復刊 非線形有限要素法の基礎と応用(電子書籍版)

出版社: 丸善出版
著者:
発行日: 2020-11-30
分野: その他  >  技術・工学
ISBN: 9784621305676
電子書籍版: 2020-11-30 (電子書籍版)
電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

13,200 円(税込)

商品紹介

1995年12月に刊行された同名書籍の待望の復刊。有限要素法が固体・構造解析の実用に供されるようになって久しいが、高度の非線形問題も、最近の解析手法の発展とコンピュータの高速化により、研究レベルから実用レベルへと近付きつつある。本書は、その内容をほぼ非線形問題に絞り、有限要素解析の基礎から応用までをつとめて詳しく、かつ具体的に紹介したものである。数理・物理的な側面と実用的な側面を併せ持つ魅力ある学問分野である非線形有限要素法の面白さ、奥深さを味わっていただきたい。

目次

  • 表紙
  • 序文
  • 目次
  • 1. 連続体力学の基礎
  • 1.1 テンソル
  • 1.2 変形
  • 1.3 歪, 歪速度
  • 1.4 応力, 応力速度
  • 1.5 構成式
  • 1.6 境界値問題と仮想仕事の原理
  • 2. 幾何学的非線形有限要素解析の枠組み
  • 2.1 2章以後の諸記号について
  • 2.2 仮想仕事式の増分分解と離散化
  • 2.3 大変形トラスの接線剛性と内力の誘導例
  • 3. アイソパラメトリック要素
  • 3.1 アイソパラメトリック要素の基礎
  • 3.2 接線剛性マトリックスおよび等価節点力ベクトル
  • 3.3 外力ベクトル
  • 3.4 質量マトリックス
  • 3.5 数値積分
  • 3.6 要素の選択
  • 3.7 埋込み座標系を用いた幾何学的非線形有限要素法定式化
  • 4. 混合型有限要素法
  • 4.1 混合変分原理
  • 4.2 非圧縮超弾性ソリッド要素の定式化
  • 4.3 構造要素 ( 梁, 板 / シェル要素 ) における混合法定式化
  • 4.4 離散化 inf - sup 条件
  • 5. 非線形方程式の解析手法
  • 5.1 静的解析手法
  • 5.2 動的解析手法
  • 6. 弾塑性解析
  • 6.1 弾塑性解析の基礎
  • 6.2 consistent 接線剛性マトリックス
  • 6.3 有限変形弾塑性解析
  • 7. 座屈解析
  • 7.1 座屈解析のための準備 ( トラス構造物の解析 )
  • 7.2 有限要素座屈解析の基礎式 ( その定義, 分類および判定 )
  • 7.3 有限要素座屈解析
  • 8. 接触解析
  • 8.1 摩擦のない大変形接触問題
  • 8.2 摩擦のある接触問題への拡張
  • 9. ALE 有限要素流体解析
  • 9.1 ALE 法の概念と基礎式
  • 9.2 Navier - Stokes 方程式の ALE 表記
  • 9.3 ALE 有限要素メッシュの制御
  • 9.4 離散化
  • 9.5 Predictor Multicorrector Algorithm
  • 9.6 解析例
  • 10. 感度解析
  • 10.1 負荷経路非依存型静的問題
  • 10.2 負荷経路依存型静的問題
  • 10.3 動的問題
  • 10.4 座屈問題
  • 10.5 接触問題
  • 参考文献
  • 索引
  • 奥付

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

1. 連続体力学の基礎

P.1 掲載の参考文献
[1] 安逹忠次, ベクトルとテンソル, 新数学シリーズ 6, 培風館, 1957.
[2] Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
[3] Becker, E. und Burger, W., Kontinuumsmechanik, B. G. Teubner, Stuttgart, 1975. (浜田実監訳, 田中喜久昭, 田中正隆訳, 連続体力学, 森北出版, 1982.)
[4] Biot, M. A., Mechanics of Incremental Deformations, John Wiley & Sons, 1965
[7] Chadwick, P., Continuum Mechanics, George Allen & Unwin Ltd., 1976. (後藤学訳, 連続体力学, ブレイン図書出版, 1979.)
[8] Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Stractures, Vol. 1, John Wiley & Sons, 1991.
[9] Flugge, W., Tensor Analysis and Continuum Mechanics, Springer-Verlag, 1972. (後藤学訳, テンソル解析と連続体力学, ブレイン図書出版, 1979. )
[10] Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, 1965. (大橋義夫, 村上澄男, 神谷紀生共訳, 固体の力学/理論, 培風館, 1970. )
[11] Fung, Y. C., A First Course in Continuum Mechanics, 2nd ed., Prentice-Hall, 1977. (大橋義夫, 村上澄男, 神谷紀生共訳, 連続体の力学入門・改訂版, 培風館, 1980. )
[12] Green, A. E. and Zerna, W., Theoretical Elasticity, 2nd ed., Oxford University Press, 1968.
[13] 橋口公一, 最新弾塑性学, 朝倉書店, 1990.
[14] 久田俊明, 非線形有限要素法のためのテンソル解析の基礎, 丸善, 1992.
[15] 北川浩, 弾・塑性力学, 裳華房, 1987.
[16] Kleiber, M., Incremental Finite Element Modelling in Non-linear Solid Mechanics, Polish Scientific Publishers, 1989.
[17] Kleiber, M. and Wozniak, C., Nonlinear Mechanics of Structures, Kluwer Academic Publishers, 1991.
[18] Leigh, D. C., Nonlinear Continuum Mechanics, McGraw-Hill, 1968. (村上澄男訳, 非線形連続体力学, 共立出版, 1975. )
[19] Lurie A. I., Nonlinear Theory of Elasticity, Elsevier Science Publishers B. V., 1990.
[20] Malvern, L. E., Introduction to the Mechanics of a Continuous Medium, Prentice-Hall, 1969.
[21] Marsden, J. E. and Hughes, T. J. R., Mathematical Foundations of Elasticity, Prentice-Hall, 1983.
[22] McConnell, A. J., Applications of Tensor Analysis, Dover Publications, 1957.
[23] 日本鋼構造協会, 構造工学における有限要素法の理論と応用, 1986.
日本鋼構造協会, 構造工学における有限要素法の理論と応用, (II), 1988.
[24] 日本機械学会編, 固体力学におけるコンピュータアナリシス, 1986.
[25] 日本機械学会編, 固体力学, オーム社, 1987.
[26] 日本塑性加工学会編, 非線形有限要素法-続形弾性解析から塑性加工解析まで-, コロナ社, 1994.
[27] 日本材料学会編, 固体力学の基礎, 日刊工業新聞社, 1981.
[28] 西村敏雄, テンソルとシェル理論, 新建築技術叢書-11, 彰国社, 1977.
[29] 野澤豊吉, 線形代数の方法, 応用数学講座, 第14巻, ベクトル・テンソルおよびその応用 (2), コロナ社, 1977.
[30] Oden, J. T., Finite Elements of Nonlinear Continua, McGraw-Hill, 1972. (山田嘉昭監訳, 非線形連続体の有限要素法 1 (1979), 2 (1980), 培風館. )
[31] Ogden, R. W., Nonlinear Elastic Deformations, Ellis Horwood Limited, 1984.
[32] 奥村敦史, メカニックス入門, 共立出版, 1984.
[33] 棚橋隆彦, 連続体の力学 (1) (1985), 理工図書.
棚橋隆彦, 連続体の力学 (2) (1986), 理工図書.
棚橋隆彦, 連続体の力学 (3) (1986), 理工図書.
棚橋隆彦, 連続体の力学 (4) (1989), 理工図書.
棚橋隆彦, 連続体の力学 (5) (1988), 理工図書.
棚橋隆彦, 連続体の力学 (6) (1988), 理工図書.
[34] 田代嘉宏, テンソル解析, 基礎数学選書 23, 裳華房, 1981.
[35] 多谷虎男, 力学におけるテンソルと変分解析 (上), (下), 学会出版センター, 1980.
[36] 冨田佳宏, 数値弾塑性力学, 養賢堂, 1990.
[37] Truesdell, C., A First Course in Rational Continuum Mechanics, Vol. 1. General Concepts, Academic Press 1977.
[38] Truesdell, C. and Toupin, R., The Classical Field Theories, Encyclopedia of Physics, Vol. III/1 (Ed. Flugge, S.), 1960.
[39] Truesdell, C. and Noll, W., The Non-linear Field Theories of Mechanics, Encyclopedia of Physics, Vol. III/3 (Ed. Flugge, S.), Springer-Verlag, 1965.
[40] Wang, C.-C. and Truesdell, C., Introduction to Rational Elasticity, Noordhoff International Publishing, 1973.
[41] 鷲津久一郎, エネルギ原理入門, 有限要素法の基礎と応用シリーズ 3, 培風館, 1980.
[42] 鷲津久一郎ほか4名共編, 有限要素法ハンドブック, I 基礎編, 培風館, 1981.
[43] Washizu, K., Variational Methods in Elasticity and Plasticity, 3rd ed., Pergamon Press, 1982.
[44] 山田嘉昭, 塑性・粘弾性, 有限要素法の基礎と応用シリーズ 6, 培風館, 1980.
[45] 横道英雄, 弾・塑性新論, 技報堂出版, 1979.
[46] Ziegler, H., An Introduction to Thermomechanics, North-Holland, 1977. (田中正隆, 田中喜久昭共訳, 連続体の熱・力学入門, 森北出版, 1981.)(

3. アイソパラメトリック要素

P.105 掲載の参考文献
[1] Ahmad, S., Irons, B. M. and Zienkiewicz, O. C., Analy sis of Thick and Thin Shell Structures by Curved Finite Elements, Int. J. for Num. Meth. in Eng., Vol. 2, 1970, pp. 419-451.
[2] Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
[3] Belytschko, T. B., Tsay, C. S. and Liu, W. K., A Stabilization Matrix for the Bilinear Mindlin Plate Element, Comp. Meth. in Appl. Mech. and Eng., Vol. 29, 1981, pp. 313-327
[4] Belytschko, T. B. and Tsay, C. S., A Stabilization Procedure for the Quadrilateral Plate Element with One-Point Quadrature, Int. J. for Num. Meth. in Eng., Vol. 19, 1983, pp. 405-419
[5] Belytschko, T. B. and Tsay, C. S., A Study of Stabilization and Projection in the 4-Node Mindlin Plate Element, Int. J. for Num. Meth. in Eng., Vol. 28, 1989, pp. 2223-2238.
[6] Hinton E. and Owen, D. R. J., Finite Element Software for Plates and Shells, Pineridge Press, 1984.
[7] Hughes, T. J. R., The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, 1987.
[8] Hughes, T. J. R., Taylor, R. L. and Kanoknukulcha, W., A Simple and Efficient Finite Element for Plate Bending, Int. J. for Num. Meth. in Eng., Vol. 11, 1977, pp. 1529-1543
[9] Malkus, D. S. and Hughes, T. J. R., Mixed Finite Element Methods-Reduced and Selective Integration Techniques : A Unificat ion Concepts, Comp. Meth. in Appl Mech. and Eng., Vol. 15, 1978, pp. 63-81.
[10] 野口裕久, 久田俊明, 幾何学的非線形問題におけるtotal/updated統合型有限要素法定式化, 日本機械学会論文集, (A編), Vol. 59, No. 559, 1993, pp. 828-834.
[11] Pugh, E. D. L., Hinton, E. and Zienkiewicz, O. C., A Study of Quadrilateral Plate Bending Elements with 'Reduced' Integration, Int. J. for Num. Meth. in Eng., Vol. 12, 1978, pp. 1059-1079.
[12] Zienkiewicz, O. C., Taylor, R. L. and Too, J. M., Reduced Integration Technique in General Analysis of Plates and Shells, Int. J. for Num. Meth. in Eng., Vol. 3, 1971, pp. 275-290.
[13] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th Ed., Vol. 1, Basic Formulation and Linear Problems, McGraw Hill, 1989
[14] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th Ed., Vol. 2, Solid and Fluid Mechanics, Dynamics and Nonlinearity, McGraw Hill

4. 混合型有限要素法

P.191 掲載の参考文献
[1] Ahmad, S., Irons, B. M. and Zienkiewicz, O. C., Analysis of Thick and Thin Shell Structures by Curved Finite Elements, Int. J. for Num. Meth. in Eng., Vol. 2, 1970, pp. 419-451.
[2] Argyris, J., An Excursion into Large Rotations, Comp. Meth. in Appl. Mech. and Eng., Vol. 32, 1982, pp. 85-155.
[3] Aminpour, M.A., An Assumed-Stress Hybrid 4-Node Shell Element with Drilling Degrees of Freedom, Int. J. for Num. Meth. in Eng., Vol. 33, 1990, pp.19-38.
[4] Arnold, D. N., Discretization by Finite Elements of a Model Parameter Dependent Problem, N um. Math., Vol. 37, 1981, pp. 405-421.
[5] Arnold, D. N., Brezzi, F. and Fortin, M., A Stable Finite Element for Stokes Equation, Calcolo, Vol. 21, 1984, pp, 337-344.
[6] Babuska, I., The Finite Element Method with Lagrangian Multipliers, Num. Math., Vol. 20, 1973, pp.179-192.
[7] Bathe, K.-J. and Ho, L. W., A Simple and Effective Element for Analysis of General Shell Structures, Compt. & Struct., Vol. 13, 1981, pp. 673-681.
[8] Bathe, K.-J., Bucalem, M. L. and Brezzi, F., Displacement and Stress Convergence of Our MITC Plate Bending Element, Eng. Comp., Vol. 7, 1990, pp. 291-302.
[9] Bathe, K.-J. and Dvorkin, E. N., A Four-Node Bending Element Based on Mindlin/Reissner Plate Theory and a Mixed Interpolation, Int. J. for Num. Meth. in Eng., Vol. 21. 1985, pp. 367-383.
[10] Bathe, K.-J. and Dvorkin, E. N., A Formulation of General Shell Elements-The Use of Mixed Interpolation of Tensorial Components, Int. J. for Num. Meth. in Eng., Vol. 22, 1986, pp. 697-722.
[11] Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
[12] Batoz, J. L., Bathe, K.-J. and Ho, L. W., A Study of Three-Node Triangular Plate Bending Elements, Int. J. for Num. Meth, in Eng., Vol. 15, 1980, pp.1771-1812.
[13] Batoz, J. L., Bathe, K.-J. and Tahar, M. B., Evaluation of a New Quadrilateral Thin Plate Bending Element, Int. J. for Num. Meth. in Eng., Vol. 18, 1982, pp. 1655-1677.
[14] Bercovier, M. and Pironneau, O., Error Estimates for Finite Element Method Solution of the Stokes Problem in the Primitive Variables, Num. Math., Vol. 33, 1979, pp. 211-224.
[15] Berzzi, F. and Bathe, K.-J., Reliability of Methods for Engineering Analysis, Pineridge Press, 1986, pp. 197-219.
[16] Brezzi, F., On the Existence, Uniqueness and Approximation of Saddle-point Problems Arising from Lagrangian Multipliers, RAIRO, Vol. 8, 1974, p. 129.
[17] Brezzi, F. and Bathe, K.-J., A Discourse on the Stability Conditions for Mixed Finite Element Formulations Comp. Meth. in Appl. Mech. and Eng., Vol. 82, 1990, pp. 27-57.
[18] Brezzi, F. and Fortin, M., Mixed and Hybrid Finite Element Methods, Springer, 1991.
[19] Brezzi, F., Bathe, K.-J. and Fortin, M., Mixed-Interpolated Elements for Reissner-Mindlin Plates, Int. J. for Num. Meth. in Eng., Vol. 28, 1989, pp. 1787-1801.
[20] Chapelle, D. and Bathe. K.-J., The Inf-sup Test, Compt. & Struct., Vol. 47, 1993, pp. 537-545.
[21] Crisfield, M. A., A Consistent Co-Rotational Formulation for Non-linear Three-Dimensional Beam-Elements, Comp. Meth. in Appl. Mech. and Eng., Vol. 81, 1990, pp. 131-150.
[22] Crouzeix, M. and Raviart, P.-A., Conforming and Non-conforming Finite Element Methods for Solving the Stationary Stokes Equations I, RAIRO, Vol. 7, 1973, pp. 33-76.
[23] Dhatt, G., Marcotte, L. and Matte, Y., A New Triangular Discrete Kirchhoff Plate/Shell Element, Int. J. for Num. Meth. in Eng., Vol. 23, 1986, pp. 453-470.
[24] Dvorkin, E. N. and Bathe, K.-J., A Continuum Mechanics Based Four-node Shell Element for General Nonlinear Analysis, Eng. Comp., Vol. 1, 1984, pp. 77-88.
[25] Dvorkin, E. N., On a Non-Linear Formulation for Curved Timoshenko Beam Elements Considering Large Displacement/Rotation Increments, Int. J. for Num. Meth. in Eng., Vol. 26, 1988, pp. 1597-1613.
[26] Fortin, M., An Analysis of the Convergence of Mixed Finite Element Methods, RAIRO Anal. Num., Vol. 11, 1977, pp. 341-354.
[27] Fortin, M. and Fortin, A., Finite Elements in Fluids 6, Wiley, 1985, p. 171.
[28] 藤田宏, 黒田成俊, 伊藤清三, 関数解析, 岩波書店, 1991.
[29] Girault, V. and Raviart, P.-A., Finite Element Approximation of the Navier-Stokes Equation, Springer, 1979.
[30] Hinton, E. and Huang, H. C., A Family of Quadrilateral Mindlin Plate Elements with Substitute Shear Strain Fields, Compt. & Struct., Vol. 23, 1986, pp. 409-431.
[31] 久田俊明, 非線形有限要素法のためのテンソル解析の基礎, 丸善, 1992.
[32] Huang, H. C. and Hinton, E., A Nine Node Lagrangian Mindlin Plate Element with Enhanced Shear Interpolation, Eng. Comp., Vol. 1, 1984, pp. 369-379.
[33] Huang, H. C. and Hinton, E., A New Nine Node Degenerated Shell Element with Enhanced Membrane and Shear Interpolation, Compt. & Struct., Vol. 22, 1986. pp. 73-92.
[34] Hughes, T. J. R. and Tezduyar, T. E., Finite Elements Based Upon Mindlin Plate Theory with Particular Reference to the Four-Node Bi linear Isoparametric Element, J. Appl. Mech., Trans. ASME, Vol. 48, 1981, pp. 587-596.
[35] Hughes, T. J. R., The Finite Element Method, Linear Static and Dynamic Finite Element Analysis, Prentice-Hall, 1987, p. 209.
[36] Irons, B. M., The Semiloof Shell Element, Finite Elements for Thin Shells and Curved Members (Ed. Ashwell, D. G. et al.), Wiley Chichester, 1976., Ch. 11.
[37] 菊地文雄, パラメータ依存問題の近似 : 混合法とロッキング, コンピュートロール, No. 12, 1985, pp. 96-100.
[38] Kikuchi, F., An Abstract Analysis of Parameter Dependent Problems and its Applications to Mixed Finite Element Methods, J. Fac. Sci. Univ. Tokyo. Sect. IA, Math., Vol. 32, 1985, pp. 499-538.
[39] 菊地文雄, 有限要素法の数理-数学的基礎と誤差解析- (計算力学とCAEシリーズ13), 培風館, 1994.
[40] 北北川浩, 弾・塑性力学, 裳華房, 1987.
[41] Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flows, Gordon and Breach, 1969.
[42] Macneal, R. H., Derivation of Element Stiffness Matrices by Assumed Strain Distributions, Nucl. Eng. & Design, Vol. 70, 1982, pp. 3-12.
[43] Malkus, D. S., Eigenproblems Associated with the Discrete LBB Condition for Incompressible Finite Elements, Int. J. Eng. Sci., Vol. 19, 1981, pp. 1299-1310.
[44] Malkus, D. S. and Hughes, T. J. R., Mixed Finite Element Methods-Reduced and Selective Integration Techniques : A Unificat ion Concepts, Comp. Meth. in Appl Mech. and Eng., Vol. 15, 1978, pp. 63-81.
[45] Martins, R. A. F. and Oliveira, C. A. M., Semi-Loof Shell, Plate and Beam Elements-New Computer Versions : Part 1, 2, Element Formulation, Eng. Comp., Vol. 5, 1988, pp. 15-25.
[46] 野口裕久, 久田俊明, 有限回転増分を考慮した効率的シェル要素の開発およびその評価, 日本機械学会論文集 (A編), Vol. 58, No. 550, 1992, pp. 943-950.
[47] Parish, H., An Investigation of a Finite Rotation Four Node Assumed Strain Shell Element, Int. J. for Num. Meth. in Eng., Vol. 31, 1991, pp.127-150.
[48] Shi, G. and Voyiadjis, G. Z., Efficient and Accurate Four-Node Quadrilateral C0 Plate Bending Element Based On Assumed Strain Fields, Int. J. for Num. Meth. in Eng., Vol. 32, 1990, pp. 1041-1055.
[49] Simo, J. C and Fox, D. D., On a Stress Resultant Geometrically Exact Shell Model, Part I, Formulation and Optimal Parametrization, Comp. Meth. in Appl. Mech. and Eng., Vol. 72, 1989, pp. 267-304.
[50] Simo, J. C, Fox, D. D. and Rifai, M. S., On a Stress Resultant Geometrically Exact Shell Model. Part II, The Linear Theory ; Computational Aspects. Comp. Meth. in Appl. Mech. and Eng., Vol. 73, 1989, pp. 53-92.
[51] Simo, J. C, Fox, D. D. and Rifai, M. S., On a Stress Resultant Geometrically Exact Shell Model, Part III, Computational Aspects of the Nonlinear Theory, Comp Meth. in Appl. Mech. and Eng., Vol. 79, 1990, pp. 21-70.
[52] Stander, N., Matzenmiller, A. and Ramm, E., An Assessment of Assumed Strain Methods in Finite Rotation Shell Analysis, Eng. Comp., Vol. 6, 1989, pp. 58-65.
[53] Surana, K. S., Geometrically Nonlinear Formulation for the Curved Shell Elements, Int. J. for Num. Meth. in Eng., Vol. 19, 1983, pp. 581-615.
[54] Sussman, T. and Bathe, K.-J., A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis, Compt. & Struct., Vol. 26, 1987, pp. 357-409
[55] 竹之内脩, 関数解析, 朝倉書店, 1968.
[56] Talbot, M. and Dhatt, G., Three Discrete Kirchhoff Elements for Shell Analysis with Large Geometrical Non-Linearities and Bifurcations, Eng. Comp., Vol. 4, 1987, pp. 15-22.
[57] Taylor, C. and Hood, P., A Numerical Solution of the Navier-stokes Equations Using the Finite Element Technique, Compt. & Fluids, Vol. 1, 1973, pp. 73-100.
[58] 冨田佳宏, 数値弾塑性力学, 養賢堂, 1990.
[59] Verfurth, R., Error Estimates for a Mixed Finite Element Approximation of the Stokes Equation, RAIRO Anal. Num., Vol. 18, 1984, pp. 175-182.
[60] Washizu, K., Variational Methods in Elasticity and Plasticity, 3rd ed., Pergamon Press, 1982.
[61] 渡部修, 有限変形を受ける弾塑性体の混合型変分原理, 日本機械学会論文集 (A編), Vol. 54, No. 501, 1988, pp.92-1001.
[62] 渡辺浩志, 非圧縮性超弾性体の混合型有限要素解析に関する研究, 東京大学学位論文, 1995.
[63] 渡辺浩志, 久田俊明, 混合型有限要素解の安定条件の数値解析, 日本機械学会論文集 (A編), Vol. 61, No. 583, 1995, pp. 660-667.
[64] Yoshida, K., Functional Analysis 6th ed., Springer, 1980.
[65] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th Ed., Vol. 2, Solid and Fluid Mechanics, Dynamics and Nonlinearity, McGraw Hill

5. 非線形方程式の解析手法

P.247 掲載の参考文献
[1] ABAQUS, Theory Manual, Hibbitt, Karlson & Sorensen, 3.10.1, 1989, pp. 1-6.
[2] Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
[3] Batoz, J. L. and Dhatt, G., Incremental Displacement Algorithms for Nonlinear Problems, Int. J. for Num. Meth. in Eng., Vol. 14, 1979, pp.1262-1267.
[4] Clough, R. W. and Penzien, J., Dynamics of Structures, McGraw-Hill, 1964
[5] Crisfield. M. A., An Arc-length Method Including Line Searches and Accelerations, Int. J. for Num. Meth. in Eng., Vol. 19, 1983, pp. 1269-1289.
[6] Crisfield. M. A., A Fast Incremental/iterative Solution Procedure that Handles Snap Through, Compt. & Struct., Vol. 13, 1981, pp. 55-62.
[7] Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Stractures, Vol. 1, John Wiley & Sons, 1991.
[8] Endo, T., Oden, J. T., Becker, E. B. and Miller, T., A Numerical Analysis of Contact and Limit-Point Behavior in a Class of Problems of Finite Deformations, Comp. & Struct., Vol. 18, 1984, pp. 899-910.
[9] Fletcher, R., Practical Methods of Optimization, 2nd Edition, Wiley, 1987.
[10] Fried, I., Orthogonal Trajectory Accession to the Nonlinear Equilibrium Curve, Comp. Methods in Appl. Mech. and Eng., Vol. 47, 1984. pp. 283-298.
[11] Haisler, W. E., Stricklin, J. A. and Key, J. E., Displacement Incrementation in Nonlinear Structural Analysis by the Selfcorrecting Method., Int. J. for Num. Meth. in Eng., Vol. 11, 1977, pp. 3-10.
[12] Hilber, H. M., Hughes, T. J. R. and Tayler, R. L., Improved Numerical Dissipation for the Integration Algorithms in Structural Dynamics, Earthquake Eng. and Struct. Dynamics, Vol. 5, 1977, pp. 283-292.
[13] Hilber, H. M. and Hughes, T. J. R., Collocation, Dissipation and 'Overshoot' for Time Integration Schemes in Structural Dynamics, Earthguake Eng. and Struct. Dynamics, Vol. 6, 1978, pp. 99-117.
[14] Hoff, C., Hughes, T. J. R., Hulbert, G. and Pahl, P. J., Extended Comparison of the Hilber-Hughes-Taylor α-Method and the (H)1 -Method, Comp. Meth. in Appl. Mech. and Eng., Vol. 76, 1989, pp. 87-93.
[15] Houbolt, J. C., A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft, J. of Aeronautical Science, Vol. 17, 1950, pp. 540-550.
[16] Keller, H. B., Practical Procedures in Path Following Near Limit Point, Computing Methods in Applied Science and Engineering (Ed. Glowinski, R. et al.), 1982.
[17] Mallet, R. H., Marcal, P. V., Finite Element Analysis of Nonlinear Structures, J Struct. Div., ASCE, Vol. 94, 1968, pp. 2081-2105.
[18] Matthies, H. and Strang, G., The Solution of Nonlinear Finite Element Equations, Int. J. for Num. Meth. in Eng., Vol. 14, 1979, pp.1613-1626.
[19] Newmark, N. M., A Method of Computation for Structural Dynamics, A. S. C. E., J. Eng. Mech, ASCE, Vol. 85, 1959, pp. 67-94.
[20] Noor, A. K. and Peters, J. M., Tracing Post-limit-point Paths with Reduced Basis Techniques, Comp. Meth. in Appl. Mech. and Eng., Vol. 28, 1981, pp. 217-240.
[21] 野口裕久, 久田俊明, 座屈後挙動における感度解析手法の開発, 日本機械学会論文集 (A編), Vol. 58, No. 556, 1992, pp. 2415-2422.
[22] Powell, G. and Simons, J., Improved Iteration Strategies for Nonlinear Structures, Int. J. for Numer. Meth. in Eng., Vol. 17, 1981, pp. 1455-1467.
[23] Ramm, E., Strategies for Tracing the Nonlinear Response Near Limit Points, Nonlinear Finite Element Analysis in Structural Mechanics (Ed. Wunderlich, W. et al.), 1981, pp. 63-89.
[24] Riks, E., The Application of Newton's Method to the Problems of Elastic Stability, J. Appl. Mech., Trans. ASME, Vol. 39, 1972, pp. 1060-1066.
[25] Riks, E., The Incremental Approach to the Solution of Snapping and Buckling Problems, Int. J. Solids and Struct., Vol. 15, 1979, pp. 529-551.
[26] Simo, J. C., Wriggers, P., Schweizerhof, K. H. and Taylor, R. L., Finite Deformation Post-Buckling Analysis Involving Inelasticity and Contact Constraints, Int. J. for Num. Meth. in Eng., Vol. 23, 1986, pp. 779-800.
[27] Wempner, G. A., Discrete Approximations Related to Nonlinear Theories of Solid, Int. J. Solids and Struct., Vol. 7, 1971, pp. 1581-1599.
[28] Wilson, E. L., Farhoomand, I., and Bathe, K.-J., Nonlinear Dynamic Analysis of Complex Structures, Int. J. Earthquake Eng. and Struct. Dynamics, Vol. 1, 1973, pp. 241-252.
[29] 吉田裕, 有限要素運動方程式の時間積分法, JSSC (日本鋼構造協会), Vol. 21, No. 227, 1985, pp. 13-21.
[30] 吉田裕, 原田恒樹, 有限要素法による非線形動解析の時間積分スキームに関する一検討, 構造工学における数値解析法シンポジウム論文集, Vol. 14, 1990, pp. 245-256.

6. 弾塑性解析

P.273 掲載の参考文献
[1] Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, 1982.
[2] Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Stractures, Vol. 1, John Wiley & Sons, 1991.
[3] 久田俊明, 非線形有限要素法のためのテンソル解析の基礎, 丸善, 1992.
[4] 北川浩, 弾・塑性力学, 裳華房, 1987.
[5] Krieg, R. D. and Krieg, D. B., Accuracies of Numerical Solution Methods for the Elastic-Perfectly Plastic Model, J. Pressure Vessel Tech., Trans. ASME, 1977, pp. 510-515
[6] Marcal, P. V., A Stiffness Method for Elastic-Plastic Problems, Int. J. Mechanical Science, 1965, pp. 229-238.
[7] Marcal, P. V., Finite Element Analysis with Material Nonlinearities-Theory and Practice, Recent Advances in Matrix Methods of Structural Analysis and Design, University of Alabama Press, 1971, pp. 257-282
[8] 日本塑性加工学会編, 非線形有限要素法-続形弾性解析から塑性加工解析まで-, コロナ社, 1994.
[9] Owen, D. R. J. and Hinton, E., Finite Elements in Plasticity, Pineridge Press, 1980
[10] Schreyer, H. L., Kulak, R. F. and Kramer, J. M., Accurate Numerical Solutions for Elasto-Plastic Models, J. Pressure Vessel Tech., Trans. ASME, Vol. 101, 1979, pp. 226-234.
[11] Simo, J. C. and Taylor, R. L., A Return Mapping Algorithm for Plane Stress Elastoplasticity, Int. J. for N um. Meth. in Eng., Vol. 22, 1986, pp. 649-670.
[12] Simo, J. C. and Taylor, R. L., Consistent Tangent Operators for Rate-Independent Elastoplasticity, Comp. Meth. in Appl. Mech. and Eng., Vol. 48, 1985, pp. 101-118.
[13] Simo, J. C. and Govindjee, Exact Closed-form Solution of the Return Mapping Algorithm in Plane Stress Elasto-Visco Plasticity, Eng. Comput., Vol. 5, 1988, pp. 254-258.
[14] 冨田佳宏, 数値弾塑性力学, 養賢堂, 1990.
[15] 渡部修, 構成方程式モデルと数値アルゴリズム, 構造工学における有限要素法の理論と応用 (II), 日本鋼構造協会, 1988. pp. 103-119.
[16] 山田嘉昭, 塑性・粘弾性, 有限要素法の基礎と応用シリーズ 6, 培風館, 1980.
[17] Yamada, Y., Yoshimura, N. and Sakurai, T., Plastic Stress-Strain Matrix and its Application for the Solution of Elastic-Plastic Problems by the Finite Element Method, Int. J. Mechanical Science, Vol. 10, 1968, pp. 343-354.
[18] 横内康人, 材料非線形問題, 構造工学における有限要素法の理論と応用, 日本鋼構造協会, 1986. pp. 23-33.

7. 座屈解析

P.299 掲載の参考文献
[1] ABAQUS-User's Manual, Hibbitt, Karlson & Sorensen. 2. 2. 7, 1989, p. 1.
[2] Bathe. K. J. and Dvorkin. E. N.. On the Automatic Solution of Nonlinear Finite Element Equations. Compt. & Struct.. Vol. 17. 1983. pp. 871-879.
[3] Bergan. P. G., Horrigmore. G., Krakeland, G. and Soreide, T. H., Solution Techniques for Non-Linear Finite Element Problems, Int. J. Num. Meth. in Eng., Vol. 12, 1978, pp. 1677-1696.
[4] Batoz, J. L. and Dhatt, G., Incremental Displacement Algorithms for Nonlinear Problems, Int. J. for Num. Meth. in Eng., Vol. 14, 1979, pp.1262-1267.
[5] Brandel, B. and Ramm, E., Linear and Nonlinear Stabi lit y Analysis of Cylindrical Shells, Compt. & Struct., Vol. 12, 1980, pp. 549-558.
[6] Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Stractures, Vol. 1, John Wiley & Sons, 1991.
[7] Endo. A., Hangai, Y. and Kawamata, S., Post-Buckling Analysis of Elastic Shells of Revolution by the Finite Element Method, Rep. Institute of Industrial Science, Univ. of Tokyo, Vol. 26, 1976, pp. 245-295.
[8] Felippa, C. A., Traversing Critical Points with Penalty Springs, Transient/Dynamic Analysis and Constitutive Laws for Engineering Materials (Ed. Pande, E. N. et al.), C2, 1987, pp. 1-8.
[9] Gallagher, R. H., Finite Element Analysis of Geometrically Nonlinear Problems, Theory and Practice in Finite Element Structural Analysis (Ed. Yamada, et al.), Univ. of Tokyo Press, 1973, pp. 109-123.
[10] 半谷裕彦, 川口健一, 形態解析, 培風館, 1991.
[11] 北川浩, 田辺淳二, 浜田実, くびれの数値解析, 日本機械学会論文集 (A編), Vol. 48, No. 426, 1982, pp. 141-149.
[12] Liu, W-K. and Lam, D., Numerical Analysis of Diamond Buckles, Finite Elements in Analysis and Design, Vol. 4, 1989, pp. 291-302.
[13] Mallet, R. H., Marcal, P. V., Finite Element Analysis of Nonlinear Structures, J Struct. Div., ASCE, Vol. 94, 1968, pp. 2081-2105.
[14] Needleman. A., A Numerical Study of Necking in Circular Cylindrical Bars, J. Mech. and Phys. of Solids, Vol. 20, 1972, pp. 111-127.
[15] 野口裕久, 久田俊明, Scaled Correctorを用いた有限要素分岐解析手法の開発, 日本機械学会論文集 (A編), Vol. 58. No. 555, 1992. pp. 2191-2198.
[16] Noguchi, H. and Hisada, T., Development of a New Branch-Switching Algorithm in Nonlinear FEM using Scaled Corrector, JSME Int. J., Ser. I, Vol. 37, No. 3, 1994, pp. 255-263.
[17] 野口裕久, 久田俊明, 有限回転増分を考慮した効率的シェル要素の開発およびその評価, 日本機械学会論文集 (A編), Vol. 58, No. 550, 1992, pp. 943-950.
[18] Riks, E., Bifurcation and Stability, A Numerical Approach, Innovative Methods for Nonlinear Problems (Ed. Liu, W. K. et al.), Pineridge Press, 1984, pp. 313-363.
[19] Riks, E., The Application of Newton's Method to the Problems of Elastic Stability, J. Appl. Mech., Trans. ASME, Vol. 39, 1972, pp. 1060-1066.
[20] Simo, J. C, Fox, D. D. and Rifai, M. S., On a Stress Resultant Geometrically Exact Shell Model, Part III, Computational Aspects of the Nonlinear Theory, Comp Meth. in Appl. Mech. and Eng., Vol. 79, 1990, pp. 21-70.
[21] Spence, A. and Jepson, A. D., Folds in the Solution of Two Parameter Systems and Their Calculation, Part I, SIAM J. Num. Anal., Vol. 22, 1985, pp. 347-368.
[22] Talbot, M. and Dhatt, G., Three Discrete Kirchhoff Elements for Shell Analysis with Large Geometrical Non-Linearities and Bifurcations, Eng. Comp., Vol. 4, 1987, pp. 15-22.
[23] Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, McGraw-Hill. 1961
[24] Wagner, W. and Wriggers, P., A Simple Method for the Calculation of Postcritical Branches, Eng, Comp., Vol. 5, 1988, pp.10 : 3-109.
[25] Wriggers, P., Wagner, W. and Miehe, C., A Quadratically Convergent Procedure for the Calculation of Stability Points in Finite Element Analysis, Comp. Meth. in Appl. and Mech. and Eng., Vol. 70, 1988, pp. 329-347.
[26] Wriggers, P. and Simo, J. C., A General Procedure for the Direct Computation of Turning and Bifurcation Points, Int. J. for Num. Meth. in Eng., Vol. 30, 1990, pp. 155-176.
[27] Yamaki, N., Otomo, K. and Matsuda, K., Experiments on the Post-Buckling Behavior of Cylindrical Shells under Compression, Exp. Mech., Vol. 15, 1975, pp. 23-28.
[28] 吉田裕, 有限要素法による幾何学的非線形構造解析法の現状と課題, 土木学会論文集, Vol. 347, 1986. pp. 25-37.
[29] Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th Ed., Vol. 2, Solid and Fluid Mechanics, Dynamics and Nonlinearity, McGraw Hill

8. 接触解析

P.323 掲載の参考文献
[1] Bathe, K.-J. and Chaudhary, A. B., A Solution Method for Planar and Axisymmetric Contact Problems, Int. J. for Num. Meth. in Eng., Vol. 21, 1985, pp. 65-88.
[2] Belytschko, T. and Neal, M. O., Contact-Impact by the Pinball Algorithm with Penalty and Lagrangian Methods, Int. J. for Num. Meth. in Eng., Vol. 31, 1991, pp. 547-572.
[3] 陳献, Nonlinear Finite Element Sensitivity Analysis for Large Deformation Elastoplastic and Contact Problems, 東京大学学位論文, 1994.
[4] 陳献, 森昌彦, 久田俊明, 野口裕久, 大変形弾塑性無摩擦接触問題の感度解析, 日本機械学会論文集 (A編), Vol.61, No. 589, 1995, pp. 2100-2107.
[5] Hallquist, J. O., Goudreau, G. L. and Benson, D, J., Sliding Interfaces with Contact-Impact in Large-Scale Lagrangian Computation, Comp. Meth. in Appl. Mech. and Eng., Vol. 51, 1985, pp. 107-137.
[6] Heegaard, J.-H. and Curnier, A., An Augmented Lagrangian Method for Discrete Large-Slip Contact Problems, Int. J. for Num. Meth. in Eng., Vol. 36, 1993, pp. 569-593.
[7] Kikuchi, N. and Oden, J. T., Contact Problems in Elasticity, A Study of Variational Inequalities and Finite Element Methods, SIAM Publication, Philadelphia, 1988.
[8] Parisch, H., A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Linear Contact Analysis, Int. J. for Num. Meth. in Eng., Vol. 28, 1989, pp. 1803-1812.
[9] Peric, D. and Owen, D. R. J., Computational Model for 3-D Contact Problems with Friction Based on the Penalty Methed, Int. J. for Num. Meth. in Eng., Vol. 35, 1992, pp. 1289-1309.
[10] Simo, J. C., Wriggers, P. and Taylor, R. L., A Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems, Com. Meth. in Appl. Mech. and Eng., Vol. 50, 1985, pp. 163-180.
[11] Simo, J. C., Wriggers, P., Schweizerhof, K. H. and Taylor, R. L., Finite Deformation Post-Buckling Analysis Involving Inelasticity and Contact Constraint, Int. J. for Num. Meth. in Eng., Vol. 23, 1986, pp. 779-800.
[12] Wriggers, P. and Simo, J. C., A Note on Tangent Stiffness for Fully Nonlinear Contact Problems, Comm. in Appl. Num. Meth., Vol. 1, 1985, pp. 199-203.
[13] Zhong, Z.-H. and Nilsson, L., A Contact Searching Algorithm for General 3-D Contact-Impact Problems, Comp. & Struc., Vol. 34, 1990, pp. 327-335.
[14] Zhong, Z.-H. and Mackerle, J., Static Contact Problems-A Review, Eng. Comp. Vol. 9, 1992, pp. 3-37.
[15] Zhong, Z.-H., Finite Elment Procedures for Contact-Impact Problems, Oxford University Press, 1993.

9. ALE 有限要素流体解析

P.341 掲載の参考文献
[1] Baaijens, F. P. T., An U-ALE Formulation of 3-D Unsteady Viscoelastic Flow, Int. J. for Num. Meth. in Eng., Vol. 36, 1993, pp. 1115-1143.
[2] Brooks, A. N. and Hughes, T. J. R., Streamline Upwind/Petrov-Galerkin Formulation for Convection Dominated Flows with Particular Emphasis on the Incompressible Navier-Stokes Equations, Comp. Meth. in Appl. Mech. and Eng., Vol. 32, 1982, pp. 199-259.
[3] Haber, R. B., A Mixed Eulerian-Lagrangian Displacement Model for Large-Deformation Analysis in Solid Mechanics, Comp. Meth. in Appl. Mech. and Eng., Vol. 43, 1984, pp. 277-292.
[4] Huerta, A. and Liu, W. K., Viscous Flow with Large Free Surface Motion, Comp. Meth. in Appl. Mech. and Eng., Vol. 69, 1988, pp. 277-324.
[5] Huerta, A. and Liu, W. K., ALE Formulation for Large Boundary Motion, Trans. SMiRT (Int. Conf. on Structural Mechanics in Reactor Technology) -10, Vol. B, 1989, pp. 335-346.
[6] Huerta. A., Progress in Arbitrary Lagrangian-Eulerian Analysis of Fluid and Solid Problems, Trans. SMiRT-12, Vol. B, 1993, pp. 1-12.
[7] Hughes, T. J. R., Liu, W. K. and Zimmermann, T. K., Lagrangian-Eulerian finite Element Formulation for Imcompressible Viscous Flows, Comp. Meth. in Appl. Mech. and Eng, Vol. 29, 1981, pp. 329-349.
[8] 川上浩樹, 久田俊明, 野口裕久, ALE有限要素法による構造・流体連成解析, 第9回宇宙構造物シンポジウム, 1993, pp. 21-24.
[9] Koh, H. M. and Jeong. U. Y., An Incremental Formulation of the Moving-Grid Finite Element Method for the Prediction of Dynamic Crack Propagation. Trans. SMiRT-12. Vol. BG, 1993, pp. 327-338.
[10] Liu, W. K., Belytschko, T. and Chang. H., An Arbitrary Lagrangian-Eulerian Finite Element Formulation for Path Dependent Materials, Comp. Meth. in Appl. Mech. and Eng., Vol. 58, 1986, pp. 227-246.
[11] Liu, W. K., Chang. H., Chen. J. S. and Belytschko. T., Arbitrary Lagrangian-Eulerian Petrov-Galerkin Finite Elements for Nonlinear Continua, Comp. Meth. in Appl. Mech. and Eng., Vol. 68, 1988, pp. 259-310.
[12] Liu, W. K. and Gvildys, J., Fluid Structure Interactions of Tanks with an Eccentric Core Barrel, Comp. Meth. in Appl. Mech. and Eng., Vol. 58, 1986, pp. 51-57.
[13] Liu, W. K. and Ma, D., Computer Implementation Aspects for Fluid-Structure Interaction Problems, Comp. Meth. in Appl. Mech. and Eng., Vol. 31, 1982, pp. 129-148.
[14] Muto, K., Kasai, Y., Nakahara, M. and Ishida, Y., Experimental Tests on Sloshing Response of a Water Pool with Submerged Blocks, Proc. Pressure Vessels and Piping Conf. 98-7 (Fluid-Structure Dynamics), ASME, New York, 1985, pp. 209-214.
[15] Nitikitpaiboon, C. and Bathe, K.-J., An Arbitrary Lagrangian-Eulerian Velocity Potential Formulation for Fluid-Structure Interaction, Comp. & Struct, Vol. 47, No. 4/5, 1993, pp. 871-891.
[16] Noh, W. F., CEL : A Time-Dependent Two-Space-Dimensional Coupled Eulerian-Lagrangian Code, Methods in Computational Physics 3 (Ed. Alder, B., Fernbach, S. and Rotenberg, M.), Academic Press, New York, 1964. pp. 117-179.
[17] 野村卓史, 新明正人, ALE有限要素法による薄膜と流れの連成解析, 土木学会応用力学論文集, Vol. 1, 1998, pp. 241-251.
[18] 大坪英臣, 久保田晃弘, 相関問題, 計算力学とCAEシリーズ No. 6, 培風館, 1991.
[19] Tai K., Nakatogawa, T., Hisada, T. and Kawakami. H., Numerical Study on Fluid-Submerged Block Interaction in Water Pool, Trans. SMiRT (Int. Conf. on Structural Mechanics in Reactor Technology) -13, Vol. 4, Div. J, 1995, pp. 469-474.
[20] Okamoto, T. and Kawahara, M., Two-Domensional Sloshing Analysis by the Arbitrary Lagrangian-Eulerian Finite Element Method, Structural Eng. /Earthquake Eng., Vol. 8, No. 4 (Proc. JSCE No. 441/I-8), 1992, pp. 207s-216s.
[21] Bathe, K.-J., Zhang, H. and Wang, M. H., Finite Element Analysis of Incompressible and Compressible Fluid Flows with Free Surfaces and Structuctural Interactions, Comp. & Struct. Vol. 56, No. 2/3, 1997, pp. 193-213.
[22] Zhang, Q. and Hisada, T., Analysis of Fluid-Structure Interaction Problems under Large Domain Changes by ALE Finite Element Method, Theoretical and Applied Mechanics (Proc. 47th Japan National Congress for Applied Mechanics), Vol. 47, 1998, pp. 167-174.

10. 感度解析

P.361 掲載の参考文献
[1] Adelman, H. M. and Haftka, R. T., Sensitivity Analysis of Discrete Structural Systems, AIAA J., Vol. 24, 1986, pp. 823-832.
[2] Arora, J. S., Lee, T. H. and Cardoso, J. B., Structural Shape Sensitivity Analysis : Relationship between Material Derivative and Control Volume Approaches, AIAA J., Vol. 30, 1992, pp. 1638-1648.
[3] Arora, J. S. and Cardoso, J. B., A Design Sensitivity Analysis Principle and Its Implementation into ADINA, Comp. & Struct., Vol. 32, 1989, pp. 691-705.
[4] Arora, J. S. and Cardoso, J. B., Variational Principle for Shape Design Sensitivity Analysis, AIAA J., Vol. 20, 1992, pp. 538-547.
[5] Batoz, J. L. and Dhatt, G., Incremental Displacement Algorithms for Nonlinear Problems, Int. J. for Num. Meth. in Eng., Vol. 14, 1979, pp.1262-1267.
[6] Belcgundu, A. D., Lagrangian Approach to Design Sensitivity Analysis, J. Eng. Mech., ASCE, Vol. 111, 1985, pp. 680-695.
[7] Bergan. P. G., Horrigmore. G., Krakeland, G. and Soreide, T. H., Solution Techniques for Non-Linear Finite Element Problems, Int. J. Num. Meth. in Eng., Vol. 12, 1978, pp. 1677-1696.
[8] Chen, X., Hisada, T., Kleiber, M. and Noguchi, H., Comparison of Different Sensitivity Analysis Algorithms for Large Deformation Elastic-plastic Problems, Design-Sensitivity Analysis (Ed. Kleiber, M. and Hisada, T.), Atlanta Technology Publications, 1993, pp. 209-229.
[9] 陳献, 久田俊明, 野口裕久, 森昌彦, 原子炉燃料棒支持スプリングの非線形有限要素感度解析, 日本機械学会論文集 (A編), Vol. 59, No. 567, 1993, pp. 2742-2749.
[10] 陳献, Nonlinear Finite Element Sensitivity Analysis for Large Deformation Elastoplastic and Contact Problems, 東京大学学位論文, 1994.
[11] 陳献, 森昌彦, 久田俊明, 野口裕久, 大変形弾塑性無摩擦接触問題の感度解析, 日本機械学会論文集 (A編), Vol.61, No. 589, 1995, pp. 2100-2107.
[12] Choi, K. K. and Santos, J. L. T., Design Sensitivity Analysis of Non-linear Structural Systems, Part I : Theory, Int. J. for Num. Meth. in Eng., Vol. 24, 1987, pp. 2039-2055.
[13] Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Stractures, Vol. 1, John Wiley & Sons, 1991.
[14] Crisfield, M. A., Non-linear Finite Element Analysis of Solid and Stractures, Vol. 1, John Wiley & Sons, 1991.
[15] Dems, K. and Mroz, Z., Variational Approach by means of Adjoint Systems to Structural Optimization and Sensitivity Analysis-I, Int. J, Solids and Struct., Vol. 19, 1983, pp. 677-692.
[16] Dcms, K. and Mroz, Z., Variational Approach by means of Adjoint Systems to Structural Optimization and Sensitivity Analysis-II, Int. J. Solids and Struct., Vol. 20, 1984, pp. 527-552.
[17] Endo. A., Hangai, Y. and Kawamata, S., Post-Buckling Analysis of Elastic Shells of Revolution by the Finite Element Method, Rep. Institute of Industrial Science, Univ. of Tokyo, Vol. 26, 1976, pp. 245-295.
[18] Haririan, M., Cardoso, J. B. and Arora, J. S., Use of ADINA for Design Optimization of Nonlinear Structures, Comp. & Struct., Vol. 26, 1987, pp.123-134.
[19] Hien,T. D. and Kleider,M., Stochastic Design Sensitivity in Structural Dynamics, Int. J. for Num. Meth. in Eng., Vol. 32, 1991, pp.1247-1265.
[20] Hien, T. D. and Kleiber, M., Incremental Sensitivity Analysis in Nonlinear Structural Dynamics, Design-Sensitivity Analysis (Ed. Kleiber, M. and Hisada, T.), Atlanta Technology Publications, 1993, pp. 52-67.
[21] Hisada, T., Sensitivity Analysis of Nonlinear FEM, Proc. ASCE EMD/GTD/STD Specialty Conference on Probabilistic Methods, 1988, pp. 164-168.
[22] Hisada, T. and Noguchi, H., Sensitivity Analysis for Nonlinear Stochastic FEM in 3D Elasto-plastic Problems, Proc. ASME PVP Conf., Vol. 177, 1989, pp. 175-179.
[23] Hisada, T. and Noguchi, H., Development of a Nonlinear Stochastic FEM and its Application, Proc. 5th Int. Conference on Structural Safety and Reliability, 1989, pp. 1097-1104.
[24] 久田俊明, 弾塑性確率有限要素法の基礎式 (非線形FEMの感度解析), 日本機械学会論文集 (A編), Vol. 56, No. 524, 1990, pp. 966-970.
[25] 久田俊明, 野口裕久, 村山修, 動的非線形有限要素法における感度解析手法の開発, 日本機械学会論文集 (A編), Vol. 57, No. 536, 1991, pp. 267-273.
[26] 久田俊明, 野口裕久, 村山修, 配管系における動的弾塑性応答感度解析コードの開発, 日本機械学会論文集 (A編), Vol. 57, No. 541, 1991, pp. 149-156.
[27] Hisada, T., Noguchi, H., Murayama, O. and Der Kiureghian, A., Reliability Analysis of Elasto-Plastic Dynamic Problems, Proc. Int. Fed. for Information Processing (Ed. Der Kiureghian. A., et al.), Springer-Verlag, 1991. pp. 161-172.
[28] 久田俊明, 野口裕久, 川上高, 仲戸川哲人, 田井浩一, 原子炉格納容器の動的座屈の安全裕度に関する研究, 日本機械学会論文集 (A編), Vol. 59, No. 557, 1993, pp. 203-210
[29] Hisada, T., Recent Progress in Nonlin ear FEM-Based Sensitivity Analysis, JSME Int. J., Ser. A, Vol. 38, No. 3, 1995, pp. 301-310.
[30] Kamat, M. P. and Ruangsilasingha, P., Design Sensitivity Derivatives for Structures in Nonlinear Response, Proc. AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and Material Conference, AIAA paper 84-0973, 1984, pp. 383-388.
[31] Kamat, M. P., Khot, N. S. and Venkayya, V. B., Optimization of Shallow Trusses against Limit Point Instability, AIAA J., Vol. 22, 1984, pp. 403-408.
[32] Khot, N. S. and Kamat, M. P., Minimum Weight Design of Structures with Geometric Nonlinear Behavior, Proc. AIAA/ASME/ASCE/AHS 24th Structures, Structural Dynamics and Material Conference, AIAA paper 83-0937, 1983, pp. 383-391.
[33] Kleiber, M., Shape and Non-Shape St ructural Sensitivity Analysis for Problems with Any Material and Kinematic Non-Linearity, Comp. Meth. in Appl. Mech. and Eng., Vol. 108, 1993, pp. 73-97.
[34] Lee, T. H., Arora, J. S. and Kumar, V., Shape Design Sensitivity Analysis of Viscoplastic Structures, Comp. Meth. in Appl. Mech. and Eng., Vol. 108, 1993, pp. 237-259.
[35] Liu, W-K., Belytschko, T. and Mani, A., Probabilistic Finite Elements for Nonlinear Structural Dynamics, Comp. Meth. in Appl. Mech. and Eng., Vol. 56, 1986, pp. 61-81.
[36] Liu, P-L. and Der Kiureghian, A., Reliability Assessment of Geometrically Nonlinear Structures, Proc. ASCE EMD/GTD/STD Specialty Conference on Probabilistic Methods, 1988, pp. 164-168.
[37] Liu, W. K. and Gvildys, J., Fluid Structure Interactions of Tanks with an Eccentric Core Barrel, Comp. Meth. in Appl. Mech. and Eng., Vol. 58, 1986, pp. 51-57.
[38] Liu, P-L. and Der Kiureghian, A., Finite-Element Reliability Methods for Geometrically Nonlinear Stochastic Structures, Report No. UCB/SEMM-89/05, 1989.
[39] Mroz, Z., Kamat, M. P. and Plaut, R. H., Sensitivity Analysis and Optimal Design of Nonlinear Beams and Plates, J. Struct. Mech., Vol. 13, 1985, pp. 245-266.
[40] Mroz, Z. and Haftka, R. T., First- and Second-Order Sensitivity Analysis of Linear and Nonlinear Structures, AIAA J., Vol. 24, 1986, pp. 1187-1192.
[41] Murthy, D. V. and Haftka, M. R., Survey of Methods for Calculating Sensitivity of General Eigenproblems, Sensitivity Analysis in Engineering (Ed. Ademan, H. M. and Haftka, R. T.), NASA CP-2457, 1987, pp.177-196.
[42] 中桐滋, 久田俊明, 確率有限要素法入門, 培風館, 1985.
[43] Noguchi, H. and Hisada, T., Bifurcation Buckling Analysis of Large Shell Structures Using Scaled Corrector Method, Proc. Int. Conf. on Computational Engineering Science, 1992, p. 123.
[44] 野口裕久, 久田俊明, 座屈後挙動における感度解析手法の開発, 日本機械学会論文集 (A編), Vol. 58, No. 556, 1992, pp. 2415-2422.
[45] Noguchi, H. and Hisada, T., Sensitivity Analysis in Postbuckling Problems, Design-Sensitivity Analysis (Ed. Kleiber, M. and Hisada, T.), Atlanta Technology Publications, 1993, pp. 93-111.
[46] 野口裕久, 久田俊明, 幾何学的非線形問題における座屈荷重感度解析手法の開発, 日本機械学会論文集 (A編), Vol. 59, No. 561, 1993, pp. 1365-1372.
[47] Noguchi, H. and Hisada, T., Sensitivity Analysis in Post-Buckling Problems of Shell Structures, Comp. & Struct., Vol. 47, No. 4/5, 1993, pp. 699-710.
[48] 野口裕久, 久田俊明, Scaled Correctorを用いた有限要素分岐解析手法の開発, 日本機械学会論文集 (A編), Vol. 58. No. 555, 1992. pp. 2191-2198.
[49] Park, J. S. and Choi, K. K., Design Sensiti vity Analysis of Crit ical Load Factor for Non linear Structural Systems, Comp. & Struct, Vol. 36, 1990, pp. 823-838.
[50] Phelan, D., Vidal, C. and Haber, R. B., An Adjoint Variable Method for Sensitivity Analysis of Non-l inea r Elastic Systems, Int. J. for Num. Meth. in Eng., Vol. 31, 1991, pp. 1649-1667.
[51] Riks, E., The Application of Newton's Method to the Problems of Elastic Stability, J. Appl. Mech., Trans. ASME, Vol. 39, 1972, pp. 1060-1066.
[52] Ryu, Y. S., Haririan, M., Wu, C. C. and Arora, J. S., Struc tural Design Sensitivity Analysis of Nonlinear Response, Comp. & Struct, Vol. 21, 1985, pp. 245-255.
[53] Santos, J. L. T. and Choi, K. K., Sizing Design Sensitivity Analysis of Nonlinear Structural Systems, part II : Numerical Method, Int. J. for Num. Meth. in Eng., Vol. 26, 1988, pp. 2097-2114.
[54] Schreyer, H. L., Kulak, R. F. and Kramer, J. M., Accurate Numerical Solutions for Elasto-Plastic Models, J. Pressure Vessel Tech., Trans. ASME, Vol. 101, 1979, pp. 226-234.
[55] Simo, J. C. and Taylor, R. L., Consistent Tangent Operators for Rate-Independent Elastoplasticity, Comp. Meth. in Appl. Mech. and Eng., Vol. 48, 1985, pp. 101-118.
[56] Simo, J. C., Wriggers, P., Schweizerhof, K. H. and Taylor, R. L., Finite Deformation Post-Buckling Analysis Involving Inelasticity and Contact Constraints, Int. J. for Num. Meth. in Eng., Vol. 23, 1986, pp. 779-800.
[57] Simo, J. C. and Taylor, R. L., A Return Mapping Algorithm for Plane Stress Elastoplasticity, Int. J. for Num. Meth. in Eng., Vol. 22, 1986, pp. 649-670.
[58] Simo, J. C, Fox, D. D. and Rifai, M. S., On a Stress Resultant Geometrically Exact Shell Model, Part III, Computational Aspects of the Nonlinear Theory, Comp Meth. in Appl. Mech. and Eng., Vol. 79, 1990, pp. 21-70.
[59] Spence, A. and Jepson, A. D., Folds in the Solution of Two Parameter Systems and Their Calculation, Part I, SIAM J. Num. Anal., Vol. 22, 1985, pp. 347-368.
[60] Tai, K., Nakatogawa, T., Hisada, T. and Noguchi, H., Analytical Study on Dynamic Buckling of Reactor Containment Vessel, Trans. SMiRT-12, Vol. J (10/3), 1993, pp. 273-278
[61] Timoshenko, S. P. and Gere, J. M., Theory of Elastic Stability, McGraw-Hill, 1961.
[62] Tsay, J. J. and Arora, J. S., Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problem, Part I : General Theory, Comp. Meth. in Appl. Mech. and Eng., Vol. 81, 1990, pp. 183-208.
[63] Tsay, J. J., Cardoso, J. E. B. and Arora, J. S., Nonlinear Structural Design Sensitivity Analysis for Path Dependent Problem, Part II : Analytical Examples, Comp. Meth. in Appl. Mech. and Eng., Vol. 81, 1990, pp. 209-228.
[64] Vidal, C. A. and Haber, R. B., Design Sensitivity Analysis for Rate-Independent Elastoplasticity, Comp. Meth. in Appl. Mech. and Eng., Vol. 107, 1993, pp. 393-431
[65] Wriggers, P., Wagner, W. and Miehe, C., A Quadratically Convergent Procedure for the Calculation of Stability Points in Finite Element Analysis, Comp. Meth. in Appl. and Mech. and Eng., Vol. 70, 1988, pp. 329-347.
[66] Wu, C. C. and Arora, J. S., Design Sensitivity Analysis of Nonlinear Buckling Load, Comp. Mech, Vol. 3, 1988, pp. 129-140.
[67] Yamaki, N., Otomo, K. and Matsuda, K., Experiments on the Post-Buckling Behavior of Cylindrical Shells under Compression, Exp. Mech., Vol. 15, 1975, pp. 23-28.
[68] Zhang, Y. and Der Kiureghian, A., Dynamic Response Sensitivity of Inelastic Structures, Comp. Meth. in Appl. Mech. and Eng., Vol. 108, 1993, pp. 23-36.

最近チェックした商品履歴

Loading...