : 542-550, 2001
6) Narici, MV et al : Human quadriceps cross-sectional area, torque and neural activation during 6 months strength training. Acta Physiol Scand 157 : 175-186, 1996
7) Harridge, SD et al : Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflugers Arch 432 : 913-920
8) Bojsen-Moller, J et al : Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol (1985) 99 : 986-994, 2005
9) Holtermann, A et al : The effect of rate of force development on maximal force production : acute and training-related aspects. Eur J Appl Physiol 99 : 605-613, 2007
10) Heggelund, J et al : Maximal strength training improves work economy, rate of force development and maximal strength more than conventional strength training. Eur J of Appl Physiol 113 : 1565-1573, 2013
11) Oliveira, FBD et al : Resistance training for explosive and maximal strength : effects on early and late rate of force development. J Sports Scie Med 12 : 402-408, 2013
12) Andersen, LL et al : Early and late rate of force development : differential adaptive responses to resistance training? Scand J Med Sci Sports 20 : e162-e169, 2010
13) Blazevich, AJ et al : Effects of resistance training movement pattern and velocity on isometric muscular rate of force development : a systematic review with meta-analysis and meta-regression. Sports Med 50 : 943-963, 2020
14) Plisk, SS : スピード, アジリティ, スピード持久力の向上. ストレングストレーニング & コンディショニング, 第3版. Baechle TR ほか (編), 金久博昭 (日本語版総監修), ブックハウスHD, 東京, 499-531, 2010
15) Cormie, P et al : Adaptations in athletic performance after ballistic power versus strength training. Medicine Sci in Sports Exerc 42 : 1582-1598, 2010
16) Kaneko, M et al : Training effect of different loads on the force-velocity relationship and mechanical power output in human muscle. Scand J Sports Sci 5 : 50-55, 1983
17) Bobbert, MF : Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J Appl Physiol (1985) 112 : 1975-1983, 2012
18) Prietto, CA et al : The in vivo force-velocity relationship of the knee flexors and extensors. Am J Sports Med 17 : 607-611, 1989
19) Morin, JB et al : Interpreting power-force-velocity profiles for individualized and specific training. Int J Spoerts Physiol perform 11 : 267-272, 2016
20) Jimenez-Reyes, P et al : Effectiveness of an individua-lized training based on force-velocity profiling during jumping. Front Physiol 7 : 677, 2017
21) Jimenez-Reyes, P et al : Optimized training for jumping performance using the force-velocity imbalance : individual adaptation kinetics. PLoS ONE 14 : e0216681, 2019
22) Jimenez-Reyes, P et al : Relationship between vertical and horizontal force-velocity-power profiles in various sports and levels of practice. PeerJ 6 : e5937, 2018
23) 田路秀樹ほか : 複合トレーニングが人体筋の力・速度・パワー関係に及ぼす影響. 体力科学 44 : 439-446, 1995
24) Samozino, P et al : Force-velocity profile : imbalance determination and effect on lower limb ballistic performance. Int J Sports Med 35 : 505-510, 2014
25) Samozino, P et al : Optimal force-velocity profile in ballistic movements - altius : citius or fortius? Med Sci Sports Exerc 44 : 313-322, 2012
26) Coyle, EF et al : Specificity of power improvements through slow and fast isokinetic training. J Appl Physiol Respir Environ Exerc Physiol 51 : 1437-1442, 1981
27) Cormie, P et al : Power-time, force-time, and velocity-time curve analysis of the countermovement jump : impact of training. J Strength Cond Res 23 : 177-186, 2009
28) Newton, RU et al : Developing explosive muscular power : implications for a mixed methods training strategy. Strength and Conditioning Journal 16 : 20-31, 1994
29) Young W : Training for speed/strength : heavy vs. light loads. Strength and Conditioning Journal 15 : 34-43, 1993
P.87 掲載の参考文献
1) Kubo,T et al : Influence of different loads on force-time characteristics during back squats. J Sport Sci Med 17 : 617-622, 2018
2) Turner, AN et al : Developing powerful athletes part 2 : practical applications. Strength Cond J 43 : 23-31, 2021
3) Suchomel, TJ et al : Weightlifting pulling derivatives : rationale for implementation and application. Sports Med 45 : 823-839, 2015
4) Caulfield, S et al : Exercise technique for free weight and machine training. Haff, G et al eds., Essentials of Strength Training and Conditioning, 4th ed., Human Kinetics, Champaign, 351-408, 2015
5) Comfort, P et al : Kinetic comparisons during variations of the power clean. J Srength Cond Res 25 : 3269-3273, 2011
6) Suchomel, TJ et al : Enhancing the force-velocity profile of athletes using weightlifting derivatives. Strength Cond J 39 : 10-20, 2017
7) Tricoli, V et al : Short-term effects on lower-body functional power development : weightlifting vs. vertical jump training programs. J strength Cond Res 19 : 433-437, 2005
8) Berton, R et al : Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance : a meta-analysis. J Sports Sci 36 : 2038-2044, 2018
9) Hackett, D et al : Olympic weightlifting training improves vertical jump height in sportspeople : a systematic review with meta-analysis. Br J Sports Med 50 : 865-872, 2016
10) MacKenzie, SJ et al : A biomechanical comparison of the vertical jump, power clean, and jump squat. J Sports Sci 32 : 1576-1585, 2014
11) Blazevich, AJ et al : Effects of resistance training movement pattern and velocity on isometric muscular rate of force development : a systematic review with meta-analysis and meta-regression. Sport Med 50 : 943-963, 2020
12) Storey, A et al : Unique aspects of competitive weightlifting : performance, training and physiology. Sport Med 42 : 769-790, 2012
13) McBride, JM et al : The effect of heavy- vs. light-load jump squats on the development of strength, power, and speed. J Strength Cond Res 16 : 75-82, 2002
14) Cormie, P et al : Influence of strength on magnitude and mechanisms of adaptation to power training. Med Sci Sports Exerc 42 : 1566-1581, 2010
15) Cormie, P et al : Power versus strength-power jump squat training : influence on the load-power relationship. Med Sci Sports Exerc 39 : 996-1003, 2007
16) Jaric, S : Force-velocity relationship of muscles performing multi-joint maximum performance tasks, Int J Sports Med 36 : 699-704, 2015
17) Takei, S et al : Is the optimal load for maximal power output during hang power cleans submaximal? Int. J. Sports Physiol Perform 15 : 18-24, 2020
18) Cormie, P et al : Optimal loading for maximal power output during lower-body resistance exercises. Med Sci Sports Exerc 39 : 340-349, 2007
19) Kawamori, N et al : Influence of different relative intensities on power output during the hang power clean : identification of the optimal load. J strength Cond Res 19 : 698-708, 2005
20) Conceicao, F et al : Movement velocity as a measure of exercise intensity in three lower limb exercises. J Sports Sci 34 : 1099-1106, 2016
21) Banyard, HG : Validity of various methods for determining velocity, force, and power in the back squat. Int J Sports Physiol Perform 12 : 1170-1176, 2017
22) Sheppard, JM et al : Assessing the force-velocity characteristics of the leg extensors in well-trained athletes : the incremental load power profile, J Strength Cond Res 22 : 1320-1326, 2008
23) 平山邦明 : オリンピックリフティングを用いた爆発的な脚伸展能力の強化の可能性. ストレングス & コンディショニングジャーナル 26 : 2-9, 2019
24) Suchomel, TJ et al : Kinetic comparison of the power development between power clean variations. J Strength Cond Res 28 : 350-360, 2014
25) Takei, S et al : Comparison of the power output between the hang power clean and hang high pull across a wide range of loads in weightlifters. J Strength Cond Res 35 (Suppl 1) : S84-S88, 2021
26) Hori, N et al : Weightlifting exercises enhance athletic performance that requires high-load speed strength. Strength Cond J 27 : 50-55, 2005
27) Burkhardt, E et al : Maximal impact and propulsion forces during jumping and explosive lifting exercises. J Appl Sport Sci Res 4 : 107-114, 1990
28) Suchomel, TJ et al : Load absorption force-time characteristics following the second pull of weightlifting derivatives. J Strength Cond Res 31 : 1644-1652, 2017
29) Oranchuk, DJ et al : Comparison of the hang high pull and loaded jump squat for the development of vertical jump and isometric force-time characteristics. J strength Cond Res 33 : 17-24, 2019
30) Helland, C et al : Training strategies to improve muscle power : is olympic-style weightlifting relevant? Med Sci Sports Exerc 49 : 736-745, 2017
31) Suchomel, TJ et al : Training with weightlifting derivatives : the effects of force and velocity overload stimuli. J strength Cond Res 34 : 1808-1818, 2020
32) Suchomel, TJ et al : The effect of training with weightlifting catching or pulling derivatives on squat jump and countermovement jump force-time adaptations. J Funct Morphol Kinesiol 5 : 28, 2020
33) Haff, GG et al : Training principles for power. Strength Cond J 34 : 2-12, 2012
34) Newton, RU et al : Developing explosive muscular power : Implications for a mixed methods training strategy. Strength Cond J 16 : 20-31, 1994
35) Suchomel, TJ et al : Effect of various loads on the force-time characteristics of the hang high pull. J Strength Cond Res 29 : 1295-1301, 2015
36) Comfort, P et al : The effect of loading on kinematic and kinetic variables during the midthigh clean pull. J Strength Cond Res 26 : 1208-1214, 2012
37) Hicks, DS et al : Improving mechanical effectiveness during sprint acceleration : practical recommendations and guidelines. Strength Cond J 42 : 45-62, 2020
38) Morin, JB et al : Direct measurement of power during one single sprint on treadmill. J Biomech 43 : 1970-1975, 2010
39) Cormie, P et al : Developing maximal neuromuscular power : part 2-training considerations for improving maximal power production. Sport Med 41 : 125-146, 2011
40) Jimenez-Reyes, P et al : Effectiveness of an individualized training based on force-velocity profiling during jumping, Front Physiol 7 : 677, 2016
P.102 掲載の参考文献
1) 金久博昭 : レジスタンストレーニングの基礎. トレーニング科学研究会 (編), レジスタンス・トレーニング, 朝倉書店, 東京, 9, 1994
2) Komi, P : Stretch-Shortening Cycle. Komi, P ed., Strength and Power in Sport, 2nd ed, Blachwell Science, Oxford, 184-202, 2003
3) Young, W et al : Agility and change-of-direction speed are independent skills : implications for training for agility in invasion sports. International Journal of Sports Science & Coaching 10 : 159-169, 2015
4) Markovic, G et al : Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res 18 : 551-555, 2004
5) Bosco, C et al : Neuromuscular function and mechanical efficiency of human leg extensor muscles during jumping exercises. Acta Physiol Scand 114 : 543-550, 1982
6) Cavagna, GA et al : Effect of negative work on the amount of positive work performed by an isolated muscle. J Appl Physiol 20 : 157-158, 1965
7) 平山邦明ほか : 腱スティフネス, 筋力および筋活動が反動動作による機械的仕事量増強の個人差に与える影響. 体育学研究 55 : 33-43, 2010
8) Hirayama, K et al : Plyometric training favors optimizing muscle-tendon behavior during depth jumping. Front Physiol 8 : 16, 2017
9) Bojsen-Moller, J et al : Measuring mechanical properties of the vastus lateralis tendon-aponeurosis complex in vivo by ultrasound imaging. Scand J Med Sci Sports 13 : 259-265, 2003
10) Hill, AV : The mechanics of voluntary muscle. Lancet 258 : 947-951, 1951
11) Alexander, RM et al : Storage of elastic strain energy in muscle and other tissues. Nature 265 : 114-117, 1977
12) Ker, RF : Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J Exp Biol 93 : 283-302, 1981
13) Woo, SL et al : The biomechanical and biochemical properties of swine tendons : long term effects of exercise on the digital extensors. Connect Tissue Res 7 : 177-183, 1980
14) Fukashiro, S et al : Ultrasonography gives directly but noninvasively elastic characteristic of human tendon in vivo. Eur J Appl Physiol Occup Physiol 71 : 555-557, 1995
15) Ito, M et al : Nonisometric behavior of fascicles during isometric contractions of a human muscle. J Appl Physiol (1985) 85 : 1230-1235, 1998
16) Magnusson, SP et al : Human tendon behaviour and adaptation, in vivo. J Physiol 586 : 71-81, 2008
17) Herbert, RD et al : Rest length and compliance of non-immobilised and immobilised rabbit soleus muscle and tendon. Eur J Appl Physiol Occup Physiol 76 : 472-479, 1997
18) Sugisaki, N et al : Behavior of aponeurosis and external tendon of the gastrocnemius muscle during dynamic plantar flexion exercise. Int J Sport Health Sci 3 : 235-244, 2005
19) Fukashiro, S et al : Comparison between the directly measured achilles tendon force and the tendon force calculated from the ankle joint moment during vertical jumps Clin Biomech (Bristol, Avon) 8 : 25-30, 1993
20) Hoffer, JA et al : Roles of muscle activity and load on the relationship between muscle spindle length and whole muscle length in the freely walking cat. Prog Brain Res 80 : 75-85 ; discussion 57-60, 1989
21) Fukunaga, T et al : In vivo behaviour of human muscle tendon during walking. Proc Biol Sci 268 : 229-233, 2001
22) Lichtwark, GA et al : Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running. J Biomech 40 : 157-164, 2007
23) Ishikawa, M et al : Medial gastrocnemius muscle behavior during human running and walking. Gait Posture 25 : 380-384, 2007
24) Kurokawa, S et al : Interaction between fascicles and tendinous structures during counter movement jumping investigated in vivo. J Appl Physiol (1985) 95 : 2306-2314, 2003
25) Sousa, F et al : Intensity-and muscle-specific fascicle behavior during human drop jumps. J Appl Physiol (1985) 102 : 382-389, 2007
26) Ishikawa, M et al : Behaviour of vastus lateralis muscle-tendon during high intensity SSC exercises in vivo. Acta Physiol Scand 178 : 205-213, 2003
27) Sugisaki, N et al : Behavior of fascicle and tendinous tissue of medial gastrocnemius muscle during rebound exercise of ankle joint. Int J Sport Health Sci 3 : 100-109, 2005
28) Bobbert, MF et al : Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc 28 : 1402-1412, 1996
29) Bobbert, MF : Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc 37 : 440-446, 2005
30) Chapman, AE et al : Mechanical output following muscle stretch in forearm supination against inertial loads. J Appl Physiol (1985) 59 : 78-86, 1985
31) Jones, GM et al : Muscular control of landing from unexpected falls in man. J Physiol 219 : 729-737, 1971
32) Herzog, W et al : The history dependence of force production in mammalian skeletal muscle following stretch-shortening and shortening-stretch cycles. J Biomech 33 : 531-542, 2000
33) Bosco, C et al : Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol Scand 111 : 135-140, 1981
34) Bosco, C et al : Effect of elastic energy and myoelectrical potentiation of triceps surae during stretch-shortening cycle exercise. Int J Sports Med 3 : 137-140, 1982
35) Ettema, GJ et al : Mechanical efficiency and efficiency of storage and release of series elastic energy in skeletal muscle during stretch-shorten cycles. J Exp Biol 199 : 1983-1997, 1996
36) Hill, AV et al : The heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lond B 126 : 136-195, 1938
37) McNeill Alexander, R : Tendon elasticity and muscle function. Comp Biochem Physiol A Mol & Integr Physiol 133 : 1001-1011, 2002
38) Blazevich, A : The Stretch-Shortening Cycle (SSC). Cardinale, M et al eds., Strength and Conditioning : Biological Principles and Practical Applications, Wiley-Blackwell, Oxford, 209-221, 2011
39) Finni, T et al : Comparison of force-velocity relationships of vastus lateralis muscle in isokinetic and in stretch-shortening cycle exercises. Acta Physiol Scand 177 : 483-491, 2003
40) Walshe, AD et al : Stretch-shorten cycle compared with isometric preload : contributions to enhanced muscular performance. J Appl Physiol (1985) 84 : 97-106, 1998
41) 木塚朝博 : 随意運動に伴う反射活動の調整. 西平賀昭, 大築立志 (編), 運動と高次神経機能 : 運動の脳内機能を探検する, 杏林書院, 東京, 125-148, 2005
42) Kawakami, Y et al : In vivo muscle fibre behaviour during counter-movement exercise in humans reveals a significant role for tendon elasticity. J Physiol 540 : 635-646, 2002
43) Kawakami, Y et al : New insights into in vivo human skeletal muscle function. Exerc Sport Sci Rev 34 : 16-21, 2006
44) Kilani, HA et al : Block of the stretch reflex of vastus lateralis during vertical jumps. Hum Mov Sci 8 : 247-269, 1989
45) Hoffer, JA et al : Regulation of soleus muscle stiffness in premammillary cats : intrinsic and reflex components. J Neurophysiol 45 : 267-285, 1981
46) Sinkjaer, T et al : Muscle stiffness in human ankle dorsiflexors : intrinsic and reflex components. J Neurophysiol 60 : 1110-1121, 1988
47) Arakawa, H et al : Interaction between elastic energy utilization and active state development within the work enhancing mechanism during countermovement. J Electromyogr Kinesiol 20 : 340-347, 2010
48) 杉崎範英ほか : 足関節の反動動作における弾性エネルギーが機械的仕事量および機械的パワーの増強に及ぼす影響. 人間工学 40 : 82-89, 2004
49) Ishikawa, M et al : Effects of different dropping intensities on fascicle and tendinous tissue behavior during stretch-shortening cycle exercise. J Appl Physiol (1985) 96 : 848-852, 2004
50) Roberts, TJ et al : Flexible mechanisms : the diverse roles of biological springs in vertebrate movement. J Exp Biol 214 : 353-361, 2011
51) Ker, RF et al : The spring in the arch of the human foot. Nature 325 : 147-149, 1987
52) Maganaris, CN : Tensile properties of the in vivo human gastrocnemius tendon. J Biomech 35 : 1639-1646, 2002
53) Saunders, PU et al : Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res 20 : 947-954, 2006
54) Kubo, K et al : Effects of viscoelastic properties of tendon structures on stretch-shortening cycle exercise in vivo. J Sports Sci 23 : 851-860, 2005
55) Bojsen-Moller, J et al : Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol (1985) 99 : 986-994, 2005
56) Kubo, K et al : Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur J Appl Physiol 99 : 235-243, 2007
57) Hirayama, K et al : Neural modulation of muscle-tendon control strategy after a single practice session. Med Sci Sports Exerc 44 : 1512-1528, 2012
58) Kubo, K et al : Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol 538 : 219-226, 2002
P.113 掲載の参考文献
1) Kurokawa, S et al : Behavior of fascicles and tendinous structures of human gastrocnemius during vertical jumping. J Appl Physiol (1985) 90 : 1349-1358, 2001
2) Markovic, G : Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 41 : 349-355, 2007
3) Hackett, D et al : Olympic weightlifting training improves vertical jump height in sportspeople : a systematic review with meta-analysis. B J Sports Med 50 : 865-872, 2016
4) Zghal, F et al : Combined resistance and plyometric training is more effective than plyometric training alone for improving physical fitness of pubertal soccer players. Front Physiol 10 : 1026, 2019
5) Lloyd, RS et al : Changes in sprint and jump performances after traditional, plyometric, and combined resistance training in male youth pre- and post-peak height velocity. J Strength Cond Res 30 : 1239-1247, 2016
6) Saez de Villarreal, EB et al : The effects of plyometric training on sprint performance : a meta-analysis. J Strength Cond Res 26 : 575-584, 2012
7) Markovic, G et al : Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med 40 : 859-895, 2010
8) Young, WB : Transfer of strength and power training to sports performance. Int J Sports Physiol Perform 1 : 74-83, 2006
9) Rumpf, MC et al : Effect of different sprint training methods on sprint performance over various distances : a brief review. J Strength Cond Res 30 : 1767-1785, 2016
10) Nygaard Falch, H et al : Effect of different physical training forms on change of direction ability : a systematic review and meta-analysis. Sports Med Open 5 : 53, 2019
11) Singla, D et al : Effect of upper body plyometric training on physical performance in healthy individuals : A systematic review. Phys Ther Sport 29 : 51-60, 2018
12) Gjinovci, B et al : Plyometric training improves sprinting, jumping and throwing capacities of high level female volleyball players better than skill-based conditioning. J Sports Sci Med 16 : 527-535, 2017
13) McMahon, TA et al : The mechanics of running : how does stiffness couple with speed? J Biomech 23 (Suppl 1) : 65-78, 1990
14) Farley, CT et al : Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses. J Appl Physiol (1985) 85 : 1044-1055, 1998
15) Nagahara, R et al : Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness. J Sports Med Phys Fitness 57 : 1572-1578, 2017
16) Rogers, SA et al : Assessments of mechanical stiffness and relationships to performance determinants in middle-distance runners. Int J Sports Physiol Perform 12 : 1329-1334, 2017
17) Chelly, SM et al : Leg power and hopping stiffness : relationship with sprint running performance. Med Sci Sports Exerc 33 : 326-333, 2001
18) Maloney, SJ et al : Do stiffness and asymmetries predict change of direction performance? J Sports Sci 35 : 547-556, 2017
19) Bourdin, M et al : Throwing performance is associated with muscular power. Int J Sports Med 31 : 505-510, 2010
20) Farley, CT et al : Leg stiffness primarily depends on ankle stiffness during human hopping. J Biomech 32 : 267-273, 1999
21) Toumi, H et al : Muscle plasticity after weight and combined (weight + jump) training. Med Sci Sports Exerc 36 : 1580-1588, 2004
22) Kubo, K et al : Effects of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc 39 : 1801-1810, 2007
23) Hirayama, K et al : Plyometric training favors optimizing muscle-tendon behavior during depth jumping. Front Physiol 8 : 16, 2017
24) Hof, AL et al : Calf muscle moment, work and efficiency in level walking ; role of series elasticity. J Biomech 16 : 523-537, 1983
25) Ishikawa, M et al : Interaction between fascicle and tendinous tissues in short-contact stretch-shortening cycle exercise with varying eccentric intensities. J Appl Physiol 99 (1985) : 217-223, 2005
26) Yamaguchi, GT : Dynamic Modeling of Musculoskeletal Motion, Springer, New York, 2001
27) Ishikawa, M et al : Behaviour of vastus lateralis muscle-tendon during high intensity SSC exercises in vivo. Acta Physiol Scand 178 : 205-213, 2003
28) Ishikawa, M et al : Contribution of the tendinous tissue to force enhancement during stretch-shortening cycle exercise depends on the prestretch and concentric phase intensities. J Electromyogr Kinesiol 16 : 423-431, 2006
29) Yamamoto, LM et al : The effects of resistance training on endurance distance running performance among highly trained runners : a systematic review. J Strength Cond Res 22 : 2036-2044, 2008
30) Hausswirth, C et al : Endurance and strength training effects on physiological and muscular parameters during prolonged cycling. J Electromyogr Kinesiol 20 : 330-339, 2010
31) Ronnestad, BR et al : Optimizing strength training for running and cycling endurance performance : a review. Scand J Med Sci Sports 24 : 603-612, 2014
32) Andrade, DC et al : Effects of plyometric training on explosive and endurance performance at sea level and at high altitude. Front Physiol 9 : 1415, 2018
33) Spurrs, RW et al : The effect of plyometric training on distance running performance. Eur J Appl Physiol 89 : 1-7, 2003
34) Saunders, PU et al : Short-term plyometric training improves running economy in highly trained middle and long distance runners. J Strength Cond Res 20 : 947-954, 2006
35) Beattie, K et al : The effect of strength training on performance in endurance athletes. Sports Med 44 : 845-865, 2014
36) Hirayama, K et al : Neural modulation of muscle-tendon control strategy after a single practice session. Med Sci Sports Exerc 44 : 1512-1518, 2012
37) Chimera, NJ et al : Effects of plyometric training on muscle-activation strategies and performance in female athletes. J Athl Train 39 : 24-31, 2004
38) Hill, AV : The heat of shortening and the dynamic constants of muscle. Proc Roy Soc Lord B 126 : 136-195, 1938
39) Kubo, K et al : Effects of resistance and stretching training programmes on the viscoelastic properties of human tendon structures in vivo. J Physiol 538 (Pt 1) : 219-226, 2002
40) Padua, DA et al : National athletic trainers' association position statement : prevention of anterior cruciate ligament injury. J Athl Train 53 : 5-19, 2018
41) Soligard, T et al : Comprehensive warm-up programme to prevent injuries in young female footballers : cluster randomised controlled trial. BMJ 337 : a2469, 2008
42) Sugimoto, D et al : Specific exercise effects of preventive neuromuscular training intervention on anterior cruciate ligament injury risk reduction in young females : meta-analysis and subgroup analysis. Br J Sports Med 49 : 282-289, 2015
43) Butler, RJ : Lower extremity stiffness : implications for performance and injury. Clin Biomech (Bristol, Avon) 18 : 511-517, 2003
44) Sugisaki, N et al : Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints. J Sports Sci 31 : 894-906, 2013
45) Chu, DA : Jumping into Plyometrics, 2nd ed, Human Kinetics, Champaign, 1998
46) Verkhoshansky, Y et al : Supertraining, 6th ed., expanded version Verkhoshansky SSTM, 2009
47) de Villarreal, ES et al : Low and moderate plyometric training frequency produces greater jumping and sprinting gains compared with high frequency. J Strength Cond Res 22 : 715-725, 2008
P.134 掲載の参考文献
1) Whipp, BJ et al : Efficiency of muscular work. J Appl Physiol 26 : 644-648, 1969
2) Conley, KE et al : Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Exp Physiol 98 : 768-777, 2013
3) Hargreaves, M et al : Skeletal muscle energy metabolism during exercise. Nat Metab 2 : 817-828, 2020
4) Harris, RC et al : Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33 : 109-120, 1974
5) Kemp, GJ et al : Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS : a quantitative review. NMR Biomed 20 : 555-565, 2007
6) Sahlin, K et al : Energy supply and muscle fatigue in humans. Acta Physiol Scand 162 : 261-266, 1998
7) Lohmann K : Uber die enzymatische Aufspaltung der Kreatinphosphorsaure, zugleich ein Beitrag zum Chemismus der Muskelkontraktion. Biochem Z 271 : 264-277, 1934
8) Rossiter, HB et al : Effects of prior exercise on oxygen uptake and phosphocreatine kinetics during high-intensity knee-extension exercise in humans. J Physiol 537 : 291-303, 2001
9) Forbes, SC et al : Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab 33 : 1124-1131, 2008
10) McCully, KK et al : Wrist flexor muscles of elite rowers measured with magnetic resonance spectroscopy. J Appl Physiol (1985) 67 : 926-932, 1989
11) McCully, KK et al : Muscle metabolism in track athletes, using 31P magnetic resonance spectroscopy. Can J Physiol Pharmacol 70 : 1353-1359, 1992
12) Kent-Braun, JA et al : Postexercise phosphocreatine resynthesis is slowed in multiple sclerosis. Muscle Nerve 17 : 835-841, 1994
13) Haseler, LJ et al : Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol (1985) 86 : 2013-2018, 1999
14) Kent-Braun, JA : Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol (1985) 89 : 1072-1078, 2000
15) Johansen, L et al : 31P-MRS characterization of sprint and endurance trained athletes. Int J Sports Med 24 : 183-189, 2003
16) Takahashi, H et al : Control of the rate of phosphocreatine resynthesis after exercise in trained and untrained human quadriceps muscles. Eur J Appl Physiol Occup Physiol 71 : 396-404, 1995
17) Yoshida, T : The rate of phosphocreatine hydrolysis and resynthesis in exercising muscle in humans using 31P-MRS. J Physiol Anthropol Appl Human Sci 21 : 247-255, 2002
18) Costill, DL et al : Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40 : 149-154, 1976
19) Harris, RC et al : The time course of phosphorylcreatine resynthesis during recovery of the quadriceps muscle in man. Pflugers Arch 367 : 137-142, 1976
20) Casas, H et al : Increased blood ammonia in hypoxia during exercise in humans. J Physiol Biochem 57 : 303-312, 2001
21) Thomas, DE et al : Carbohydrate feeding before exercise : effect of glycemic index. Int J Sports Med 12 : 180-186, 1991
22) Taylor, AD et al : Effect of acute normobaric hypoxia on quadriceps integrated electromyogram and blood metabolites during incremental exercise to exhaustion. Eur J Appl Physiol Occup Physiol 73 : 121-129, 1996
23) Costill, DL et al : Energetics of marathon running. Med Sci Sport 1 : 81-86, 1969
24) Wells, CL et al : Physical characteristics and oxygen utilization of male and female marathon runners. Res Q Exerc Sport 52 : 281-285, 1981
25) 八田秀雄 (編著) : 乳酸をどう活かすか II, 杏林書院, 東京, 2016
26) 下光輝一ほか (編) : 運動と疲労の科学-疲労を理解する新たな視点. 大修館書店, 東京, 2018
27) Bergstrom, J et al : Diet, muscle glycogen and physical performance. Acta Physiol Scand 71 : 140-150, 1967
28) Gejl, KD et al : Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc 46 : 496-505, 2014
29) Areta, JL et al : Skeletal muscle glycogen content at rest and during endurance exercise in humans : a meta-analysis. Sports Med 48 : 2091-2102, 2018
30) Coyle, EF et al : Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol (1985) 61 : 165-172, 1986
31) Brooks, GA : Intra- and extra-cellular lactate shuttles. Med Sci Sports Exerc 32 : 790-799, 2000
32) Powers, SK et al : Comparison of fat metabolism between trained men and women during prolonged aerobic work. Res Q Exerc Sport 51 : 427-431, 1980
33) Fitts, RH et al : Skeletal muscle respiratory capacity, endurance, and glycogen utilization. Am J Physiol 228 : 1029-1033, 1975
34) Bonen, A : The expression of lactate transporters (MCT1, MCT4) in heart and muscle. Eur J Appl Physiol 86 : 6-11, 2001
35) Pilegaard, H et al : Distribution of the lactate/H+ transporter isoforms MCT1 and MCT4 in human skeletal muscle. Am J Physiol Endocrinol Metab 276 : E843-E848, 1999
36) Green, HJ et al : Increases in muscle MCT are associated with reductions in muscle lactate after a single exercise session in humans. Am J Physiol Endocrinol Metab 282 : E154-E160, 2002
37) Bickham, DC et al : The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. Eur J Appl Physiol 96 : 636-643, 2006
38) Green, HJ et al : Rapid upregulation of GLUT-4 and MCT-4 expression during 16 h of heavy intermittent cycle exercise. Am J Physiol Regul Integr Comp Physiol 294 : R594-R600, 2008
39) Hashimoto, T et al : Lactate sensitive transcription factor network in L6 cells : activation of MCT1 and mitochondrial biogenesis. FASEB J 21 : 2602-2612, 2007
40) Holloszy, JO : Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242 : 2278-2282, 1967
41) Dudley, GA et al : Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol 53 : 844-850, 1982
42) Brooks, GA et al : Balance of carbohydrate and lipid utilization during exercise : the "crossover" concept. J Appl Physiol (1985) 76 : 2253-2261, 1994
43) Green, HJ : How important is endogenous muscle glycogen to fatigue in prolonged exercise? Can J Physiol Pharmacol 69 : 290-297, 1991
44) Sahlin, K et al : Tricarboxylic acid cycle intermediates in human muscle during prolonged exercise. Am J Physiol 259 : C834-C841, 1990
45) Barstow, TJ et al : Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol (1985) 81 : 1642-1650, 1996
46) Fawkner, S et al : Oxygen uptake kinetic response to exercise in children. Sports Med 33 : 651-659, 2003
47) Whipp, BJ et al : Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol 33 : 351-356, 1972
48) Whipp, BJ et al : Simultaneous determination of muscle 31P and O2 uptake kinetics during whole body NMR spectroscopy. J Appl Physiol (1985) 86 : 742-747, 1999
49) Rossiter, HB et al : Dynamic asymmetry of phosphocreatine concentration and O2 uptake between the on- and off-transients of moderate- and high-intensity exercise in humans. J Physiol 541 : 991-1002, 2002
50) Barstow, TJ et al : Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J Appl Physiol 77 : 1742-1749, 1994
51) Mahler, M : First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration. J Gen Physiol 86 : 135-165, 1985
52) Berger, NJA et al : Influence of continuous and interval training on oxygen uptake on-kinetics. Med Sci Sports Exerc 38 : 504-512, 2006
53) Fukuoka, Y et al : Early effects of exercise training on VO2 on- and off-kinetics in 50-year-old subjects. Pflugers Arch 443 : 690-697, 2002
54) Phillips, SM et al : Progressive effect of endurance training on VO2 kinetics at the onset of submaximal exercise. J Appl Physiol (1985) 79 : 1914-1920, 1995
55) Zoladz, JA et al : Training-induced acceleration of O2 uptake on-kinetics precedes muscle mitochondrial biogenesis in humans. Exp Physiol 98 : 883-898, 2013
56) 松林武生 (編) : フィットネスチェックハンドブック-体力測定に基づいたアスリートへの科学的支援-, 大修館書店, 東京, 2021
57) Medbo, JI et al : Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol (1985) 64 : 50-60, 1988
58) Tabata, I et al : Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28 : 1327-1330, 1996
59) Bahr, R et al : Effect of exercise on recovery changes in plasma levels of FFA, glycerol, glucose and catecholamines. Acta Physiol Scand 143 : 105-115, 1991
60) Brehm, BA et al : Recovery energy expenditure for steady state exercise in runners and nonexercisers. Med Sci Sports Exerc 18 : 205-210, 1986
61) Smith J : The effects of intensity of exercise on excess postexercise oxygen consumption and energy expenditure in moderately trained men and women. Eur J Appl Physiol Occup Physiol 67 : 420-425, 1993
62) Borsheim, E et al : Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Med 33 : 1037-1060, 2003
63) Thornton, MK et al : Effects of resistance exercise bouts of different intensities but equal work on EPOC. Med Sci Sports Exerc 34 : 715-722, 2002
64) Kang, J et al : Evaluation of physiological responses during recovery following three resistance exercise programs. J Strength Cond Res 19 : 305-309, 2005
65) Bahr, R et al : Effect of intensity of exercise on excess postexercise O2 consumption. Metabolism 40 : 836-841, 1991
66) Tsuji, K et al : Effects of short-lasting supramaximal-intensity exercise on diet-induced increase in oxygen uptake. Physiol Rep 5 : e13506, 2017
67) Zagatto, AM et al : Physiological responses and characteristics of table tennis matches determined in official tournaments. J Strength Cond Res 24 : 942-949, 2010
68) Zagatto, AM et al : Energetics of table tennis and table tennis-specific exercise testing. Int J Sports Physiol Perform 11 : 1012-1017, 2016
69) Fernandez-Fernandez, J et al : Gender differences in game responses during badminton match play. J Strength Cond Res 27 : 2396-2404, 2013
70) Smekal, G et al : A physiological profile of tennis match play. Med Sci Sports Exerc 33 : 999-1005, 2001
71) Kovacs, M : A comparison of work/rest intervals in men's professional tennis. Med Sci Tennis 9 : 10-11, 2004
72) Fernandez-Fernandez, J et al : Match activity and physiological responses during a junior female singles tennis tournament. Br J Sports Med 41 : 711-716, 2007
73) Sanchez-Moreno, J et al : Analysis of the rally length as a critical incident of the game in elite male volleyball. Int J Perform Anal Sport 15 : 620-631, 2015
74) Harms, CA et al : Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol (1985) 82 : 1573-1583, 1997
75) Dempsey, JA et al : Consequences of exercise-induced respiratory muscle work. Respir Physiol Neurobiol 151 : 242-250, 2006
76) Dempsey, JA et al : Respiratory system determinants of peripheral fatigue and endurance performance. Med Sci Sports Exerc 40 : 457-461, 2008
77) Gigliotti, F et al : Does training of respiratory muscles affect exercise performance in healthy subjects? Respir Med 100 : 1117-1120, 2006
78) Ganesh, G et al : Activity in the dorsal ACC causes deterioration of sequential motor performance due to anxiety. Nat Commun 10 : 4287, 2019
79) von Leupoldt, A et al : Reliability of verbal descriptors of dyspnea and their relationship with perceived intensity and unpleasantness. G Ital Med Lav Ergon 28 : 83-88, 2006
80) Fischer, G et al : An exploratory study of respiratory muscle endurance training in high lesion level paraplegic handbike athletes. Clin J Sport Med 24 : 69-75, 2014
81) Goosey-Tolfrey, V et al : Effects of inspiratory muscle training on respiratory function and repetitive sprint performance in wheelchair basketball players. Br J Sports Med 44 : 665-668, 2010
P.152 掲載の参考文献
1) 猪飼道夫 (編著) : 身体運動の生理学, 杏林書院, 東京, 1973
2) Beyer, E (編) : 日・独・英・仏対照スポーツ科学辞典, 朝岡正雄 (監訳), 大修館書店, 東京, 1993
3) Harre, D : Principles of Sport Training, Sportverlag, Berlin, 1982
4) Zintl, F et al : Ausdauertraining : Grundlagen, Methoden, Trainingssteuerung, BLV Verlagsgesellschaft mbH, Munchen, 2004
5) Cavagna, GA et al : Mechanical work and efficiency in level walking and running. J Physiol 268 : 467-481, 1977
6) 阿江通良ほか : スポーツバイオメカニクス 20講, 朝倉書店, 東京, 2002
7) 阿江通良ほか : 身体運動における力学的エネルギー利用の有効性とその評価指数, 筑波大学体育科学系紀要 19 : 127-137, 1996
8) Calbet, JA et al : Fractional use of anaerobic capacity during a 30- and a 45-s Wingate test. Eur J Appl Physiol Occup Physiol 76 : 308-313, 1997
9) Duffield, R et al : Energy system contribution to 100-m and 200-m track running events. J Sci Med Sport 7 : 302-313, 2004
10) Spencer, MR et al : Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc 33 : 157-162, 2001
11) Withers, RT et al : Muscle metabolism during 30, 60 and 90 s of maximal cycling on an air-braked ergometer. Eur J Appl Physiol Occup Physiol 63 : 354-362, 1991
12) Craig, NP et al : Influence of test duration and event specificity on maximal accumulated oxygen deficit of high performance track cyclists. Int J Sports Med 16 : 534-540, 1995
13) Spencer, MR et al : Energy system contribution during 400 to 1500 metres running. New Studies in Athletics 11 : 59-65, 1996
14) Gastin, PB : Energy system interaction and relative contribution during maximal exercise. Sports Med 31 : 725-741, 2001
15) Medbo, JI et al : Anaerobic capacity determined by maximal accumulated O2 deficit. J Appl Physiol 64 : 50-60, 1988
16) Withers, RT et al : Oxygen deficits incurred during 45, 60, 75 and 90-s maximal cycling on an air-braked ergometer. Eur J Appl Physiol Occup Physiol 67 : 185-191, 1993
17) 中垣浩平ほか : フラットウォータカヤック競技のパフォーマンスとエネルギー供給能力の関係. 体力科学 56 : 115-124, 2007
18) 中垣浩平 : バイオメカニクスによる競技サポート カヌースプリント競技におけるバイオメカニクスサポート. バイオメカニクス研究 18 : 109-115, 2014
19) Duffield, R et al : Energy system contribution to 1500- and 3000-metre track running. J Sports Sci 23 : 993-1002, 2005
20) Pripstein, LP et al : Aerobic and anaerobic energy during a 2-km race simulation in female rowers. Eur J Appl Physiol Occup Physiol 79 : 491-494, 1999
21) Clark, JR : Energy system contribution to 2000 m rowing ergometry using the accumulated oxygen deficit, University of Pretoria, South Africa, 2015
22) 中垣浩平 : フラットウォータカヤックのエネルギー代謝からみた競技・体力特性. 筑波大学大学院人間総合科学研究科博士論文, 2009
23) Hawley, JA et al : Carbohydrate-loading and exercise performance. An update. Sports Med 24 : 73-81, 1997
24) Gejl, KD et al : Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc 46 : 496-505, 2014
25) Ortenblad, N et al : Muscle glycogen stores and fatigue. J Physiol 591 : 4405-4413, 2013
26) Hearris, MA et al : Regulation of muscle glycogen metabolism during exercise : implications for endurance performance and training adaptations. Nutrients 10 : 298, 2018
27) Coyle, EF et al : Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61 : 165-172, 1986
28) Gollnick, PD et al : Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions. J Physiol 241 : 59-67, 1974
29) Impey, SG et al : Fuel for the work required : a theoretical framework for carbohydrate periodization and the glycogen threshold hypothesis. Sports Med 48 : 1031-1048, 2018
30) Solberg, G et al : Respiratory gas exchange indices for estimating the anaerobic threshold. J Sports Sci Med 4 : 29-36, 2005
31) Fohrenbach, R et al : Determination of endurance capacity and prediction of exercise intensities for training and competition in marathon runners. Int J Sports Med 8 : 11-18, 1987
32) Sjodin, B et al : Onset of blood lactate accumulation and marathon running performance. Int J Sports Med 2 : 23-26, 1981
33) Joyner, MJ : Modeling : optimal marathon performance on the basis of physiological factors. J Appl Physiol 70 : 683-687, 1991
34) Jones, AM et al : Physiological demands of running at 2-hour marathon race pace. J Appl Physiol 130 : 369-379, 2021
35) Glaister, M : Multiple sprint work : physiological responses, mechanisms of fatigue and the influence of aerobic fitness. Sports Med 35 : 757-777, 2005
36) Gaitanos, GC et al : Human muscle metabolism during intermittent maximal exercise. J Appl Physiol, 75 : 712-719, 1993
37) Hamilton, AL et al : Physiological responses to maximal intermittent exercise : differences between endurance-trained runners and games players, J Sports Sci 9 : 371-382, 1991
38) 坂井和明ほか : 間欠的なハイパワー発揮能力と3種のエネルギー産生能力との関係. 体力科学 48 : 453-466, 1999
39) 坂井和明ほか : 球技選手における間欠的なハイパワー発揮能力のトレーニング課題に関する研究 : エネルギー産生能力のタイプに着目して. 体育学研究 45 : 239-251, 2000
40) Bogdanis, GC et al : Effects of active recovery on power output during repeated maximal sprint cycling. Eur J Appl Physiol Occup Physiol 74 : 461-469, 1996
41) Haseler, LJ et al : Skeletal muscle phosphocreatine recovery in exercise-trained humans is dependent on O2 availability. J Appl Physiol 86 : 2013-2018, 1999
42) Quistorff, B et al : Absence of phosphocreatine resynthesis in human calf muscle during ischaemic recovery. Biochem J 291 : 681-686, 1993
43) Takahashi, H et al : Control of the rate of phosphocreatine resynthesis after exercise in trained and untrained human quadriceps muscles. Eur J Appl Physiol Occup Physiol 71 : 396-404, 1995
44) Sjodin, B et al : Onset of blood lactate accumulation and enzyme activities in m. vastus lateralis in man. Int J Sports Med 2 : 166-170, 1981
45) Astrand, P et al : Textbook of Work Physiology, McGraw-Hill, New York, 1970
46) MacDougall, D et al : Continuous vs. interval training : a review for the athlete and the coach. Can J Appl Sport Sci 6 : 93-97, 1981
47) Gledhill, N et al : Endurance athletes' stroke volume does not plateau : major advantage is diastolic function. Med Sci Sports Exerc 26 : 1116-1121, 1994
48) Zhou, B et al : Stroke volume does not plateau during graded exercise in elite male distance runners. Med Sci Sports Exerc 33 : 1849-1854, 2001
49) Astorino, TA et al : High-intensity interval training increases cardiac output and VO2max. Med Sci Sports Exerc 49 : 265-273, 2017
50) Astorino, TA et al : Increased cardiac output and maximal oxygen uptake in response to ten sessions of high intensity interval training. J Sports Med Phys Fitness 58 : 164-171, 2018
51) Helgerud, J et al : Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39 : 665-671, 2007
52) Matsuo, T et al : Effects of a low-volume aerobic-type interval exercise on VO2max and cardiac mass. Med Sci Sports Exerc 46 : 42-50, 2014
53) Wisloff, U et al : High-intensity interval training to maximize cardiac benefits of exercise training? Exerc Sport Sci Rev 37 : 139-146, 2009
54) Seiler, S et al : Adaptations to aerobic interval training : interactive effects of exercise intensity and total work duration. Scand J Med Sci Sports 23 : 74-83, 2013
55) Gore, CJ et al : Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med 47 : i31-i39, 2013
56) Schmidt, W et al : Blood volume and hemoglobin mass in endurance athletes from moderate altitude. Med Sci Sports Exerc 34 : 1934-1940, 2002
57) Mujika, I et al : Contemporary periodization of altitude training for elite endurance athletes : a narrative review. Sports Med 49 : 1651-1669, 2019
58) Burgomaster, KA et al : Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586 : 151-160, 2008
59) Cocks, M et al : Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 591 : 641-656, 2013
60) Scribbans, TD et al : Fibre-specific responses to endurance and low volume high intensity interval training : striking similarities in acute and chronic adaptation. PLoS One 9 : e98119, 2014
61) Laursen, PB : Training for intense exercise performance : high-intensity or high-volume training? Scand J Med Sci Sports 20 : 1-10, 2010
62) Granata, C et al : Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med 48 : 1809-1828, 2018
63) Dudley, GA et al : Influence of exercise intensity and duration on biochemical adaptations in skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol 53 : 844-850, 1982
64) Laughlin, MH et al : Mechanisms for exercise training-induced increases in skeletal muscle blood flow capacity : differences with interval sprint training versus aerobic endurance training. J Physiol Pharmacol 59 : 71-88, 2008
65) Fiskerstrand, A et al : Training and performance characteristics among Norwegian international rowers 1970-2001. Scand J Med Sci Sports 14 : 303-310, 2004
66) Orie, J et al : Thirty-eight years of training distribution in Olympic speed skaters. Int J Sports Physiol Perform 9 : 93-99, 2014
67) Sandbakk, O et al : Physiological capacity and training routines of elite cross-country skiers : approaching the upper limits of human endurance. Int J Sports Physiol Perform 12 : 1003-1011, 2017
68) Seiler, S et al : Intervals, thresholds, and long slow distance : the role of intensity and duration in endurance training. Sportscience 13 : 32-53, 2009
69) Solli, GS et al : The training characteristics of the world's most successful female cross-country skier. Front Physiol 8 : 1069, 2017
70) Stoggl, T et al : Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol 5 : 33, 2014
71) Munoz, I et al : Does polarized training improve performance in recreational runners? Int J Sports Physiol Perform 9 : 265-272, 2014
72) Neal, CM et al : Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol 114 : 461-471, 2013
73) Yu, H et al : A quasi-experimental study of Chinese top-level speed skaters' training load : threshold versus polarized model. Int J Sports Physiol Perform 7 : 103-112, 2012
74) Hargreaves, M et al eds : Exercise Metabolism, 2nd ed, Human Kinetics, Champaign, 2005
75) Ross, A et al : Long-term metabolic and skeletal muscle adaptations to short-sprint training : implications for sprint training and tapering. Sports Med 31 : 1063-1082, 2001
76) Costill, DL et al : Adaptations in skeletal muscle following strength training. J Appl Physiol Respir Environ Exerc Physiol 46 : 96-99, 1979
77) Linossier, MT et al : Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol Occup Physiol 67 : 408-414, 1993
78) Linossier, MT et al : Enzyme adaptations of human skeletal muscle during bicycle short-sprint training and detraining. Acta Physiol Scand 161 : 439-445, 1997
79) Mohr, M et al : Effect of two different intense training regimens on skeletal muscle ion transport proteins and fatigue development. Am J Physiol Regul Integr Comp Physiol 292 : R1594-R1602, 2007
80) Jacobs, I et al : Sprint training effects on muscle myoglobin, enzymes, fiber types, and blood lactate. Med Sci Sports Exerc 19 : 368-374, 1987
81) MacDougall, JD et al : Muscle performance and enzymatic adaptations to sprint interval training. J Appl Physiol 84 : 2138-2142, 1998
82) Medbo, JI et al : Effect of training on the anaerobic capacity. Med Sci Sports Exerc 22 : 501-507, 1990
83) Weber, CL et al : Increases in maximal accumulated oxygen deficit after high-intensity interval training are not gender dependent. J Appl Physiol 92 : 1795-1801, 2002
84) Tabata, I et al : Effects of moderate-intensity endurance and high-intensity intermittent training on anaerobic capacity and VO2max. Med Sci Sports Exerc 28 : 1327-1330, 1996
85) Kon, M et al : Effects of all-out sprint interval training under hyperoxia on exercise performance. Physiol Rep 7 : e14194, 2019
86) Bobbert, MF et al : Effects of muscle strengthening on vertical jump height : a simulation study. Med Sci Sports Exerc 26 : 1012-1020, 1994
87) Nagano, A et al : Effects of neuromuscular strength training on vertical jumping performance-a computer simulation study. J Appl Biomech 17 : 113-128, 2001
88) Folland, JP et al : Running technique is an important component of running economy and performance. Med Sci Sports Exerc 49 : 1412-1423, 2017
89) 丹治史弥ほか : 高強度走行中のランニングフォームと経済性. ランニング学研究 27 : 21-35, 2016
90) Williams, KR et al : Relationship between distance running mechanics, running economy, and performance. J Appl Physiol 63 : 1236-1245, 1987
91) Beattie, K et al : The effect of strength training on performance in endurance athletes. Sports Med 44 : 845-865, 2014
92) Blagrove, RC et al : Effects of strength training on the physiological determinants of middle- and long-distance running performance : a systematic review. Sports Med 48 : 1117-1149, 2018
93) Balsalobre-Fernandez, C et al : Effects of strength training on running economy in highly trained runners : a systematic review with meta-analysis of controlled trials. J Strength Cond Res 30 : 2361-2368, 2016
94) Ronnestad, BR et al : Optimizing strength training for running and cycling endurance performance : A review. Scand J Med Sci Sports 24 : 603-612, 2014
95) Karp, JR : Training characteristics of qualifiers for the U. S. Olympic Marathon Trials. Int J Sports Physiol Perform 2 : 72-92, 2007
P.167 掲載の参考文献
1) Laursen, PB et al : The scientific basis for high-intensity interval training : optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32 : 53-73, 2002
2) Buchheit, M et al : High-intensity interval training, solutions to the programming puzzle : Part I : cardiopulmonary emphasis. Sports Med 43 : 313-338, 2013
3) 小野寺孝一ほか : 全身持久性運動における主観的強度と客観的強度の対応性 : Rating of perceived exertionの観点から. 体育学研究 21 : 191-203, 1976
4) Armot, IL et al : Does rating of perceived exertion result in target exercise intensity during interval training in cardiac rehabilitation? A study of the Borg scale versus a heart rate monitor. J Sci Med Sport 17 : 541-545, 2014
5) Achten, J et al : Heart rate monitoring : applications and limitations. Sports Med 33 : 517-538, 2003
6) Billat, LV : Interval training for performance : a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I : aerobic interval training. Sports Med 31 : 13-31, 2001
7) Buchheit, M et al : Muscle deoxygenation during repeated sprint running : Effect of active vs. passive recovery. Int J Sports Med 30 : 418-425, 2009
8) Blondel, N et al : Relationship between run times to exhaustion at 90, 100, 120, and 140 % of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med 22 : 27-33, 2001
9) Tabata, I et al : Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc 29 : 390-395, 1997
10) Buchheit, M et al : High-intensity interval training, solutions to the programming puzzle. Part II : anaerobic energy, neuromuscular load and practical applications. Sports Med 43 : 927-954, 2013
11) Buchheit, M et al : Performance and physiological responses during a sprint interval training session : relationships with muscle oxygenation and pulmonary oxygen uptake kinetics. Eur J Appl Physiol 112 : 767-779, 2012
12) Seiler, S : What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform 5 : 276-291, 2010
13) Stoggl, T et al : Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol 5 : 33, 2014
14) Hickson, RC : Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol 45 : 255-263, 1980
15) Wilson, JM : Concurrent training : a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res 26 : 2293-2307, 2012
16) Coffey, VG et al : Concurrent exercise training : do opposites distract? J Physiol 595 : 2883-2896, 2017
17) Issurin, V : Block periodization versus traditional training theory : a review. J sports Med Phys Fitness 48 : 65-75, 2008
18) Solli, GS et al : The training characteristics of the world's most successful female cross-country skier. Front Physiol 8 : 1069, 2017
19) Ronnestad, BR et al : 5-week block periodization increases aerobic power in elite cross-country skiers. Scand J Med Sci Sports 26 : 140-146, 2016

第2部 リカバリーの科学的基礎

P.184 掲載の参考文献
1) Fox, EL : Sports Physiology, Saunders, Philadelphia, 1979
2) Romijn, JA et al : Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265 (3 Pt 1) : E380-E391, 1993
3) Saltin, B et al : Muscle Glycogen Utilization During Work of Different Intensities. Pernow, B ed., Muscle Metabolism During Exercise : Proceedings of a Karolinska Institutet Symposium held in Stockholm, Sweden, September 6-9, 1970 Honorary guest : E Hohwu Christensen, Springer, Boston, 289-299, 1971
4) Coggan, AR et al : Carbohydrate ingestion during prolonged exercise : effects on metabolism and performance. Exerc Sport Sci Rev 19 : 1-40, 1991
5) Costill, DL : Nutrition for endurance sport : carbohydrate and fluid balance. Int J sports Medicine 1 : 2-14, 1980
6) Nutrition for athletes. Prepared by the Nutrition Working Group of the International Olympic Committee. 2012
7) Lemon, PW et al : Effect of initial muscle glycogen levels on protein catabolism during exercise. J Appl Physiol Respir Environ Exerc Physiol 48 : 624-629, 1980
8) Tarnopolsky, MA et al : Evaluation of protein requirements for trained strength athletes. J Appl Physiol (1985) 73 : 1986-1995, 1992
9) Churchward-Venne, TA et al : Nutritional regulation of muscle protein synthesis with resistance exercise : strategies to enhance anabolism. Nutr Metab 9 : 40, 2012
10) Ivy, JL et al : Muscle glycogen synthesis after exercise : effect of time of carbohydrate ingestion. J Appl Physiol (1985) 64 : 1480-1485, 1998
11) Betts, JA et al : Short-term recovery from prolonged exercise : exploring the potential for protein ingestion to accentuate the benefits of carbohydrate supplements. Sports Med 40 : 941-959, 2010
12) Parkin, JA et al : Muscle glycogen storage following prolonged exercise : effect of timing of ingestion of high glycemic index food. Med Sci Sports Exerc 29 : 220-224, 1997
13) Asp, S et al : Impaired muscle glycogen resynthesis after a marathon is not caused by decreased muscle GLUT-4 content. J Appl Physiol (1985) 83 : 1482-1485, 1997
14) Tuominen, JA et al : Postmarathon paradox : insulin resistance in the face of glycogen depletion. Am J Physiol 270 (2 Pt 1) : E336-E343, 1996
15) Kirwan, JP et al : Eccentric exercise induces transient insulin resistance in healthy individuals. J Appl Physiol (1985) 72 : 2197-2202, 1992
16) Thomas, DT et al : Position of the academy of nutrition and dietetics, dietitians of Canada, and the American college of sports medicine : nutrition and athletic performance. J Acad Nutr Diet 116 : 501-528, 2016
17) 川原貴 : スポーツ活動中の熱中症予防ガイドブック, 日本スポーツ協会, 第3版, 2006
18) Garthe, I et al : Long-term effect of nutritional counselling on desired gain in body mass and lean body mass in elite athletes. Appl Physiol Nutr Metab 36 : 547-554, 2011
P.200 掲載の参考文献
1) 西牟田守 : 疲労研究の現状. 下光輝一ほか (編), 運動と疲労の科学, 大修館書店, 東京, 2-14, 2018
2) 大村裕ほか : 脳と疲労―慢性疲労とそのメカニズム- (ブレインサイエンス・シリーズ 25), 共立出版, 東京, 2009
3) 尾上浩隆 : 睡眠と疲労. 井上正康ほか (編), 疲労の科学 眠らない現代社会への警鐘, 講談社サイエンティフィク, 東京, 11-17, 2005
4) Edwards, RH : Human muscle function and fatigue. Ciba Found Symp 82 : 1-18, 1981
5) 征矢英昭 : 中枢疲労がもととなる運動限界. 体育の科学 60 : 794-796, 2010
6) 征矢英昭 : 脳から考える運動の限界 中枢性疲労の分類と要因. 下光輝一ほか (編), 運動と疲労の科学, 大修館書店, 東京, 108-125, 2018
7) Inoue, K et al : Release of a substance that suppresses spontaneous motor activity in the brain by physical exercise. Physiol Behav 64 : 185-190, 1998
8) Daan, S et al : Timing of human sleep : recovery process gated by a circadian pacemaker. Am J Physiol 246 (2 Pt 2) : R161-183, 1984
9) 土井由利子, 簑輪眞澄, 大川匡子, 内山真 : ピッツバーグ睡眠質問票日本語版の作成. 精神科治療学 1998 ; 13 (6) ; 755-769.
10) 石原金由ほか :日本語版朝型-夜型 (Morningness-Eveningness) 質問紙による調査結果. 心理学研究 57 : 87-91, 1986
11) Roenneberg, T et al : Life between clocks : daily temporal patterns of human chronotypes. J Biol Rhythms 18 : 80-90, 2003
12) 米国睡眠医学会 (著), 日本睡眠学会 (監訳) : AASMによる睡眠および随伴イベントの判定マニュアル-ルール, 用語, 技術仕様の詳細, VERSION 2.3, ライフ・サイエンス, 東京, 2017
13) Braun, AR et al : Regional cerebral blood flow throughout the sleep-wake cycle. An H2 15O PET study. Brain 120 (Pt 7) : 1173-1197, 1997
14) Maquet, P et al : Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F] 2-fluoro-2-deoxy-D-glucose method. Brain Res 513 : 136-143, 1990
15) van der Helm, E et al : REM sleep depotentiates amygdala activity to previous emotional experiences. Curr Biol 21 : 2029-2032, 2011
16) Morgenthaler, T et al : Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders : an update for 2007. Sleep 30 : 519-529, 2007
17) Baekeland F, et al : Exercise and sleep patterns in college athletes. Percept Mot Skills 23 : 1203-1207, 1966
18) Youngstedt, SD et al : The effects of acute exercise on sleep : a quantitative synthesis. Sleep 20 : 203-214, 1997
19) Oda, S et al : Sleep onset is disrupted following pre-sleep exercise that causes large physiological excitement at bedtime. Eur J Appl Physiol 114 : 1789-1799, 2014
20) Kubitz, KA et al : The effects of acute and chronic exercise on sleep. A meta-analytic review. Sports Med 21 : 277-291, 1996
21) Kredlow, MA et al : The effects of physical activity on sleep : a meta-analytic review. J Behav Med 38 : 427-449, 2015
22) Chennaoui, M et al : Sleep and exercise : a reciprocal issue? Sleep Med Rev 20 : 59-72, 2015
23) Venter, RE : Perceptions of team athletes on the importance of recovery modalities. Eur J Sport Sci 14 Suppl 1 : S69-76, 2014
24) Monma, T et al : Sleep disorder risk factors among student athletes. Sleep Med 44 : 76-81, 2018
25) Souissi, N et al : Effects of one night's sleep deprivation on anaerobic performance the following day. Eur J Appl Physiol 89 : 359-366, 2003
26) Oliver, SJ et al : One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol 107 : 155-161, 2009
27) Abedelmalek, S et al : Effect of time of day and partial sleep deprivation on plasma concentrations of IL-6 during a short-term maximal performance. Eur J Appl Physiol 113 : 241-248, 2013
28) Chase, JD et al : One night of sleep restriction following heavy exercise impairs 3-km cycling time-trial performance in the morning. Appl Physiol Nutr Metab 42 : 909-915, 2017
29) Rae, DE et al : One night of partial sleep deprivation impairs recovery from a single exercise training session. Eur J Appl Physiol 117 : 699-712, 2017
30) Skein, M et al : The effect of overnight sleep deprivation after competitive rugby league matches on postmatch physiological and perceptual recovery. Int J Sports Physiol Perform 8 : 556-564, 2013
31) Mah, CD et al : The effects of sleep extension on the athletic performance of collegiate basketball players. Sleep 34 : 943-950, 2011
32) Schwartz, J et al : Sleep extension improves serving accuracy : A study with college varsity tennis players. Physiol Behav 151 : 541-544, 2015
33) 西多昌規 : 睡眠障害とスポーツ. 日本スポーツ精神医学会 (編), スポーツ精神医学, 改訂第2版, 診断と治療社, 東京, 2018
34) Juliff, LE et al : Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport 18 : 13-18, 2015
35) 山本哲朗ほか : 短時間仮眠が午後の運動パフォーマンスに及ぼす効果. 生理心理学と精神生理学 24 : 249-256, 2006
36) Blanchfield, AW et al : The influence of an afternoon nap on the endurance performance of trained runners. Eur J Sport Sci 18 : 1177-1184, 2018
37) Waterhouse, J et al : The role of a short post-lunch nap in improving cognitive, motor, and sprint performance in participants with partial sleep deprivation. J Sports Sci 25 : 1557-1566, 2007
38) Suppiah, HT et al : Effects of a short daytime nap on shooting and sprint performance in high-level adolescent athletes. Int J Sports Physiol Perform 12 : 1-25, 2018
39) Okamoto, K et al : The effects of a newly designed air mattress upon sleep and bed climate. Appl Human Sci 16 : 161-166, 1997
40) Chiba S, et al : High rebound mattress toppers facilitate core body temperature drop and enhance deep sleep in the initial phase of nocturnal sleep. PLoS One 13 : e0197521, 2018
41) Krauchi, K et al : Sleep on a high heat capacity mattress increases conductive body heat loss and slow wave sleep. Physiol Behav 185 : 23-30, 2018
P.216 掲載の参考文献
1) 和田正信ほか : 筋収縮における乳酸の役割. 体育学研究 51 : 229-239, 2006
2) 八田秀雄 : 乳酸をどう考えたらよいのか. 体力科学 59 : 8-10, 2010
3) 和田正信ほか : 高強度運動における筋疲労の要因 : 無機リン酸, グリコーゲンおよび活性酸素種の影響. 体育学研究 51 : 399-408, 2006
4) 長谷川博 : 暑熱環境下の運動パフォーマンス低下と暑さ対策の重要性. トレーニング科学 26 : 121-125, 2015
5) 遠藤隆志ほか : 鍛錬者と非鍛錬者における持続的な最大筋力発揮中の中枢性および末梢性疲労の発現. 体力科学 53 : 211-220, 2004
6) Nielsen, B et al : Brain activity and fatigue during prolonged exercise in the heat. Pflugers Arch. 442 : 41-48, 2001
7) Nydo, L et al : Middle cerebral artery blood velocity is reduced with hyperthermia during prolonged exercise in humans. J Physiol 534 : 279-286, 2001
8) 風間彬ほか : 体温上昇が持久的運動時における認知機能に及ぼす影響. 体力科学 61 : 459-467, 2012
9) Parkin, JM et al : Effect of ambient temperature on human skeletal muscle metabolism during fatiguing submaximal exercise. J Appl Phyisol (1985) 86 : 902-908
10) Gonzalez-Alonso, J et al : Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol (1985) 86 : 1032-1039, 1999
11) Cleak, MJ et al : Muscle soreness, swelling, stiffness and strength loss after intense eccentric exercise. Br J Sports Med 26 : 267-272, 1992
12) Takarada, Y : Evaluation of muscle damage after a rugby match with special reference to tackle plays. Br J Sports Med 37 : 416-419, 2003
13) 小林芳郎ほか : 炎症と接着分子・サイトカイン. スタンダード免疫学, 第5版, 丸善出版, 東京, 130-154, 2018
14) 山根基 : 習慣的な運動後アイシングがトレーニングに伴う筋の適応過程に及ぼす影響. 中京大学博士審査学位論文, 1-69, 2017
15) Dupuy, O et al : An Evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation : a systematic review with meta-analysis. Front Physiol 9 : 403, 2018
16) Ascensao, A et al : Effects of cold water immersion on the recovery of physical performance and muscle damage following a one-off soccer match. J Sports Sci 29 : 217-225, 2011
17) 柳岡拓磨ほか : 異なるアクティブリカバリー方法がサッカー審判員の血中乳酸濃度に及ぼす影響. トレーニング科学 26 : 177-184, 2015
18) 笠原政志ほか : スポーツ現場における戦略的リカバリー. トレーニング科学 28 : 164-174, 2017
19) Hooren, BV et al : Do we need a cool-down after exercise? A narrative review of the psychophysiological effects and the effects on performance, injuries and the long-term adaptive response. Sports Med 48 : 1575-1595, 2018
20) 塩瀬圭佑ほか : 骨格筋グリコーゲンの効率的な減少を目的とした高強度間欠式運動プロトコル. 体力科学 60 : 493-502, 2011
21) Andersson, H et al : Neuromuscular fatigue and recovery in elite female soccer : effects of active recovery. Med Sci Sports Exerc 40 : 372-380, 2008
22) Fairchild, TJ et al : Glycogen synthesis in muscle fibers during active recovery from intense exercise. Med Sci Sports Exerc 35 : 595-602, 2003
23) 鎌田哲彰ほか : 8秒間の静的ストレッチングで大腿直筋の柔軟性が向上し筋力は維持される. 理学療法科学 31 : 811-814, 2016
24) Barnett, A : Using recovery modalities between training sessions in elite athletes : does it help? Sports Med 36 : 781-796, 2006
25) 笠原政志ほか : ディトレーニング中のストレッチングが筋量に及ぼす影響. 体力科学 59 : 541-548, 2010
26) Wilcock, IM et al : Physiological response to water immersion : a method for sport recovery? Sports Med 36 : 747-765, 2006
27) 内藤久士 : 細胞レベルでのストレス応答 : ストレスタンパク質の発現と機能. 体力科学 53 : 455-460, 2004
28) Ogura, Y et al : Microwave hyperthermia treatment increases heat shock proteins in human skeletal muscle. Br J Sports Med 41 : 453-455, 2007
29) 小野悠介ほか : 筋サテライト細胞の細胞生物学. 体力科学 59 : 25, 2010
30) Oishi, Y et al : Heat stress increases myonuclear number and fiber size via satellite cell activation in rat regenerating soleus fibers. J Appl Physiol (1985) 107 : 1612-1621, 2009
31) Naito, H et al : Heat stress-induced changes in skeletal muscle : Heat shock proteins and cell signaling transduction. J Phys Fitness Sports Med 1 : 125-131, 2012
32) Vaile, J et al : Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. Eur J Appl Physiol 102 : 447-455, 2008
33) Peiffer, JJ et al : Effect of a 5-min cold-water immersion recovery on exercise performance in the heat. Br J Sports Med 44, 461-465, 2010
34) 長谷川博 : 暑熱環境下の運動パフォーマンス低下と暑さ対策の重要性. トレーニング科学 26 : 121-125, 2015
35) Chaen, Y et al : Wearing a cooling vest during half-time improves intermittent exercise in the heat. Front Physiol 10 : 711, 2019
36) Versey, NG et al : Water immersion recovery for athletes : effect on exercise performance and practical recommendations. Sports Med 43 : 1101-1130, 2013
37) Machado, AF et al : Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Med 46 : 503-514, 2016
38) Brophy-Williams, N et al : Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. J Sports Sci Med 10 : 665-670, 2011
39) Tavares, F et al : チームスポーツのための水中浸漬による回復方法の現場への応用. NSCA JAPAN 26 : 60-69, 2019
40) Argus, CK et al : Cold-water immersion and contrast water therapy : no improvement of short-term recovery after resistance training. Int J Sports Physiol Perform 12 : 886-892, 2017
41) Roberts, LA et al : Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am J Physiol Regul Integr Comp Physiol 307 : R998-R1008, 2014
42) 井上修平ほか : 暑熱環境下と快適環境下における運動間の休息時に行うアイシングの効果 : 長時間の間欠的運動を対象として. トレーニング科学 21 : 357-368, 2009
43) Roberts, LA et al : Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol 593 : 4285-4301, 2015
44) Gill, ND et al : Effectiveness of post-match recovery strategies in rugby players. Br J Sports Med 260-263, 2006
45) Stanley, J : The effect of post-exercise hydrotherapy on subsequent exercise performance and heart rate variability. Eur J Appl Physiol. 112 : 951-961, 2012
46) Brown, F : Compression garments and recovery from exercise : A meta-analysis. Sports Med 47 : 2245-2267, 2017
47) Goto, K et al : Compression garment promotes muscular strength recovery after resistance exercise. Med Sci Sports Exerc. 46 : 2265-2270, 2014
48) Mizuno, S et al : Wearing compression garment after endurance exercise promotes recovery of exercise performance. Int J Sports Med 37 : 870-877, 2016
49) Kraemer, WJ et al : Influence of compression therapy on symptoms following soft tissue injury from maximal eccentric exercise. J Orthop Sports Phys Ther 31 : 282-290, 2001
50) Hill, J et al : Compression garments and recovery from exercise-induced muscle damage : a meta-analysis. Br J Sports Med 48 : 1340-1346, 2014
51) 小粥隆司ほか : 機械的外来刺激 (含筋マッサージ) の生理学的考察と将来展望. 中京大学体育学論叢 46 : 17-26, 2005
52) Zainuddin, Z et al : Effects of massage on delayed-onset muscle soreness, swelling, and recovery of muscle function. J Athl Train 40 : 174-180
53) Kargarfard, M et al : Efficacy of massage on muscle soreness, perceived recovery, physiological restoration and physical performance in male bodybuilders. J Sports Sci 34 : 959-965, 2016
54) Crane, JD : Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage. Sci Transl Med 4 : 119ra13, 2012
55) 勝又泰貴ほか : 筋再教育運動が筋膜リリース後の筋筋膜の伸張性および筋力に与える影響. 理学療法科学 31, 99-106, 2016
56) Cheatham, SW et al : The effects of self-myofascial release using a foam roll or roller massager on joint range of motion, muscle recovery, and performance : a systematic review. Int J Sports Phys Ther 10 : 827-838, 2015
57) Pearcey, GE et al : Foam rolling for delayed-onset muscle soreness and recovery of dynamic performance measures. J Athl Train 50 : 5-13, 2015
58) Macdonald, GZ et al : Foam rolling as a recovery tool after an intense bout of physical activity. Med Sci Sports Exerc. 46 : 131-142, 2014
59) Drinkwater, EJ et al : Foam rolling as a recovery tool following eccentric exercise : potential mechanisms underpinning changes in jump performance. Front Physiol 10 : 768, 2019
P.233 掲載の参考文献
1) 笠原政志ほか : スポーツ現場における戦略的リカバリー, トレーニング科学 28 : 167-174, 2017
2) 山本利春 : アスリートにおける戦略的リカバリーの考え方. 臨床スポーツ医学 34 : 1110-1117, 2017
3) Burke, L et al : Nutrition for recovery after training and competition. Clinical Sports Nutrition, 5th ed, McGraw Hill Education, New York, 420-462, 2015
4) Walsh, RM et al : Impaired high-intensity cycling performance time at low levels of dehydration. Int J Sports Med 15 : 392-398, 1994
5) Grandjean, AC et al : Dehydration and cognitive performance. J Am Coll Nutr 26 : 549S-554S, 2007
6) Juliff, LE et al : Understanding sleep disturbance in athletes prior to important competitions. J Sci Med Sport 18 : 13-18, 2015
7) 大村裕ほか : 疲労と脳活動動態. 脳と疲労-慢性疲労とそのメカニズム (ブレインサイエンス・シリーズ 25), 共立出版, 東京, 26-32, 2009
8) 小田切優子ほか : 病的疲労のメカニズムと回復 スポーツによる疲労困憊とそのメカニズム : 生理・心理学的検討, 臨床スポーツ医学 17 : 829-834, 2000
9) Takarada, Y : Evaluation of muscle damage after a rugby match with special reference to tackle plays. Br J Sports Med 37 : 416-419, 2003
10) Clarkson, PM et al : Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc 24 : 512-520, 1992
11) Machado, AF et al : Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis, Sports Med 46 : 503-514, 2016
12) Versey, NG et al : Water immersion recovery for athletes : effect on exercise performance and practical recommendations. Sports Med 43 : 1101-1130, 2013
13) 森谷敏夫 : 筋疲労. 呼吸 9 : 965-972, 1990
14) 太田千尋ほか : アスリートのリカバリーの実態と課題. 臨床スポーツ医学 34 : 1118-1124, 2017
15) Burke, LM et al : Carbohydrates and fat for training and recovery 22 : 15-30, 2004
16) Stephens, JM et al : Influence of body composition on physiological responses to post-exercise hydrotherapy. J Sports Sci 36 : 1044-1053, 2018
17) 笠原政志ほか : 運動強度の差異が柔道選手の主観的リカバリー効果に与える影響. 第5回日本アスレティックトレーニング学会学術集会抄録集, S55, 2016
18) 山本利春ほか : 運動による疲労の評価 : 障害予防のためのモニタリング. 臨床スポーツ医学 36 : 6-12, 2019
19) Gabbett, TJ et al : Relationships between training load, injury, and fitness in sub-elite collision sports athletes. J Sports Sci 25 : 1507-1519, 2007
20) 竹内伸行 : 筋緊張の改善を目的とした寒冷療法と温熱療法の実践方法と臨床効果. 理学療法 29 : 1019-1026, 2012
21) 山本利春ほか : 筋のコンディショニングを目的としたアイシングの効果. 武道・スポーツ科学研究所年報 1 : 73-80, 1996
22) Bishop, SH et al : The effect of intermittent arm and shoulder cooling on baseball pitching velocity. J Strength Cond Res 30 : 1027-1032, 2016
23) 井上修平ほか : 暑熱環境下と快適環境下における運動間の休息時に行うアイシング効果 : 長時間の間欠的運動を対象として. トレーニング科学 21 : 357-368, 2009
24) 笠原政志ほか : 大学サッカー選手におけるアイスアンダーラップ, アイスタオル, 冷水摂取を用いたハーフタイム中のクーリングが後半の運動パフォーマンスに及ぼす影響. 日本アスレティックトレーニング学会誌 4 : 163-169, 2019
25) 藤田英二ほか : アイスバスがサッカー競技における特異的体力テストのパフォーマンスに与える影響. 日本アスレティックトレーニング学会誌 3 : 45-52, 2017
26) Hooren, BV et al : Do we need a cool-down after exercise? A narrative review of the psycho physiological effects and the effects on performance, injuries and the long-term adaptive response, Sports Med 48 : 1575-1595, 2018
27) Fairchild, TJ et al : Glycogen synthesis in muscle fibers during active recovery from intense exercise, Medi Sci Sports Excrc 35 : 595-602, 2003
28) 寺田新 : エネルギー補給 (糖質・脂質). 日本スポーツ栄養学会 (監修), 高田和子ほか (編), エッセンシャルスポーツ栄養学, 市村出版, 東京, 2020
29) Ivy, JL et al : Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol (1985) 93 : 1337-1344, 2002
30) Brophy-Williams, N et al : Effect of immediate and delayed cold water immersion after a high intensity exercise session on subsequent run performance. J Sports Sci Med : 10 : 665-670, 2011
31) Ihsan, M et al : What are the physiological mechanisms for post-exercise cold water immersion in the recovery from prolonged endurance and intermittent exercise? Sports Med 46 : 1095-1109, 2016
32) Robey, E et al : Sleep quantity and quality in elite youth soccer players : A pilot study, Eur J Sport Sci 14 : 410-417, 2014
33) Okamoto-Mizuno, K et al : Effects of an electric blanket on sleep stages and body temperature in young men. Ergonomics 48 : 749-757, 2005
34) Roberts, LA et al : Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol 593 : 4285-4301, 2015
35) King, M et al : The effects of recovery interventions on consecutive days of intermittent sprint exercise. J Strength Cond Res 23 : 1795-1802, 2009

第3部 身体に関わる情報の活用

P.257 掲載の参考文献
1) Wisloff, U et al : Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med 38 : 285-288, 2004
2) Arabatzi, F et al : Olympic weightlifting training causes different knee muscle-coactivation adaptations compared with traditional weight training. J Strength Cond Res 26 : 2192-2201, 2012
3) Berton, R et al : Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance : a meta-analysis. J Sports Sci 36 : 2038-2044, 2018
4) World Athletics : World Records. https://www.worldathletics.org/records/by-category/world-records (2021年10月閲覧)
5) 日本陸上競技連盟 :日本記録. https://www.jaaf.or.jp/record/japan/?segment=3 (2021年10月閲覧).
6) 下井俊典 : 評価の絶対信頼性. 理学療法科学 26 : 451-461, 2011
7) SKETCH研究会統計分科会 : 臨床データの信頼性と妥当性, サイエンティスト社, 東京, 2005
8) 村山航 : 妥当性概念の歴史的変遷と心理測定学的観点からの考察. 教育心理学年報 51 : 118-130, 2012
9) Ikai, M et al : A study on training effect on strength per unit cross-sectional area of muscle by means of ultrasonic measurement. Int Z Angew Physiol 28 : 173-180, 1970
10) Young, W et al : Development of muscle mass : how much is optimum for performance? Strength Cond J 41 : 47-50, 2019
11) Brozek, J et al : Densitometric analysis of body composition : revision of some quantitative assumptions. Ann N Y Acad Sci 110 : 113-140, 1963
12) Siri, WE : The Gross Composition of the Body. Adv Biol Med Phys 4 : 239-280, 1956
13) 柳町幸ほか : Dual energy X-ray absorptiometry (DXA) の原理と体組成評価. 外科と代謝・栄養 53 : 119-122, 2019
14) 香川雅春 : カラダをハカル : 身体計測の活用法と将来の展望. 日本食生活学会誌 28 : 235-245, 2018
15) 岩本紗由美ほか : コンディショニングにおけるモニタリング指標としての皮下脂肪厚計測活用事例の報告. 日本アスレティックトレーニング学会誌 5 : 53-61, 2019
16) Haff, GG et al : Training principles for power. Strength Cond J 34 : 2-12, 2012
17) Hedrick, A : Training for hypertrophy. Strength Cond J 17 : 22-29, 1995
18) Tan, B : Manipulating resistance training program variables to optimize maximum strength in men : a review. J Strength Cond Res 13 : 289-304, 1999
19) Landers, J : Maximum based on reps. NSCA J 6 : 60-61, 1984
20) LeSuer, DA et al : The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat, and deadlift. J Strength Cond Res 11 : 211-213, 1997
21) Picerno, P et al : 1RM prediction : a novel methodology based on the force-velocity and load-velocity relationships. Eur J Appl Physiol 116 : 2035-2043, 2016
22) Garcia-Ramos, A et al : Feasibility of the 2-Point method for determining the 1-repetition maximum in the bench press exercise. Int J Sports Physiol Perform 13 : 474-481, 2018
23) Sanchez-Medina, L et al : Velocity- and power-load relationships of the bench pull vs. bench press exercises. Int J Sports Med 35 : 209-216, 2014
24) Loturco, I et al : Bar velocities capable of optimising the muscle power in strength-power exercises. J Sports Sci 35 : 734-741, 2017
25) Izquierdo, M et al : Effect of loading on unintentional lifting velocity declines during single sets of repetitions to failure during upper and lower extremity muscle actions. Int J Sports Med 27 : 718-724, 2006
26) Sanchez-Medina, L et al : Estimation of relative load from bar velocity in the full back squat exercise. Sports Med Int Open 1 : E80-E88, 2017
27) Helms, ER et al : RPE and velocity relationships for the back squat, bench press, and deadlift in powerlifters. J Strength Cond Res 31 : 292-297, 2017
28) Garcia-Ramos, A et al : Two-point method : a quick and fatigue-free procedure for assessment of muscle mechanical capacities and the 1 repetition maximum. Strength Cond J 40 : 54-66, 2018
29) Dorrell, HF et al : Validity and reliability of a linear positional transducer across commonly practised resistance training exercises. J Sports Sci 37 : 67-73, 2018
30) Lake, JP et al : Barbell kinematics should not be used to estimate power output applied to the barbell-and-body system center of mass during lower-body resistance exercise. J Strength Cond Res 26 : 1302-1307, 2012
31) Mitchell, JA et al : Variable changes in body composition, strength and lower-body power during an international rugby sevens season. J Strength Cond Res 30 : 1127-1136, 2016
32) Perez-Castilla, A et al : Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. J Strength Cond Res 33 : 1258-1265, 2019
33) Banyard, HG et al : Validity of various methods for determining velocity, force and power in the back squat. Int J Sports Physiol Perform 12 : 1170-1176, 2017
34) Lake, JP et al : The validity of the push band 2.0 during vertical jump performance. Sports (Basel) 6 : 140, 2018
35) Lake, J et al : The reliability and validity of the bar-mounted PUSH BandTM 2.0 during bench press with moderate and heavy loads. J Sports Sci 37 : 2685-2690, 2019
36) Balsalobre-Fernandez, C et al : Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. J Sports Sci 36 : 64-70, 2018
37) Fitzgerald, CF et al : A comparison of the national football League's annual national football league combine 1999-2000 to 2015-2016. J Strength Cond Res 34 : 771-781, 2020
38) Teramoto, M et al : Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res 32 : 396-408, 2018
39) Yamashita, D et al : Physical characteristics and performance of Japanese top-level American football players. J Strength Cond Res 31 : 2455-2461, 2017
40) Iguchi, J et al : Risk Factors for injury among Japanese collegiate players of American football based on performance test results. J Strength Cond Res 30 : 3405-3411, 2016
41) Yamashita, D et al : Effect of landing posture on jump height calculated from flight time. Appl Sci 10 : 776, 2020
42) Aragon, LF : Evaluation of four vertical jump tests : methodology, reliability, validity, and accuracy. Meas Phys Edu Exer Sci 4 : 215-228, 2000
43) Moir, GL : Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Edu Exer Sci 12 : 207-218, 2008
44) Chavda, S et al : Force-time characteristics of the countermovement jump : analyzing the curve in excel. Strength Cond J 40 : 67-77, 2018
45) Sargent, DA : The physical test of a man. Am Phys Edu Rev 26 : 188-194, 1921
46) Magnusdottir, A et al : Comparing three devices for jump height measurement in a heterogeneous group of subjects. J Strength Cond Res 28 : 2837-2844, 2014
47) 文部科学省 : 子どもの体力向上のための取組ハンドブック, 2012
48) Klavora, P : Vertical-jump tests : a critical review. Strength Cond J 22 : 70-75, 2000
49) McMahon, JJ et al : A correction equation for jump height measured using the just jump system. Int J Sports Physiol Perform 11 : 555-557, 2016
50) Sharp, AP et al : Using smartphones for jump diagnostics : a brief review of the validity and reliability of the my jump app. Strength Cond J 41 : 96-107, 2019
51) Balsalobre-Fernandez, C et al : The validity and reliability of an iPhone app for measuring vertical jump performance. J Sports Sci 33 : 1574-1579, 2015
52) Gallardo-Fuentes, F et al : Intersession and intrasession reliability and validity of the my jump app for measuring different jump actions in trained male and female athletes. J Strength Cond Res 30 : 2049-2056, 2016
53) McMahon, JJ et al : Relationship between reactive strength index variants in rugby league players. J Strength Cond Res 35 : 280-285, 2021
54) Flanagan, EP et al : The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond J 30 : 32-38, 2008
55) Comyns, TM et al : Interday reliability and usefulness of a reactive strength index derived from 2 maximal rebound jump tests. Int J Sports Physiol Perform 29 : 1200-1204, 2019
56) 図子浩二ほか : 各種スポーツ選手における下肢の筋力およびパワー発揮に関する特性. 体育学研究 38 : 265-278, 1993
57) 田内健二ほか : 下肢のバリスティックな伸張-短縮サイクル運動の遂行能力からみた槍投げ競技者の体力特性. 体育学研究 47 : 569-577, 2002
58) 図子浩二ほか : バリスティックな伸張-短縮サイクル運動の遂行能力を決定する要因 : 筋力および瞬発力に着目して. 体力科学 44 : 147-154, 1995
59) 図子あまねほか : リバウンドジャンプテストを用いた跳躍選手の専門的な下肢筋力・パワーに関する評価. 体力科学 66 : 79-86, 2017
60) 遠藤俊典ほか : リバウンドジャンプと垂直跳の遂行能力の発達に関する横断的研究. 体育学研究 52 : 149-159, 2007
61) 図子浩二ほか : リバウンドドロップジャンプにおける踏切時間を短縮する要因 : 下肢の各関節の仕事と着地に対する予測に着目して. 体育学研究 40 : 29-39, 1995
62) 日本スポーツ振興センター : フィットネス・チェックマニュアル. https://www.jpnsport.go.jp/hpsc/study/fc/tabid/1577/Default.aspx (2021年10月閲覧)
63) 梶原弘 : 国際スポーツ大会における計測の実例 : 陸上トラック競技. マイクロメカトロニクス 53 : 172-176, 2009
64) Haugen, T et al : Sprint running performance monitoring : methodological and practical considerations. Sports Med 46 : 641-656, 2016
65) Kokubu, M et al : Interference effects between saccadic and key-press reaction times of volleyball players and nonathletes. Percept Mot Skills 103 : 709-716, 2006
66) Mann, JB et al : Validity and reliability of hand and electronic timing for 40-yd sprint in college football players. J Strength Cond Res 29 : 1509-1514, 2015
67) Mayhew, JL et al : Comparison between hand and electronic timing of 40-Yd dash performance in college football players. J Strength Cond Res 24 : 447-451, 2010
68) Earp, JE et al : Advances in electronic timing systems : considerations for selecting an appropriate timing system. J Strength Cond Res 26 : 1245-1248, 2012
69) Cronin, JB et al : Timing light height affects sprint times. J Strength Cond Res 22 : 318-320, 2008
70) Jones, B et al : Bigger, stronger, faster, fitter : the differences in physical qualities of school and academy rugby union players. J Sports Sci 36 : 2399-2404, 2018
71) Fontana, FY et al : Player's success prediction in rugby union : From youth performance to senior level placing. J Sci Med Sport 20 : 409-414, 2017
72) Weakley, J et al : The effects of augmented feedback on sprint, jump, and strength adaptations in rugby union players after a 4-week training program. Int J Sports Physiol Perform 29 : 1205-1211, 2019
73) Altmann, S et al : Different starting distances affect 5-m sprint times. J Strength Cond Res 29 : 2361-2366, 2015
74) Romero-Franco, N et al : Sprint performance and mechanical outputs computed with an iPhone app : comparison with existing reference methods. Eur J Sport Sci 17 : 386-392, 2017
75) Lorenzen, C et al : Relationship between velocity reached at VO2max and time-trial performances in elite Australian rules footballers. Int J Sports Physiol Perform 4 : 408-411, 2009
76) Cooper, KH : A means of assessing maximal oxygen intake. Correlation between field and treadmill testing. JAMA 203 : 201-204, 1968
77) Leger, LA et al : A maximal multistage 20-m shuttle run test to predict VO2max. Eur J Appli Physiol Occup Physiolo 49 : 1-12, 1982
78) Ramsbottom, R et al : A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med 22 : 141-144, 1988
79) 文部科学省 : 新体力テスト実施要項. https://www.mext.go.jp/component/a_menu/sports/detail/__icsFiles/afieldfile/2010/07/30/1295079_03.pdf (2021年10月閲覧)
80) Bangsbo, J et al : The Yo-Yo intermittent recovery test : A useful tool for evaluation of physical performance in intermittent sports. Sports Med 38 : 37-51, 2008
81) 中馬健太郎 : 高校生サッカー選手におけるYo-Yo IR2テスト結果とvOBLAとの関係. ストレングス & コンディショニングジャーナル 27 : 20-24, 2020
82) 中馬健太郎ほか : 育成年代のサッカー選手における間欠的運動能力の発達とその評価. ストレングス & コンディショニングジャーナル 22 : 2-9, 2015
83) Chuman, K et al : Reference values for the 3200-m run test on a soccer field for players at the adolescent growth spurt. Football Science 12 : 33-42, 2015
84) Buchheit, M : The 30-15 Intermittent fitness test : accuracy for individualizing interval training of young intermittent sport players. J Strength Cond Res 22 : 365-374, 2008
85) Clarke, R et al : Metabolic conditioning : field tests to determine a training velocity. Strength Cond J 38 : 38-47, 2016
86) Buchheit, M et al : High-intensity interval training, solutions to the programming puzzle : part I : cardiopulmonary emphasis. Sports Med 43 : 313-338, 2013
87) Foster, C et al : A new approach to monitoring exercise training. J Strength Cond Res 15 : 109-115, 2001
88) Borg, GA : Perceived exertion : a note on "history" and methods. Med Sci Sports Exerc 5 : 90-93, 1973
89) Comyns, T et al : Applications of the session rating of perceived exertion system in professional rugby union. Strength Cond J 35 : 78-85, 2013
90) Morgan, WP : Psychological components of effort sense. Med Sci Sports Exerc 26 : 1071-1077, 1994
91) Morgan, WP : Psychological factors influencing perceived exertion. Med Sci Sports 5 : 97-103, 1973
92) Fusco, A et al : Session RPE during prolonged exercise training. Int J Sports Physiol Perform 15 : 292-294, 2020
93) Vollestad, NK : Measurement of human muscle fatigue. J Neurosci Methods 74 : 219-227, 1997
94) Edwards, T et al : Monitoring and managing fatigue in basketball. Sports (Basel) 6 : 19, 2018
95) Claudino, JG et al : The Countermovement jump to monitor neuromuscular status : a meta-analysis. J Sci Med Sport 20 : 397-402, 2016
96) Wing, C : Monitoring athlete load : Data collection methods and practical recommendations. Strength Cond J 40 : 26-39, 2018
P.272 掲載の参考文献
1) Bouchard, C et al : Familial resemblance for VO2max in the sedentary state : the HERITAGE family study. Med Sci Sports Exerc 30 : 252-258, 1998
2) Seabra, AF et al : Genetic influences of sports participation in portuguese families. Eur J Sport Sci 14 : 510-517, 2014
3) Zempo, H et al : Heritability estimates of muscle strength-related phenotypes : A systematic review and meta-analysis. Scand J Med Sci Sports 27 : 1537-1546, 2017
4) Miyamoto-Mikami, E et al : Heritability estimates of endurance-related phenotypes : A systematic review and meta-analysis. Scand J Med Sci Sports 28 : 834-845, 2018
5) De Moor, MH et al : Genome-wide linkage scan for athlete status in 700 British female DZ twin pairs. Twin Res Hum Genet 10 : 812-820, 2007
6) de Silva, MG et al : Disruption of a novel member of a sodium/hydrogen exchanger family and DOCK3 is associated with an attention deficit hyperactivity disorder-like phenotype. J Med Genet 40 : 733-740, 2003
7) Lorentzon, M et al : Calcium sensing receptor gene polymorphism, circulating calcium concentrations and bone mineral density in healthy adolescent girls. Eur J Endocrinol 144 : 257-261, 2001
8) Thomis, MA et al : Strength training : importance of genetic factors. Med Sci Sports Exerc 30 : 724-731, 1998
9) Bouchard, C et al : Genomic predictors of the maximal O2 uptake response to standardized exercise training programs. J Appl Physiol (1985) 110 : 1160-1170, 2011
10) Timmons, JA et al : Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol (1985) 108 : 1487-1496, 2010
11) Kikuchi, N et al : The ACTN3 R577X polymorphism is associated with muscle power in male Japanese athletes. J Strength Cond Res 28 : 1783-1789, 2014
12) Juvonen, E et al : Autosomal dominant erythrocytosis caused by increased sensitivity to erythropoietin. Blood 78 : 3066-3069, 1991
13) Montgomery, HE et al : Human gene for physical performance. Nature 393 : 221-222, 1998
14) Beggs, AH et al : Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11. J Biol Chem 267 : 9281-9288, 1992
15) Yang, N et al : ACTN3 genotype is associated with human elite athletic performance. Am J Hum Genet 73 : 627-631, 2003
16) Kikuchi, N et al : The ACTN3 XX genotype's underrepresentation in Japanese elite wrestlers. Int J Sports Physiol Perform 8 : 57-61, 2013
17) Vincent, B et al : ACTN3 (R577X) genotype is associated with fiber type distribution. Physiol Genomics 32 : 58-63, 2007
18) Ahmetov, II et al : The dependence of preferred competitive racing distance on muscle fibre type composition and ACTN3 genotype in speed skaters. Exp Physiol 96 : 1302-1310, 2011
19) Norman, B et al : Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes. J Appl Physiol (1985) 106 : 959-965, 2009
20) Moran, CN et al : Association analysis of the ACTN3 R577X polymorphism and complex quantitative body composition and performance phenotypes in adolescent Greeks. Eur J Hum Genet 15 : 88-93, 2007
21) Kikuchi, N et al : The ACTN3 R577X genotype is associated with muscle function in a Japanese population. Appl Physiol Nutr Metab 40 : 316-322, 2015
22) Kikuchi, N et al : Association between ACTN3 R577X polymorphism and trunk flexibility in 2 different cohorts. Int J Sports Med 38 : 402-406, 2017
23) Miyamoto, N et al : Association analysis of the ACTN3 R577X polymorphism with passive muscle stiffness and muscle strain injury. Scand J Med Sci Sports 28 : 1209-1214, 2018
24) Eynon, N et al : ACTN3 R577X polymorphism and team-sport performance : a study involving three European cohorts. J Sci Med Sport 17 : 102-106, 2014
25) Higashimori, K et al : Association analysis of a polymorphism of the angiotensin converting enzyme gene with essential hypertension in the Japanese population. Biochem Biophys Res Commun 191 : 399-404, 1993
26) Williams, AG et al : The ACE gene and muscle performance. Nature 403 : 614, 2000
27) Woods, D et al : Elite swimmers and the D allele of the ACE I/D polymorphism. Hum Genet, 108 : 230-232, 2001
28) Zhang, B et al : The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin Genet 63 : 139-144, 2003
29) Wang, G et al : Association analysis of ACE and ACTN3 in elite caucasian and east asian swimmers. Med Sci Sports Exerc 45 : 892-900, 2013
30) Kikuchi, N et al : Higher frequency of the ACTN3 R allele + ACE DD genotype in Japanese elite wrestlers. J Strength Cond Res 26 : 3275-3280, 2012
31) Min, SK et al : Is there a gender difference between ACE gene and race distance? Appl Physiol Nutr Metab 34 : 926-932, 2009
32) Kikuchi, N et al : The association between MCT1 T1470A polymorphism and power-oriented athletic performance. Int J Sports Med 38 : 76-80, 2017
33) Goto, K et al : The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc 37 : 955-963, 2005
34) Jones, N et al : A genetic-based algorithm for personalized resistance training. Biol Sport 33 : 117-126, 2016
35) Karanikolou, A et al : Letter to the editor : a genetic-based algorithm for personalized resistance training. Biol Sport 34 : 31-33, 2017

最近チェックした商品履歴

Loading...