麻酔科医のための体外循環の知識

出版社: 克誠堂出版
著者:
発行日: 2022-11-15
分野: 臨床医学:外科  >  麻酔科学/ペイン
ISBN: 9784771905719
電子書籍版: 2022-11-15 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

6,820 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

6,820 円(税込)

商品紹介

経食道心エコーが急速な普及を果たし、今や必要不可欠な術中モニターとなりましたが、心臓血管麻酔領域で次にわれわれが取り組むべき重要課題は体外循環(人工心肺)であることは疑う余地がありません。
専門医取得を目指している麻酔科医をターゲットとしていますが、若手医師にも理解しやすい内容としています。複雑な内容は敢えて割愛し、基本的な内容を中心に心臓血管外科手術の周術期管理に必要な内容に特化しています。

目次

  • 第1章 体外循環の歴史
    第2章 人工心肺装置
    第3章 血液ポンプ
    第4章 人工肺
    第5章 人工心肺操作の実際
    第6章 人工心肺中のモニタリング
    第7章 人工心肺中の麻酔管理
    第8章 心筋保護
    第9章 人工心肺中の抗凝固療法
    第10章 体外循環中の適切な灌流圧と血液希釈
    第11章 人工心肺中の体温管理
    第12章 人工心肺中の生体反応
    第13章 大動脈手術の人工心肺
    第14章 小児の人工心肺
    第15章 低侵襲手術のための人工心肺
    第16章 非心臓手術への適応
    第17章 補助循環と人工心臓
    第18章 経皮的心肺補助(PCPS)と体外式膜型人工肺(ECMO)
    第19章 血液浄化療法
    第20章 安全管理とトラブルシューティング

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1章 体外循環の歴史

P.8 掲載の参考文献
1) Gravlee GP, Davis RF, Stammers AH, et al. Cardiopulmonary bypass:principles and practice, third edition, Lippincott Williams & Wilkins, Philadelphia, PA, 2008.
2) Nose Y, Motomura T, Kawahito S. The ICMT Publication on Artificial Organs:Volume II. Oxygenator -Artificial Lung- Past, Present, and Future. ICAOT/ICMT Press, Painesville, OH, 2001.
3) DeBakey ME. A simple continuous-flow blood transfusion instrument. New Orleans Med Surg J 1934;87:386-9.
4) Gibbon JH Jr. Artificial maintenance of circulation during experimental occlusion of pulmonary artery. Arch Surg 1937;34:1105-31.
5) Kolf WJ, Berk HTJ. Artificial Kidney:dialyzer with great area. Acta Med Scand 1944;117:121-34.
6) Dennis C, Spreng DS Jr, Nelson GE, et al. Development of a pump oxygenator to replace the heart and lungs:an apparatus application to human patients and application to one case. Ann Surg 1951;134:709-21.
7) Cooley DA, Beall AC Jr, Alexander JK. Acute massive pulmonary embolism:successful surgical treatment using temporary cardiopulmonary bypass. JAMA 1961;177:283-6.
8) Kolobow T, Spragg RG, Pierce JE, et al. Extended term(to 16 days)partial extracorporeal blood gas exchange with the spiral membrane lung unanesthetized lamb. Trans Am Soc Art Int Organs 1971;17:350-4.
9) Tsuji T, Suma K, Tanashita K, et al. Development and clinical evaluation of hollow fiber membrane oxygenator. Trans Am Soc Art Int Organs 1981;27:280-4.
10) Phillips SJ, Ballentine B, Slonine D, et al. Percutaneous initiation of cardiopulmonary bypass. Ann Thorac Surg 1983;36:223-5.

第2章 人工心肺装置

P.17 掲載の参考文献
1) 森田雅教. 第2章. 専門医に求められる外科解剖と術前・術中・術後管理. 4. 人工心肺. 龍野勝彦, 重松宏, 幕内晴朗, ほか編. 心臓血管外科テキスト. (改訂2版). 東京:中外医学社;2011. 40-5.
2) 大塚勝哉. 第2章. 人工心肺装置. 3. 人工心肺回路. 見目恭一, 福永一義, 編. 臨床工学講座 生体機能代行装置学 体外循環装置. (第1版). 東京:医歯薬出版株式会社:2015. 45-52.
3) 林 裕樹, 東條圭一, 斎藤 司, ほか. I. 人工心肺. 2. 血液ポンプ. 見目恭一, 編. 新ME早わかりQ&A 2 人工心肺・補助循環装置. 東京:南江堂:2017. 6-27.
4) 玉木修治, 山田悌士, 阿部稔雄. 第3章. 人工肺. 上田裕一, 編. 最新人工心肺. (第4版). 名古屋:名古屋大学出版会:2014. 23-37.
5) 鈴木義隆. 第II部. 機器. 5. 体外循環とカニュレーション手技. 新見能成, 編. 人工心肺その原理と実際. 東京:メディカルサイエンスインターナショナル:2010. 60-112.
6) 3学会合同陰圧吸引補助脱血体外循環検討委員会報告書ならびに勧告 https://plaza.umin.ac.jp/~jscvs/negativepressure/(2022年3月14日閲覧)

第3章 血液ポンプ

P.26 掲載の参考文献
1) Galletti PM, Bretcher GA. Heart-lung bypass. Princeples and techniques of extracorporeal circulation. Grune & Stratton, 1962:121-53.
2) DeBakey M. A simple continuous-flow blood transfusion instrument. New Orleans Med Surg J 1934;87:386-9.
3) Gibbon JH Jr. Application of mechanical heart and lung apparatus to cardiac surgery. Minn Med 1954;37:171-85.
4) 大原康壽. 長期補助を目的とした定常流ポンプ開発の現状と展望. 人工臓器1997;26:927-33.

第4章 人工肺

P.35 掲載の参考文献
1) 新見能成. ミネソタでの心肺バイパス開発の歴史. 新見能成監訳. 人工心肺-その原理と実際-. 東京:メディカル・サイエンス・インターナショナル;2010. p.3-19.
2) Wodetzki A, Breiter S, Scheuren J et al. OXYPHAN(R) 世界をリードする人工肺用膜. 2000;25. P102-106.
3) 工藤英範. 細田泰之. 中空糸膜型(外部灌流型). 日本臨床1985;43. p.86-92.
4) 神谷 勝弘, 小林 栄次. 人工肺の原理:ガス交換, 熱交換, 操作. 新見能成監訳. 人工心肺-その原理と実際-. 東京:メディカル・サイエンス・インターナショナル;2010. p.46-59.
5) 松田 暉. 膜型人工肺の基礎と臨床応用. 人工臓器1983;12:p.991-1000.
6) 桑名克之. 膜型人工肺の膜と人工肺モジュール開発. 膜2000;25:p.107-17.
7) 萩原和彦. 人工肺材料と表面処理. 表面技術1995;46:P887-92
8) 大西誠人. 高分子材料の表面機能化と医療機器への応用. 表面技術2011;32:581-6.
9) 石原一彦. 人体になじむMPCポリマーの創製と医療器具への実装. 工業材料2021;69:20-5.
10) 泉工医科工業株式会社. メラ高分子コーティングSEC. 体外循環技術2014;41:202-5
11) Medtronic Balance(TM) Biosurface パンフレット. https://www.medtronic.com/us-en/healthcare-professionals/products/cardiovascular/cardiopulmonary/balance-biosurface.html(2022年5月9日閲覧)

第5章 人工心肺操作の実際

P.49 掲載の参考文献
1) 日本体外循環技術医学会. 人工心肺標準化回路作製に向けての取り組み. https://jasect.org/wp/wp-content/uploads/2020/03/hyoujyunka_torikumi2020.pdf(2022年9月16日閲覧)
2) Taylor RL. Cerebral microemboli during cardiopulmonary bypass:increased emboli during perfusionist interventions:Ann Thorac Surg 1999;68:89-93.
3) 西中巧, 笠野靖代, 上塚翼, ほか. プライミングにおけるボルベン輸液6%の使用効果について. 体外循環技術, 2015;42:418-23.
4) Kerkoff AC.Plasma colloid osmotic pressure as a factor in edema formation and edema absorption. Ann Intern Med 1937;11:867-79.
5) Chores JB, Holt DW. Colloid oncotic pressure, monitoring its effects in cardiac surgery. J Extra Corpor Technol 2017;49:249-56.
6) Toraman F, Evrenkaya S, Yuce M. Highly positive intra-operative fluid balance during cardiac surgery is associated with adverse outcome. Perfusion 2004;19:85-91.
7) Rioux JP, Lessard M, De Bortoli B, et al. Pentastarch 10%(250 kDa/0.45)is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med 2009;37:1293-8.
8) Schortgen F, Girou E, Deye N, et al. The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 2008;34:2157-68.
9) 日本体外循環技術医学会. 人工心肺における安全装置の設置基準に関する勧告. https://jasect.org/wp/wp-content/uploads/2020/12/cpb_safety_recommendation_2020.pdf(2022年9月16日閲覧)
10) Runucci M, Isgro G. Cazzaniga A. et al. Different patterns of heparin resistance:therapeutic implications. Perfusion 2002;17:194-204.
11) 日本心臓血管外科学会. 人工心肺を用いた心臓血管外科手術中の人工肺内圧上昇に関する報告書. https://plaza.umin.ac.jp/~jscvs/wordpress/wp-content/themes/amnk/pdf/jinkouhaisaisyuuhoukoku161020.pdf(2022年9月16日閲覧)
12) 窪田将司, 山口和也, 青木秀俊, ほか. 希釈充填液量削減の試み-Retrograde Autologous Priming の効果-. 体外循環技術2002;29:377-82.
13) Rosengart TK, Debois W, O'Hara M, et al. Retrograde autologous priming for cardiopulmonary bypass;a safe and effective means of decreasing hemodilution and transfusion requirements. J Thorac Cardiovasc Surg 1998;115:426-38.
14) Tibi P, McClure RS, Huang J, et al. STS/SCA/AmSECT/SABM Update to the Clinical Practice Guidelines on Patient Blood Management. Ann Thorac Surg 2021;112:981-1004.
15) 笠野靖代. 人工心肺による体外循環の臨床. クリニカルエンジニアリング2021;32:431-43.
16) 日本心臓血管外科学会. 3学会合同陰圧吸引補助脱血体外循環検討委員会報告並びに勧告. https://plaza.umin.ac.jp/~jscvs/negative-pressure/(2022年9月16日閲覧)
17) Ranucci M, Isgro G, Giomarelli P, et al. Anaerobic metabo-lism during cardiopulmonary bypass:5 predictive value of carbon dioxide derived parameters. Ann Thorac Surg 2006;81:2189-95.
18) de Somer F, Mulholland JW, Ranucci M, et al. O2 delivery and CO2 production during cardiopulmonary bypass as determinants of acute kidney injury:time for a goal-directed perfusion management? Crit Care 2011;15:R192.
19) Ranucci M, Romitti F, Ditta A, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 2005;80:2213-20.
20) Justison G. Is Timing Everything? J Extra Corpor Technol 2016;49:P13-8.
21) Grigore AM, Murray CF, Djaiani G. A core review of temperature regimens and neuroprotection during cardiopulmonarv bypass:does rewarming rate matter? Anesth Analg 2009;109:1741-51.

第6章 人工心肺中のモニタリング

P.59 掲載の参考文献
1) Kanazawa M, Fukuyama H, Kinefuchi Y. et al. Relationship between aortic-to-radial arterial pressure gradient after cardiopulmonary bypass and changes in arterial elasticity. Anesthesiology 2003;99:48-53.
2) Spielvogel D, Tang GH. Selective cerebral perfusion for cerebral protection:what we do know. Ann Cardiothorac Surg 2013;2:326-30.
3) Practice guidelines for perioperative transesophageal echocardiography. A report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology 1996;84:986-1006.
4) American Society of A, Society of Cardiovascular Anesthesiologists Task Force on Transesophageal E. Practice guidelines for perioperative transesophageal echocardiography. An updated report by the American Society of Anesthesiologists and the Society of Cardiovascular Anesthesiologists Task Force on Transesophageal Echocardiography. Anesthesiology 2010;112:1084-96.
5) 山田達也. 【周術期経食道心エコーによる人工物の評価診断】低侵襲心臓手術(人工心肺カニューラ類)とTEE. 循環制御2016;37:90-4.
6) 山蔭道明, 吉田真一郎. ロクロニウムの上手な使い方 ロクロニウムの一般的臨床使用の実際 心臓・大血管手術. 日臨麻会誌2008;28:852-57.
7) 小竹良文. ロクロニウムの上手な使い方 ロクロニウムの一般的臨床使用の実際 開腹外科手術および眼科・耳鼻咽喉科手術・形成外科手術. 日臨麻会誌2008;28:670-77.

第7章 人工心肺中の麻酔管理

P.69 掲載の参考文献
1) Michelesen LG, Holfford NH, Lu W, et al. The pharmacokinetics of remifentanil in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass. Anesth Analg 2001;93:1100-5.
2) Miller RD, Fleisher LA, Johns RA, et al. Miller's Anesthesia sixth edition. New York:Churchill Livingstone;2004. p.55-84.
3) Mets B. The pharmacokinetics of anesthetic drugs and adjuvants during cardiopulmonary bypass. Acta Anaesthesiol Scand 2000;44:261-73.
4) Puis L, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP Guidelines on Cardiopulmonary Bypass in Adult Cardiac Surgery. Interact Cardiovasc Thorac Surg 2020;30:161-202.
5) ples and techniques of extracorporeal circulation. New York:Grune and Stratton;1962. p.215.
6) Rosen DA, Rosen KR. Elimination of drugs and toxins during cardiopulmonary bypass. J Cardiothrac Vasc Anesth 1997;11:337-40.
7) Mathew PJ, Puri GD, Dhaliwal RS. Propofol requirement titrated to bispectral index:A comparison between hypothermic and normothermic cardiopulmonary bypass. Perfusion 2009;24:27-32.
8) Shekar K, Fraser JF, Smith MT, et al. Phermacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care 2012;741:e9-18.
9) Wildschut ED, Ahsman MJ, Allegaert K, et al. Determinants of drug adsorption in different ECMO circuit. Intensive Care Med 2010;36:2109-16.
10) Preston TJ, Hodge AB, Riley JB, et al. In vitro drug adsorption and plasma free hemoglobin levels associated with hollow fiber oxygenators in the extracorporeal life support circuit. J Extra Corpor Technol 2007;39:234-7.
11) Preston TJ, Ratliff TM, Gomez D, et al. Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol 2010;42:199-202.
12) Toleikis PM, Tomlinson CW. Myocardial functional preservation during ischemia:influence of beta blocking agents. Mol Cell Biochem 1997;176:205-10.
13) Booth JV, Landolfo KP, Chesnut LC, et al. Duke Heart Center Perioperative Desensitization Group. Acute depression of myocardial beta-adrenergic receptor signaling during cardiopulmonary bypass:impairment of the adenylyl cyclase moiety. Anestjesiology 1998;89:602-11.
14) Schwinn DA, Leone BJ, Seahn DR, et al. Desensitization of myocardial beta-adrenergic receptors during cardiopulmonary bypass. Circulation 1991;84:2559-67.
15) Dupuis JY, Li K, Calderone A, et al. Beta-adrenergic signal transduction and contractility in the canine heart after cardiopulmonary bypass. Cardiovasc Res 1997;36:223-5.
16) Agarwal B, Stowe DF, Dash RK, et al. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol. 2014;5:341.
17) Le moine S, Tritapepe L, Hanouz JL, et al. The mechanisms of cardio-protective effects of desflurane and sevoflurane at the time of reperfusion:anaesthetic post-conditioning potentially translatable to humans? Br J Anaesth. 2016;116:456-75.
18) Landoni G, Biondi-Zoccai GG, Zangrillo A, et al. Desflurane and sevoflurane in cardiac surgery:a meta-analysis of randomized clinical trials. J Cardiothorac Vasc Anesth 2007;21:502-11.
19) Landoni G, Greco T, Biondi-Zoccai GG, et al. Anaesthetic drugs and survival:a Bayesian network meta-analysis of randomized trials in cardiac surgery. Br J Anaesth 2013;111:886-96.
20) Landoni G, Lomivorotov VV, Nigro NC, et al. Volatile anesthetics versus total intravenous anesthesia for cardiac surgery. N Engl J Med 2019;380:1214-25.
21) Bonanni A, Signori A, Alicino C, et al. Volatile Anesthetics versus propofol for cardiac surgery with cardiopulmonary baypass. Anesthesiology 2020;132:1429-46.
22) Beverstock J, Park T, Alston RP, et al. Acomparison of volatile anesthesia and total intravenous anesthesia (TIVA)effects on outcome from cardiac surgery:A systematic review and meta-analysis. J Cardiothorac Vasc Anesth 2021;35:1096-105.
23) Zangrillo A, Lomivorotov VV, Pasyuga VV, et al. Effect of volatile anesthetics on myocardial infarction after coronary artery surgery:A post hoc analysis of a randomized trial. J Cardiothorac Vasc Anesth 2022;00:1-9.
24) Kevin LG, Novalija E, Stowe DF, Reactive oxygen species as mediators of cardiac injury and protection:The relevance to anesthesia practice. Anesth Analg 2005;101:1275-87.
25) Zang Y, Irwin MG, Wong TM. Remifentanil preconditioning protects against ischemic injury in the intact rat heart. Anesthesiology 2004;101:918-23.
26) Raphael J, Gozal Y, Navot N, et al. Activation of adenosine triphosphate-regulated potassium channels during reperfusion restores isoflurane postconditioning-induced cardiac protection in acutely hyperglycemic rabbits. Anesthesiology 2015;122:1299-311.
27) Nguen LT, Rebecchi MJ, Moore LC, et al. Attenuation of isoflurane-induced preconditioning and reactive oxygen species production in the senescent rat heart. Anesth Analg 2008;107:776-82.
28) Liu L, Zhu J, Glass PSA, et al. Age-associated changes in cardiac gene expression after preconditioning. Anesthesiology 2009;111:1052-64.
29) Smul TM, Stumpner J, Blomeyer C, et al. Propofol inhibits desflurane-induced preconditioning in rabbits. J Cardiothorac Vasc Anesth 2011;25:276-81.
30) Rivo J, Raphael J, Drenger B, et al. Flumazenil mimics whereas midazolam abolishes ischemic preconditioning in a rabbit heart model of ischemia-reperfusion. Anesthesioligy 2006;105:65-71.
31) Zaugg M, Wang L, Zang L, et al. Choice of anesthetic combination determines Ca2+ leak after ischemia-reperfusion injury in the working rat heart:favorable versus adverse sombinations. Anesthesiology 2012;116:648-57.
32) Likhvantsev VV, Landoni G, Levikov DI, et al. Sevoflurane versus total intravenous anesthesia for isolated coronary artery bypass surgery with cardiopulmonary bypass:a randomized trial. J Cardiothorac Vasc Anesth 2016;130:1221-7.
33) Li T, Wu W, You Z, et al. Alternative use of isoflurane and propofol confers superior cardioprotection than using one of them alone in a dog model of cardiopulmonary bypass. Eur J Pharmacol 2012;677:138-46.
34) Wahba A, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Eur J Cardiothorac Surg 2020;57:210-51.
35) Tamura T, Mori A, Nishiwaki K. Safe sedation management using volatile anesthetics during cardiopulmonary bypass. J Anesth 2022;36:287-93.
36) Shaefi S, Mittel A, Klick J, et al. Vasoplegia after cardiovascular procedures-pathophysiology and targeted therapy. J Cardiothorac Vasc Anesth 2018;32:1013-22.
37) Liu H, Yu L, Yang L, et al. Vasoplegic syndrome:an update on perioperative considerations. J Clin Anesth 2017;40:63-71.
38) Gropper M, Eriksson L, Fleisher L, et al. Miller's Anesthesia 9th edition. New York:Elsevier;2019.
39) Mets B. The pharmacokinetics of anesthetic drugs and adjuvants during cardiopulmonary bypass. Acta Anaesthesiol Scand 2000;44:261-73.
40) Gravlee GP, Shaw AD, Bratels K, 人工心肺後の期間:ICU搬送に向けての離脱. 新見能成監訳. ヘンスレー心臓手術の麻酔. 第5版. 東京:メディカル・サイエンス・インターナショナル;2020.

第8章 心筋保護

P.80 掲載の参考文献
1) 丸山雄二, Chambers DJ, 別所竜蔵, ほか. 細胞レベルからみた外科的心筋保護法の現況と次世代への展望. 日心外会誌2014;43:239-53.
2) Melrose DG, Dreyer B, Bentall HH, et al. Elective cardiac arrest. Lancet 1955;269:21-2.
3) Effler DB, Groves LK, Sones FMJ, et al. Elective cardiac arrest in open-heart surgery;report of three cases. Cleve. Clin. Q. 1956;23:105-14.
4) Schaff HV, Dombroff R, Flaherty JT, et al. Effect of potassium cardioplegia on myocardial ischemia and post arrest ventricular function. Circulation 1978;58:240-9.
5) Allen P, Lillehei CW. Use of induced cardiac arrest in open heart surgery;results in seventy patients. Minn. Med 1957;40:672-6.
6) Nunn DD, Belisle CA, Lee WH Jr, et al. A comparative study of aortic occlusion alone and of K citrate arrest during cardio pulmonary bypass. Surgery 1959;45:848-51.
7) Wasserman F, Wolcott MW, Wherrry CG, et al. Comparative effect of 15 per cent potassium chloride and 30 per cent potassium citrate in resuscitation from ventricular fibrillation following acute myocardial infarction;an experimental study. J Thorac Cardiovasc Surg 1959;38:30-9.
8) Willman VL, Cooper T, Zafiracopoulos P, et al. Depression of ventricular function following elective cardiac arrest with K+ citrate. Surgery 1959;46:792-6.
9) Francica A, Tonelli F, Rossetti C, et al. Cardioplegia between evolution and revolution:from depolarized to polarized cardiac arrest in adult cardiac surgery. J Clin Med 2021;10:4485.
10) Jynge P, Hearse DJ, Feuvray D et al. The st. thomas' hospital cardioplegic solution:a characterization in two species. Scand. J. Thorac. Cardiovasc. Surg 1981;30:1-28.
11) Yammine M, Neely RC, Loberman D, et al. The use of lidocaine containing cardioplegia in surgery for adult acquired heart disease. J Card Surg 2015;30:677-84.
12) Heydarpour M, Ejiofor J, Gilfeather M, et al. Molecular genetics of lidocaine-containing cardioplegia in the human heart during cardiac surgery. Ann Thorac Surg 2018;106:1379-87.
13) Conti VR. Crystalloid or blood cardioplegia with cardiac surgery. Chest 1983;84:367-9.
14) Illes RW, Silverman NA, Krukenkamp IB, et al The efficacy of blood cardioplegia is not due to oxygen delivery. J Thorac Cardiovasc Surg. 1989;98:1051-6.
15) Follette DM, Mulder DG, Maloney JV, et al. Advantages of blood cardioplegia over continuous coronary perfusion or intermittent ischemia. Experimental and clinical study. J Thorac Cardiovasc Surg 1978;76:604-19.
16) Buckberg GD. Strategies and logic of cardioplegic delivery to prevent, avoid, and reverse ischemic and reperfusion damage. J Thorac Cardiovasc Surg 1987;93:127-39.
17) Roberts AJ, Moran JM, Sanders JH, et al. Clinical evaluation of the relative effectiveness of multidose crystalloid and cold blood potassium cardioplegia in coronary artery bypass graft surgery:a nonrandomized matched-pair analysis. Ann Thorac Surg 1982;33:421-33.
18) Mick SL, Robich MP, Houghtaling PL, et al. del Nido versus Buckberg cardioplegia in adult isolated valve surgery. J Thorac Cardiovasc Surg 2015;149:626-34;discussion 634-6.
19) Rosenkranz ER, Buckberg GD, Laks H, et al. Warm induction of cardioplegia with glutamate-enriched blood in coronary patients with cardiogenic shock who are dependent on inotropic drugs and intra-aortic balloon support. J Thorac Cardiovasc Surg 1983;86:507-18.
20) Fan Y, Zhang AM, Xiao YB, et al. Warm versus cold cardioplegia for heart surgery:a meta-analysis. Eur J Cardiothorac Surg 2010;37:912-9.
21) Matte GS, del Nido PJ. History and use of del Nido cardioplegia solution at Boston Children's Hospital. J Extra Corpor Technol 2012;44:98-103.

第9章 人工心肺中の抗凝固療法

P.91 掲載の参考文献
1) Spiess BD, Armour S, Horrow J, et al. Transfusion medicine and coagulation disorder. In:Kaplan JA, editor. Kaplan's cardiac anesthesia. 7th ed. Philadelphia PA:Elsevier;2017:258-1263.
2) 医薬品インタビューフォーム, ヘパリンNa注5千単位/5ml「モチダ」ヘパリンNa注1万単位/10ml「モチダ」 (2022年3月16日閲覧)
3) Olsson P. Effect of intravenous injection of heparin in varying and repeated doses on the coagulation time. An experimental study on dogs. Acta Med Scand 1963;174:281-8.
4) Finley A, Greenberg C. Review article:heparin sensitivity and resistance:management during cardiopulmonary bypass. Anesth Analg 2013;116:1210-22.
5) Culliford AT, Gitel SN, Starr N, et al. Lack of correlation between activated clotting time and plasma heparin during cardiopulmonary bypass. Ann Surg 1981;193:105-11.
6) Bull BS, Korpman RA, Huse WM, et al. Heparin therapy during extracorporeal circulation. I. Problems inherent in existing heparin protocols. J Thorac Cardiovasc Surg 1975;69:674-84.
7) Ichikawa J, Kodaka M, Nishiyama K, et al. Reappearance of circulating heparin in whole blood heparin concentration-based management does not correlate with postoperative bleeding after cardiac surgery. J Cardiothorac Vasc Anesth 2014;28:1003-7.
8) Matthai WH Jr, Kurnik PB, Groh WC, et al. Antithrombin activity during the period of percutaneous coronary revascularization:relation to heparin use, thrombotic complications and restenosis. J Am Coll Cardiol 1999;33:1248-56.
9) Lemmer JH Jr, Despotis GJ. Antithrombin III concentrate to treat heparin resistance in patients undergoing cardiac surgery. J Thorac Cardiovasc Surg 2002;123:213-7.
10) Levy JH, Montes F, Szlam F, et al. The in vitro effects of antithrombin III on the activated coagulation time in patients on heparin therapy. Anesth Analg 2000;90:1076-9.S.
11) Koster A, Fischer T, Gruendel M, et al. Management of heparin resistance during cardiopulmonary bypass:the effect of five different anticoagulation strategies on hemostatic activation. J Cardiothorac Vasc Anesth 2003;17:171-5.
12) 日本血栓止血学会ヘパリン起因性血小板減少症の診断・治療ガイドライン作成委員会. ヘパリン起因性血小板減少症の診断・治療ガイドライン. 血栓止血誌 2021;32:737-82.
13) Warkentin TE, Levine MN, Hirsh J, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med 1995;332:1330-5.
14) Warkentin TE, Arnold DM, Nazi I, et al. The platelet serotonin-release assay. Am J Hematol 2015;90:564-72.
15) Srinivasan AF, Rice L, Bartholomew JR, et al. Warfarin-induced skin necrosis and venous limb gangrene in the setting of heparin-induced thrombocytopenia. Arch Intern Med 2004;164:66-70.
16) Warkentin TE, Kelton JG. Temporal aspects of heparin-induced thrombocytopenia. N Engl J Med. 2001;26;344:1286-92.
17) Selleng S, Haneya A, Hirt S, et al. Management of anticoagulation in patients with subacute heparin-induced thrombocytopenia scheduled for heart transplantation. Blood 2008;112:4024-7.
18) Ellison N, Beatty CP, Blake DR, et al. Heparin rebound. Studies in patients and volunteers. J Thorac Cardiovasc Surg 1974;67:723-9.
19) Bolliger D, Szlam F, Azran M, et al. The anticoagulant effect of protamine sulfate is attenuated in the presence of platelets or elevated factor VIII concentrations. Anesth Analg 2010;111:601-8.
20) Barstad RM, Stephens RW, Hamers MJ, et al. Protamine sulphate inhibits platelet membrane glycoprotein Ib-von Willebrand factor activity. Thromb Haemost 2000;83:334-7.
21) Nyhan D. Johns RA. Anesthesia for cardiac surgery procedures. In:Miller RD. Miller's Anesthesia 6th ed. Philadelphia:Churchill Livingstone, 2005:1941-2004.
22) Gottschlich GM, Gravlee GP, Georgitis JW. Adverse reactions to protamine sulfate during cardiac surgery in diabetic and non-diabetic patients. Ann Allergy 1988;61:277-81.
23) 日本麻酔科学会. プロタミン硫酸塩. 麻酔薬および麻酔薬関連薬使用ガイドライン. 改訂第3版, 2019, p.666-8.
24) 日本輸血・細胞治療学会. 大量出血症例に対する血液製剤の適正な使用のガイドライン. http://yuketsu.jstmct.or.jp/wp-content/uploads/2019/02/065010021.pdf(2022年3月16日閲覧)

第10章 体外循環中の適切な灌流圧と血液希釈

P.105 掲載の参考文献
1) Murphy GS, Hessel EA, Groom RC. Opti, mal perfusion during cardiopulmonary bypass:An evidence-based approach. Anesth Analg 2009:108;1394-417.
2) Flick M, Duranteau J, Scheeren TWL, et al. Monitoring of sublingual microcirculation during cardiac surgery:Current knowledge and future directions. J Cardiothorac Vasc Anesth 2020:34;2754-65.
3) Nakajima Y, Baudry N, Duranteau J, et al. Microcirculation in intestinal villi:a comparison between hemorrhagic and endotoxin shock. Am J Respir Crit Care Med 2001;164(8 Pt 1):1526-30.
4) Reistima S, Slaaf DW, Vink H, et al. The endothelial glycocalyx:composition, functions, and visualization. Eur J Physiol 2007;454:345-59.
5) 中島芳樹. 血管内皮におけるEGCX の保護. 臨床麻酔2016;40:711-20.
6) Oberleithner H, Wilhelmi M. Determination of erythrocyte sodium sensitivity in man. Pflugers Arch 2013;465:1459-66.
7) Okada H, Takemura G, Suzuki K, et al. Three-dimentional ultrastructure of capillary endothelial glycocalyx under normal and experimental endotoxemic conditions. Crit Care 2017;21:261.
8) Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007;116:1896-906
9) Bruegger D, Schwartz L, Chappell D, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on- and off-pump coronary artery bypass surgery. Basic Res Cardiol 2011;106:1111-21.
10) Martin JV, Liberati DM, Diebel LN. Excessive sodium is deleterious on endothelial and glycocalyx barrier function:A microfluidic study. J Trauma Acute Care Surg 2018;85:128-134.
11) Rehm M, Zahler S, Lotsch M, et al. Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 2004;100:1211-23.
12) Chappell D, Bruegger D, Potzel J, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care 2014;18:538-45.
13) Chapell D, Jacob M, Hofmann-Kiefer K, et al. A rational approach to perioperative fluid management. Anesthesiology 2008;109:723-40
14) Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005;289:1993-9.
15) Nieuwdorp M, van Haeften TW, Gouverneur MC, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006;55:480-6.
16) O'Dwyer C, Woodson LC, Conroy BP, et al. Regional perfusion abnormalities with phenylepherine during normothermic bypass. Ann Thorac Surg 1997;63:728-35.
17) Bastien O, Piriou V, Aouifi A, et al. Relative importance of flow versus pressure in splanchnic perfusion during cardiopulmonary bypass in rabbits. Anesthesiology 2000;92:457-64.
18) Boston US, Slater JM, Orszulak TA, et al. Hierarchy of regional oxygen delivery during cardiopulmonary bypass. Ann Thorac Surg 2001;71:260-4.
19) Ranucci M, Romitti F, Isgro G, et al. Oxygen delivery during cardiopulmonary bypass and acute renal failure after coronary operations. Ann Thorac Surg 2005;80:2213-20.
20) Newland RF, Baker RA. Low oxygen delivery as a predictor of acute kidney injury during cardiopulmonary bypass. J Extra Corpor Technol 2017;49:224-30.
21) Turner L, Hardikar A, Jose MD, et al. Acute kidney injury, stroke and death after cardiopulmonary bypass surgery:the role of perfusion flow and pressure. Perfusion 2021;36:78-86.
22) Siepe M, Pfeiffer T, Gieringer A, et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur Cardiothorac Surg 2011;40:200-7.
23) Gold JP, Torres KE, Maldarelli W, et al. Improving outcomes in coronary surgery:the impact of echo-directed aortic cannulation and perioperative hemodynamic management in 500 patients. Ann Thorac Surg 2004;78:1579-85.
24) Hartman GS, Yao FSF, Bruefach M 3rd, et al. Severity of atheromatous disease diagnosed by transesopha- geal echocardiography predicts stroke and other outcomes associated with coronary artery surgery:a prospective study. Anesth Analg 1996;83:701-8.
25) Hill SE, van Wermeskerken GK, Lardenoye JW, et al. Intraoperative physiologic variables and outcome in cardiac surgery:Part I In-hospital mortality. Ann Thorac Surg 2000;69:1070-5.
26) Slogoff S, Reul GJ, Keats AS, et al. Role of perfusion pressure and flow in major organ dysfunction after cardiopulmonary bypass. Ann Thorac Surg 1990;50:911-8.
27) Joshi B, Ono M, Brown C, et al. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth Analg 2012;114:503-10.
28) Hori D, Nomura Y, Ono M, et al. Optimal blood pressure during cardiopulmonary bypass defined by cerebral autoregulation monitoring. J Thorac Cardiovasc Surg 2017;154:1590-98.
29) Cook DJ, Oliver WC Jr, Orszulak TA et al. Cardiopulmonary bypass temperature, hematocrit, and cerebral oxygen delivery in humans. Ann Thorac Surg 1995;60:1671-7.
30) Loor G, Li L, Sabik JF 3rd, et al. Nadir hematocrit during caddiopulmonary bypass:endo-organ dysfunction and mortality. J Thorac Cardiovasc Surg 2012;144:654-62.
31) Oberleithner H, Wilhelmi M. Determination of erythrocyte sodium sensitivity in man. Eur J Physiol 2013;465:1459-66.
32) Tsai AG, Cabrales P, Intaglietta M. Microvascular perfusion upon exchange transfusion with stored red blood cells in normovolemic anemic conditions. Transfusion 2004;44:1626-34.
33) Min JJ. Association between red blood cell storage duration and clinical outcome in patients undergoing off-pump coronary bypass surgery:a retrospective study. BMC Anesthesiol. 2014;14:95.
34) Vamvakas EC, Carven JH. Length of storage of transfused red cells and postoperative morbidity in patients undergoing coronary artery bypass graft surgery. Transfusion 2000;40:101-9.
35) Cholette JM, Pietropaoli AP, Henrichs KF, et al. Longer red cell storage duration is associated with increased post-operative infections in pediatric cardiac surgery. Crit Care Med 2015;16:227-235.
36) Fang WC, Helm RE, Krieger KH, et al. Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery. Circulation 1997;96:II-194-9.
37) DeFoe GR, Ross CS, Olmstead EM, et al. Lowest hematocrit on bypass and adverse outcomes associated with coronary artery bypass grafting. Northern New England Cardiovascular Disease Study Group. Ann Thorac Surg 2001;71:769-76.
38) Habib RH, Zacharias A, Schwann TA, et al. Role of hemodilutional anemia and transfusion during cardiopulmonary bypass in renal injury after coronary revascularization:implications on operative outcome. Crit Care Med 2005;33:1749-56.
39) Goldberg JB, Shann KG, Fitzgerald D, et al. The relationship between intra-operative transfusions and nadir kematocrit on post-operative outcomes after cardiac surgery. J Extra Corpor Technol 2016;48:188-93.
40) Karkouti K, Beattie WS, Wijeysundera DN, et al. Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. J Thorac Cardiovasc Surg 2005;129:391-400.
41) Gorvitovskaia AY, Scrimgeour LA, Potz BA, et al. Lower preoperative hematocrit, longer hospital stay and neurocognitive decline after cardiac surgery. Surgery 2020;168:147-54.
42) Engoren MC, Habib RH, Zacharias A, et al. Effect of blood transfusion on long-term survival after cardiac operation. Ann Thorac Surg 2002;74:1180-6.
43) Murphy GJ, Reeves BC, Rogers CA, et al. Increased mortality, postoperative morbidity, and cost after red cell blood cell transfusion in patients having cardiac surgery. Circulation 2007;116:2544-52.
44) Padmanabhan H, Brookes ML, Luckraz H. Association between anemia and blood transfusion with long-term mortality after cardiac surgery. Ann Thorac Surg 2019;108:687-92.
45) Li Y, Cheang I, Zhang Z, et al. Prognostic association between perioperative red blood cell transfusion and postoperative cardiac surgery outcomes. Front Cardiovasc Med 2021;8:730492.

第11章 人工心肺中の体温管理

P.113 掲載の参考文献
1) Hessel EA. What's new in cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2019;33:2296-326.
2) McCullough JN, Zhang N, Reich DL, et al. Cerebral metabolic suppression during hypothermic circulatory arrest in humans. Ann Thorac Surg 1999;67:1895-9.
3) Groom RC, Fitzgerald D. Extracorporeal device and related technologies. In:Kaplan JA, Augoustides JG, Manecke GRJ, et al. editors. Kaplan's Cardiac Anesthesia. 7th ed. Philadelphia:Elsevier;2017 p.1162-213.
4) Nussmeier NA. Management of temperature during and after cardiac surgery. Tex Heart Inst J 2005;32:472-6.
5) Govier A v, Reves JG, McKay RD, et al. Factors and their influence on regional cerebral blood flow during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg 1984;38:592-600.
6) Murkin JM, Farrar JK, Tweed WA, et al. Cerebral autoregulation and flow/metabolism coupling during cardiopulmonary bypass:the influence of PaCO2. Anesth analg 1987;66:825-32.
7) Murkin JM, Martzke JS, Buchan AM, et al. A randomized study of the influence of perfusion technique and pH management strategy in 316 patients undergoing coronary artery bypass surgery::II. neurologic and cognitive outcomes. J Thorac Cardiovasc Surg 1995;110:349-62.
8) Pugsley W, Klinger L, Paschalis C, et al. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning. Stroke 1994;25:1393-9.
9) Clark RE, Brillman J, Davis DA, et al. Microemboli during coronary artery bypass grafting. Genesis and effect on outcome. J Thorac Cardiovasc Surg 1995;109:249-58.
10) Piccioni MA, Leirner AA, Auler JO. Comparison of pH-stat versus alpha-stat during hypothermic cardiopulmonary bypass in the prevention and control of acidosis in cardiac surgery. Artif Organs 2004;28:347-52.
11) Kunst G, Milojevic M, Boer C, et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in adult cardiac surgery. Br J Anaesth 2019;123:713-57.
12) Sakamoto T, Kurosawa H, Shin'oka T, et al. The influence of pH strategy on cerebral and collateral circulation during hypothermic cardiopulmonary bypass in cyanotic patients with heart disease:results of a randomized trial and real-time monitoring. J Thorac Cardiovasc Surg 2004;127:12-9.
13) Kurth CD, O'Rourke MM, O'Hara IB. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets. Anesthesiology 1998;89:110-8.
14) Stone JG, Young WL, Smith CR, et al. Do standard monitoring sites reflect true brain temperature when profound hypothermia is rapidly induced and reversed? Anesthesiology 1995;82:344-51.
15) Cook DJ, Orszulak TA, Daly RC, et al. Cerebral hyperthermia during cardiopulmonary bypass in adults. J Thorac Cardiovasc Surg 1996;111:268-9.
16) Grocott HP, Newman MF, Croughwell ND, et al. Continuous jugular venous versus nasopharyngeal temperature monitoring during hypothermic cardiopulmonary bypass for cardiac surgery. J Clin Anesth 1997;9:312-6.
17) Shaaban Ali M, Harmer M, Kirkham F. Cardiopulmonary bypass temperature and brain function. Anaesthesia 2005;60:365-72.
18) Engelman R, Baker RA, Likosky DS, et al. The Society of Thoracic Surgeons, The Society of Cardiovascular Anesthesiologists, and The American Society of ExtraCorporeal Technology:Clinical practice guidelines for cardiopulmonary bypass--temperature management during cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2015;29:1104-13.
19) Geissler HJ, Allen SJ, Mehlhorn U, et al. Cooling gradients and formation of gaseous microemboli with cardiopulmonary bypass:an echocardiographic study. Ann Thorac Surg 1997;64:100-4.
20) Nguyen L, Roth DM, Shanewise JS, Kaplan JA. Discontinuing cardiopulmonary bypass. In:Kaplan Joel A, Augoustides JGT, Manecke GRJ, et al. editors. Kaplan's Cardiac Anesthesia. 7th ed. Philadelphia:Elsevier;2017 p.1291-310.
21) Grigore AM, Grocott HP, Mathew JP, et al. The rewarming rate and increased peak temperature alter neurocognitive outcome after cardiac surgery. Anesth Analg 2002;94:4-10.
22) Ho KM, Tan JA. Benefits and risks of maintaining normothermia during cardiopulmonary bypass in adult cardiac surgery:a systematic review. Cardiovasc Ther 2011;29:260-79.
23) Linassi F, Maran E, de Laurenzis A, et al. Targeted temperature management in cardiac surgery:a systematic review and meta-analysis on postoperative cognitive outcomes. Br J Anaesth 2022;128:11-25.
24) Tian DH, Wan B, Bannon PG, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac Surg 2013;2:148-58.
25) Nathan HJ, Wells GA, Munson JL, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass:a randomized trial. Circulation 2001;104:I85-I91.
26) Sahu B, Chauhan S, Kiran U, et al. Neurocognitive function in patients undergoing coronary artery bypass graft surgery with cardiopulmonary bypass:the effect of two different rewarming strategies. J Cardiothorac Vasc Anesth 2009;23:14-21.
27) Grocott HP, Mackensen GB, Grigore AM, et al. Postoperative hyperthermia is associated with cognitive dysfunction after coronary artery bypass graft surgery. Stroke 2002;33:537-41.

第12章 人工心肺中の生体反応

P.123 掲載の参考文献
1) Bartels K, Zakkar M. Inflammatory Responses to Cardiopulmonary Bypass. In:Gravlee GP, Davis RF, Hammon JW, Kussman BD, eds. Cardiopulmonary Bypass and Mechanical Support:Principles and Practice. 4th ed. Wolters Kluwer Health;2016. p.357-68.
2) Mirhafez SR, Khadem SH, Sahebkar A, et al. Comparative effects of on-pump versus off-pump coronary artery bypass grafting surgery on serum cytokine and chemokine levels. IUBMB Life 2021;73:1423-31.
3) Shroyer AL, Grover FL, Hattler B, et al. On-Pump versus Off-Pump Coronary-Artery Bypass Surgery. N Engl J Med 2009;361:1827-37.
4) Moller CH, Perko MJ, Lund JT, et al. No major differences in 30-day outcomes in high-risk patients randomized to off-pump versus on-pump coronary bypass surgery:The best bypass surgery trial. Circulation 2010;121:498-504.
5) Hueb W, Lopes NH, Pereira AC, et al. Five-year follow-up of a randomized comparison between off-pump and on-pump stable multivessel coronary artery bypass grafting. The MASS III Trial. Circulation 2010;122:S48-S52.
6) Lamy A, Devereaux PJ, Prabhakaran D, et al. Off-Pump or On-Pump Coronary-Artery Bypass Grafting at 30 Days. N Eng J Med 2012;366:1489-97.
7) Lamy A, Devereaux PJ, Prabhakaran D, et al. Effects of Off-Pump and On-Pump Coronary-Artery Bypass Grafting at 1 Year. N Engl J Med 2013;368:1179-88.
8) Houlind K, Kjeldsen BJ, Madsen SN, et al. On-pump versus off-pump coronary artery bypass surgery in elderly patients:Results from the danish on-pump versus off-pump randomization study. Circulation 2012;125:2431-39.
9) Diegeler A, Borgermann J, Kappert U, et al. Off-Pump versus On-Pump Coronary-Artery Bypass Grafting in Elderly Patients. N Engl J Med 2013;368:1189-98.
10) Miller BE, Levy JH. The inflammatory response to cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997;11:355-66.
11) Merle NS, Church SE, Fremeaux-Bacchi V, et al. Complement system part I- molecular mechanisms of activation and regulation. Front Immunol 2015;6:262.
12) Chenoweth DE, Cooper SW, Hugli TE, et al. Complement Activation during Cardiopulmonary Bypass:Evidence for Generation of C3a and C5a Anaphylatoxins. N Engl J Med 1981;304:497-503.
13) Menasche P, Haydar S, Peynet J, et al. A potential mechanism of vasodilation after warm heart surgery:The temperature-dependent release of cytokines. J Thorac Cardiovasc Surg 1994;107:293-9.
14) Klebanoff SJ, Vadas MA, Harlan JM, et al. Stimulation of neutrophils by tumor necrosis factor. J Immunol 1986;136:4220-5.
15) Harlan JM. Leukocyte-Endothelial Interactions. Blood 1985;65:513-25.
16) Riegel W, Spillner G, Schlosser V, et al. Plasma levels of main granulocyte components during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1988;95:1014-9.
17) Ferraris VA, Ferraris SP, Singh A, et al. The platelet thrombin receptor and postoperative bleeding. Ann Thorac Surg 1998;65:352-8.
18) Larsen E, Celi A, Gilbert GE, et al. PADGEM protein:A receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 1989;59:305-12.
19) Clive Landis R, Brown JR, Fitzgerald D, et al. Attenuating the systemic inflammatory response to adult cardiopulmonary bypass:A critical review of the evidence base. J Extra Corpor Technol 2014;46:197-211.
20) Hirleman E, Larson DF. Cardiopulmonary bypass and edema:Physiology and pathophysiology. Perfusion 2008;23:311-22.
21) Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx:Composition, functions, and visualization. Pflugers Arch Eur J Physiol 2007;454:345-59.
22) Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange:An improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth 2012;108:384-94.
23) Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007;9:121-67.
24) Boer C, Koning NJ, Van Teeffelen JV, et al. Changes in microcirculatory perfusion during cardiac surgery are paralleled by alterations in glycocalyx integrity. Crit Care 2013;17:P212.
25) Nelson MT, Armour SK, Butterworth IV JF. Endocrine, Metabolic, and Electrolyte Responses to Cardiac Surgery and Cardiopulmonary Bypass. In:Gravlee GP, Davis RF, Hammon JW, Kussman BD, eds. Cardiopulmonary Bypass and Mechanical Support:Principles and Practice. 4th ed. Wolters Kluwer Health;2016. p.315-44.
26) Robertie PG, Butterworth IV JF, Royster RL, et al. Normal parathyroid hormone responses to hypocalcemia during cardiopulmonary bypass. Anesthesiology 1991;75:43-8.
27) Castillo CF-D, Harringer W, Warshaw AL, et al. Risk factors for pancreatic cellular injury after cardiopulmonary bypass. N Engl J Med 1991;325:382-7.
28) Zaloga GP, Strickland RA, Butterworth IV JF, et al. Calcium attenuates epinephrine's β-adrenergic effects in postoperative heart surgery patients. Circulation 1990;81:196-200.
29) Harris MNE, Crowther A, Jupp RA, et al. Magnesium and coronary revascularization. Br J Anaesth 1988;60:779-83.
30) Lim M, Linton RAF, Band DM. Rise in Plasma Potassium during Rewarming in Open-Heart Surgery. Lancet 1983;1:241-2.
31) Lehot JJ, Piriz H, Villard J, et al. Glucose homeostasis:Comparison between hypothermic and normothermic cardiopulmonary bypass. Chest 1992;102:106-11.
32) Phadke D, Beller JP, Tribble C. The disparate effects of epinephrine and norepinephrine on hyperglycemia in cardiovascular surgery. Heart Surg Forum 2018;21:E522-E526.
33) Ng A, Tan SSW, Lee HS, et al. Effect of propofol infusion on the endocrine response to cardiac surgery. Anaesth Intensive Care 1995;23:543-7.
34) Taylor KM, Jones JV, Walker MS, et al. The cortisol response during heart lung bypass. Circulation 1976;54:20-5.
35) Taggart DP, Fraser WD, Borland WW, et al. Hypothermia and the stress response to cardiopulmonary bypass. Eur J Cardiothorac Surg 1989;3:359-64.
36) Winterhalter M, Brandl K, Rahe-Meyer N, et al. Endocrine stress response and inflammatory activation during CABG surgery. A randomized trial comparing remifentanil infusion to intermittent fentanyl. Eur J Anaesthesiol 2008;25:326-35.
37) Ling Y, Li X, Gao X. Intensive versus conventional glucose control in critically ill patients:A meta-analysis of randomized controlled trials. Eur J Intern Med 2012;23:564-74.
38) Ban KA, Minei JP, Laronga C, et al. American College of Surgeons and Surgical Infection Society:Surgical Site Infection Guidelines, 2016 Update. J Am Coll Surg 2017;224:59-74.
39) Caso G, Vosswinkel JA, Garlick PJ, et al. Altered protein metabolism following coronary artery bypass graft (CABG)surgery. Clin Sci 2008;114:339-46.
40) Corbett SA. Systemic Response to Injury and Metabolic Support. In:Brunicardi FC, Andersen DK, Billiar TR, Dunn DL, Kao LS, Hunter JG, Matthews JB, Pollock RE, eds. Schwartz's Principle of Surgery. 11th ed. McGraw Hill;2019. https://accessmedicine.mhmedical.com/content.aspx?bookid=2576&sectionid=210405073(2022年5月14日閲覧)

第13章 大動脈手術の人工心肺

P.134 掲載の参考文献
1) Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases:Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology(ESC). Eur heart J 2014;35:2873-926.
2) Xia Q, Cao Y, Xie B, et al. Cannulation strategies in type A aortic dissection:a novel insight narrative review. J Thorac Dis 2021;13:2551-62.
3) 宮入 剛, 木川 幾, 三浦 友. 急性大動脈解離手術におけるswitching対策-マルチモニタリングと右上腕動脈送血の意義. 胸部外科2007;60:319-23.
4) Sabik JF, Nemeh H, Lytle BW, et al. Cannulation of the axillary artery with a side graft reduces morbidity. Ann Thorac Surg 2004;77:1315-20.
5) Qu JZ, Kao LW, Smith JE, et al. Brain protection in aortic arch surgery:an evolving field. J Cardiothorac Vasc Anesth 2021;35:1176-88.
6) Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest:I. Effects of cooling on electroencephalogram and evoked potentials. Ann Thoracic Surg 2001;71:14-21.
7) Halstead JC, Wurm M, Meier DM, et al. Avoidance of hemodilution during selective cerebral perfusion enhances neurobehavioral outcome in a survival porcine model. Eur J Cardiothorac Surg 2007;32:514-20.
8) Ziya Apaydin A. Antegrade cerebral perfusion:a review of its current application. Turk Gogus Kalp Damar Cerrahisi Derg 2021;29:1-4.
9) Spielvogel D, Kai M, Tang GH, Malekan R, Lansman SL. Selective cerebral perfusion:a review of the evidence. J Thorac Cardiovasc Surg 2013;145:S59-62.
10) De Paulis R, Czerny M, Weltert L, et al. Current trends in cannulation and neuroprotection during surgery of the aortic arch in Europe. Eur J Cardiothorac Surg 2015;47:917-23.
11) Tian DH, Wan B, Bannon PG, et al. A meta-analysis of deep hypothermic circulatory arrest versus moderate hypothermic circulatory arrest with selective antegrade cerebral perfusion. Ann Cardiothorac surg 2013;2:148-58.
12) Olsson C, Thelin S. Antegrade cerebral perfusion with a simplified technique:unilateral versus bilateral perfusion. Ann Thorac Surg 2006;81:868-74.
13) Tian DH, Wilson-Smith A, Koo SK, et al. Unilateral versus bilateral antegrade cerebral perfusion:a meta-analysis of comparative studies. Heart Lung Circ 2019;28:844-9.
14) Papantchev V, Stoinova V, Aleksandrov A, et al. The role of Willis circle variations during unilateral selective cerebral perfusion:a study of 500 circles. Eur J Cardiothorac Surg 2013;44:743-53.
15) Leshnower BG, Rangaraju S, Allen JW, et al. Deep hypothermia with retrograde cerebral perfusion versus moderate hypothermia with antegrade cerebral perfusion for arch surgery. Ann Thorac Surg 2019;107:1104-10.
16) Guo S, Sun Y, Ji B, et al. Similar cerebral protective effectiveness of antegrade and retrograde cerebral perfusion during deep hypothermic circulatory arrest in aortic surgery:a meta-analysis of 7023 patients. Artif Organs 2015;39:300-8.
17) Okita Y, Miyata H, Motomura N, et al. A study of brain protection during total arch replacement comparing antegrade cerebral perfusion versus hypothermic circulatory arrest, with or without retrograde cerebral perfusion:analysis based on the Japan Adult Cardiovascular Surgery Database. J Thorac Cardiovasc Surg 2015;149:S65-73.
18) Hameed I, Rahouma M, Khan FM, et al. Cerebral protection strategies in aortic arch surgery:a network meta-analysis. J Thorac Cardiovasc Surg 2019;S0022-5223(19)30483-0.

第14章 小児の人工心肺

P.145 掲載の参考文献
1) 林輝行. 体外循環操作・新生児・乳幼児. サーキュレーション・アップ・トゥ・デート2009;4:584-92.
2) 横川忠一, 阿部正一, 阿部弥之, ほか. 小児開心術における無輸血体外循環. 体外循環技術2003;30:26-8.
3) 日本体外循環技術医学会. 人工心肺ならびに補助循環に関するインシデント・アクシデントおよび安全に関するアンケート2019(集計報告). https://jasect.org/wp/wp-content/uploads/2022/01/questionnaire_cpb_1_2019.pdf(2022年3月15日閲覧)
4) Clark LC Jr. Optimal flow rate in perfusion, extracorporeal circulation. Charles C Thomas:Springfield;1958. p.150-63.
5) 宮本和幸, 米永國宏, 平山統一, ほか. 小児開心術におけるmodified ultrafiltration の有用性 無輸血症例と輸血施行症例についての検討. 日心外会誌2001;30:290-4.
6) 野村卓哉, 布村仁亮, 戸畑裕志, ほか. 人工心肺回路熱交換器を用いた小児開心術時のmodified ultrafiltration 実施に伴う体温低下防止. 体外循環技術2014;41:148-52.
7) 福村文雄, 瀬瀬顯, 岩井敏郎ほか. 無輸血フォンタン手術の可能性. 日小循誌2000;16:772-6.

第15章 低侵襲手術のための人工心肺

P.157 掲載の参考文献
1) 平林則行. 低侵襲手術(MICS)での人工心肺. 四津良平. CE技術シリーズ-人工心肺-. 東京:南江堂;2015. p.159-70.
2) 百瀬直樹. 人工心肺装置. 山口敦司. 人工心肺ハンドブック(改訂第3版). 東京:中外医学社;2020. p.62-108.
3) 日本心臓血管外科学会, 日本胸部外科学会, 日本人工臓器学会. 3学会合同陰圧吸引補助脱血体外循環検討委員会報告並びに勧告. https://plaza.umin.ac.jp/~jscvs/negative-pressure/(2022年4月12日閲覧)
4) Hosono M, Yasumoto H, Kuwauchi S, et. al. Utility of Ultrasonographic Assessment of Distal Femoral Arterial Flow during Minimally Invasive Valve Surgery. Ann Thorac Cardiovasc Surg. 2021;27:389-94.
5) Toya T, Fujita T, Fukushima S, et al. Efficacy of regional saturation of oxygen monitor using near-infrared spectroscopy for lower limb ischemia during minimally invasive cardiac surgery. J Artif Organs 2018;21:420-6.
6) Inoue K, Hiraoka A, Chikazawa G, et al. Preventive Strategy for Reexpansion Pulmonary Edema After Minimally Invasive Cardiac Surgery. The Ann Thorac Surg 2020;109:375-7.

第16章 非心臓手術への適応

P.168 掲載の参考文献
1) Suk P, Sramek V, Cundrle I, Jr. Extracorporeal membrane oxygenation use in thoracic surgery. Membranes (Basel)2021;11:416.
2) Muller T, Philipp A, Luchner A, et al. A new miniaturized system for extracorporeal membrane oxygenation in adult respiratory failure. Crit Care 2009;13:R205.
3) Ried M, Bein T, Philipp A, et al. Extracorporeal lung support in trauma patients with severe chest injury and acute lung failure:a 10-year institutional experience. Crit Care 2013;17:R110.
4) Lee JG, Kim N, Narm KS, et al. The Effect of additional stepwise venous inflow on differential hypoxia of veno-arterial extracorporeal membrane oxygenation. ASAIO J 2020;66:803-8.
5) Meng ML, Bacchetta MD, Spellman J. Anesthetic management of the patient with extracorporeal membrane oxygenator support. Best Pract Res Clin Anaesthesiol 2017;31:227-36.
6) Calderone CE, Tuck BC, Gray SH, et al. The role of transesophageal echocardiography in the management of renal cell carcinoma with venous tumor thrombus. Echocardiography 2018;35:2047-55.
7) 北村俊治, 土居久栄, 沼田克雄. 体外循環使用による気管狭窄症の麻酔. 麻酔1988;37:81-5.
8) 山口恭子, 藤本啓子, 小出康弘, ほか. 甲状腺癌による高度気管狭窄患者の気道管理 V-V ECMOとHFJV併用の有用性. 麻酔2013;62:78-82.
9) Kim DH, Park JM, Son J, et al. Multivariate analysis of risk factor for mortality and feasibility of extracorporeal membrane oxygenation in high-risk thoracic surgery. Ann Thorac Cardiovasc Surg 2021;27:97-104.
10) Sawadogo A, D'Ostrevy N, Belem FP, et al. Extracorporeal life support as a lifesaving procedure in palliative surgery of stenosing upper tracheal tumor. Ann Card Anaesth 2021;24:389-91.
11) Kodia K, Liu Y, Ghodsizad A, et al. Use of venovenous extracorporeal membrane oxygenation for resection of a large paratracheal mass causing critical tracheal stenosis:a case report. J Card Surg 2021;36:367-70.
12) Kim SH, Song S, Kim YD, et al. Outcomes of extracorporeal life support during surgery for the critical airway stenosis. ASAIO J 2017;63:99-103.
13) 児嶋 剛, 安里 亮, 池田晴人, ほか. 体外循環補助下に挿管した縦隔甲状腺腫瘍例. 耳鼻臨床2004;97:621-5.
14) Diamond JM, Lee JC, Kawut SM, et al. Clinical risk factors for primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2013;187:527-34.
15) 五藤恵次. 肺移植の麻酔. 麻酔2014;63:S1-S7.
16) 濱井優輔, 石坪昌恵, 濱田美帆, ほか. 脳死肺移植手術中の緊急体外循環使用に関与する因子の検討. 麻酔2017;66:1281-6.
17) Subramaniam K, Rio JMD, Wilkey BJ, et al. Anesthetic management of lung transplantation:results from a multicenter, cross-sectional survey by the society for advancement of transplant anesthesia. Clin Transplant 2020;34:e13996.
18) Magouliotis DE, Tasiopoulou VS, Svokos AA, et al. Extracorporeal membrane oxygenation versus cardiopulmonary bypass during lung transplantation:a meta-analysis. Gen Thorac Cardiovasc Surg 2018;66:38-47.
19) Ohsumi A, Date H. Perioperative circulatory support for lung transplantation. Gen Thorac Cardiovasc Surg 2021;69:631-7.
20) Ruszel N, Kielbowski K, Piotrowska M, et al. Central, peripheral ECMO or CPB? Comparsion between circulatory support methods used during lung transplantation. J Cardiothorac Surg 2021;16:341.
21) Yeo HJ, Kim DH, Jeon D, et al. Low-dose heparin during extracorporeal membrane oxygenation treatment in adults. Intensive Care Med 2015;41:2020-1.
22) Scaravilli V, Fumagalli J, Rosso L, et al. Heparin-free lung transplantation on venovenous extracorporeal membrane oxygenation bridge. ASAIO J 2021;67:e191-e7.
23) Chari RS, Gan TJ, Robertson KM, et al. Venovenous bypass in adult orthotopic liver transplantation:routine or selective use? J Am Coll Surg 1998;186:683-90.
25) Barbas AS, Levy J, Mulvihill MS, et al. Liver transplantation without venovenous bypass:does surgical approach matter? Transplant Direct 2018;4:e348.
26) Gravlee GP, Davis RF, Stammers AH, et al. 人工心肺:その原理と実際:メディカル・サイエンス・インターナショナル;2010.
27) Sun K, Hong F, Wang Y, et al. Venovenous bypass is associated with a lower incidence of acute kidney injury after liver transplantation in patients with compromised pretransplant renal function. Anesth Analg 2017;125:1463-70.
28) Lapisatepun W, Lapisatepun W, Agopian V, et al. Venovenous bypass during liver transplantation:a new look at an old technique. Transplant Proc 2020;52:905-9.
29) Van Hoof L, Rega F, Devroe S, et al. Successful resuscitation after hyperkalemic cardiac arrest during liver transplantation by converting veno-venous bypass to veno-arterial ECMO. Perfusion 2021;36:766-8.
30) Baimas-George M, Tschuor C, Watson M, et al. Current trends in vena cava reconstructive techniques with major liver resection:a systematic review. Langenbecks Arch Surg 2021;406:25-38.
31) 下村 啓, 三宅聰行, 新井豊久, ほか. 開胸式体外循環を併用し, 低体温下に脳底動脈瘤のクリッピングが行われた2症例. 日臨麻誌1996;16:716-21.
32) 佐藤 章, 中村 弘, 小林繁樹, ほか. 【脳動脈瘤の新しい治療戦略】脳動脈瘤手術における低体温麻酔の使用はどのように有効か. 脳卒中の外科1999;27:183-8.

第17章 補助循環と人工心臓

P.180 掲載の参考文献
1) 川人宏次. 第13章 補助循環. 井野隆史, 安達秀雄, 編. 最新体外循環 基本的知識と安全の確保. 東京:金原出版;2003. p.265-76.
2) 日本循環器学会/日本心不全学会合同ガイドライン. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf(2022年3月9日閲覧)
3) Sen A, Larson JS, Kashani KB, et al. Mechanical circulatory assist devices:a primer for critical care and emergency physicians. Crit Care 2016;20:153.
4) 日本循環器学会/日本心臓血管外科学会/日本胸部外科学会/日本血管外科学会合同ガイドライン:2021年改訂版 重症心不全に対する植込型補助人工心臓治療ガイドライン. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Ono_Yamaguchi.pdf(2022年3月9日閲覧)
5) 日本循環器学会/日本心不全学会合同ガイドライン:急性・慢性心不全診療ガイドライン(2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf(2022年3月9日閲覧)

第18章 経皮的心肺補助 ( PCPS ) と体外式膜型人工肺 ( ECMO )

P.191 掲載の参考文献
1) 日本循環器学会/日本心不全学会. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf(2022年5月3日閲覧)
2) Lorusso R, Shekar K, Maclaren G, et al. ELSO Interim guideline for veno-arterial extracorporeal membrane oxygenation in adult cardiac patients. ASAIO J 2021;67:827-44.
3) Schmidt M, Burrel A, Roberts L, et al. Predicting survival after ECMO for refractory cardiogenic shock:The survival after venoarterial-ECMO(SAVE)score. EurHeart J 2015;36:2246-56.
4) 日本集中治療医学会/日本呼吸療法医学会/日本呼吸器学会. ARDS診療ガイドライン2016. https://www.jsicm.org/pdf/ARDSGL2016.pdf#view=FitV(2022年5月3日閲覧)
5) Joseph E. Tonna, Darryl Abrams, Daniel Brodie et al. Management of adult patients supported with veno-venous extracorporeal membrane oxygenation(VV ECMO):guideline from the Extracorporeal life support organization. ASAIO J 2021;67:601-10.
6) Extracorporeal Life Support Organization(ELSO). General Guidelines for all ECLS Cases August, 2017. https://www.elso.org/Portals/0/ELSO%20Guidelines%20General%20All%20ECLS%20Version%201_4.pdf(2022年5月7日閲覧)

第19章 血液浄化療法

P.204 掲載の参考文献
1) The Kidney Disease Improving Global Outcomes(KDIGO)Acute Kidney Injury Working Group:Kellum JA, Lameire N, Asperin P, et al. Dialysis interventions for treatment of AKI. Kidney Int Suppl 2012;2:89-115.
2) Uchino S, Toki N, Takeda K, et al. Validity of low-intensity continuous renal replacement therapy. Crit Care Med 2013;41:2584-91.
3) Yasuda H, Uchino S, Uji M, et al. Japanese Society for Physicians and Trainees in Intensive Care(JSEPTIC) Clinical Trial Group. The lower limit of intensity to control uremia during continuous renal replacement therapy. Crit Care 2014;18:539.
4) Up To Date. Kidney replacement therapy(dialysis)in acute kidney injury in adults:Indications, timing, and dialysis dose. https://www.uptodate.com/contents/kidney-replacement-therapy-dialysis-in-acute-kidney-injury-in-adults-indications-timing-and-dialysis-dose(2022年3月10日閲覧)
5) Zarbock A, Kellum JA, Schmidt C, et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury:The ELAIN randomized clinical trial. JAMA 2016;315:2190-9.
6) Gaudry S, Hajade D, Schortgen F, et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 2016;375:122-33.
7) AKI(急性腎障害)診療ガイドライン作成委員会編. AKI(急性腎障害)診療ガイドライン2016. 日腎会誌2017;59:419-533.
8) Cole L, Bellomo R, Journois D, et al. A phase II randomized, controlled trial of continuous hemofiltration in sepsis. Crit. Care Med 2002;30:100-6.
9) Zhang L, Yang J, Eastwood GM, et al:Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury:a meta-analysis. Am J Kidney Dis 2015;66:322-30.
10) 「診療報酬の算定方法の一部改正に伴う実施上の留意事項について」保医発0305 第1号令和2年3月5日, https://www.jbpo.or.jp/med/jb_square/aph/expert/ex02/01.php(2022年3月10日閲覧)
11) Padmanabhan A, Connelly-Smith L, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical oractice-evidence-based approach from the writing committee of the American Society for Apheresis:The eighth special issue. J Clin Apher 2019;34:171-354.

第20章 安全管理とトラブルシューティング

P.216 掲載の参考文献
1) 日本体外循環技術医学会安全対策委員会, 教育委員会. 人工心肺における安全装置の設置に関する勧告 改訂6版. 体外循環技術2021;48(2):巻頭.
2) 日本体外循環技術医学会. 人工心肺ならび補助循環に関するインシデント・アクシデントおよび安全に関するアンケート2019の結果報告. 体外循環技術2022;49:42-71.
3) 日本体外循環技術医学会 安全対策委員会. VAVD装置使用における留意点について. http://jasect.sakura.ne.jp/wp/wp-content/uploads/2018/07/anzen-jyouhouNo20.pdf(2022年5月9日閲覧)
4) 日本心臓血管外科学会. 3学会合同陰圧吸引補助脱血体外循環検討委員会報告並びに勧告. https://plaza.umin.ac.jp/~jscvs/negative-pressure/(2022年4月20日閲覧)
5) 日本体外循環技術医学会安全対策委員会. 人工心肺における安全装置設置状況に関するアンケート2016. 体外循環技術2017;44:355-65.
6) Fisher AR, Baker M, Buffin M, et al. Normal and abnormal trans-oxygenator pressure gradients during cardiopulmonary bypass. Perfusion 2003;18:25-30.
7) 日本心臓血管外科学会. 人工肺を用いた心臓血管外科手術中の人工肺内圧上昇に関する報告. https://plaza.umin.ac.jp/~jscvs/lung-internal-pressure/(2022年4月20日閲覧)

最近チェックした商品履歴

Loading...