日本臨牀 81/増刊1 最新の骨粗鬆症学(第2版)

出版社: 日本臨牀社
発行日: 2023-01-31
分野: 臨床医学:一般  >  雑誌
ISSN: 00471852
雑誌名:
特集: 最新の骨粗鬆症学(第2版)―骨粗鬆症の最新知見―
電子書籍版: 2023-01-31 (第2版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:8~14営業日

24,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

24,200 円(税込)

目次

  • 特集 最新の骨粗鬆症学(第2版)
       ―骨粗鬆症の最新知見―

    序 ―骨代謝異常症に挑む―

    I.概 論
     1.骨粗鬆症の疫学と予後
     2.骨粗鬆症の発症メカニズム
     3.臓器連関から見た骨粗鬆症の病態
     4.ロコモティブシンドロームと骨粗鬆症
     5.骨粗鬆症の予防と治療ガイドラインの概要

    II.骨研究フロンティア
     1.骨の構造と機能
     2.骨を構成する細胞の分化と機能
     3.骨代謝を調節する微細環境

    III.骨粗鬆症の診断
     1.骨粗鬆症の臨床像
     2.骨粗鬆症検診の現状と問題点
     3.骨評価と画像診断
     4. 臨床検査法
     5. 骨粗鬆症の診断、鑑別診断

    IV.骨粗鬆症の予防、治療、管理
     1.骨粗鬆症治療薬の開始基準
     2.骨粗鬆症治療薬の維続と投薬管理
     3.骨粗鬆症患者の指導
     4.薬物治療の実際
     5.骨粗鬆症治療薬の副作用対策
     6.特定の背景を有する患者に対する治療介入
     7.骨粗鬆症治療薬の今後の展望

    V.骨粗鬆症に伴う骨折の予防・治療
     1.骨粗鬆症に伴う骨折の疫学
     2.骨粗鬆症に伴う大腿骨近位部骨折、椎体骨折の分類
     3.骨粗鬆症による骨折の危険因子とその評価
     4.骨折の診察と診断
     5.骨粗鬆症による骨折の治療
     6.二次性骨折予防のための理学療法

    VI.続発性骨粗鬆症の診断と治療
     1.遺伝性骨粗鬆症
     2.内分泌性骨粗鬆症
     3.慢性腎臓病(CKD)患者と血液透析患者の骨粗鬆症
     4.呼吸器疾患(COPD等)に伴う骨粗鬆症
     5.糖尿病性骨粗鬆症
     6.関節リウマチと骨粗鬆症
     7.移植後骨粗鬆症
     8.不動性骨粗鬆症
     9.グルココルチコイド誘発性(ステロイド性)骨粗鬆症
     10.抗悪性腫瘍薬に伴う骨粗鬆症
     11.性ホルモン低下療法に伴う骨粗鬆症

    VII.骨粗鬆症の類縁疾患の診断と治療
     1.くる病・骨軟化症
     2.骨パジェット病
     3.がんの骨転移とがん治療に伴う骨粗鬆症
     4.多発性骨髄腫
     5.骨粗鬆症・偽神経膠腫症候群
     6.進行性骨化性線維異形成症

    VIII.特 論
     1.骨粗鬆症治療薬の費用対効果
     2.microRNAによる治療
     3.iPS細胞からの軟骨細胞誘導法
     4.iPS細胞を活用した骨格系疾患の病態解析
     5.骨髄間葉系細胞から骨芽細胞への分化
     6.間葉系幹細胞の移植による骨粗鬆症の骨再生医療

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

序 - 骨代謝異常症に挑む -

P.8 掲載の参考文献

I 概論

P.15 掲載の参考文献
3) Iki M, Fujita Y, Tamaki J, et al : Design and baseline characteristics of a prospective cohort study for determinants of osteoporotic fracture in community-dwelling elderly Japanese men : the Fujiwarakyo osteoporosis risk in men (FORMEN) study. BMC Musculoskelet Disord 10 : 165, 2009.
5) 藤森研司, 桜澤邦男, 中藤真一 : 電子レセプトデータベースを用いた骨粗鬆症治療薬の薬剤変更による継続率, 遵守率の検討. 日本骨粗鬆症学会雑誌 5 : 461-470, 2019.
P.23 掲載の参考文献
4) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
8) LeBlanc AD, Spector ER, Evans HJ, et al : Skeletal responses to space flight and the bed rest analog : a review. J Musculoskelet Neuronal Interact 7 : 33-47, 2007.
P.29 掲載の参考文献
2) Puth MT, Klaschik M, Schmid M, et al : Prevalence and comorbidity of osteoporosis- a cross-sectional analysis on 10,660 adults aged 50 years and older in Germany. BMC Musculoskelet Disord 19 : 144, 2018.
5) 生活習慣病骨折リスクに関する診療ガイド [2019年版] (日本骨粗鬆症学会生活習慣病における骨折リスク評価委員会編), ライフサイエンス出版, 2019.
9) Ducy P : Bone Regulation of Insulin Secretion and Glucose Homeostasis. Endocrinology 161 : bqaa 149, 2020.
12) Sugisawa E, Takayama Y, Takemura N, et al : RNA Sensing by Gut Piezo1 Is Essential for Systemic Serotonin Synthesis. Cell 182 : 609-624.e21, 2020.
15) Hayashi M, Nakashima T, Yoshimura N, et al : Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metab 29 : 627-637.e5, 2019.
P.35 掲載の参考文献
3) 露繁巧江, 寺田亜希, 山崎あかね, ほか :年齢階層別の要介護状態予防 : 主にフレイルに着目して. 山口県立大学学術情報 14 : 157-162, 2021.
6) 日本医学会連合領域横断的なフレイル・ロコモ対策の推進に向けたワーキンググループ : 活動報告. フレイル・ロコモ克服のための医学会宣言 (解説), 2022. [https://www.jmsf.or.jp/activity/page_792.html] (2022年12月閲覧)
7) ロコモチャレンジ! 推進協議会 : ロコモONLINE. [https://locomo-joa.jp/] (2022年12月閲覧)
8) 長田斎, 原田洋一, 畦元智恵子, ほか : 要介護度の経年変化-同一集団における要介護度分布の9年間の変化-. 厚生の指標 58 : 37-43, 2011.
12) Yamada K, Ito YM, Akagi M, et al : Reference values for the locomotive syndrome risk test quantifying mobility of 8681 adults aged 20-89 years : A cross-sectional nationwide study in Japan. J Orthop Sci 25 : 1084-1092, 2020.
13) Aoki K, Sakuma M, Ogisho N, et al : The effects of self-directed home exercise with serial telephone contacts on physical functions and quality of life in elderly people at high risk of locomotor dysfunction. Acta Med Okayama 69 : 245-253, 2015.
P.41 掲載の参考文献
1) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
3) 骨粗鬆症診療における骨代謝マーカーの適正使用ガイド 2018年版 (日本骨粗鬆症学会骨代謝マーカー検討員会編), ライフサイエンス出版, 2018.
4) 生活習慣病骨折リスクに関する診療ガイド 2019年版 (日本骨粗鬆症学会生活習慣病における骨折リスク評価委員会編), ライフサイエンス出版, 2019.

II 骨研究フロンティア

P.50 掲載の参考文献
2) 大島泰郎 : 宇宙生物学-銀河系のかなたに友を求めて-, p111, 光文社, 1977.
3) 宇田川信之 : 骨と歯の進化と形づくりの分子メカニズム. 口腔生化学 (第6版) (早川太郎, 須田立雄 監), p67-86, 医歯薬出版, 2018.
4) 後藤仁敏 : 骨の起源と進化. バイオメカニズム学会誌 21 : 157-162, 1997.
5) 小守壽文 : 骨芽細胞に関する最新のトピック (1) -骨芽細胞と骨形成に関する最新のトピック-. THE BONE 33 : 39-43, 2019.
P.56 掲載の参考文献
1) 小澤英浩, 中村浩彰 : 骨の構造. 新骨の科学第2版 (須田立雄, 小澤英浩, 高橋榮明編), p19-29, 医歯薬出版, 2016.
6) 網塚憲生 : 第10章 顎骨. 口腔組織・発生学 第2版 (脇田稔, 前田健康, 中村浩彰, 網塚憲生編), p306-327, 医歯薬出版, 2016.
7) Vaananen HK, Karhukorpi EK, Sundquist K, et al : Evidence for the presence of a proton pump of the vacuolar H (+) -ATPase type in the ruffled borders of osteoclasts. J Cell Biol 111 : 1305-1311, 1990.
13) Hasegawa T, Hongo H, Yamamoto T, et al : Matrix vesicle-mediated mineralization and osteocytic regulation of bone mineralization. Int J Mol Sci 23 : 9941, 2022.
14) Hasegawa T, Yamamoto T, Hongo H, et al : Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM). Histochem Cell Biol 149 : 423-432, 2018.
P.63 掲載の参考文献
13) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), ライフサイエンス出版, 2015.
15) Ono T, Denda R, Tsukahara Y, et al : Simultaneous augmentation of muscle and bone by locomomimetism through calcium-PGC-1α signaling. Bone Res 10 : 52, 2022.
P.70 掲載の参考文献
9) Uenaka M, Yamashita E, Kikuta J, et al : Osteoblast-derived vesicles induce a switch from boneformation to bone-resorption in vivo. Nat Commun 13 : 1066, 2022.
P.75 掲載の参考文献
4) Tsukasaki M, Takayanagi H : Osteoimmunology : evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol 19 : 626-642, 2019.
P.81 掲載の参考文献
13) LeBlanc AD, Spector ER, Evans HJ, et al : Skeletal responses to space flight and the bed rest analog : a review. J Musculoskelet Neuronal Interact 7 : 33-47, 2007.
P.88 掲載の参考文献
18) Dacquin R, Starbuck M, Schinke T, et al : Mouse alpha1 (I) -collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev Dyn 224 : 245-251, 2002.
29) Chan CKF, Gulati GS, Sinha R, et al : Identification of the Human Skeletal Stem Cell. Cell 175 : 43-56.e21, 2018.
34) Terpstra L, Prud'homme J, Arabian A, et al : Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J Cell Biol 162 : 139-148, 2003.
35) Chen M, Lichtler AC, Sheu TJ, et al : Generation of a transgenic mouse model with chondrocytespecific and tamoxifen-inducible expression of Cre recombinase. Genesis 45 : 44-50, 2007.
P.94 掲載の参考文献
1) Hall BK : Vertebrate Cartilages. In : Bones and Cartilage : Developmental and Evolutionary Skeletal Biology, p43-59, Academic Press, London, 2015.
2) Roach HI, Erenpreisa J, Aigner T : Osteogenic differentiation of hypertrophic chondrocytes involves asymmetric cell divisions and apoptosis. J Cell Biol 131 : 483-494, 1995.
3) Zhou X, von der Mark K, Henry S, et al : Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet 10 : e1004820, 2014.
4) Akiyama H, Chaboissier MC, Martin JF, et al : The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16 : 2813-2828, 2002.
5) Vortkamp A, Lee K, Lanske B, et al : Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273 : 613-622, 1996.
6) Sugimoto Y, Takimoto A, Akiyama H, et al : Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development 140 : 2280-2288, 2013.
7) Chan CK, Seo EY, Chen JY, et al : Identification and specification of the mouse skeletal stem cell. Cell 160 : 285-298, 2015.
8) Worthley DL, Churchill M, Compton JT, et al : Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160 : 269-284, 2015.
9) Zhou BO, Yue R, Murphy MM, et al : Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15 : 154-168, 2014.
12) Takimoto A, Nishizaki Y, Hiraki Y, et al : Differential actions of VEGF-A isoforms on perichondrial angiogenesis during endochondral bone formation. Dev Biol 332 : 196-211, 2009.
13) Hiraki Y, Inoue H, Iyama K, et al : Identification of chondromodulin I as a novel endothelial cell growth inhibitor. Purification and its localization in the avascular zone of epiphyseal cartilage. J Biol Chem 272 : 32419-32426, 1997.
14) Dyment NA, Breidenbach AP, Schwartz AG, et al : Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol 405 : 96-107, 2015.
15) Chakkalakal SA, Uchibe K, Convente MR, et al : Palovarotene Inhibits Heterotopic Ossification and Maintains Limb Mobility and Growth in Mice With the Human ACVR1 (R206H) Fibrodysplasia Ossificans Progressiva (FOP) Mutation. J Bone Miner Res 31 : 1666-1675, 2016.
P.100 掲載の参考文献
1) Nishimura R, Hata K, Ikeda F, et al : Signal transduction and transcriptional regulation during mesenchymal cell differentiation. J Bone Miner Metab 26 : 203-212, 2008.
2) Komori T, Yagi H, Nomura S, et al : Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89 : 755-764, 1997.
3) Nishimura R, Hata K, Harris SE, et al : Core-binding factor alpha 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5. Bone 31 : 303-312, 2002.
4) Takahata Y, Hagino H, Kimura A, et al : Smoc1 and Smoc2 regulate bone formation as downstream molecules of Runx2. Commun Biol 4 : 1199, 2021.
6) Matsubara T, Kida K, Yamaguchi A, et al : BMP2 regulates Osterix through Msx2 and Runx2 during osteoblast differentiation. J Biol Chem 283 : 29119-29125, 2008.
7) Murakami T, Saito A, Hino S, et al : Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol 11 : 1205-1211, 2009.
8) Nishimura R, Kato Y, Chen D, et al : Smad5 and DPC4 are key molecules in mediating BMP-2-induced osteoblastic differentiation of the pluripotent mesenchymal precursor cell line C2C12. J Biol Chem 273 : 1872-1879, 1998.
9) Gong Y, Slee RB, Fukai N, et al : LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107 : 513-523, 2001.
10) Azzolin L, Zanconato F, Bresolin S, et al : Role of TAZ as mediator of Wnt signaling. Cell 151 : 1443-1456, 2012.
11) Hong JH, Hwang ES, McManus MT, et al : TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309 : 1074-1078, 2005.
12) Shimoyama A, Wada M, Ikeda F, et al : Ihh/Gli2 signaling promotes osteoblast differentiation by regulating Runx2 expression and function. Mol Biol Cell 18 : 2411-2418, 2007.
14) Ji X, Chen D, Xu C, et al : Patterns of gene expression associated with BMP-2-induced osteoblast and adipocyte differentiation of mesenchymal progenitor cell 3T3-F442A. J Bone Miner Metab 18 : 132-139, 2000.
15) Chen Q, Shou P, Zheng C, et al : Fate decision of mesenchymal stem cells : adipocytes or osteoblasts? Cell Death Differ 23 : 1128-1139, 2016.
P.105 掲載の参考文献
1) Aarden EM, Burger EH, Nijweide PJ : Function of osteocytes in bone. J Cell Biochem 55 : 287-299, 1994.
2) Knothe Tate ML : "Whither flows the fluid in bone?" An osteocyte's perspective. J Biomech 36 : 1409-1424, 2003.
3) Hara T : Recent improvement of a FIB-SEM serial-sectioning method for precise 3D image reconstruction-application of the orthogonally-arranged FIB-SEM. Microscopy (Oxf) 63 (Suppl 1) : i5, 2014.
4) Hashimoto M, Nagaoka N, Tabata K, et al : Three-dimensional morphometry of collagen fibrils in membranous bone. Integr Biol (Camb) 9 : 868-875, 2017.
5) Tabata K, Hashimoto M, Takahashi H, et al : A morphometric analysis of the osteocyte canaliculus using applied automatic semantic segmentation by machine learning. J Bone Miner Metab 40 : 571-580, 2022.
7) Delgado-Calle J, Sato AY, Bellido T : Role and mechanism of action of sclerostin in bone. Bone 96 : 29-37, 2017.
8) Poole KE, van Bezooijen RL, Loveridge N, et al : Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19 : 1842-1844, 2005.
9) Watanabe T, Tamamura Y, Hoshino A, et al : Increasing participation of sclerostin in postnatal bone development, revealed by three-dimensional immunofluorescence morphometry. Bone 51 : 447-458, 2012.
10) Robling AG, Niziolek PJ, Baldridge LA, et al : Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283 : 5866-5875, 2008.
11) Weivoda MM, Oursler MJ : Developments in sclerostin biology : regulation of gene expression, mechanisms of action, and physiological functions. Curr Osteoporos Rep 12 : 107-114, 2014.
12) Yokoyama Y, Kameo Y, Kamioka H, et al : High-resolution image-based simulation reveals membrane strain concentration on osteocyte processes caused by tethering elements. Biomech Model Mechanobiol 20 : 2353-2360, 2021.
13) Almeida M, Laurent MR, Dubois V, et al : Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 97 : 135-187, 2017.
15) Hayashi M, Nakashima T, Yoshimura N, et al : Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metab 29 : 627-637.e5, 2019.
P.109 掲載の参考文献
1) Udagawa N, Koide M, Nakamura M, et al : Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 39 : 19-26, 2021.
2) Yasuda H : Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 39 : 2-11, 2021.
3) Takayanagi H : RANKL as the master regulator of osteoclast differentiation. J Bone Miner Metab 39 : 13-18, 2021.
4) Miyamoto T : The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod Rheumatol 16 : 341-342, 2006.
6) Uehara S, Udagawa N, Mukai H, et al : Protein kinase N3 promotes bone resorption by osteoclasts in response to Wnt5a-Ror2 signaling. Sci Signal 10 : eaan0023, 2017.
7) Uehara S, Mukai H, Yamashita T, et al : Inhibitor of protein kinase N3 suppresses excessive bone resorption in ovariectomized mice. J Bone Miner Metab 40 : 251-261, 2022.
8) Jacome-Galarza CE, Percin GI, Muller JT, et al : Developmental origin, functional maintenance and genetic rescue of osteoclasts. Nature 568 : 541-545, 2019.
11) Muto A, Mizoguchi T, Udagawa N, et al : Lineage-committed osteoclast precursors circulate in blood and settle down into bone. J Bone Miner Res 26 : 2978-2990, 2011.
12) Sims NA, Martin TJ : Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 82 : 507-529, 2020.
13) Masuki H, Li M, Hasegawa T, et al : Immunolocalization of DMP1 and sclerostin in the epiphyseal trabecule and diaphyseal cortical bone of osteoprotegerin deficient mice. Biomed Res 31 : 307-318, 2010.
14) Koide M, Kobayashi Y, Yamashita T, et al : Bone Formation Is Coupled to Resorption Via Suppression of Sclerostin Expression by Osteoclasts. J Bone Miner Res 32 : 2074-2086, 2017.
15) Koide M, Yamashita T, Murakami K, et al : Sclerostin expression in trabecular bone is downregulated by osteoclasts. Sci Rep 10 : 13751, 2020.
P.116 掲載の参考文献
1) Miyaura C, Onoe Y, Inada M, et al : Increased B-lymphopoiesis by interleukin 7 induces bone loss in mice with intact ovarian function : similarity to estrogen deficiency. Proc Natl Acad Sci U S A 94 : 9360-9365, 1997.
2) Negishi-Koga T, Gober HJ, Sumiya E, et al : Immune complexes regulate bone metabolism through FcRγ signalling. Nat Commun 6 : 6637, 2015.
3) Komatsu N, Win S, Yan M, et al : Plasma cells promote osteoclastogenesis and periarticular bone loss in autoimmune arthritis. J Clin Invest 131 : e143060, 2021.
4) Pacifici R : Role of T cells in ovariectomy induced bone loss--revisited. J Bone Miner Res 27 : 231-239, 2012.
5) Li JY, D'Amelio P, Robinson J, et al : IL-17A Is Increased in Humans with Primary Hyperparathyroidism and Mediates PTH-Induced Bone Loss in Mice. Cell Metab 22 : 799-810, 2015.
6) Lee SK, Kadono Y, Okada F, et al : T lymphocyte-deficient mice lose trabecular bone mass with ovariectomy. J Bone Miner Res 21 : 1704-1712, 2006.
7) Uy HL, Guise TA, De La Mata J, et al : Effects of parathyroid hormone (PTH) -related protein and PTH on osteoclasts and osteoclast precursors in vivo. Endocrinology 136 : 3207-3212, 1995.
8) Yu M, D'Amelio P, Tyagi AM, et al : Regulatory T cells are expanded by Teriparatide treatment in humans and mediate intermittent PTH-induced bone anabolism in mice. EMBO Rep 19 : 156-171, 2018.
9) Ono T, Okamoto K, Nakashima T, et al : IL-17-producing γδ T cells enhance bone regeneration. Nat Commun 7 : 10928, 2016.
10) Tsukasaki M, Takayanagi H : Osteoimmunology : emerging concepts in bone-immune interactions in health and disease. Nat Rev Immunol 19 : 626-642, 2019.
11) Komatsu N, Okamoto K, Sawa S, et al : Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20 : 62-68, 2014.
12) Yan M, Komatus N, Muro R, et al : ETS1 governs pathological tissue-remodeling programs in disease-associated fibroblasts. Nat Immunol 23 : 1330-1341, 2022.
13) Croft AP, Campos J, Jansen K, et al : Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature 570 : 246-251, 2019.
14) Tsukasaki M, Komatsu N, Nagashima K, et al : Host defense against oral microbiota by bone-damaging T cells. Nat Commun 9 : 701, 2018.
P.122 掲載の参考文献
1) Sivan U, De Angelis J, Kusumbe AP : Role of angiocrine signals in bone development, homeostasis and disease. Open Biol 9 : 190144, 2019.
2) Kusumbe AP, Ramasamy SK, Adams RH : Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507 : 323-328, 2014.
3) Mendelson A, Frenette PS : Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 20 : 833-846, 2014.
5) Hu K, Olsen BR : Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest 126 : 509-526, 2016.
6) Ramasamy SK, Kusumbe AP, Wang L, et al : Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature 507 : 376-380, 2014.
7) Rochette L, Meloux A, Rigal G, et al : The role of osteoprotegerin in the crosstalk between vessels and bone : Its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 182 : 115-132, 2018.
8) Tomlinson RE, Li Z, Zhang Q, et al : NGF-TrkA Signaling by Sensory Nerves Coordinates the Vascularization and Ossification of Developing Endochondral Bone. Cell Rep 16 : 2723-2735, 2016.
9) Tomlinson RE, Li Z, Li Z, et al : NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci USA 114 : E3632-E3641, 2017.
11) Chen H, Hu B, Lv X, et al : Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun 10 : 181, 2019.
12) Schinke T, Liese S, Priemel M, et al : Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J Bone Miner Res 19 : 2049-2056, 2004.
13) Elefteriou F, Campbell P, Ma Y : Control of bone remodeling by the peripheral sympathetic nervous system. Calcif Tissue Int 94 : 140-151, 2014.
14) Katayama Y, Battista M, Kao WM, et al : Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124 : 407-421, 2006.
15) Baldock PA, Lee NJ, Driessler F, et al : Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 4 : e8415, 2009.
P.128 掲載の参考文献
1) Kramer I, Loots GG, Studer A, et al : Parathyroid hormone (PTH) -induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res 25 : 178-189, 2010.
2) Peacock M, Bolognese MA, Borofsky M, et al : Cinacalcet treatment of primary hyperparathyroidism : biochemical and bone densitometric outcomes in a five-year study. J Clin Endocrinol Metab 94 : 4860-4867, 2009.
3) Miller PD, Hattersley G, Riis BJ, et al : Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women With Osteoporosis : A Randomized Clinical Trial. JAMA 316 : 722-733, 2016.
4) Takashi Y, Kosako H, Sawatsubashi S, et al : Activation of unliganded FGF receptor by extracellular phosphate potentiates proteolytic protection of FGF23 by its O-glycosylation. Proc Natl Acad Sci U S A 116 : 11418-11427, 2019.
5) Arya V, Bhambri R, Godbole MM, et al : Vitamin D status and its relationship with bone mineral density in healthy Asian Indians. Osteoporos Int 15 : 56-61, 2004.
6) Gawlik A, Gepstein V, Rozen N, et al : Duodenal Expression of 25 Hydroxyvitamin D3-1α-hydroxylase Is Higher in Adolescents Than in Children and Adults. J Clin Endocrinol Metab 100 : 3668-3675, 2015.
7) Yasuda H, Shima N, Nakagawa N, et al : Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95 : 3597-3602, 1998.
8) Roizen JD, Li D, O'Lear L, et al : CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest 128 : 1913-1918, 2018.
9) Canaff L, Zhou X, Hendy GN : The proinflammatory cytokine, interleukin-6, up-regulates calciumsensing receptor gene transcription via Stat1/3 and Sp1/3. J Biol Chem 283 : 13586-13600, 2008.
11) Miyauchi Y, Sato Y, Kobayashi T, et al : HIF1α is required for osteoclast activation by estrogen deficiency in postmenopausal osteoporosis. Proc Natl Acad Sci U S A 110 : 16568-16573, 2013.
12) Hayashi M, Nakashima T, Yoshimura N, et al : Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metab 29 : 627-637.e5, 2019.
13) Kawano H, Sato T, Yamada T, et al : Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci U S A 100 : 9416-9421, 2003.
14) Clapauch R, Braga DJ, Marinheiro LP, et al : Risk of late-onset hypogonadism (andropause) in Brazilian men over 50 years of age with osteoporosis : usefulness of screening questionnaires. Arq Bras Endocrinol Metabol 52 : 1439-1447, 2008.
15) Tritos NA : Focus on growth hormone deficiency and bone in adults. Best Pract Res Clin Endocrinol Metab 31 : 49-57, 2017.
P.135 掲載の参考文献
1) Sims JE, Smith DE : The IL-1 family : regulators of immunity. Nat Rev Immunol 10 : 89-102, 2010.
2) Kim JH, Jin HM, Kim K, et al : The mechanism of osteoclast differentiation induced by IL-1. J Immunol 183 : 1862-1870, 2009.
4) Tanaka T, Narazaki M, Kishimoto T : IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 6 : a016295, 2014.
5) Sims NA : Influences of the IL-6 cytokine family on bone structure and function. Cytokine 146 : 155655, 2021.
6) Udagawa N, Takahashi N, Katagiri T, et al : Interleukin (IL) -6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J Exp Med 182 : 1461-1468, 1995.
7) McGregor NE, Murat M, Elango J, et al : IL-6 exhibits both cis- and trans-signaling in osteocytes and osteoblasts, but only trans-signaling promotes bone formation and osteoclastogenesis. J Biol Chem 294 : 7850-7863, 2019.
8) Kespohl B, Schumertl T, Bertrand J, et al : The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev 60 : 18-27, 2021.
9) Tang M, Lu L, Yu X : Interleukin-17A Interweaves the Skeletal and Immune Systems. Front Immunol 11 : 625034, 2020.
10) Zhao B : TNF and Bone Remodeling. Curr Osteoporos Rep 15 : 126-134, 2017.
11) Durnez A, Paternotte S, Fechtenbaum J, et al : Increase in bone density in patients with spondyloarthritis during anti-tumor necrosis factor therapy : 6-year followup study. J Rheumatol 40 : 1712-1718, 2013.
12) Kodama H, Yamasaki A, Nose M, et al : Congenital osteoclast deficiency in osteopetrotic (op/op) mice is cured by injections of macrophage colony-stimulating factor. J Exp Med 173 : 269-272, 1991.
14) Karner CM, Long F : Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci 74 : 1649-1657, 2017.
P.142 掲載の参考文献
1) Chen G, Deng C, Li YP : TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8 : 272-288, 2012.
2) Tang Y, Wu X, Lei W, et al : TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15 : 757-765, 2009.
3) Liu J, Zhang J, Lin X, et al : Age-associated callus senescent cells produce TGF-β1 that inhibits fracture healing in aged mice. J Clin Invest 132 : e148073, 2022.
4) Dole NS, Mazur CM, Acevedo C, et al : Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling. Cell Rep 21 : 2585-2596, 2017.
5) Dankbar B, Fennen M, Brunert D, et al : Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21 : 1085-1090, 2015.
6) Liu W, Zhou L, Zhou C, et al : GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun 7 : 12794, 2016.
7) Song IW, Nagamani SC, Nguyen D, et al : Targeting TGF-β for treatment of osteogenesis imperfecta. J Clin Invest 132 : e152571, 2022.
8) Yakar S, Werner H, Rosen CJ : Insulin-like growth factors : actions on the skeleton. J Mol Endocrinol 61 : T115-T137, 2018.
9) Xian L, Wu X, Pang L, et al : Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18 : 1095-1101, 2012.
10) Miyagawa K, Ohata Y, Delgado-Calle J, et al : Osteoclast-derived IGF1 is required for pagetic lesion formation in vivo. JCI Insight 5 : e133113, 2020.
11) Ornitz DM, Marie PJ : Fibroblast growth factor signaling in skeletal development and disease. Genes Dev 29 : 1463-1486, 2015.
12) Charoenlarp P, Rajendran AK, Iseki S : Role of fibroblast growth factors in bone regeneration. Inflam Regen 37 : 10, 2017.
13) Su N, Jin M, Chen L : Role of FGF/FGFR signaling in skeletal development and homeostasis : learning from mouse models. Bone Res 2 : 14003, 2014.
14) Chen J, Hendriks M, Chatzis A, et al : Bone Vasculature and Bone Marrow Vascular Niches in Health and Disease. J Bone Miner Res 35 : 2103-2120, 2020.
15) Dzamukova M, Brunner TM, Miotla-Zarebska J, et al : Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat Commun 13 : 3059, 2022.
16) Grunewald M, Kumar S, Sharife H, et al : Counteracting age-related VEGF signaling insufficiency promotes healthy aging and extends life span. Science 373 : eabc8479, 2021.
17) Tomlinson RE, Li Z, Li Z, et al : NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice. Proc Natl Acad Sci U S A 114 : E3632-E3641, 2017.
18) Meyers CA, Lee S, Sono T, et al : A Neurotrophic Mechanism Directs Sensory Nerve Transit in Cranial Bone. Cell Rep 31 : 107696, 2020.
19) Xu J, Li Z, Tower RJ, et al : NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv 8 : eabl5716, 2022.
P.149 掲載の参考文献
1) Takahashi N, Yamana H, Yoshiki S, et al : Osteoclast-like cell formation and its regulation by osteotropic hormones in mouse bone marrow cultures. Endocrinology 122 : 1373-1382, 1988.
2) Yasuda H : Discovery of the RANKL/RANK/OPG system. J Bone Miner Metab 39 : 2-11, 2021.
3) Mizuno A, Amizuka N, Irie K, et al : Severe osteoporosis in mice lacking osteoclastgenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247 : 610-615, 1998.
4) Hakeda Y, Kobayashi Y, Yamaguchi K, et al : Osteoclastogenesis inhibitory factor (OCIF) directly inhibits bone-resorbing activity of isolated. Biochem Biophys Res Commun 251 : 796-801, 1998.
5) Theill LE, Boyle WJ, Penninger JM : RANK-L and RANK : T cells, bone loss, and mammalian evolution. Annu Rev Immunol 20 : 795-823, 2002.
6) Asano T, Okamoto K, Nakai Y, et al : Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab 1 : 868-875, 2019.
7) Ochiai N, Nakachi Y, Yokoo T, et al : Murine osteoclasts secrete serine protease HtrA1 capable of degrading osteoprotegerin in the bone microenvironment. Commun Biol 2 : 86, 2019.
8) O'Brien CA : Control of RANKL gene expression. Bone 46 : 911-919, 2010.
9) Thirunavukkarasu K, Miles RR, Halladay DL, et al : Stimulation of osteoprotegerin (OPG) gene expression by transforming growth factor-beta (TGF-beta). Mapping of the OPG promoter region that mediates TGF-beta effects. J Biol Chem 276 : 36241-36250, 2001.
10) Takayanagi H, Kim S, Koga T, et al : Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 3 : 889-901, 2002.
11) Nelson CA, Warren JT, Wang MW, et al : RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor. Structure 20 : 1971-1982, 2012.
12) Ominsky MS, Kostenuik PJ, Cranmer P, et al : The RANKL inhibitor OPG-Fc increases cortical and trabecular bone mass in young gonad-intact cynomolgus monkeys. Osteoporos Int 18 : 1073-1082, 2007.
13) Sordillo EM, Pearse RN : RANK-Fc : a therapeutic antagonist for RANK-L in myeloma. Cancer 97 : 802-812, 2003.
14) Lacey DL, Boyle WJ, Simonet WS, et al : Bench to bedside : elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11 : 401-419, 2012.
15) Kuritani M, Sakai N, Karakawa A, et al : Anti-mouse RANKL Antibodies Inhibit Alveolar Bone Destruction in Periodontitis Model Mice. Biol Pharm Bull 41 : 637-643, 2018.
P.155 掲載の参考文献
1) Abeynayake N, Arthur A, Gronthos S : Crosstalk between skeletal and neural tissues is critical for skeletal health. Bone 142 : 115645, 2021.
2) Franquinho F, Liz MA, Nunes AF, et al : Neuropeptide Y and osteoblast differentiation-the balance between the neuro-osteogenic network and local control. FEBS J 277 : 3664-3674, 2010.
3) Nagao M, Feinstein TN, Ezura Y, et al : Sympathetic control of bone mass regulated by osteopontin. Proc Natl Acad Sci U S A 108 : 17767-17772, 2011.
4) Kolodkin AL, Matthes DJ, Goodman CS : The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75 : 1389-1399, 1993.
5) Luo Y, Raible D, Raper JA : Collapsin : a protein in brain that induces the collapse and paralysis of neuronal growth cones. Cell 75 : 217-227, 1993.
6) Unified nomenclature for the semaphorins/collapsins. Semaphorin Nomenclature Committee. Cell 97 : 551-552, 1999.
7) Pasterkamp RJ, Peschon JJ, Spriggs MK, et al : Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424 : 398-405, 2003.
8) Kumanogoh A, Kikutani H : Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 13 : 802-814, 2013.
9) Nishide M, Kumanogoh A : The role of semaphorins in immune responses and autoimmune rheumatic diseases. Nat Rev Rheumatol 14 : 19-31, 2018.
10) Nakanishi Y, Kang S, Kumanogoh A : Crosstalk between axon guidance signaling and bone remodeling. Bone 157 : 116305, 2022.
11) Behar O, Golden JA, Mashimo H, et al : Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature 383 : 525-528, 1996.
13) Hayashi M, Nakashima T, Yoshimura N, et al : Autoregulation of Osteocyte Sema3A Orchestrates Estrogen Action and Counteracts Bone Aging. Cell Metab 29 : 627-637.e5, 2019.
15) Ryynanen J, Kriebitzsch C, Meyer MB, et al : Class 3 semaphorins are transcriptionally regulated by 1,25 (OH) 2D3 in osteoblasts. J Steroid Biochem Mol Biol 173 : 185-193, 2017.
16) Saito H, Gasser A, Bolamperti S, et al : TG-interacting factor 1 (Tgif1) -deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat Commun 10 : 1354, 2019.
17) Kumanogoh A, Watanabe C, Lee I, et al : Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100 : a novel mechanism for regulating B cell signaling. Immunity 13 : 621-631, 2000.
18) Kumanogoh A, Kikutani H : The CD100-CD72 interaction : a novel mechanism of immune regulation. Trends Immunol 22 : 670-676, 2001.
19) Negishi-Koga T, Shinohara M, Komatsu N, et al : Suppression of bone formation by osteoclastic expression of semaphorin 4D. Nat Med 17 : 1473-1480, 2011.
20) Zhang Y, Feng E, Xu Y, et al : Serum Sema4D levels are associated with lumbar spine bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis. Int J Clin Exp Med 8 : 16352-16357, 2015.
21) Toyofuku T, Zhang H, Kumanogoh A, et al : Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2. Genes Dev 18 : 435-447, 2004.
22) Takegahara N, Takamatsu H, Toyofuku T, et al : Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis. Nat Cell Biol 8 : 615-622, 2006.
23) Koga T, Inui M, Inoue K, et al : Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 428 : 758-763, 2004.
24) Maurin JC, Delorme G, Machuca-Gayet I, et al : Odontoblast expression of semaphorin 7A during innervation of human dentin. Matrix Biol 24 : 232-238, 2005.
25) Lillesaar C, Fried K : Neurites from trigeminal ganglion explants grown in vitro are repelled or attracted by tooth-related tissues depending on developmental stage. Neuroscience 125 : 149-161, 2004.
26) Delorme G, Saltel F, Bonnelye E, et al : Expression and function of semaphorin 7A in bone cells. Biol Cell 97 : 589-597, 2005.
27) Koh JM, Oh B, Lee JY, et al : Association study of semaphorin 7a (sema7a) polymorphisms with bone mineral density and fracture risk in postmenopausal Korean women. J Hum Genet 51 : 112-117, 2006.
P.163 掲載の参考文献
1) 斎藤充 : 骨質と骨粗鬆症. The Journal of Japan Osteoporosis Society 2 : 107-117, 2016.
2) 斎藤充 : 運動器疾患モデルの確立と治療ターゲットヒト骨リモデリング・酸化ストレスを考慮した疾患モデルの確立と薬効判定のピットフォール. 日本整形外科学会雑誌 94 : 997-1002, 2020.
3) Shiraki M, Kuroda T, Shiraki Y, et al : Urinary pentosidine and plasma homocysteine levels at baseline predict future fractures in osteoporosis patients under bisphosphonate treatment. J Bone Miner Metab 29 : 62-70, 2011.
5) Saito M, Marumo K : Effects of Collagen Crosslinking on Bone Material Properties in Health and Disease. Calcif Tissue Int 97 : 242-261, 2015.
6) Saito M, Kida Y, Kato S, et al : Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12 : 181-188, 2014.
7) Saito M, Marumo K : Bone quality in diabetes. Front Endocrinol (Lausanne) 4 : 72, 2013.
8) Saito M, Grynpas MD, Burr DB, et al : Treatment with eldecalcitol positively affects mineralization, microdamage, and collagen crosslinks in primate bone. Bone 73 : 8-15, 2015.
9) Saito M, Marumo K, Kida Y, et al : Changes in the contents of enzymatic immature, mature, and nonenzymatic senescent cross-links of collagen after once-weekly treatment with human parathyroid hormone (1-34) for 18 months contribute to improvement of bone strength in ovariectomized monkeys. Osteoporos Int 22 : 2373-2383, 2011.
10) Saito M, Kida Y, Nishizawa T, et al : Effects of 18-month treatment with bazedoxifene on enzymatic immature and mature cross-links and non-enzymatic advanced glycation end products, mineralization, and trabecular microarchitecture of vertebra in ovariectomized monkeys. Bone 81 : 573-580, 2015.
11) Saito M, Marumo K, Soshi S, et al : Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21 : 655-666, 2010.
12) Saito M, Shiraishi A, Ito M, et al : Comparison of effects of alfacalcidol and alendronate on mechanical properties and bone collagen cross-links of callus in the fracture repair rat model. Bone 46 : 1170-1179, 2010.
13) Saito M, Marumo K, Ushiku C, et al : Effects of alfacalcidol on mechanical properties and collagen cross-links of the femoral diaphysis in glucocorticoid-treated rats. Calcif Tissue Int 88 : 314-324, 2011.
14) Saito M, Mori S, Mashiba T, et al : Collagen maturity, glycation induced-pentosidine, and mineralization are increased following 3-year treatment with incadronate in dogs. Osteoporos Int 19 : 1343-1354, 2008.
15) Mitome J, Yamamoto H, Saito M, et al : Nonenzymatic cross-linking pentosidine increase in bone collagen and are associated with disorders of bone mineralization in dialysis patients. Calcif Tissue Int 88 : 521-529, 2011.
16) Suzuki R, Fujiwara Y, Saito M, et al : Intracellular Accumulation of Advanced Glycation End Products Induces Osteoblast Apoptosis Via Endoplasmic Reticulum Stress. J Bone Miner Res 35 : 1992-2003, 2020.
17) Shinno Y, Ishimoto T, Saito M, et al : Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci Rep 6 : 19849, 2016.
18) Shiraki M, Kuroda T, Tanaka S, et al : Nonenzymatic collagen cross-links induced by glycoxidation (pentosidine) predicts vertebral fractures. J Bone Miner Metab 26 : 93-100, 2008.
19) Tanaka S, Saito M, Hagino H, et al : Association of Urinary Pentosidine Levels With the Risk of Fractures in Patients With Severe Osteoporosis : The Japanese Osteoporosis Intervention Trial-05 (JOINT-05). JBMR Plus 6 : e10673, 2022.
20) Schwartz AV, Garnero P, Hillier TA, et al : Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94 : 2380-2386, 2009.
21) Nakano M, Nakamura Y, Suzuki T, et al : Pentosidine and carboxymethyl-lysine associate differently with prevalent osteoporotic vertebral fracture and various bone markers. Sci Rep 10 : 22090, 2020.
22) Arakawa S, Suzuki R, Kurosaka D, et al : Mass spectrometric quantitation of AGEs and enzymatic crosslinks in human cancellous bone. Sci Rep 10 : 18774, 2020.
23) Saito M, Fujii K, Soshi S, et al : Reductions in degree of mineralization and enzymatic collagen crosslinks and increases in glycation-induced pentosidine in the femoral neck cortex in cases of femoral neck fracture. Osteoporos Int 17 : 986-995, 2006.
25) Kato S, Saito M, Funasaki H, et al : Distinctive collagen maturation process in fibroblasts derived from rabbit anterior cruciate ligament, medial collateral ligament, and patellar tendon in vitro. Knee Surg Sports Traumatol Arthrosc 23 : 1384-1392, 2015.
26) Saito M, Marumo K, Fujii K, et al : Single-column high-performance liquid chromatographicfluorescence detection of immature, mature, and senescent cross-links of collagen. Anal Biochem 253 : 26-32, 1997.
27) Nojiri H, Saita Y, Morikawa D, et al : Cytoplasmic superoxide causes bone fragility owing to lowturnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res 26 : 2682-2694, 2011.
28) Saito M, Fujii K, Mori Y, et al : Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17 : 1514-1523, 2006.
29) Marumo K, Saito M, Yamagishi T, et al : The "ligamentization" process in human anterior cruciate ligament reconstruction with autogenous patellar and hamstring tendons : a biochemical study. Am J Sports Med 33 : 1166-1173, 2005.
30) Pornprasertsuk S, Duarte WR, Mochida Y, et al : Overexpression of lysyl hydroxylase-2b leads to defective collagen fibrillogenesis and matrix mineralization. J Bone Miner Res 20 : 81-87, 2005.
31) Farlay D, Duclos ME, Gineyts E, et al : The ratio 1660/1690 cm (-1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PLoS One 6 : e28736, 2011.
32) Sakuma M, Endo N, Oinuma T, et al : Vitamin D and intact PTH status in patients with hip fracture. Osteoporos Int 17 : 1608-1614, 2006.
33) Takeda S, Saito M, Sakai S, et al : Eldecalcitol, an Active Vitamin D3 Derivative, Prevents Trabecular Bone Loss and Bone Fragility in Type I Diabetic Model Rats. Calcif Tissue Int 101 : 433-444, 2017.
34) Kida Y, Saito M, Shinohara A, et al : Non-invasive skin autofluorescence, blood and urine assays of the advanced glycation end product (AGE) pentosidine as an indirect indicator of AGE content in human bone. BMC Musculoskelet Disord 20 : 627, 2019.
35) Taguchi T, Kubota M, Saito M, et al : Quantitative and Qualitative Change of Collagen of Achilles Tendons in Rats With Systemic Administration of Glucocorticoids. Foot Ankle Int 37 : 327-333, 2016.

III 骨粗鬆症の診断

P.173 掲載の参考文献
1) 日本骨代謝学会, 日本骨粗鬆症学会合同原発性骨粗鬆症診断規準改定検討委員会 : 原発性骨粗鬆症の診断規準 (2012年度改訂版). Osteoporos Jpn 21 : 9-21, 2013.
2) Melton 3rd LJ, Thamer M, Ray NF, et al : Fractures attributable to osteoporosis : report from the National Osteoporosis Foundation. J Bone Miner Res 12 : 16-23, 1997.
3) Warriner AH, Patkar NM, Curtis JR, et al : Which fractures are most attributable to osteoporosis? J Clin Epideminol 64 : 46-53, 2011.
4) Lippuner K, Rimmer G, Stuck A, et al : Hospitalizations for major osteoporotic fractures in Switzerland : a long-term trend analysis between 1998 and 2018. Osteoporos Int 33 : 2327-2335, 2022.
6) Yoneda T, Hiasa M, Nagata Y, et al : Acidic microenvironment and bone pain in cancer-colonized bone. Bonekey Rep 4 : 690, 2015.
10) Bliuc D, Nguyen ND, Milch VE, et al : Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301 : 513-521, 2009.
15) Orimo H, Yaegashi Y, Hosoi T, et al : Hip fracture incidence in Japan : Estimates of new patients in 2012 and 25-year trends. Osteoporos Int 27 : 1777-1784, 2016.
P.178 掲載の参考文献
1) 玉置淳子 : 骨粗鬆症の疫学. 診断と治療 108 : 1123-1128, 2020.
2) 阿部大介, 大箭慎一, 嶋大輔, ほか : わが国における閉経後女性の骨粗鬆症に対する意識・実態に関するWebアンケート調査. 日本骨粗鬆症学会雑誌 5 : 267-276, 2019.
3) 検診の実際. 骨粗鬆症検診・保健指導マニュアル 第2版 (折茂肇監, 細井孝之/曽根照喜編), p8-36, ライフサイエンス出版, 2014.
4) 山内広世, 荒井光一, 石井成幸, ほか : 骨粗鬆症検診の現状骨粗鬆症性骨折, 要介護との関係. 日本骨粗鬆症学会雑誌 4 : 513-522, 2018.
5) Siris ES, Chen YT, Abbott TA, et al : Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164 : 1108-1112, 2004.
8) Gourlay ML, Fine JP, Preisser JS, et al : Bone-density testing interval and transition to osteoporosis in older women. N Engl J Med 366 : 225-233, 2012.
9) Frost SA, Nguyen ND, Center JR, et al : Timing of repeat BMD measurements : development of an absolute risk-based prognostic model. J Bone Miner Res 24 : 1800-1807, 2009.
10) 骨量測定装置設置先名簿 (2013年度12月現在), 日本骨粗鬆症財団.
11) 山内広世 ; 骨粗鬆症財団 : 骨量測定機器の普及度. Osteoporosis Jpn 21 : 62-63, 2013.
12) 骨評価 ; 骨粗鬆症の診断. 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p26-29, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
13) US Preventive Services Task Force. Screening for Osteoporosis to Prevent Fractures : US Preventive Services Task Force Recommendation Statement. JAMA 319 : 2521-2531, 2018.
14) 薬物治療開始基準 ; 治療の目的と薬物治療開始基準. 骨粗鬆症の治療. 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p62-63, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
P.190 掲載の参考文献
2) 骨粗鬆症の予防と治療ガイドライン 2015年度版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p2, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
3) Barnes R, Brown JT, Garden RS, et al : Subcapital fractures of the femur. A prospective review. J Bone Joint Surg Br 58 : 2-24, 1976.
4) Cahir JG, Toms AP : Regional migratory osteoporosis. Eur J Radiol 67 : 2-10, 2008.
5) Jan de Beur SM, Miller PD, Weber TJ, et al : Burosumab for the Treatment of Tumor-Induced Osteomalacia. J Bone Miner Res 36 : 627-635, 2021.
6) Hussein MAM, Cafarelli FP, Paparella MT, et al : Phosphaturic mesenchymal tumors : radiological aspects and suggested imaging pathway. Radiol Med 126 : 1609-1618, 2021.
P.196 掲載の参考文献
1) Krestan CR, Nemec U, Nemec S : Imaging of insufficiency fractures. Semin Musculoskelet Radiol 15 : 198-207, 2011.
2) Cabarrus MC, Ambekar A, Lu Y, et al : MRI and CT of insufficiency fractures of the pelvis and the proximal femur. AJR Am J Roentgenol 191 : 995-1001, 2008.
4) Shane E, Burr D, Abrahamsen B, et al : Atypical subtrochanteric and diaphyseal femoral fractures : second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 29 : 1-23, 2014.
5) Johannesdottir F, Turmezei T, Poole KE : Cortical bone assessed with clinical computed tomography at the proximal femur. J Bone Miner Res 29 : 771-783, 2014.
6) Lotz JC, Cheal EJ, Hayes WC : Fracture prediction for the proximal femur using finite element models : Part II-Nonlillear analysis. J Biomech Eng 113 : 361-365, 1991.
7) Bessho M, Ohnishi I, Matsuyama J, et al : Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40 : 1745-1753, 2007.
8) Ito M, Wakao N, Hida T, et al : Analysis of hip geometry by clinical CT for the assessment of hip fracture risk in elderly Japanese women. Bone 46 : 453-457, 2010.
9) Mayhew PM, Thomas CD, Clement JG, et al : Relation between age, femoral neck cortical stability, and hip fracture risk. Lancet 366 : 129-135, 2005.
10) Fujii M, Aoki T, Okada Y, et al : Prediction of Femoral Neck Strength in Patients with Diabetes Mellitus with Trabecular Bone Analysis and Tomosynthesis Images. Radiology 281 : 933-939, 2016.
11) Chesnut CH, Majumdar S, Newitt DC, et al : Effects of salmon calcitonin on trabecular microarchitecture as determined by magnetic resonance imaging : results from the QUEST study. J Bone Miner Res 20 : 1548-1561, 2005.
12) Benito M, Vasilic B, Wehrli FW, et al : Effect of testosterone replacement on trabecular architecture in hypogonadal men. J Bone Miner Res 20 : 1785-1791, 2005.
13) Rajapakse CS, Bashoor-Zadeh M, Li C, et al : Volumetric Cortical Bone Porosity Assessment with MR Imaging : Validation and Clinical Feasibility. Radiology 276 : 526-535, 2015.
P.202 掲載の参考文献
1) 原発性骨粗鬆症診断基準改訂検討委員会 : 原発性骨粗鬆症の診断基準 (2012年度改訂版). Osteoporosis Jpn 21 : 9-21, 2013.
2) Sone T ; World Health Organization : Absolute risk for fracture and WHO guideline. Fracture risk assessment based on femoral neck bone mineral density : advantage and disadvantage. Clin Calcium 17 : 1036-1040, 2007.
3) Sone T : New methods for the evaluation of bone quality. DXA-based analysis of bone quality : trabecular bone score (TBS). Clin Calcium 27 : 1147-1152, 2017.
6) Zysset P, Qin L, Lang T, et al : Clinical Use of Quantitative Computed Tomography-Based Finite Element Analysis of the Hip and Spine in the Management of Osteoporosis in Adults : the 2015 ISCD Official Positions-Part II. J Clin Densitom 18 : 359-392, 2015.
7) O'Rourke D, Beck BR, Harding AT, et al : Assessment of femoral neck strength and bone mineral density changes following exercise using 3D-DXA images. J Biomech 119 : 110315, 2021.
8) Farzi M, Pozo JM, McCloskey E, et al : Quantitating Age-Related BMD Textural Variation from DXA Region-Free-Analysis : A Study of Hip Fracture Prediction in Three Cohorts. J Bone Miner Res 37 : 1679-1688, 2022.
P.207 掲載の参考文献
1) Yamato Y, Matsukawa M, Yanagitani T, et al : Correlation between hydroxyapatite crystallite orientation and ultrasonic wave velocities in bovine cortical bone. Calcif Tissue Int 82 : 162-169, 2008.
2) Langton CM, Palmer SB, Porter RW, et al : The measurement of broadband ultrasonic attenuation in cancallous bone. Eng Mwd 13 : 89-91, 1984.
3) その他の骨評価法 (MD およびQUS法). 骨粗鬆症の予防と治療ガイドライン 2015年版, p28-29, ライフサイエンス出版, 2015.
4) 太田博明 : 骨検診の今後に期待されるもの-骨粗鬆症診療の現状を踏まえて-. 総合健診 41 : 457-463, 2014.
5) Hans D, Dargent-Molina P, Schott AM, et al : Ultrasonographic heel measurements to predict hip fracture in elderly women : the EPIDOS prospective study. Lancet 348 : 511-514, 1996.
6) Bauer DC, Gluer CC, Cauley JA, et al : Broadband ultrasound attenuation predicts fractures strongly and independently of densitometry in older women. A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 157 : 629-634, 1997.
7) Paola MD, Gatti D, Viapiana O, et al : Radiofrequency echographic multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporosis Int 30 : 391-402, 2019.
8) Nowakowska-Plaza A, Wronski J, Plaza M, et al : Diagnostic agreement between radiofrequency echographic multispectrometry and dual-energy X-ray absorptiometry in the assessment of osteoporosis in a Polish group of patients. Pol Arch Intern Med 131 : 840-847, 2021.
9) Mack PB, O'brien AT, Smith JM, et al : A Method for Estimating the Degree of Mineralization of Bones from Tracings of Roentgenograms. Science 89 : 467, 1939.
10) Singh M, Nagrath AR, Maini PS, et al : Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 52 : 457-467, 1970.
11) 日本骨代謝学会骨粗鬆症診断基準検討委員会 : 原発性骨粗鬆症の診断基準. Osteoporosis Jpn 3 : 669-674, 1995.
12) Barnett E, Nordin BE : The radiological diagnosis of osteoporosis : a new approach. Clin Radiol 11 : 166-174, 1960.
13) Inoue T, Kushida K, Miyamoto S, et al : Quantitative assessment of bone density. J Jpn Orthop Assoc 57 : 1923-1936, 1983.
14) Matsumoto C, Kushida K, Yamazaki K, et al : Metacarpal bone mass in normal and osteoporotic Japanese women using computed X-ray densitometry. Calcif Tissue Int 55 : 324-329, 1994.
P.211 掲載の参考文献
1) Bouxsein ML, Boyd SK, Christiansen BA, et al : Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25 : 1468-1486, 2010.
2) Boutroy S, Bouxsein ML, Munoz F, et al : In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90 : 6508-6515, 2005.
3) MacNeil JA, Boyd SK : Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys 30 : 792-799, 2008.
4) Liu XS, Zhang XH, Sekhon KK, et al : High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res 25 : 746-756, 2010.
6) Hildebrand T, Ruegsegger P : Quantification of Bone Microarchitecture with the Structure Model Index. Comput Methods Biomech Biomed Engin 1 : 15-23, 1997.
7) Whittier DE, Boyd SK, Burghardt AJ, et al : Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporos Int 31 : 1607-1627, 2020.
9) Voide R, Schneider P, Stauber M, et al : Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone 45 : 164-173, 2009.
10) Seeman E : Bone quality : the material and structural basis of bone strength. J Bone Miner Metab 26 : 1-8, 2008.
P.217 掲載の参考文献
1) 田中伸哉, 山本智章, 森諭史, ほか : 骨の組織学的計測法における日本語用語 (2014年改訂追補版). 日本骨形態計測学会雑誌 25 : 1-8, 2015.
2) Rehman MT, Hoyland JA, Denton J, et al : Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol 47 : 529-534, 1994.
3) Neychev V, Sadowski SM, Zhu J, et al : Neuroendocrine Tumor of the Pancreas as a Manifestation of Cowden Syndrome : A Case Report. J Clin Endocrinol Metab 101 : 353-358, 2016.
5) Chavassieux PM, Arlot ME, Reda C, et al : Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis. J Clin Invest 100 : 1475-1480, 1997.
6) Dempster DW, Zhou H, Recker RR, et al : Differential Effects of Teriparatide and Denosumab on Intact PTH and Bone Formation Indices : AVA Osteoporosis Study. J Clin Endocrinol Metab 101 : 1353-1363, 2016.
7) Chavassieux P, Chapurlat R, Portero-Muzy N, et al : Bone-forming and antiresorptive effects of romosozumab in postmenopausal women with osteoporosis : Bone histomorphometry and microcomputed tomography analysis after 2 and 12 months of treatment. J Bone Miner Res 34 : 1597-1608, 2019,
8) Fujihara R, Mashiba T, Yoshitake S, et al : Weekly teriparatide treatment increases vertebral body strength by improving cortical shell architecture in ovariectomized cynomolgus monkeys. Bone 121 : 80-88, 2019.
9) Andreasen CM, Delaisse JM, van der Eerden BC, et al : Understanding Age-Induced Cortical Porosity in Women : The Accumulation and Coalescence of Eroded Cavities Upon Existing Intracortical Canals Is the Main Contributor. J Bone Miner Res 33 : 606-620, 2018.
10) Bakalova LP, Andreasen CM, Thomsen JS, et al : Intracortical Bone Mechanics Are Related to Pore Morphology and Remodeling in Human Bone. J Bone Miner Res 33 : 2177-2185, 2018.
P.222 掲載の参考文献
1) 骨粗鬆症診療における骨代謝マーカーの適正使用ガイドライン (2012年版) (日本骨粗鬆症学会骨代謝マーカー検討委員会編). Osteoporosis Japan 20 : 31-55, 2012.
2) Schlemmer A, Hassager C, Pedersen BJ, et al : Posture, age, menopause, and osteopenia do not influence the circadian variation in the urinary excretion of pyridinium crosslinks. J Bone Miner Res 9 : 1883-1888, 1994.
4) Wichers M, Schmidt E, Bidlingmaier F, et al : Diurnal rhythm of CrossLaps in human serum. Clin Chem 45 : 1858-1860, 1999.
5) Looker AC, Bauer DC, Chesnut CH, et al : Clinical use of biochemical markers of bone remodeling : current status and future directions. Osteoporos Int 11 : 467-480, 2000.
P.227 掲載の参考文献
1) Redmond J, Fulford AJ, Jarjou L, et al : Diurnal Rhythms of Bone Turnover Markers in Three Ethnic Groups. J Clin Endocrinol Metab 101 : 3222-3230, 2016.
2) Nishizawa Y, Miura M, Ichimura S, et al : Executive summary of the Japan Osteoporosis Society Guide for the Use of Bone Turnover Markers in the Diagnosis and Treatment of Osteoporosis (2018 Edition). Clin Chim Acta 498 : 101-107, 2019.
3) Shieh A, Ishii S, Greendale GA, et al : A bone resorption marker as predictor of rate of change in femoral neck size and strength during the menopause transition. Osteoporos Int 30 : 2449-2457, 2019.
4) Yoshimura N, Muraki S, Oka H, et al : Biochemical markers of bone turnover as predictors of osteoporosis and osteoporotic fractures in men and women : 10-year follow-up of the Taiji cohort. Mod Rheumatol 21 : 608-620, 2011.
5) Iki M, Morita A, Ikeda Y, et al : Biochemical markers of bone turnover may predict progression to osteoporosis in osteopenic women : the JPOS Cohort Study. J Bone Miner Metab 25 : 122-129, 2007.
6) Chavassieux P, Portero-Muzy N, Roux JP, et al : Are Biochemical Markers of Bone Turnover Representative of Bone Histomorphometry in 370 Postmenopausal Women? J Clin Endocrinol Metab 100 : 4662-4668, 2015.
7) Morris HA, Eastell R, Jorgensen NR, et al : Clinical usefulness of bone turnover marker concentrations in osteoporosis. Clin Chim Acta 467 : 34-41, 2017.
8) Bauer DC, Black DM, Garnero P, et al : Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women : the fracture intervention trial. J Bone Miner Res 19 : 1250-1258, 2004.
9) Kobayashi I, Shidara K, Okuno S, et al : Higher serum bone alkaline phosphatase as a predictor of mortality in male hemodialysis patients. Life Sci 90 : 212-218, 2012.
10) Drechsler C, Verduijn M, Pilz S, et al : Bone alkaline phosphatase and mortality in dialysis patients. Clin J Am Soc Nephrol 6 : 1752-1759, 2011.
11) Niimi R, Kono T, Nishihara A, et al : An algorithm using the early changes in PINP to predict the future BMD response for patients treated with daily teriparatide. Osteoporos Int 25 : 377-384, 2014.
12) Vasikaran S, Cooper C, Eastell R, et al : International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49 : 1271-1274, 2011.
13) Cosman F, Crittenden DB, Adachi JD, et al : Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med 375 : 1532-1543, 2016.
14) Kanis JA, Cooper C, Hiligsmann M, et al : Partial adherence : a new perspective on health economic assessment in osteoporosis. Osteoporos Int 22 : 2565-2573, 2011.
15) Diez-Perez A, Naylor KE, Abrahamsen B, et al : International Osteoporosis Foundation and European Calcified Tissue Society Working Group. Recommendations for the screening of adherence to oral bisphosphonates. Osteoporos Int 28 : 767-774, 2017.
P.233 掲載の参考文献
1) 骨粗鬆症診療における骨代謝マーカーの適正使用ガイド 2018年度版 (日本骨粗鬆症学会骨代謝マーカー検討委員会編), p2-131, ライフサイエンス出版, 2018.
2) Nishizawa Y, Miura M, Ichimura S, et al : Executive summary of the Japan Osteoporosis Society Guide for the Use of Bone Turnover Markers in the Diagnosis and Treatment of Osteoporosis (2018 Edition). Clin Chim Acta 498 : 101-107, 2019.
3) 骨代謝マーカーハンドブック (日本骨粗鬆症学会骨代謝マーカー検討委員会編), p16-245, メディカルレビュー社, 2022.
4) Vasikaran SD, Bhattoa HP, Eastell R, et al : Harmonization of commercial assays for PINP ; the way forward. Osteoporos Int 31 : 409-412, 2020.
5) Cavalier E, Eastell R, Jorgensen NR, et al : Correction to : A Multicenter Study to Evaluate Harmonization of Assays for C-Terminal Telopeptides of Type I Collagen (β-CTX) : A Report from the IFCC-IOF Committee for Bone Metabolism (C-BM). Calcif Tissue Int 108 : 825-826, 2021.
6) Bhattoa HP, Cavalier E, Eastell R, et al : Analytical considerations and plans to standardize or harmonize assays for the reference bone turnover markers PINP and β-CTX in blood. Clin Chim Acta 515 : 16-20, 2021.
7) Vasikaran SD, Miura M, Pikner R, et al : Practical Considerations for the Clinical Application of Bone Turnover Markers in Osteoporosis. Calcif Tissue Int, 2021. (DOI : 10.1007/s00223-021-00930-4)
8) Fontalis A, Eastell R : The challenge of long-term adherence : The role of bone turnover markers in monitoring bisphosphonate treatment of osteoporosis. Bone 136 : 115336, 2020.
9) Eastell R, Mitlak BH, Wang Y, et al : Bone turnover markers to explain changes in lumbar spine BMD with abaloparatide and teriparatide : results from ACTIVE. Osteoporos Int 30 : 667-673, 2019.
10) Mori Y, Kasai H, Ose A, et al : Modeling and simulation of bone mineral density in Japanese osteoporosis patients treated with zoledronic acid using tartrate-resistant acid phosphatase 5b, a bone resorption marker. Osteoporos Int 29 : 1155-1163, 2018.
11) Eastell R, Black DM, Lui LY, et al : Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Antiresorptive Drugs : Proportion of Treatment Effect Explained. J Bone Miner Res 36 : 236-243, 2021.
13) Cavalier E, Vasikaran S, Bhattoa HP, et al : The path to the standardization of PTH : Is this a realistic possibility? a position paper of the IFCC C-BM. Clin Chim Acta 515 : 44-51, 2021.
P.241 掲載の参考文献
1) 日本骨代謝学会, 日本骨粗鬆症学会合同原発性骨粗鬆症診断基準改訂検討委員会 : 原発性骨粗鬆症の診断基準 (2012年度改訂版). Osteoporosis Japan 21 : 9-22, 2013.
2) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
3) Suzuki Y, Nawata H, Soen S : Guideline on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research : 2014 update. J Bone Miner Metab 32 : 337-350, 2014.
6) 日本骨形態計測学会・日本骨代謝学会・日本骨粗鬆症学会・日本医学放射線学会・日本整形外科学会・日本脊椎脊髄病学会・日本骨折治療学会椎体骨折評価委員会 ; 森諭史 (日本骨形態計測学会 : 委員長), ほか : 椎体骨折評価基準 (2012年度改訂版). Osteoporosis Japan 21 : 25-32, 2013.
7) 日本内分泌学会, 日本骨代謝学会 ; 厚生労働省難治性疾患克服研究事業ホルモン受容機構異常に関する調査研究班 : ビタミンD不足・欠乏の判定指針. 日本内分泌学会雑誌 93 (Supp. Mar) : 1-10, 2017.
8) Sakuma M, Endo N, Hagino H, et al : Serum 25-hydroxyvitamin D status in hip and spine-fracture patients in Japan. J Orthop Sci 16 : 418-423, 2011.
9) ステロイド性骨粗鬆症の管理と治療ガイドライン 2014年改訂版 (日本骨代謝学会ステロイド性骨粗鬆症の管理と治療ガイドライン改訂委員会編), 大阪大学出版会, 2014.

IV 骨粗鬆症の予防, 治療, 管理

P.252 掲載の参考文献
1) Cosman F, Lewiecki EM, Ebeling PR, et al : T-Score as an Indicator of Fracture Risk During Treatment With Romosozumab or Alendronate in the ARCH Trial. J Bone Miner Res 35 : 1333-1342, 2020.
3) Martin TJ, Sims NA, Seeman E : Physiological and Pharmacological Roles of PTH and PTHrP in Bone Using Their Shared Receptor, PTH1R. Endocr Rev 42 : 383-406, 2021.
5) Tsai JN, Nishiyama KK, Lin D, et al : Effects of Denosumab and Teriparatide Transitions on Bone Microarchitecture and Estimated Strength : the DATA-Switch HR-pQCT study. J Bone Miner Res 32 : 2001-2009, 2017.
6) Kendler DL, Bone HG, Massari F, et al : Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteoporos Int 30 : 2437-2448, 2019.
7) Holdsworth G, Staley JR, Hall P, et al : Sclerostin Downregulation Globally by Naturally Occurring Genetic Variants, or Locally in Atherosclerotic Plaques, Does Not Associate With Cardiovascular Events in Humans. J Bone Miner Res 36 : 1326-1339, 2021.
8) Prince R, Sipos A, Hossain A, et al : Sustained nonvertebral fragility fracture risk reduction after discontinuation of teriparatide treatment. J Bone Miner Res 20 : 1507-1513, 2005.
9) McClung MR, Brown JP, Diez-Perez A, et al : Effects of 24 Months of Treatment With Romosozumab Followed by 12 Months of Denosumab or Placebo in Postmenopausal Women With Low Bone Mineral Density : A Randomized, Double-Blind, Phase 2, Parallel Group Study. J Bone Miner Res 33 : 1397-1406, 2018.
10) Cosman F, Kendler DL, Langdahl BL, et al : Romosozumab and antiresorptive treatment : the importance of treatment sequence. Osteoporos Int 33 : 1243-1256, 2022.
11) Matsumoto T, Endo I : Minodronate. Bone 137 : 115432, 2020.
12) Saag K, Cosman F, De Villiers T, et al : Early changes in bone turnover and bone mineral density after discontinuation of long-term oral bisphosphonates : a post hoc analysis. Osteoporos Int 32 : 1879-1888, 2021.
13) Mignot MA, Taisne N, Legroux I, et al : Bisphosphonate drug holidays in postmenopausal osteoporosis : effect on clinical fracture risk. Osteoporos Int 28 : 3431-3438, 2017.
15) Matsumoto T, Endo I : RANKL as a target for the treatment of osteoporosis. J Bone Miner Metab 39 : 91-105, 2021.
16) Cummings SR, San Martin J, McClung MR, et al : Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361 : 756-765, 2009.
17) Bone HG, Wagman RB, Brandi ML, et al : 10 years of denosumab treatment in postmenopausal women with osteoporosis : results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5 : 513-523, 2017.
18) Tsourdi E, Zillikens MC, Meier C, et al : Fracture risk and management of discontinuation of denosumab therapy : a systematic review and position statement by ECTS. J Clin Endocrinol Metab 106 : 264-281, 2021.
P.259 掲載の参考文献
1) 竹内靖博 : 骨粗鬆症の予防と治療ガイドライン 2015年版. In : 診療ガイドラインUP-TO-DATE 2016-2017 (門脇孝, 小室一成, 宮地良樹監), p397-404, メディカルレビュー社, 2016.
2) Shoback D, Rosen CJ, Black DM, et al : Pharmacological Management of Osteoporosis in Postmenopausal Women : An Endocrine Society Guideline Update. J Clin Endocrinol Metab 105 : 587-594, 2020.
3) Adler RA, El-Hajj Fuleihan G, Bauer DC, et al : Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment : Report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res 31 : 16-35, 2016.
4) Black DM, Geiger EJ, Eastell R, et al : Atypical Femur Fracture Risk versus Fragility Fracture Prevention with Bisphosphonates. N Engl J Med 383 : 743-753, 2020.
5) Anastasilakis AD, Polyzos SA, Makras P, et al : Clinical Features of 24 Patients With Rebound-Associated Vertebral Fractures After Denosumab Discontinuation : Systematic Review and Additional Cases. J Bone Miner Res 32 : 1291-1296, 2017.
7) Anastasilakis AD, Papapoulos SE, Polyzos SA, et al : Zoledronate for the Prevention of Bone Loss in Women Discontinuing Denosumab Treatment. A Prospective 2-Year Clinical Trial. J Bone Miner Res 34 : 2220-2228, 2019.
8) Okazaki R, Sugimoto T, Kaji H, et al : Vitamin D insufficiency defined by serum 25-hydroxyvitamin D and parathyroid hormone before and after oral vitamin D3 load in Japanese subjects. J Bone Miner Metab 29 : 103-110, 2011.
9) Matsumoto T, Ito M, Hayashi Y, et al : A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures-a randomized, active comparator, double-blind study. Bone 49 : 605-612, 2011.
10) Takeuchi Y, Saito H, Makishima M, et al : Long-term safety of eldecalcitol in Japanese patients with osteoporosis : a retrospective, large-scale database study. J Bone Miner Metab 40 : 275-291, 2022.
11) Robinson DE, Ali MS, Pallares N, et al : Safety of Oral Bisphosphonates in Moderate-to-Severe Chronic Kidney Disease : A Binational Cohort Analysis. J Bone Miner Res 36 : 820-832, 2021.
12) Cummings SR, San Martin J, McClung MR, et al : Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361 : 756-765, 2009.
13) Takeuchi Y, Hamaya E, Taketsuna M, et al : Safety of 3-year raloxifene treatment in Japanese postmenopausal women aged 75 years or older with osteoporosis : a postmarketing surveillance study. Menopause 22 : 1134-1137, 2015.
16) Cosman F, Crittenden DB, Adachi JD, et al : Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med 375 : 1532-1543, 2016.
17) Takeuchi Y : Romosozumab and cardiovascular safety in Japan. Osteoporos Sarcopenia 7 : 89-91, 2021.
P.266 掲載の参考文献
1) 骨粗鬆症検診・保健指導マニュアル 第2版 (折茂肇監/細井孝之, 曽根照喜編), ライフサイエンス出版, 2014.
2) Kanis JA, Oden A, Johnell O, et al : The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18 : 1033-1046, 2007.
3) 鈴木隆雄 : 転倒の疫学. 老年医学Update 2004-05 (日本老年医学会雑誌編集員会編), p95-105, メジカルビュー社, 2004.
4) Koh LK, Sedrine WB, Torralba TP, et al : A simple tool to identify asian women at increased risk of osteoporosis. Osteoporos Int 12 : 699-705, 2001.
5) Johansson H, Kanis JA, Oden A, et al : A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29 : 223-233, 2014.
6) Tanaka S, Kuroda T, Saito M, et al : Overweight/obesity and underweight are both risk factors for osteoporotic fractures at different sites in Japanese postmenopausal women. Osteoporos Int 24 : 69-76, 2013.
7) 日本人の食事摂取基準 (2020年版) 「日本人の食事摂取基準」策定検討会報告書. [https://www.mhlw.go.jp/content/10904750/000586553.pdf] (2022年12月閲覧)
9) Law MR, Hackshaw AK : A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture : recognition of a major effect. BMJ 315 : 841-846, 1997.
10) Kanis JA, Johnell O, Oden A, et al : Smoking and fracture risk : a meta-analysis. Osteoporos Int 16 : 155-162, 2005.
11) Ganry O, Baudoin C, Fardellone P : Effect of alcohol intake on bone mineral density in elderly women : The EPIDOS Study. Epidemiologie de l'Osteoporose. Am J Epidemiol 151 : 773-780, 2000.
12) Kanis JA, Johansson H, Johnell O, et al : Alcohol intake as a risk factor for fracture. Osteoporos Int 16 : 737-742, 2005.
13) Hasling C, Sondergaard K, Charles P, et al : Calcium metabolism in postmenopausal osteoporotic women is determined by dietary calcium and coffee intake. J Nutr 122 : 1119-1126, 1992.
14) 鳥羽研二, 菊地令子, 岩田安希子, ほか : 転倒ハイリスク者の早期発見における '転倒スコア' の有用性. 日本臨牀 (増刊 : 新時代の骨粗鬆症学) : 597-601, 2007.
15) Gillespie LD, Robertson MC, Gillespie WJ, et al : Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012 : CD007146, 2012.
P.271 掲載の参考文献
1) Gillespie LD, Robertson MC, Gillespie WJ, et al : Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012 : CD007146, 2012.
2) 石橋英明 : 骨粗鬆症に対する運動療法. 診断と治療 108 : 1175-1180, 2020.
4) Lomas-Vega R, Obrero-Gaitan E, Molina-Ortega FJ, et al : Tai Chi for Risk of Falls. A Meta-analysis. J Am Geriatr Soc 65 : 2037-2043, 2017.
5) Haentjens P, Magaziner J, Colon-Emeric CS, et al : Meta-analysis : excess mortality after hip fracture among older women and men. Ann Intern Med 152 : 380-390, 2010.
6) 本郷道生, 宮腰尚久 : 脆弱性骨折予防のための運動療法のエビデンスと実践. Monthly book medical rehabilitation 270 : 7-13, 2022.
7) Miko I, Szerb I, Szerb A, et al : Effectiveness of balance training programme in reducing the frequency of falling in established osteoporotic women : a randomized controlled trial. Clin Rehabil 31 : 217-224, 2017.
8) Kemmler W, Haberle L, von Stengel S : Effects of exercise on fracture reduction in older adults : a systematic review and meta-analysis. Osteoporos Int 24 : 1937-1950, 2013.
9) 宮腰尚久 : 骨粗鬆症と運動療法. Jpn J Rehabil Med 56 : 367-370, 2019.
10) 永井隆士, 望月碧, 笠井史人, ほか : 運動によってどのように骨を増やすか? Monthly book medical rehabilitation 270 : 1-6, 2022.
11) 木村慎二 : 骨粗鬆症のリハビリテーション. Jpn J Rehabil Med 53 : 908-913, 2016.
12) 宮元章次, 石河利寛, 北村虎雄, ほか : ゲートボールの実施が高齢女性の骨密度に及ぼす影響. 体育学研究 44 : 493-499, 1999.
13) 永井隆士, 阪本桂造, 宮岡英世 : ゲートボールによる開眼片脚起立時間の延長効果. 日本整形外科スポーツ医学会雑誌 27 : 416-422, 2008.
14) 井芹健, 古田英美子 : 慢性腎臓病と骨粗鬆症, そして運動療法の可能性. 運動器リハビリテーション : 日本運動器科学会誌 32 : 164-168, 2021.
15) 加藤木丈英, 藤井隆之, 宮崎木の実, ほか : 保存期慢性腎臓病患者のロコモに影響を与える因子. 整形外科 72 : 721-724, 2021.
P.277 掲載の参考文献
1) Howe TE, Shea B, Dawson LJ, et al : Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev (7) : CD000333, 2011.
2) Shojaa M, von Stengel S, Kohl M, et al : Effects of dynamic resistance exercise on bone mineral density in postmenopausal women : a systematic review and meta-analysis with special emphasis on exercise parameters. Osteoporos Int 31 : 1427-1444, 2020.
3) Kitsuda Y, Wada T, Noma H, et al : Impact of high-load resistance training on bone mineral density in osteoporosis and osteopenia : a meta-analysis. J Bone Miner Metab 39 : 787-803, 2021.
4) Sherrington C, Fairhall NJ, Wallbank GK, et al : Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev 1 : CD012424, 2019.
5) Gillespie LD, Robertson MC, Gillespie WJ, et al : Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2012 : CD007146, 2012.
6) Sinaki M, Itoi E, Wahner HW, et al : Stronger back muscles reduce the incidence of vertebral fractures : a prospective 10 year follow-up of postmenopausal women. Bone 30 : 836-841, 2002.
7) Cheung WH, Shen WY, Dai DL, et al : Evaluation of a multidisciplinary rehabilitation programme for elderly patients with hip fracture : A prospective cohort study. J Rehabil Med 50 : 285-291, 2018.
8) Knopp-Sihota JA, Newburn-Cook CV, Homik J, et al : Calcitonin for treating acute and chronic pain of recent and remote osteoporotic vertebral compression fractures : a systematic review and meta-analysis. Osteoporos Int 23 : 17-38, 2012.
9) Ohtori S, Akazawa T, Murata Y, et al : Risedronate decreases bone resorption and improves low back pain in postmenopausal osteoporosis patients without vertebral fractures. J Clin Neurosci 17 : 209-213, 2010.
10) Nevitt MC, Chen P, Kiel DP, et al : Reduction in the risk of developing back pain persists at least 30 months after discontinuation of teriparatide treatment : a meta-analysis. Osteoporos Int 17 : 1630-1637, 2006.
11) Rzewuska M, Ferreira M, McLachlan AJ, et al : The efficacy of conservative treatment of osteoporotic compression fractures on acute pain relief : a systematic review with meta-analysis. Eur Spine J 24 : 702-714, 2015.
12) Marini S, Leoni E, Raggi A, et al : Proposal of an Adapted Physical Activity Exercise Protocol for Women with Osteoporosis-Related Vertebral Fractures : A Pilot Study to Evaluate Feasibility, Safety, and Effectiveness. Int J Environ Res Public Health 16 : 2562, 2019.
13) Cergel Y, Topuz O, Alkan H, et al : The effects of short-term back extensor strength training in postmenopausal osteoporotic women with vertebral fractures : comparison of supervised and home exercise program. Arch Osteoporos 14 : 82, 2019.
14) Vlaeyen JWS, Linton SJ : Fear-avoidance and its consequences in chronic musculoskeletal pain : a state of the art. Pain 85 : 317-332, 2000.
15) Bodes Pardo G, Lluch Girbes E, Roussel NA, et al : Pain Neurophysiology Education and Therapeutic Exercise for Patients With Chronic Low Back Pain : A Single-Blind Randomized Controlled Trial. Arch Phys Med Rehabil 99 : 338-347, 2018.
P.286 掲載の参考文献
1) 日本版二次骨折予防のための骨折リエゾンサービス (FLS) クリニカルスタンダード. [http://josteo.4com/ja/news/doc/200518_3.pdf] (2022年12月閲覧)
2) 鈴木敦詞 : 骨粗鬆症リエゾンサービスと簡易評価票「OLS-7」について. 日本骨粗鬆症学会雑誌 2 : 123-128, 2016.
3) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p156, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
4) 厚生労働省 : 後期高齢者医療制度の健診において使用している質問票の変更について. 保高発0919 第3号, 令和元年9月19日. [https://www.hospital.or.jp/pdf/14_20190919_01.pdf] (2022年12月閲覧)
5) 厚生労働省策定 : 日本人の食事摂取基準〔2020年版〕 (伊藤貞嘉, 佐々木敏監), 第一出版, 2020.
6) 国民健康・栄養の現状-令和元年厚生労働省国民健康・栄養調査報告より (医薬基盤・健康・栄養研究所監), 第一出版, 2021.
7) 塚原典子, 麻見直美 : 好きになる栄養学 (第3版5刷), p68, 80, 81, 講談社, 2020.
8) Okazaki R, Ozono K, Fukumoto S, et al : Assessment criteria for vitamin D deficiency/insufficiency in Japan : proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J Bone Miner Metab 35 : 1-5, 2017.
9) Yoshimura N, Muraki S, Oka H, et al : Profiles of vitamin D insufficiency and deficiency in Japanese men and women : association with biological, environmental, and nutritional factors and coexisting disorders : the ROAD study. Osteoporos Int 24 : 2775-2787, 2013.
10) Tamaki J, Iki M, Sato Y, et al : Total 25-hydroxyvitamin D levels predict fracture risk : results from the 15-year follow-up of the Japanese Population-based Osteoporosis (JPOS) Cohort Study. Osteoporos Int 28 : 1903-1913, 2017.
11) Yokoyama Y, Nishi M, Murayama H, et al : Association of Dietary Variety with Body Composition and Physical Function in Community-dwelling Elderly Japanese. J Nutr Health Aging 20 : 691-696, 2016.
13) ロコモチャレンジ! 推進協議会 (公益社団法人日本整形外科学会) : ロコモパンフレット 2020年度版, p16, 2020.
14) Bolland MJ, Avenell A, Baron JA, et al : Effect of calcium supplements on risk of myocardial infarction and cardiovascular events ; meta-analysis. BMJ 341 : c3691, 2010.
P.292 掲載の参考文献
1) 臨床のためのQOL評価ハンドブック (池上直己, 福原俊一, 下妻晃二郎, ほか編), 医学書院, 2001.
2) 岩谷力 : QOL. 障害と活動の測定・評価ハンドブック 改訂第2版 (岩谷力, 飛松好子編), p123-128, 南江堂, 2015.
3) 飛松好子 : 健康プロファイル型尺度. 障害と活動の測定・評価ハンドブック 改訂第2版 (岩谷力, 飛松好子編), p129-134, 南江堂, 2015.
4) 高橋栄明, 岩谷力, 揖場和子, ほか : 日本骨代謝学会骨粗鬆症患者QOL評価質問表 1999年度版. 日本骨代謝学会雑誌 17 : 65-84, 1999.
5) 高橋栄明, 岩谷力, 揖場和子, ほか : 日本骨代謝学会骨粗鬆症患者QOL評価質問表1999年度版の試用と2000年度版の作成. 日本骨代謝学会雑誌 18 : 83-101, 2001.
6) 遠藤直人 : JOQOL, 日本骨代謝学会骨粗鬆症患者QOL評価質問表. 障害と活動の測定・評価ハンドブック 改訂第2版 (岩谷力, 飛松好子編), p236-240, 南江堂, 2015.
7) QOL. 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p74-75, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
8) 佐久間真由美, 遠藤直人 : 骨粗鬆症患者QOL評価質問表 (日本骨代謝学会 2000年度版) の検討. Osteoporosis Jpn 11 : 859-866, 2003.
9) 村井肇, 佐藤光三, 井樋栄二, ほか : 骨粗鬆症患者の脊柱変形とQOL. Osteoporosis Jpn 9 : 477-479, 2001.
10) 徳永邦彦, 遠藤直人, 石垣浩恵, ほか : 円背が骨粗鬆症患者のQuality of Lifeに及ぼす影響. Osteoporosis Jpn 9 : 480-484, 2001.
11) 遠藤直人, 徳永邦彦, 遠藤栄之助 : 骨粗鬆症における日常生活動作と運動機能の障害 : QOLの観点から. 整形・災害外科 45 : 739-743, 2002.
12) 遠藤直人, 佐久間真由美 : 骨粗鬆症患者QOL評価. 整形外科 54 : 973-977, 2003.
13) Hagino H, Nakamura T, Fujiwara S, et al : Sequential change in quality of life for patients with incident clinical frcatures : a prospective study. Osteoporos Int 20 : 695-702, 2009.
14) Nevitt MC, Thompson DE, Black DM, et al : Effect of alendronate on limited-activity days and bed-disability days caused by back pain in postmenopausal women with existing vertebral fractures. Fracture Intervention Trial Research Group. Arch Intern Med 160 : 77-85, 2000.
15) Tanaka S, Endo N, Tsujino K : Effects of calcitonin treatment in patients with osteoporosis who developed acute low back pain due to new vertebral fracture. ECCE011-IOh, 2010.
16) Ohta H, Hamaya E, Taketsuna M, et al : Quality of life in Japanese women with postmenopausal osteoporosis treated with raloxifene and vitamin D : post hoc analysis of a postmarketing study. Curr Med Res Opin 31 : 85-94, 2015.
17) Kumamoto K, Nakamura T, Suzuki T, et al : Validation of the Japanese Osteoporosis Quality of Life Questionnaire. J Bone Miner Metab 28 : 1-7, 2010.
P.296 掲載の参考文献
1) Tang BM, Eslick GD, Nowson C, et al : Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older : a meta-analysis. Lancet 370 : 657-666, 2007.
2) Shea B, Wells G, Cranney A, et al : Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev 23 : 552-559, 2002.
3) Reid IR, Mason B, Horne A, et al : Randomized controlled trial of calcium in healthy older women. Am J Med 119 : 777-785, 2006.
4) Avenell A, Mak JCS, O'Connell D : Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev 2014 : CD000227, 2014.
5) Kahwati LC, Weber RP, Pan H, et al : Vitamin D, Calcium, or Combined Supplementation for the Primary Prevention of Fractures in Community-Dwelling Adults : Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 319 : 1600-1612, 2018.
6) Iuliano S, Poon S, Robbins J, et al : Effect of dietary sources of calcium and protein on hip fractures and falls in older adults in residential care : cluster randomised controlled trial. BMJ 375 : n2364, 2021.
7) Prince RL, Devine A, Dhaliwal SS, et al : Effects of calcium supplementation on clinical fracture and bone structure : results of a 5-year, double-blind, placebo-controlled trial in elderly women. Arch Intern Med 166 : 869-875, 2006.
8) 「日本人の食事摂取基準」策定検討会 : 日本人の食事摂取基準 (2020年版), (「日本人の食事摂取基準」策定検討会報告書, 令和元年12月. [https://www.mhlw.go.jp/content/10904750/000586553.pdf] (2022年11月閲覧)
9) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
10) 厚生労働省 : 令和元年国民健康・栄養調査報告. [https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html] (2022年11月閲覧)
11) Lips P, Bouillon R, van Schoor NM, et al : Reducing fracture risk with calcium and vitamin D. Clin Endocrinol (Oxf) 73 : 277-285, 2010.
12) Bolland MJ, Avenell A, Baron JA, et al : Effect of calcium supplements on risk of myocardial infarction and cardiovascular events : meta-analysis. BMJ 341 : c3691, 2010.
13) Bauer DC : Clinical practice. Calcium supplements and fracture prevention. N Engl J Med 369 : 1537-1543, 2013.
14) Jackson RD, LaCroix AZ, Gass M, et al : Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med 354 : 669-683, 2006.
15) Lewis JR, Radavelli-Bagatini S, Rejnmark L, et al : The effects of calcium supplementation on verified coronary heart disease hospitalization and death in postmenopausal women : a collaborative meta-analysis of randomized controlled trials. J Bone Miner Res 30 : 165-175, 2015.
P.301 掲載の参考文献
1) Nakagawa K, Hirota Y, Sawada N, et al : Identification of UBIAD1 as a novel human menaquinone-4 biosynthetic enzyme. Nature 468 : 117-121, 2010.
3) Ma ML, Ma ZJ, He YL, et al : Efficacy of vitamin K2 in the prevention and treatment of postmenopausal osteoporosis : A systematic review and meta-analysis of randomized controlled trials. Front Public Health 10 : 979649, 2022.
4) Inoue T, Fujita T, Kishimoto H, et al : Randomized controlled study on the prevention of osteoporotic fractures (OF study) : a phase IV clinical study of 15-mg menatetrenone capsules. J Bone Miner Metab 27 : 66-75, 2009.
5) Vergnaud P, Garnero P, Meunier PJ, et al : Undercarboxylated osteocalcin measured with a specific immunoassay predicts hip fracture in elderly women : the EPIDOS Study. J Clin Endocrinol Metab 82 : 719-724, 1997.
6) Booth SL, Tucker KL, Chen H, et al : Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71 : 1201-1208, 2000.
7) Shiraki M, Shiraki Y, Aoki C, et al : Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 15 : 515-521, 2000.
8) Saito M : Effect of vitamin K on bone material properties. Clin Calcium 19 : 1797-1804, 2009.
9) Kinoshita H, Nakagawa K, Narusawa K, et al : A functional single nucleotide polymorphism in the vitamin-K-dependent gamma-glutamyl carboxylase gene (Arg325Gln) is associated with bone mineral density in elderly Japanese women. Bone 40 : 451-456, 2007.
10) Xie X, Liu Y, Li J, et al : Fracture risks in patients with atrial fibrillation treated with different oral anticoagulants : a meta-analysis and systematic review. Age Ageing 51 : afab264, 2022.
11) Azuma K, Shiba S, Hasegawa T, et al : Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation With Aberrant Mineralization. J Bone Miner Res 30 : 1245-1254, 2015.
12) Tabb MM, Sun A, Zhou C, et al : Vitamin K2 regulation of bone homeostasis is mediated by the steroid and xenobiotic receptor SXR. J Biol Chem 278 : 43919-43927, 2003.
13) Azuma K, Casey SC, Ito M, et al : Pregnane X receptor knockout mice display osteopenia with reduced bone formation and enhanced bone resorption. J Endocrinol 207 : 257-263, 2010.
15) Mishima E, Ito J, Wu Z, et al : A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608 : 778-783, 2022.
P.308 掲載の参考文献
1) Richy F, Schacht E, Bruyere O, et al : Vitamin D analogs versus native vitamin D in preventing bone loss and osteoporosis-related fractures : a comparative meta-analysis. Calcif Tissue Int 76 : 176-186, 2005.
2) Matsumoto T, Ito M, Hayashi Y, et al : A new active vitamin D3 analog, eldecalcitol, prevents the risk of osteoporotic fractures-a randomized, active comparator, double-blind study. Bone 49 : 605-612, 2011.
4) Jiang Y, Tang H, Ma X, et al : Eldecalcitol increases bone mineral density in Chinese osteoporotic patients without vitamin D or calcium supplementation. J Bone Miner Metab 37 : 1036-1047, 2019.
5) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗霧症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
6) Okazaki R, Ozono K, Fukumoto S, et al : Assessment criteria for vitamin D deficiency/insufficiency in Japan : proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J Bone Miner Metab 35 : 1-5, 2017.
8) Ebina K, Kashii M, Hirao M, et al : Comparison of the effects of denosumab between a native vitamin D combination and an active vitamin D combination in patients with postmenopausal osteoporosis. J Bone Miner Metab 35 : 571-580, 2017.
9) Liu H, Wang G, Wu T, et al : Efficacy and Safety of Eldecalcitol for Osteoporosis : A Meta-Analysis of Randomized Controlled Trials. Front Endocrinol (Lausanne) 13 : 854439, 2022.
10) Avenell A, Mak JCS, O'Connell D : Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst Rev 2014 : CD000227, 2014.
11) Zhang Q, Li M, Zhang T, et al : Effect of Vitamin D Receptor Activators on Glomerular Filtration Rate : A Meta-Analysis and Systematic Review. PLoS One 11 : e0147347, 2016.
13) Dam TT, von Muhlen D, Barrett-Connor EL : Sex-specific association of serum vitamin D levels with physical function in older adults. Osteoporos Int 20 : 751-760, 2009.
14) Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al : Fall prevention with supplemental and active forms of vitamin D : a meta-analysis of randomised controlled trials. BMJ 339 : b3692, 2009.
15) LeBoff MS, Chou SH, Ratliff KA, et al : Supplemental Vitamin D and Incident Fractures in Midlife and Older Adults. N Engl J Med 387 : 299-309, 2022.
P.312 掲載の参考文献
1) Yamamoto Y, Kurabayashi T, Tojo Y, et al : Effects of progestins on the metabolism of cancellous bone in aged oophorectomized rats. Bone 22 : 533-537, 1988.
2) Abdalla HI, Hart DM, Lindsay R, et al : Prevention of bone mineral loss in postmenopausal women by norethisterone. Obstet Gynecol 66 : 789-792, 1985.
3) Kurabayashi T, Ideno Y, Nagai K, et al : Validity of Self-Reported Diagnosis of Osteoporosis in Japan Nurses' Health Study. Clin Epidemiol 13 : 237-244, 2021.
4) Wells G, Tugwell P, Shea B, et al : Meta-analyses of therapies for postmenopausal osteoporosis. V. Meta-analysis of the efficacy of hormone replacement therapy in treating and preventing osteoporosis in postmenopausal women. Endocr Rev 23 : 529-539, 2002.
5) Bone HG, Greenspan SL, McKeever C, et al : Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocrinol Metab 85 : 720-726, 2000.
6) Ackerman KE, Singhal V, Baskaran C, et al : Oestrogen replacement improves bone mineral density in oligo-amenorrhoeic athletes : a randomised clinical trial. Br J Sports Med 53 : 229-236, 2019.
7) Anderson GL, Limacher M, Assaf AR, et al : Effects of conjugated equine estrogen in postmenopausal women with hysterectomy : the Women's Health Initiative randomized controlled trial. JAMA 291 : 1701-1712, 2004.
8) Rossouw JE, Anderson GL, Prentice RL, et al : Risks and benefits of estrogen plus progestin in healthy postmenopausal women : principal results From the Women's Health Initiative randomized controlled trial. JAMA 288 : 321-333, 2002.
9) Banks E, Beral V, Reeves G, et al : Fracture incidence in relation to the pattern of use of hormone therapy in postmenopausal women. JAMA 291 : 2212-2220, 2004.
10) Zhu L, Jiang X, Sun Y, et al : Effect of hormone therapy on the risk of bone fractures : a systematic review and meta-analysis of randomized controlled trials. Menopause 23 : 461-470, 2016.
11) Siris ES, Chen YT, Abbott TA, et al : Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164 : 1108-1112, 2004.
12) Cauley JA, Robbins J, Chen Z, et al : Effects of estrogen plus progestin on risk of fracture and bone mineral density : the Women's Health Initiative randomized trial. JAMA 290 : 1729-1738, 2003.
13) Torgerson DJ, Bell-Syer SE : Hormone replacement therapy and prevention of nonvertebral fractures : a meta-analysis of randomized trials. JAMA 285 : 2891-2897, 2001.
14) Qaseem A, Forciea MA, McLean RM, et al : Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women : A Clinical Practice Guideline Update From the American College of Physicians. Ann Intern Med 166 : 818-839, 2017.
15) "The 2022 Hormone Therapy Position Statement of The North American Menopause Society" Advisory Panel : The 2022 hormone therapy position statement of The North American Menopause Society. Menopause 29 : 767-794, 2022.
16) LaCroix AZ, Chlebowski RT, Manson JE, et al : Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy : a randomized controlled trial. JAMA 305 : 1305-1314, 2011.
17) Heiss G, Wallace R, Anderson GL, et al : Health risks and benefits 3 years after stopping randomized treatment with estrogen and progestin. JAMA 299 : 1036-1045, 2008.
18) Mandelli A, Tacconi E, Levinger I, et al : The role of estrogens in osteosarcopenia : from biology to potential dual therapeutic effects. Climacteric 25 : 81-87, 2022.
19) ホルモン補充療法ガイドライン (2017年度版) (日本産科婦人科学会, 日本女性医学学会編), 日本産科婦人科学会, 2017.
20) Boardman HMP, Hartley L, Eisinga A, et al : Hormone therapy for preventing cardiovascular disease in post-menopausal women. Cochrane Database Syst Rev (3) : CD002229, 2015.
23) Levin VA, Jiang X, Kagan R : Estrogen therapy for osteoporosis in the modern era. Osteporos Int 29 : 1049-1055, 2018.
P.318 掲載の参考文献
1) Taylor HS : Designing the ideal selective estrogen receptor modulator--an achievable goal? Menopause 16 : 609-615, 2009.
3) Cadarette SM, Katz JN, Brookhart MA, et al : Relative effectiveness of osteoporosis drugs for preventing nonvertebral fracture. Ann Intern Med 148 : 637-646, 2008.
4) Silverman SL, Christiansen C, Genant HK, et al : Efficacy of bazedoxifene in reducing new vertebral fracture risk in postmenopausal women with osteoporosis : results from a 3-year, randomized, placebo-, and active-controlled clinical trial. J Bone Miner Res 23 : 1923-1934, 2008.
P.323 掲載の参考文献
1) Deardorff WJ, Cenzer I, Nguyen B, et al : Time to Benefit of Bisphosphonate Therapy for the Prevention of Fractures Among Postmenopausal Women With Osteoporosis : A Meta-analysis of Randomized Clinical Trials. JAMA Intern Med 182 : 33-41, 2022.
2) 竹内靖博 : 骨粗鬆症の予防と治療ガイドライン 2015年版, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015/日常診療に活かす診療ガイドラインUP-TO-DATE 2016-2017 (門脇孝, 小室一成, 宮地良樹監), p397-404, メディカルレビュー社, 2016.
3) LeBoff MS, Greenspan SL, Insogna KL, et al : The clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 33 : 2049-2102, 2022.
4) Okazaki R, Sugimoto T, Kaji H, et al : Vitamin D insufficiency defined by serum 25-hydroxyvitamin D and parathyroid hormone before and after oral vitamin D3 load in Japanese subjects. J Bone Miner Metab 29 : 103-110, 2011.
5) Cremers S, Drake MT, Ebetino FH, et al : Pharmacology of bisphosphonates. Br J Clin Pharmacol 85 : 1052-1062, 2019.
6) Whitaker M, Guo J, Kehoe T, et al : Bisphosphonates for osteoporosis-where do we go from here? N Engl J Med 366 : 2048-2051, 2012.
7) Black DM, Bauer DC, Schwartz AV, et al : Continuing bisphosphonate treatment for osteoporosis-for whom and for how long? N Engl J Med 366 : 2051-2053, 2012.
8) Black DM, Reid IR, Napoli N, et al : The Interaction of Acute-Phase Reaction and Efficacy for Osteoporosis After Zoledronic Acid : HORIZON Pivotal Fracture Trial. J Bone Miner Res 37 : 21-28, 2022.
9) Adler RA, El-Hajj Fuleihan G, Bauer DC, et al : Managing Osteoporosis in Patients on Long-Term Bisphosphonate Treatment : Report of a Task Force of the American Society for Bone and Mineral Research. J Bone Miner Res 31 : 16-35, 2016.
10) Black DM, Geiger EJ, Eastell R, et al : Atypical Femur Fracture Risk versus Fragility Fracture Prevention with Bisphosphonates. N Engl J Med 383 : 743-753, 2020.
11) Oda T, Jodicke AM, Robinson DE, et al : Oral Bisphosphonates Are Associated With Increased Risk of Severe Acute Kidney Injury in Elderly Patients With Complex Health Needs : A Self-Controlled Case Series in the United Kingdom. J Bone Miner Res 37 : 1270-1278, 2022.
12) Robinson DE, Ali MS, Pallares N, et al : Safety of Oral Bisphosphonates in Moderate-to-Severe Chronic Kidney Disease : A Binational Cohort Analysis. J Bone Miner Res 36 : 820-832, 2021.
14) Takeuchi Y, Hashimoto J, Kakihata H, et al : Effectiveness of monthly intravenous ibandronate injections in a real-world setting : Subgroup analysis of a postmarketing observational study. Osteoporos Sarcopenia 5 : 11-18, 2019.
15) Suzuki Y, Nawata H, Soen S, et al : Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research : 2014 update. J Bone Miner Metab 32 : 337-350, 2014.
P.332 掲載の参考文献
3) Matsumoto T, Endo I : RANKL as a target for the treatment of osteoporosis. J Bone Miner Metab 39 : 91-105, 2021.
4) McClung MR : Denosumab for the treatment of osteoporosis. Osteoporos Sarcopenia 3 : 8-17, 2017.
5) Kendler DL, Cosman F, Stad RK, et al : Denosumab in the Treatment of Osteoporosis : 10 Years Later : A Narrative Review. Adv Ther 39 : 58-74, 2022.
6) Zeytinoglu M, Naaman SC, Dickens LT : Denosumab Discontinuation in Patients Treated for Low Bone Density and Osteoporosis. Endocrinol Metab Clin North Am 50 : 205-222, 2021.
7) Tanaka Y, Ohira T : Mechanisms and therapeutic targets for bone damage in rheumatoid arthritis, in particular the RANK-RANKL system. Curr Opin Pharmacol 40 : 110-119, 2018.
8) Tanaka Y : Clinical immunity in bone and joints. J Bone Miner Metab 37 : 2-8, 2019.
9) McClung MR, Lewiecki EM, Cohen SB, et al : Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354 : 821-831, 2006.
10) Cummings SR, San Martin J, McClung MR, et al : Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361 : 756-765, 2009.
11) Bone HG, Wagman RB, Brandi ML, et al : 10 years of denosumab treatment in postmenopausal women with osteoporosis : results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5 : 513-523, 2017.
12) Zebaze R, Libanati C, McClung MR, et al : Denosumab Reduces Cortical Porosity of the Proximal Femoral Shaft in Postmenopausal Women With Osteoporosis. J Bone Miner Res 31 : 1827-1834, 2016.
16) Brown JP, Prince RL, Deal C, et al : Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass : a randomized, blinded, phase 3 trial. J Bone Miner Res 24 : 153-161, 2009.
17) Kendler DL, Roux C, Benhamou CL, et al : Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 25 : 72-81, 2010.
18) Miller PD, Pannacciulli N, Brown JP, et al : Denosumab or Zoledronic Acid in Postmenopausal Women With Osteoporosis Previously Treated With Oral Bisphosphonates. J Clin Endocrinol Metab 101 : 3163-3170, 2016.
19) Leder BZ, Tsai JN, Uihlein AV, et al : Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study) : extension of a randomised controlled trial. Lancet 386 : 1147-1155, 2015.
20) Lewiecki EM, Dinavahi RV, Lazaretti-Castro M, et al : One Year of Romosozumab Followed by Two Years of Denosumab Maintains Fracture Risk Reductions : Results of the FRAME Extension Study. J Bone Miner Res 34 : 419-428, 2019.
21) Everts-Graber J, Reichenbach S, Ziswiler HR, et al : A Single Infusion of Zoledronate in Postmenopausal Women Following Denosumab Discontinuation Results in Partial Conservation of Bone Mass Gains. J Bone Miner Res 35 : 1207-1215, 2020.
P.339 掲載の参考文献
1) Gong Y, Slee RB, Fukai N, et al : LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107 : 513-523, 2001.
2) Brunkow ME, Gardner JC, Van Ness J, et al : Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68 : 577-589, 2001.
3) Tanaka S, Matsumoto T : Sclerostin : from bench to bedside. J Bone Miner Metab 39 : 332-340, 2021.
4) van Dinther M, Zhang J, Weidauer SE, et al : Anti-Sclerostin antibody inhibits internalization of Sclerostin and Sclerostin-mediated antagonism of Wnt/LRP6 signaling. PLoS One 8 : e62295, 2013.
6) Kim J, Han W, Park T, et al : Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat Commun 11 : 5357, 2020.
8) Kearns AE, Khosla S, Kostenuik PJ : Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29 : 155-192, 2008.
9) Ominsky MS, Brown DL, Van G, et al : Differential temporal effects of sclerostin antibody and parathyroid hormone on cancellous and cortical bone and quantitative differences in effects on the osteoblast lineage in young intact rats. Bone 81 : 380-391, 2015.
10) Nioi P, Taylor S, Hu R, et al : Transcriptional Profiling of Laser Capture Microdissected Subpopulations of the Osteoblast Lineage Provides Insight Into the Early Response to Sclerostin Antibody in Rats. J Bone Miner Res 30 : 1457-1467, 2015.
11) McClung MR, Grauer A, Boonen S, et al : Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370 : 412-420, 2014.
12) Cosman F, Crittenden DB, Adachi JD, et al : Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med 375 : 1532-1543, 2016.
13) Cosman F, Crittenden DB, Ferrari S, et al : Romosozumab FRAME Study : A Post Hoc Analysis of the Role of Regional Background Fracture Risk on Nonvertebral Fracture Outcome. J Bone Miner Res 33 : 1407-1416, 2018.
14) Cosman F, Crittenden DB, Ferrari S, et al : FRAME Study : The Foundation Effect of Building Bone With 1 Year of Romosozumab Leads to Continued Lower Fracture Risk After Transition to Denosumab. J Bone Miner Res 33 : 1219-1226, 2018.
15) Saag KG, Petersen J, Brandi ML, et al : Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N Engl J Med 377 : 1417-1427, 2017.
16) Cosman F, Lewiecki EM, Ebeling PR, et al : T-Score as an Indicator of Fracture Risk During Treatment With Romosozumab or Alendronate in the ARCH Trial. J Bone Miner Res 35 : 1333-1342, 2020.
18) Kendler DL, Bone HG, Massari F, et al : Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteoporos Int 30 : 2437-2448, 2019.
19) Ebina K, Tsuboi H, Nagayama Y, et al : Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis. Joint Bone Spine 88 : 105219, 2021.
20) McClung MR, Brown JP, Diez-Perez A, et al : Effects of 24 Months of Treatment With Romosozumab Followed by 12 Months of Denosumab or Placebo in Postmenopausal Women With Low Bone Mineral Density : A Randomized, Double-Blind, Phase 2, Parallel Group Study. J Bone Miner Res 33 : 1397-1406, 2018.
21) Cosman F, Libanati C, Deignan C, et al : Romosozumab Followed by Antiresorptive Treatment Increases the Probability of Achieving Bone Mineral Density Treatment Goals. JBMR Plus 5 : e10546, 2021.
22) Holdsworth G, Staley JR, Hall P, et al : Sclerostin Downregulation Globally by Naturally Occurring Genetic Variants, or Locally in Atherosclerotic Plaques, Does Not Associate With Cardiovascular Events in Humans. J Bone Miner Res 36 : 1326-1339, 2021.
P.347 掲載の参考文献
2) Finkelstein JS, Hayes A, Hunzelman JL, et al : The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349 : 1216-1226, 2003.
3) Boonen S, Marin F, Obermayer-Pietsch B, et al : Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 93 : 852-860, 2008.
4) Leder BZ, Tsai JN, Uihlein AV, et al : Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study) : extension of a randomised controlled trial. Lancet 386 : 1147-1155, 2015.
6) Barrionuevo P, Kapoor E, Asi N, et al : Efficacy of Pharmacological Therapies for the Prevention of Fractures in Postmenopausal Women : A Network Meta-Analysis. J Clin Endocrinol Metab 104 : 1623-1630, 2019.
8) Sugimoto T, Shiraki M, Fukunaga M, et al : 24-Month Open-Label Teriparatide Once-Weekly Efficacy Research Trial Examining Bone Mineral Density in Subjects with Primary Osteoporosis and High Fracture Risk. Adv Ther 34 : 1727-1740, 2017.
9) Sugimoto T, Shiraki M, Fukunaga M, et al : Study of twice-weekly injections of Teriparatide by comparing efficacy with once-weekly injections in osteoporosis patients : the TWICE study. Osteoporos Int 30 : 2321-2331, 2019.
10) Hattersley G, Dean T, Corbin BA, et al : Binding Selectivity of Abaloparatide for PTH-Type-1-Receptor Conformations and Effects on Downstream Signaling. Endocrinology 157 : 141-149, 2016.
11) Miller PD, Hattersley G, Riis BJ, et al : Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women With Osteoporosis : A Randomized Clinical Trial. JAMA 316 : 722-733, 2016.
12) Watts NB, Hattersley G, Fitzpatrick LA, et al : Abaloparatide effect on forearm bone mineral density and wrist fracture risk in postmenopausal women with osteoporosis. Osteoporos Int 30 : 1187-1194, 2019.
15) Bone HG, Cosman F, Miller PD, et al : ACTIVExtend : 24 Months of Alendronate After 18 Months of Abaloparatide or Placebo for Postmenopausal Osteoporosis. J Clin Endocrinol Metab 103 : 2949-2957, 2018.
P.350 掲載の参考文献
1) Brown EM, Gamba G, Riccardi D, et al : Cloning and characterization of an extracellular Ca2+ -sensing receptor from bovine parathyroid. Nature 366 : 575-580, 1993.
2) Riccardi D, Brown EM : Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 298 : F485-499, 2010.
3) Riccardi D, Kemp PJ : The calcium-sensing receptor beyond extracellular calcium homeostasis : conception, development, adult physiology, and disease. Annu Rev Physiol 74 : 271-297, 2012.
4) Pollak MR, Brown EM, Estep HL, et al : Autosomal dominant hypocalcaemia caused by a Ca2+ -sensing receptor gene mutation. Nat Genet 8 : 303-307, 1994.
5) Pollak MR, Brown EM, Chou YH, et al : Mutations in the human Ca2+ -sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75 : 1297-1303, 1993.
6) Block GA, Martin KJ, de Francisco AL, et al : Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med 350 : 1516-1525, 2004.
7) Balan G, Bauman J, Bhattacharya S, et al : The discovery of novel calcium sensing receptor negative allosteric modulators. Bioorg Med Chem Lett 19 : 3328-3332, 2009.
8) Kimura S, Nakagawa T, Matsuo Y, et al : JTT-305, an orally active calcium-sensing receptor antagonist, stimulates transient parathyroid hormone release and bone formation in ovariectomized rats. Eur J Pharmacol 668 : 331-336, 2011.
9) Fitzpatrick LA, Dabrowski CE, Cicconetti G, et al : The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab 96 : 2441-2449, 2011.
10) Fitzpatrick LA, Dabrowski CE, Cicconetti G, et al : Ronacaleret, a calcium-sensing receptor antagonist, increases trabecular but not cortical bone in postmenopausal women. J Bone Miner Res 27 : 255-262, 2012.
11) Halse J, Greenspan S, Cosman F, et al : A phase 2, randomized, placebo-controlled, dose-ranging study of the calcium-sensing receptor antagonist MK-5442 in the treatment of postmenopausal women with osteoporosis. J Clin Endocrinol Metab 99 : E2207-2215, 2014.
12) Cosman F, Gilchrist N, McClung M, et al : A phase 2 study of MK-5442, a calcium-sensing receptor antagonist, in postmenopausal women with osteoporosis after long-term use of oral bisphosphonates. Osteoporos Int 27 : 377-386, 2016.
P.359 掲載の参考文献
2) Japanese Allied Committee on Osteonecrosis of the Jaw, Yoneda T, Hagino H, et al : Antiresorptive agent-related osteonecrosis of the jaw : Position Paper 2017 of the Japanese Allied Committee on Osteonecrosis of the Jaw. J Bone Miner Metab 35 : 6-19, 2017.
3) Baron R, Ferrari S, Russel RG : Denosumab and bisphosphonates : different mechanisms of action and effects. Bone 48 : 677-692, 2011.
4) Saad F, Brown JE, Van Poznak C, et al : Incidence, risk factors, and outcomes of osteonecrosis of the jaw : integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol 23 : 1341-1347, 2012.
5) Hellstein JW, Adler RA, Edwards B, et al : Managing the care of patients receiving antiresorptive therapy for prevention and treatment of osteoporosis : executive summary of recommendations from the American Dental Association Council on Scientific Affairs. J Am Dent Assoc 142 : 1243-1251, 2011.
6) 厚生労働省 : 重篤副作用疾患別対応マニュアル一覧-口腔 (令和4年2月時点修正) [https://www.mhlw.go.jp/topics/2006/11/tp1122-1l.html] (2022年12月閲覧)
7) Ruggiero SL, Dodson TB, Fantasia J, et al : American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw-2014 update. J Oral Maxillofac Surg 72 : 1938-1956, 2014.
8) Khan AA, Morrison A, Hanley DA, et al : Diagnosis and management of osteonecrosis of the jaw : a systematic review and international consensus. J Bone Miner Res 30 : 3-23, 2015.
9) Ruggiero SL, Dodson TB, Aghaloo T, et al : American Association of Oral and Maxillofacial Surgeons' Position Paper on Medication-Related Osteonecrosis of the Jaws-2022 Update. J Oral Maxillofac Surg 80 : 920-943, 2022.
10) Vandone AM, Donadio M, Mozzati M, et al : Impact of dental care in the prevention of bisphosphonate-associated osteonecrosis of the jaw : a single-center clinical experience. Ann Oncol 23 : 193-200, 2012.
11) Anastasilakis AD, Polyzos SA, Makras P, et al : Clinical Features of 24 Patients With Rebound-Associated Vertebral Fractures After Denosumab Discontinuation : Systematic Review and Additional Cases. J Bone Miner Res 32 : 1291-1296, 2017.
13) Tsourdi E, Langdahl B, Cohen-Solal M, et al : Discontinuation of Denosumab therapy for osteoporosis : A systematic review and position statement by ECTS. Bone 105 : 11-17, 2017.
15) Shudo A, Kishimoto H, Takaoka K, et al : Long-term oral bisphosphonates delay healing after tooth extraction : a single institutional prospective study. Osteoporos Int 29 : 2315-2321, 2018.
P.363 掲載の参考文献
1) Talley NJ, O'Keefe EA, Zinsmeister AR, et al : Prevalence of gastrointestinal symptoms in the elderly : a population-based study. Gastroenterology 102 : 895-901, 1992.
2) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
3) Yamamoto K, Kishino M, Nakamura S, et al : Symptoms and Upper Gastrointestinal Mucosal Injury Associated with Bisphosphonate Therapy. Intern Med 58 : 1049-1056, 2019.
4) Bauer DC, Black D, Ensrud K, et al : Upper Gastrointestinal Tract Safety Profile of Alendronate. The Fracture Intervention Trial. Arch Intern Med 160 : 517-525, 2000.
5) Cryer B, Bauer DC : Oral bisphosphonates and upper gastrointestinal tract problems : What is the evidence? Mayo Clin Proc 77 : 1031-1043, 2002.
6) Lanza F, Schwartz H, Sahba B, et al : An endoscopic comparison of the effects of alendronate and risedronate on upper gastrointestinal mucosae. Am J Gastroenterol 95 : 3112-3117, 2000.
8) Uchida S, Taniguchi T, Shimizu T, et al : Therapeutic effects of alendronate 35 mg once weekly and 5 mg once daily in Japanese patients with osteoporosis : a double-blind, randomized study. J Bone Miner Metab 23 : 382-388, 2005.
10) Wright E, Schofield PT, Molokhia M : Bisphosphonates and evidence for association with esophageal and gastric cancer : a systematic review and meta-analysis. BMJ Open 5 : e007133, 2015.
P.367 掲載の参考文献
2) Christakos S, Dhawan P, Verstuyf A, et al : Vitamin D : Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 96 : 365-408, 2016.
4) Cummings SR, San Martin J, McClung MR, et al : Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361 : 756-765, 2009.
6) McCormick BB, Davis J, Burns KD : Severe hypocalcemia following denosumab injection in a hemodialysis patient. Am J Kidney Dis 60 : 626-628, 2012.
7) Yasuda Y, Iwama S, Arima H : Severe hypocalcemia following denosumab treatment in a patient with secondary osteoporosis associated with primary sclerosing cholangitis. Endocr J 66 : 271-275, 2019.
8) Tanaka S, Mizutani H, Tsuruya E, et al : Long-term safety and effectiveness of denosumab in Japanese patients with osteoporosis : 3-year post-marketing surveillance study. J Bone Miner Metab 39 : 463-473, 2021.
12) Rothenbuhler A, Marchand I, Bougneres P, et al : Risk of corrected QT interval prolongation after pamidronate infusion in children. J Clin Endocrinol Metab 95 : 3768-3770, 2010.
P.371 掲載の参考文献
1) Odvina CJ, Zerwekh JE, Rao DS, et al : Severely suppressed bone turnover : a potential complication of alendronate therapy. J Clin Endcrinol Metab 90 : 1294-1301, 2005.
2) Shane E, Burr D, Abrahamsen B, et al : Atypical subtrochanteric and diaphyseal femoral fractures : second report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 29 : 1-23, 2014.
3) Black DM, Abrahamsen B, Bouxsein ML, et al : Atypical Femur Fractures : Review of Epidemiology, Relationship to Bisphosphonates, Prevention, and Clinical Management. Endocr Rev 40 : 333-368, 2019.
4) LeBlanc ES, Rosales AG, Black DM, et al : Evaluating Atypical Features of Femur Fractures : How Change in Radiological Criteria Influenced Incidence and Demography of Atypical Femur Fractures in a Community Setting. J Bone Miner Res 32 : 2304-2314, 2017.
5) Schilcher J, Koeppen V, Aspenberg P, et al : Risk of atypical femoral fracture during and after bisphosphonate use. Acta Orthop 86 : 100-107, 2015.
6) Dell RM, Adams AL, Greene DF, et al : Incidence of atypical nontraumatic diaphyseal fractures of the femur. J Bone Miner Res 27 : 2544-2550, 2012.
7) Lo JC, Hui RL, Grimsrud CD, et al : The association of race/ethnicity and risk of atypical femur fracture among older women receiving oral bisphosphonate therapy. Bone 85 : 142-147, 2016.
8) Koh JH, Myong JP, Yoo J, et al : Predisposing factors associated with atypical femur fracture among postmenopausal Korean women receiving bisphosphonate therapy : 8 years' experience in a single center. Osteoporos Int 28 : 3251-3259, 2017.
9) Sasaki S, Miyakoshi N, Hongo M, et al : Low-energy diaphyseal femoral fractures associated with bisphosphonate use and severe curved femur : a case series. J Bone Miner Metab 30 : 561-567, 2012.
10) Sato H, Kondo N, Wada Y, et al : The cumulative incidence of and risk factors for latent beaking in patients with autoimmune diseases taking long-term glucocorticoids and bisphosphonates. Osteoporos Int 27 : 1217-1225, 2016.
11) Kondo N, Fukuhara T, Watanabe Y, et al : Bone Formation Parameters of the Biopsied Ilium Differ between Subtrochanteric and Diaphyseal Atypical Femoral Fractures in Bisphosphonate-Treated Patients. Tohoku J Exp Med 243 : 247-254, 2017.
12) Iwata K, Mashiba T, Hitora T, et al : A large amount of microdamages in the cortical bone around fracture site in a patient of atypical femoral fracture after long-term bisphosphonate therapy. Bone 64 : 183-186, 2014.
13) Oh Y, Yamamoto K, Hashimoto J, et al : Biological activity is not suppressed in mid-shaft stress fracture of the bowed femoral shaft unlike in "typical" atypical subtrochanteric femoral fracture : A proposed theory of atypical femoral fracture subtypes. Bone 137 : 115453, 2020.
14) Furukawa H, Oka S, Kondo N, et al : The contribution of deleterious rare alleles in ENPP1 and osteomalacia causative genes to atypical femoral fracture. J Clin Endcrinol Metab 107 : e1890-1898, 2022.
15) Lai YS, Chau JYM, Woo SB, et al : A retrospective review on atypical femoral fracture : Operative outcomes and the risk factors for failure. Geriatr Orthop Surg Rehabil 10 : 215145931986473, 2019.
P.376 掲載の参考文献
1) 内閣府 : 平成30年版男女共同参画白書, 2018. [https://www.gender.go.jp/about_danjo/whitepaper/h30/zentai/index.html] (2022年12月閲覧)
2) 厚生労働省 : 令和元年国民健康・栄養調査報告, 2020. [https://www.mhlw.go.jp/content/000710991.pdf] (2022年12月閲覧)
4) Ahima RS, Prabakaran D, Mantzoros C, et al : Role of leptin in the neuroendocrine response to fasting. Nature 382 : 250-252, 1996.
5) Dominguez J, Goodman L, Sen Gupta S, et al : Treatment of anorexia nervosa is associated with increases in bone mineral density, and recovery is a biphasic process involving both nutrition and return of menses. Am J Clin Nutr 86 : 92-99, 2007.
6) Williams NI, Helmreich DL, Parfitt DB, et al : Evidence for a causal role of low energy availability in the induction of menstrual cycle disturbances during strenuous exercise training. J Clin Endocrinol Metab 86 : 5184-5193, 2001.
7) Welt CK, Chan JL, Bullen J, et al : Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med 351 : 987-997, 2004.
8) Matzkin E, Curry EJ, Whitlock K : Female Athlete Triad : Past, Present, and Future. J Am Acad Orthop Surg 23 : 424-432, 2015.
9) Thein-Nissenbaum JM, Rauh MJ, Carr KE, et al : Associations between disordered eating, menstrual dysfunction, and musculoskeletal injury among high school athletes. J Orthop Sports Phys Ther 41 : 60-69, 2011.
10) Pantano KJ : Current knowledge, perceptions, and interventions used by collegiate coaches in the u.s. Regarding the prevention and treatment of the female athlete triad. N Am J Sports Phys Ther 1 : 195-207, 2006.
11) Troy K, Hoch AZ, Stavrakos JE : Awareness and comfort in treating the Female Athlete Triad : are we failing our athletes? WMJ 105 : 21-24, 2006.
12) Nattiv A, Loucks AB, Manore MM, et al : American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc 39 : 1867-1882, 2007.
13) Torstveit MK, Sundgot-Borgen J : The female athlete triad exists in both elite athletes and controls. Med Sci Sports Exerc 37 : 1449-1459, 2005.
14) Nichols JF, Rauh MJ, Lawson MJ, et al : Prevalence of the female athlete triad syndrome among high school athletes. Arch Pediatr Adolesc Med 160 : 137-142, 2006.
15) Hoch AZ, Pajewski NM, Moraski L, et al : Prevalence of the female athlete triad in high school athletes and sedentary students. Clin J Sport Med 19 : 421-428, 2009.
16) Matkovic V, Jelic T, Wardlaw GM, et al : Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. Inference from a cross-sectional model. J Clin Invest 93 : 799-808, 1994.
17) Pollock N, Grogan C, Perry M, et al : Bone-mineral density and other features of the female athlete triad in elite endurance runners : a longitudinal and cross-sectional observational study. Int J Sport Nutr Exerc Metab 20 : 418-426, 2010.
P.383 掲載の参考文献
1) Weaver CM, Gordon CM, Janz KF, et al : The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors : a systematic review and implementation recommendations. Osteoporos Int 27 : 1281-1386, 2016.
2) Morris JA, Kemp JP, Youlten SE, et al : An atlas of genetic influences on osteoporosis in humans and mice. Nat Genet 51 : 258-266, 2019.
3) Zemel BS, Leonard MB, Kelly A, et al : Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 95 : 1265-1273, 2010.
4) Crabtree NJ, Shaw NJ, Bishop NJ, et al : Amalgamated Reference Data for Size-Adjusted Bone Densitometry Measurements in 3598 Children and Young Adults-the ALPHABET Study. J Bone Miner Res 32 : 172-180, 2017.
5) Ward LM, Rauch F : Anabolic therapy for the treatment of osteoporosis in childhood. Curr Osteoporos Rep 16 : 269-276, 2018.
6) Jovanovic M, Guterman-Ram G, Marini JC : Osteogenesis Imperfecta : Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 43 : 61-90, 2022.
7) Sillence DO, Senn A, Danks DM : Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16 : 101-116, 1979.
8) Ohata Y, Takeyari S, Nakano Y, et al : Comprehensive genetic analyses using targeted next-generation sequencing and genotype-phenotype correlations in 53 Japanese patients with osteogenesis imperfecta. Osteoporos Int 30 : 2333-2342, 2019.
9) 日本小児内分泌学会薬事委員会 : 骨形成不全症の診療ガイドライン. 日本小児科学会雑誌 110 : 1468-1471, 2006.
10) Glorieux FH, Devogelaer JP, Durigova M, et al : BPS804 Anti-Sclerostin Antibody in Adults With Moderate Osteogenesis Imperfecta : Results of a Randomized Phase 2a Trial. J Bone Miner Res 32 : 1496-1504, 2017.
11) Gong Y, Slee RB, Fukai N, et al : LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107 : 513-523, 2001.
13) Suzuki Y, Nawata H, Soen S, et al : Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research : 2014 update. J Bone Miner Metab 32 : 337-350, 2014.
15) van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, et al : Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350 : 2033-2041, 2004.
P.391 掲載の参考文献
2) Yoshimura M, Moriwaki K, Noto S, et al : A model-based cost-effectiveness analysis of osteoporosis screening and treatment strategy for postmenopausal Japanese women. Osteoporos Int 28 : 643-652, 2017.
3) 原田敦, 松井康素, 竹村真里枝, ほか : 骨粗鬆症の医療経済-疫学, 費用と介入法別費用, 効用分析-. 日本老年医学会雑誌 42 : 596-608, 2005.
5) Schott AM, Cormier C, Hans D, et al : How hip and whole-body bone mineral density predict hip fracture in elderly women : the EPIDOS Prospective Study. Osteoporos Int 8 : 247-254, 1998.
6) Jeong C, Ha J : The Effect of Denosumab on Bone Mass in Super Elderly Patients. J Bone Metab 27 : 119-124, 2020.
7) Boonen S, McClung MR, Eastell R, et al : Safety and efficacy of risedronate in reducing fracture risk in osteoporotic women aged 80 and older : implications for the use of antiresorptive agents in the old and oldest old. J Am Geriatr Soc 52 : 1832-1839, 2004.
8) Boonen S, Black DM, Colon-Emeric CS, et al : Efficacy and safety of a once-yearly intravenous zoledronic acid 5 mg for fracture prevention in elderly postmenopausal women with osteoporosis aged 75 and older. J Am Geriatr Soc 58 : 292-299, 2010.
9) Lips P : Vitamin D deficiency and secondary hyperparathyroidism in the elderly : consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22 : 477-501, 2001.
10) Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al : Fall prevention with supplemental and active forms of vitamin D : a meta-analysis of randomised controlled trials. BMJ 339 : b3692, 2009.
11) Munshi R, Hussein MH, Toraih EA, et al : Vitamin D insufficiency as a potential culprit in critical COVID-19 patients. J Med Virol 93 : 733-740, 2021.
12) Azuma K, Inoue S : Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. Int J Mol Sci 20 : 2844, 2019.
13) Azuma K, Osuka Y, Kojima N, et al : Association of Vitamin K Insufficiency With Cognitive Dysfunction in Community-Dwelling Older Adults. Front Nutr 8 : 811831, 2021.
14) Azuma K, Osuka Y, Kojima N, et al : Association of Vitamin K Insufficiency as Evaluated by Serum Undercarboxylated Osteocalcin With Frailty in Community-Dwelling Older Adults. Front Aging 3 : 865178, 2022.
15) Dofferhoff ASM, Piscaer I, Schurgers LJ, et al : Reduced Vitamin K Status as a Potentially Modifiable Risk Factor of Severe Coronavirus Disease 2019. Clin Infect Dis 73 : e4039-e4046, 2021.
P.396 掲載の参考文献
1) Bone HG, Wagman RB, Brandi ML, et al : 10 years of denosumab treatment in postmenopausal women with osteoporosis : results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5 : 513-523, 2017.
2) Matsumoto T, Sone T, Soen S, et al : Abaloparatide Increases Lumbar Spine and Hip BMD in Japanese Patients With Osteoporosis : The Phase 3 ACTIVE-J Study. J Clin Endocrinol Metab 107 : e4222-e4231, 2022.
3) Cosman F, Crittenden DB, Adachi JD, et al : Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med 375 : 1532-1543, 2016.
4) Bouxsein ML, Eastell R, Lui LY, et al : Change in Bone Density and Reduction in Fracture Risk : A Meta-Regression of Published Trials. J Bone Miner Res 34 : 632-642, 2019.
5) Cummings SR, Cosman F, Lewiecki EM, et al : Goal-Directed Treatment for Osteoporosis : A Progress Report From the ASBMR-NOF Working Group on Goal-Directed Treatment for Osteoporosis. J Bone Miner Res 32 : 3-10, 2017.
6) Leder BZ, Tsai JN, Uihlein AV, et al : Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study) : extension of a randomised controlled trial. Lancet 386 : 1147-1155, 2015.
7) Curtis EM, Reginster JY, Al-Daghri N, et al : Management of patients at very high risk of osteoporotic fractures through sequential treatments. Aging Clin Exp Res 34 : 695-714, 2022.
8) Cosman F, Crittenden DB, Ferrari S, et al : FRAME Study : The Foundation Effect of Building Bone With 1 Year of Romosozumab Leads to Continued Lower Fracture Risk After Transition to Denosumab. J Bone Miner Res 33 : 1219-1226, 2018.
9) John MR, Harfst E, Loeffler J, et al : AXT914 a novel, orally-active parathyroid hormone-releasing drug in two early studies of healthy volunteers and postmenopausal women. Bone 64 : 204-210, 2014.
11) Yu S, Li D, Zhang N, et al : Drug discovery of sclerostin inhibitors. Acta Pharm Sin B 12 : 2150-2170, 2022.
12) Cummings SR, Ensrud K, Delmas PD, et al : Lasofoxifene in postmenopausal women with osteoporosis. N Engl J Med 362 : 686-696, 2010.
13) Christiansen AR, Lipshultz LI, Hotaling JM, et al : Selective androgen receptor modulators : the future of androgen therapy? Transl Androl Urol 9 : S135-S148, 2020.
14) Dalton JT : The long and winding road for selective androgen receptor modulators. Br J Clin Pharmacol 83 : 2131-2133, 2017.
15) Kurimoto T, Tamai I, Nakagawa T, et al : JTP-117968, a novel selective glucocorticoid receptor modulator, exhibits significant anti-inflammatory effect while maintaining bone mineral density in mice. Eur J Pharmacol 895 : 173880, 2021.
17) Eastell R, Vittinghoff E, Lui LY, et al : Validation of the Surrogate Threshold Effect for Change in Bone Mineral Density as a Surrogate Endpoint for Fracture Outcomes : The FNIH-ASBMR SABRE Project. J Bone Miner Res 37 : 29-35, 2022.

V 骨粗鬆症に伴う骨折の予防・治療

P.404 掲載の参考文献
1) 厚生労働省 : 2019年 国民生活基礎調査の概況. [https://www.mhlw.go.jp/toukei/saikin/hw/k-tyosa/k-tyosa19/index.html] (2022年12月閲覧)
2) Cauley JA, Thompson DE, Ensrud KC, et al : Risk of mortality following clinical fractures. Osteoporos Int 11 : 556-561, 2000.
3) 折茂肇, 細田裕, 白木正孝, ほか : 大腿骨頸部骨折全国頻度調査報告 (昭和62年). 日本医事新報 3420 : 43-45, 1989.
6) Shoji A, Gao Z, Arai K, et al : 30-year trends of hip and vertebral fracture incidence in Japan : a systematic review and meta-analysis. J Bone Miner Metab 40 : 327-336, 2022.
8) Horii C, Asai Y, Iidaka T, et al : Differences in prevalence and associated factors between mild and severe vertebral fractures in Japanese men and women : the third survey of the ROAD study. J Bone Miner Metab 37 : 844-853, 2019.
9) Genant HK, Wu CY, van Kuijk C, et al : Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8 : 1137-1148, 1993.
10) Horii C, Iidaka T, Muraki S, et al : The cumulative incidence of and risk factors for morphometric severe vertebral fractures in Japanese men and women : the ROAD study third and fourth surveys. Osteoporos Int 33 : 889-899, 2022.
11) Yoshimura N, Iidaka T, Horii C, et al : Trends in osteoporosis prevalence over a 10-year period in Japan : The ROAD study 2005-2015. J Bone Miner Metab 40 : 829-838, 2022.
P.411 掲載の参考文献
1) Garden RS : Low-angle fixation in fractures of the femoral neck. J Bone Joint Surg Br 43 : 647-663, 1961.
3) Evans EM : The treatment of trochanteric fractures of the femur. J Bone Joint Surg Br 31B : 190-203, 1949.
4) Song H, Chen SY, Chang SM : What should be filled in the blank of 31A2.1 in AO/OTA-2018 classification. Injury 51 : 1408-1409, 2020.
5) Genant HK, Wu CY, van Kuijk C, et al : Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8 : 1137-1148, 1993.
6) Wang YXJ, Diacinti D, Yu W, et al : Semi-quantitative grading and extended semi-quantitative grading for osteoporotic vertebral deformity : a radiographic image database for education and calibration. Ann Transl Med 8 : 398, 2020.
7) Sugita M, Watanabe N, Mikami Y, et al : Classification of vertebral compression fractures in the osteoporotic spine. J Spinal Disord Tech 18 : 376-381, 2005.
P.416 掲載の参考文献
2) 第I章 骨粗鬆症の定義・疫学および成因. 骨粗鬆症の予防と治療ガイドライン2 015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p1-15, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
3) Kanis JA, Oden A, Johnell O, et al : The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18 : 1033-1046, 2007.
4) Stone KL, Seeley DG, Lui LY, et al : BMD at multiple sites and risk of fracture of multiple types : long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18 : 1947-1954, 2003.
5) Johnell O, Kanis JA, Oden A, et al : Predictive value of BMD for hip and other fractures. J Bone Miner Res 20 : 1185-1194, 2005.
6) 第1章 総論. 生活習慣病骨折リスクに関する診療ガイド 2019年版 (日本骨粗鬆症学会生活習慣病における骨折リスク評価委員会編), p1-20, 日本骨粗鬆症学会, 2019.
8) Sakai A, Menuki K, Zenke Y, et al : More radial shortening after low-energy Colles' fractures is associated with type 2 diabetes mellitus among postmenopausal women, irrespective of bone mineral density. J Orthop Sci 18 : 811-818, 2013.
9) Graat-Verboom L, van den Borne BE, Smeenk FW, et al : Osteoporosis in COPD outpatients based on bone mineral density and vertebral fractures. J Bone Miner Res 26 : 561-568, 2011.
10) Tsukamoto M, Mori T, Wang KY, et al : Systemic bone loss, impaired osteogenic activity and type I muscle fiber atrophy in mice with elastase-induced pulmonary emphysema : Establishment of a COPD-related osteoporosis mouse model. Bone 120 : 114-124, 2019.
11) Tsukamoto M, Mori T, Nakamura E, et al : Chronic obstructive pulmonary disease severity in middle-aged and older men with osteoporosis associates with decreased bone formation. Osteoporos Sarcopenia 6 : 179-184, 2020.
12) Ivaska KK, Gerdhem P, Vaananen HK, et al : Bone turnover markers and prediction of fracture : a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res 25 : 393-403, 2010.
13) Gerdhem P, Ivaska KK, Alatalo SL, et al : Biochemical markers of bone metabolism and prediction of fracture in elderly women. J Bone Miner Res 19 : 386-393, 2004.
15) Robinson CM, Royds M, Abraham A, et al : Refractures in patients at least forty-five years old. a prospective analysis of twenty-two thousand and sixty patients. J Bone Joint Surg Am 84 : 1528-1533, 2002.
P.421 掲載の参考文献
1) Kortebein P, Ferrando A, Lombeida J, et al : Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297 : 1772-1774, 2007.
2) Li W, Yue T, Liu Y : New understanding of the pathogenesis and treatment of stroke-related sarcopenia. Biomed Pharmacother 131 : 110721, 2020.
3) Yang J, Jiang F, Yang M, et al : Sarcopenia and nervous system disorders. J Neurol 269 : 5787-5797, 2022.
4) Johansson H, Siggeirsdottir K, Harvey NC, et al : Imminent risk of fracture after fracture. Osteoporos Int 28 : 775-780, 2017.
5) Yang Y, Hu X, Zhang Q, et al : Diabetes mellitus and risk of falls in older adults : a systematic review and meta-analysis. Age Ageing 45 : 761-767, 2016.
6) Anagnostis P, Gkekas NK, Achilla C, et al : Type 2 Diabetes Mellitus is Associated with Increased Risk of Sarcopenia : A Systematic Review and Meta-analysis. Calcif Tissue Int 107 : 453-463, 2020.
7) Goto NA, Weststrate ACG, Oosterlaan FM, et al : The association between chronic kidney disease, falls, and fractures : a systematic review and meta-analysis. Osteoporos Int 31 : 13-29, 2020.
8) Chatzipetrou V, Begin MJ, Hars M, et al : Sarcopenia in Chronic Kidney Disease : A Scoping Review of Prevalence, Risk Factors, Association with Outcomes, and Treatment. Calcif Tissue Int 110 : 1-31, 2022.
9) Hakamy A, Bolton CE, Gibson JE, et al : Risk of fall in patients with COPD. Thorax 73 : 1079-1080, 2018.
10) Sepulveda-Loyola W, Osadnik C, Phu S, et al : Diagnosis, prevalence, and clinical impact of sarcopenia in COPD : a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 11 : 1164-1176, 2020.
11) Loughran KJ, Atkinson G, Beauchamp MK, et al : Balance impairment in individuals with COPD : a systematic review with meta-analysis. Thorax 75 : 539-546, 2020.
12) Annweiler C, Beauchet O, Berrut G, et al : Is there an association between serum 25-hydroxyvitamin D concentration and muscle strength among older women? Results from baseline assessment of the EPIDOS study. J Nutr Health Aging 13 : 90-95, 2009.
13) Scott D, Ebeling PR, Sanders KM, et al : Vitamin d and physical activity status : associations with five-year changes in body composition and muscle function in community-dwelling older adults. J Clin Endocrinol Metab 100 : 670-678, 2015.
14) Beaudart C, Buckinx F, Rabenda V, et al : The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power : a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 99 : 4336-4345, 2014.
15) Zhu K, Austin N, Devine A, et al : A randomized controlled trial of the effects of vitamin D on muscle strength and mobility in older women with vitamin D insufficiency. J Am Geriatr Soc 58 : 2063-2068, 2010.
16) Bolland MJ, Grey A, Avenell A : Effects of vitamin D supplementation on musculoskeletal health : a systematic review, meta-analysis, and trial sequential analysis. Lancet Diabetes Endocrinol 6 : 847-858, 2018.
17) Bouillon R, Manousaki D, Rosen C, et al : The health effects of vitamin D supplementation : evidence from human studies. Nat Rev Endocrinol 18 : 96-110, 2022.
P.428 掲載の参考文献
1) Kanis JA, Hans D, Cooper C, et al : Interpretation and use of FRAX in clinical practice. Osteoporos Int 22 : 2395-2411, 2011.
2) Kanis JA, Johansson H, Oden A, et al : Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 22 : 809-816, 2011.
3) Kanis JA, Johansson H, Harvey NC, et al : A brief history of FRAX. Arch Osteoporos 13 : 118, 2018.
4) Vandenput L, Johansson H, McCloskey EV, et al : Update of the fracture risk prediction tool FRAX : a systematic review of potential cohorts and analysis plan. Osteoporos Int 33 : 2103-2136, 2022.
5) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
8) Merlijn T, Swart KMA, Van Schoor NM, et al : The effect of a screening and treatment program for the prevention of fractures in older women : a randomized pragmatic trial. J Bone Miner Res 34 : 1993-2000, 2019.
10) Merlijn T, Swart KMA, van der Horst HE, et al : Fracture prevention by screening for high fracture risk : a systematic review and meta-analysis. Osteoporos Int 31 : 251-257, 2020.
11) Soreskog E, Borgstrom F, Shepstone L, et al : Long-term cost-effectiveness of screening for fracture risk in a UK primary care setting : the SCOOP study. Osteoporos Int 31 : 1499-1506, 2020.
12) McCloskey E, Johansson H, Harvey NC, et al : Management of Patients With High Baseline Hip Fracture Risk by FRAX Reduces Hip Fractures-A Post Hoc Analysis of the SCOOP Study. J Bone Miner Res 33 : 1020-1026, 2018.
13) Chotiyarnwong P, McCloskey EV, Harvey NC, et al : Is it time to consider population screening for fracture risk in postmenopausal women? A position paper from the International Osteoporosis Foundation Epidemiology/Quality of Life Working Group. Arch Osteoporos 17 : 87, 2022.
14) Parsons CM, Harvey N, Shepstone L, et al : Systematic screening using FRAX leads to increased use of, and adherence to, anti-osteoporosis medications : an analysis of the UK SCOOP trial. Osteoporos Int 31 : 67-75, 2020.
15) Beaudart C, Hiligsmann M, Li N, et al : Effective communication regarding risk of fracture for individuals at risk of fragility fracture : a scoping review. Osteoporos Int 33 : 13-26, 2022.
P.430 掲載の参考文献
1) Gibson MJ, Andres RO, Isaacs B, et al : The prevention of falls in later life. A report of the Kellogg International work group on the prevention of falls by the elderly. Dan Med Bull 34 (Supple 4) : 1-24, 1987.
2) Ikezoe T, Asakawa Y, Tsutou A : The relationship between quadriceps strength and balance to fall of elderly admitted to a nursing home. J Phys Ther Sci 15 : 75-79, 2003.
3) Montero-Odasso M, Schapira M, Soriano ER, et al : Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J Gerontol A Biol Sci Med Sci 60 : 1304-1309, 2005.
4) Sibley KM, Thomas SM, Veroniki AA, et al : Comparative effectiveness of exercise interventions for preventing falls in older adults : A secondary analysis of a systematic review with network meta-analysis. Exp Gerontol 143 : 111151, 2021.
5) Park HJ, Lee NG, Kang TW : Fall-related cognition, motor function, functional ability, and depression measures in older adults with dementia. NeuroRehabilitation 47 : 487-494, 2020.
6) Shigematsu H, Wada M, Miyata S, et al : Can the loco-check be used as a self-check tool for evaluating fall risk among older subjects? A prospective study. J Orthop Sci 26 : 891-895, 2021.
7) Asai Y, Tsutsui S, Oka H, et al : Sagittal spino-pelvic alignment in adults : The Wakayama Spine Study. PLoS One 12 : e0178697, 2017.
9) Green AD, Colon-Emeric CS, Bastian L, et al : Does this woman have osteoporosis? JAMA 292 : 2890-2900, 2004.
10) Schoberer D, Breimaier HE, Zuschnegg J, et al : Fall prevention in hospitals and nursing homes : Clinical practice guideline. Worldviews Evid Based Nurs 19 : 86-93, 2022.
12) Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, et al : Fall prevention with supplemental and active forms of vitamin D : a meta-analysis of randomised controlled trials. BMJ 339 : b3692, 2009.
P.438 掲載の参考文献
1) Cruz-Jentoft AJ, Bahat G, Bauer J, et al : Sarcopenia : revised European consensus on definition and diagnosis. Age Ageing 48 : 16-31, 2019.
2) サルコペニア診療ガイドライン 2017年度版 (サルコペニア診療ガイドライン作成委員会編), ライフサイエンス出版社, 2017.
4) Zhang X, Huang P, Dou Q, et al : Falls among older adults with sarcopenia dwelling in nursing home or community : A meta-analysis. Clin Nutr 39 : 33-39, 2020.
5) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), ライフサイエンス出版, 2015.
6) 萩野浩 : ロコモティブシンドロームの基礎疾患としての骨粗鬆症-虚弱 (Frailty) との係わりも含めて. Clinical Calucium 22 : 495-502, 2012.
7) 藤原佐枝子 : 骨粗鬆症のUp to date 骨粗鬆症の疫学. 成人病と生活習慣病 48 : 969-973, 2018.
8) Hagino H, Endo N, Harada A, et al : Survey of hip fractures in Japan : Recent trends in prevalence and treatment. J Orthop Sci 22 : 909-914, 2017.
9) Takusari E, Sakata K, Hashimoto T, et al : Trends in Hip Fracture Incidence in Japan : Estimates Based on Nationwide Hip Fracture Surveys From 1992 to 2017. JBMR Plus 5 : e10428, 2020.
10) Verschueren S, Gielen E, ONeill TW, et al : Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporosis Int 24 : 87-98, 2013.
11) Yoshimura N, Muraki S, Oka H, et al : Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos Int 28 : 189-199, 2017.
12) Matsui Y, Takemura M, Harada A, et al : Effects of knee extensor muscle strength on the incidence of osteopenia and osteoporosis after 6 years. J Bone Miner Metab 32 : 550-555, 2014.
13) Fatima M, Brennen-Olsen SL, Duque G, et al : Therapeutic approaches to osteosarcopenia : insights for the clinician. Ther Adv Musculoskelet Dis 11 : 1759720X19867009, 2019.
14) Bonewald LF, Kiel DP, Clemens TL, et al : Forum on bone and skeletal muscle interactions : summary of the proceedings of an ASBMR workshop. J Bone Miner Res 28 : 1857-1865, 2013.
15) Tagliaferri C, Wittrant Y, Davicco MJ, et al : Muscle and bone, two interconnected tissues. Ageing Res Rev 21 : 55-70, 2015.
P.443 掲載の参考文献
1) 骨粗鬆症リエゾンサービス. 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), p146-147, 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
3) McLellan AR, Gallacher SJ, Fraser M, et al : The fracture liaison service : success of a program for the evaluation and management of patients with osteoporotic fracture. Osteoporos Int 14 : 1028-1034, 2003.
4) Eisman JA, Bogoch ER, Dell R, et al : Making the first fracture the last fracture : ASBMR task force report on secondary fracture prevention. J Bone Miner Res 27 : 2039-2046, 2012.
5) Akesson K, Marsh D, Mitchell PJ, et al : Capture the Fracture : a Best Practice Framework and global campaign to break the fragility fracture cycle. Osteoporos Int 24 : 2135-2152, 2013.
6) 遠藤直人, 竹内靖博, 倉林工, ほか : 骨粗鬆症リエゾンサービス (Osteoporosis Liaison Service : OLS) と骨折リエゾンサービス (Fracture Liaison Service : FLS) について. 日本骨粗鬆症学会雑誌 6 : 5-6, 2020.
7) 鈴木敦詞 : 骨粗鬆症リエゾンサービス. 日本骨粗鬆症学会雑誌 6 : 445-448, 2020.
8) 鈴木敦詞 : ガイドライン骨粗鬆症リエゾンサービスと簡易評価票「OLS-7」について. 日本骨粗鬆症学会雑誌 2 : 123-128, 2016.
9) 日本骨粗鬆症学会・日本脆弱性骨折ネットワーク : 日本版 二次骨折予防のための骨折リエゾンサービス (FLS) クリニカルスタンダード. [http://www.josteo.com/ja/news/doc/200518_3.pdf] (2022年10月閲覧)
10) 日本骨粗鬆症学会・日本脆弱性骨折ネットワーク : 二次骨折予防のための骨折リエゾンサービス (FLS) 実践マニュアル. [http://www.josteo.com/ja/news/doc/201125_1.pdf] (2022年10月閲覧)
11) Javaid MK, Sami A, Lems W, et al : A patient-level key performance indicator set to measure the effectiveness of fracture liaison services and guide quality improvement : a position paper of the IOF Capture the Fracture Working Group, National Osteoporosis Foundation and Fragility Fracture Network. Osteoporos Int 31 : 1193-1204, 2020.
12) 厚生労働省健康保険局医療課 : 令和4年度診療報酬改定の概要個別改定事項V (重症化予防, 後発医薬品等使用推進, 療養・就労両立支援). [https://www.mhlw.go.jp/content/12400000/000912336.pdf] (2022年10月閲覧)
P.448 掲載の参考文献
2) 大森豪, 渡辺博史, 古賀良生 : 変形性膝関節症の発症・進行への膝周囲筋力の影響. 臨床スポーツ医学 28 : 603-606, 2011.
3) Nisino K, Koga H, Koga Y, et al : Association of isometric quadriceps strength with stride and knee kinematics during gait in community dwelling adults with normal knee or early radiographic knee osteoarthritis. Clin Biomech 84 : 105325, 2021.
4) Smith TO, Higson E, Pearson M, et al : Is there an increased risk of falls and fractures in people with early diagnosed hip and knee osteoarthritis? Data from the Osteoarthritis Initiative. Int J Rheum Dis 21 : 1193-1201, 2018.
5) Nagano Y, Naito K, Saho Y, et al : Association between in vivo knee kinematics during gait and the severity of knee osteoarthritis. Knee 19 : 628-632, 2012.
6) Levinger P, Nagano H, Downie C, et al : Biomechanical balance response during induced falls under dual task conditions in people with knee osteoarthritis. Gait Posture 48 : 106-112, 2016.
7) 建内宏重 : 関節疾患と転倒予防のバイオメカニクス. 日本骨粗鬆症学会雑誌 6 : 99-103, 2020.
8) Lin XB, Meijer OG, Lin JH, et al : Frontal plane kinematics in walking with moderate hip osteoarthritis : stability and fall risk. Clin Biomech 30 : 874-880, 2015.
9) 東藤貢 : CT を用いた有限要素解析. 臨床雑誌整形外科 73 : 572-574, 2022.
10) 千葉恒, 尾崎誠 : 骨微細構造からみた骨粗鬆症の病態解析. 整形・災害外科 64 : 639-643, 2021.
11) 若山修一, 山本衛 : 生体組織のミクロ損傷の音響 (AE) 診断. 整形・災害外科 64 : 675-681, 2021.
P.453 掲載の参考文献
1) Kannus P, Parkkari J, Niemi S, et al : Low-Trauma Pelvic Fractures in Elderly Finns in 1970-2013. Calcif Tissue Int 97 : 577-580, 2015.
2) Rommens PM, Wagner D, Hofmann A : Fragility fractures of the pelvis. JBJS Rev 5 : e3, 2017.
3) Black DM, Cummings SR, Karpf DB, et al : Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348 : 1535-1541, 1996.
5) Vogt TM, Ross PD, Palermo L, et al : Vertebral fracture prevalence among women screened for the Fracture Intervention Trial and a simple clinical tool to screen for undiagnosed vertebral fractures. Fracture Intervention Trial Research Group. Mayo Clin Proc 75 : 888-896, 2000.
6) Green AD, Colon-Emeric CS, Bastian L, et al : Does this woman have osteoporosis? JAMA 292 : 2890-2900, 2004.
8) Delmas PD, Ensrud KE, Adachi JD, et al : Efficacy of raloxifene on vertebral fracture risk reduction in postmenopausal women with osteoporosis : four-year results from a randomized clinical trial. J Clin Endocrinol Metab 87 : 3609-3617, 2002.
9) Harrison RA, Siminoski K, Vethanayagam D, et al : Osteoporosis-related kyphosis and impairments in pulmonary function : a systematic review. J Bone Miner Res 22 : 447-457, 2007.
10) Miyakoshi N, Kasukawa Y, Sasaki H, et al : Impact of spinal kyphosis on gastroesophageal reflux disease symptoms in patients with osteoporosis. Osteoporos Int 20 : 1193-1198, 2009.
11) 本郷道夫, 三輪洋人, 蘆田潔, ほか : 逆流性食道炎に対する新たなQOL質問票の検討. Prog Med 28 : 2219-2224, 2008.
12) 山本智章, 遠藤直人, 高橋榮明, ほか : 地域における骨粗鬆症患者QOL評価簡略質問票 (Mini-JOQOL) の使用経験. Osteoporo Jpn 14 : 527-529, 2006.
13) 村井肇 : 骨粗鬆症患者の脊柱変形とQOL評価. 日本臨牀 62 (増刊 : 骨粗鬆症学) : 621-624, 2004.
14) 徳永邦彦, 遠藤直人, 石垣浩恵, ほか : 円背が骨粗鬆症患者のQuality of lifeに及ぼす影響. Osteoporo Jpn 9 : 480-484, 2001.
15) Ettinger B, Black DM, Nevitt MC, et al : Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 7 : 449-456, 1992.
16) Leidig-Bruckner G, Minne HW, Schlaich C, et al : Clinical grading of spinal osteoporosis : quality of life components and spinal deformity in women with chronic low back pain and women with vertebral osteoporosis. J Bone Miner Res 12 : 663-675, 1997.
P.458 掲載の参考文献
1) Black DM, Cummings SR, Karpf DB, et al : Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348 : 1535-1541, 1996.
2) Delmas PD, Genant HK, Crans GG, et al : Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures : results from the MORE trial. Bone 33 : 522-532, 2003.
3) Kiel D : Assessing vertebral fractures. National Osteoporosis Foundation Working Group on Vertebral Fractures. J Bone Miner Res 10 : 518-523, 1995.
4) Genant HK, Wu CY, van Kuijk C, et al : Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8 : 1137-1148, 1993.
5) Adams JE, Lenchik L, Roux C, et al : Vertebral fracture initiative, Part II, radiological assessment of vertebral fracture. p1-48, International Osteoporosis Foundation, 2010.
6) Jiang G, Eastell R, Barrington NA, et al : Comparison of methods for the visual identification of prevalent vertebral fracture in osteoporosis. Osteoporos Int 15 : 887-896, 2004.
7) Ferrar L, Jiang G, Cawthon PM, et al : Identification of vertebral fracture and non-osteoporotic short vertebral height in men : the MrOS study. J Bone Miner Res 22 : 1434-1441, 2007.
8) Lentle B, Koromani F, Brown JP, et al : The Radiology of Osteoporotic Vertebral Fractures Revisited. J Bone Miner Res 34 : 409-418, 2019.
9) Yu W, Lin Q, Zhou X, et al : Reconsideration of the relevance of mild wedge or short vertebral height deformities across a broad age distribution. Osteoporos Int 25 : 2609-2615, 2014.
10) Wang YXJ : An update of our understanding of radiographic diagnostics for prevalent osteoporotic vertebral fracture in elderly women. Quant Imaging Med Surg 12 : 3495-3514, 2022.
P.462 掲載の参考文献
1) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
2) 阿部博, 武井寛, 橋本淳一, ほか : 骨粗鬆性脊椎骨折における偽関節発生の危険因子. 臨床整形外科 42 : 795-799, 2007.
3) Mori S, Soen S, Hagino H, et al : Justification criteria for vertebral fractures : year 2012 revision. J Bone Miner Metab 31 : 258-261, 2013.
4) 青木保親, 市村正一, 大鳥精司, ほか : 骨粗鬆症性椎体骨折診療マニュアル. 日本整形外科学会誌 94 : 882-906, 2020.
5) 千葉一裕, 吉田宗人, 四宮謙一, ほか : 骨粗鬆症性椎体骨折に対する保存療法の指針策定-多施設共同前向き無作為化比較パイロット試験の結果より-. 日本整形外科学会誌 85 : 934-941, 2011.
6) Lindsay R, Silverman SL, Cooper C, et al : Risk of new vertebral fracture in the year following a fracture. JAMA 285 : 320-323, 2001.
7) 宗圓聰 : 骨粗鬆症の薬物療法に関する最新の知見. 日本口腔外科学会雑誌 66 : 40-51, 2020.
8) Prevrhal S, Krege JH, Chen P, et al : Teriparatide vertebral fracture risk reduction determined by quantitative and qualitative radiographic assessment. Curr Med Res Opin 25 : 921-928, 2009.
9) Gallagher JC, Genant HK, Crans GG, et al : Teriparatide reduces the fracture risk associated with increasing number and severity of osteoporotic fractures. J Clin Endocrinol Metab 90 : 1583-1587, 2005.
11) Genant HK, Halse J, Briney WG, et al : The effects of teriparatide on the incidence of back pain in postmenopausal women with osteoporosis. Curr Med Res Opin 21 : 1027-1034, 2005.
12) Ohtori S, Akazawa T, Murata Y, et al : Risedronate decreases bone resorption and improves low back pain in postmenopausal osteoporosis patients without vertebral fractures. J Clin Neurosci 17 : 209-213, 2010.
P.466 掲載の参考文献
1) Clark D, Nakamura M, Miclau T, et al : Effects of Aging on Fracture Healing. Curr Osteoporos Rep 15 : 601-608, 2017.
2) Bahney CS, Zondervan RL, Allison P, et al : Cellular biology of fracture healing. J Orthop Res 37 : 35-50, 2019.
3) Claes L, Recknagel S, Ignatius A : Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8 : 133-143, 2012.
4) Gerstenfeld L, Cullinane DM, Barnes GL, et al : Fracture healing as a post-natal developmental process : Molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88 : 873-884, 2003.
5) Whyte MP, Greenberg CR, Salman NJ, et al : Enzyme-replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366 : 904-913, 2012.
6) de Palma L, Tulli A, Maccauro G, et al : Fracture callus in osteopetrosis. Clin Orthop Relat Res (308) : 85-89, 1994.
7) El Khassawna T, Toben D, Kolanczyk M, et al : Deterioration of fracture healing in the mouse model of NF1 long bone dysplasia. Bone 51 : 651-660, 2012.
8) Ruther U, Garber C, Komitowski D, et al : Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature 325 : 412-416, 1987.
9) Histing T, Garcia P, Holstein JH, et al : Small animal bone healing models : standards, tips, and pitfalls results of a consensus meeting. Bone 49 : 591-599, 2011.
10) Manigrasso MB, O'Connor JP : Comparison of fracture healing among different inbred mouse strains. Calcif Tissue Int 82 : 465-474, 2008.
11) Jepsen KJ, Price C, Silkman LJ, et al : Genetic variation in the patterns of skeletal progenitor cell differentiation and progression during endochondral bone formation affects the rate of fracture healing. J Bone Miner Res 23 : 1204-1216, 2008.
12) Tsuji K, Bandyopadhyay A, Harfe BD, et al : BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38 : 1424-1429, 2006.
13) Okada K, Nishioka M, Kaji H : Roles of fibrinolytic factors in the alterations in bone marrow hematopoietic stem/progenitor cells during bone repair. Inflamm Regen 40 : 22, 2020.
14) Bravo D, Josephson AM, Bradaschia-Correa V, et al : Temporary inhibition of the plasminogen activator inhibits periosteal chondrogenesis and promotes periosteal osteogenesis during appendicular bone fracture healing. Bone 112 : 97-106, 2018.
P.474 掲載の参考文献
1) 大腿骨頚部/転子部骨折診療ガイドライン 2021 改訂第3版 (日本整形外科学会, 日本骨折治療学会監, 日本整形外科学会診療ガイドライン委員会, 大腿骨頚部/転子部骨折診療ガイドライン策定委員会編), 南江堂, 2021.
2) 鈴木俊一 : 第10部 手術 (筋骨格系・四肢・体幹). 医科点数表の解釈 令和4年4月版, p754, 社会保険研究所, 2022.
3) 外科手術時・ICUでの管理. 糖尿病専門医研修ガイドブック 改訂第7版 (日本糖尿病学会編). p361-363, 診断と治療社, 2017.
4) Berrios-Torres SI, Umscheid CA, Bratzler DW, et al : Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg 152 : 784-791, 2017.
5) 整形外科感染対策における国際コンセンサス (田中康仁, 宗本充編), p6-8, メジカルビュー社, 2019.
8) 門野夕峰 : 周術期の抗リウマチ薬の取り扱い. 日本臨牀 80 (増刊 : 最新関節リウマチ学) : 546-550, 2022.
9) Maeda K, Yoshida K, Nishizawa T, et al : Inflammation and Bone Metabolism in Rheumatoid Arthritis : Molecular Mechanisms of Joint Destruction and Pharmacological Treatments. Int J Mol Sci 23 : 2871, 2022.
10) 抗血栓療法中の区域麻酔・神経ブロックガイドライン (日本ペインクリニック学会・日本麻酔科学会・日本区域麻酔学会合同抗血栓療法中の区域麻酔・神経ブロックガイドライン作成ワーキンググループ編), p26-31, 2016. [https://www.jsog.or.jp/news/pdf/20170308_kks_guide.pdf] (2022年12月閲覧)
11) Thiruvenkatarajan V, Meyer EJ, Nanjappa N, et al : Perioperative diabetic ketoacidosis associated with sodium-glucose co-transporter-2 inhibitors : a systematic review. Br J Anaesth 123 : 27-36, 2019.
12) 日本整形外科学会症候性静脈血栓塞栓症予防ガイドライン 2017 (日本整形外科学会監, 日本整形外科学会診療ガイドライン委員会/日本整形外科学会症候性静脈血栓塞栓症予防ガイドライン策定委員会編), 南江堂, 2017.
13) Muller EA : Influence of training and of inactivity on muscle strength. Arch Phys Med Rehabil 51 : 449-462, 1970.
14) 橈骨遠位端骨折診療ガイドライン 2017 改訂第2版 (日本整形外科学会, 日本手外科学会監, 日本整形外科学会診療ガイドライン委員会/日本整形外科学会橈骨遠位端骨折診療ガイドライン策定委員会編), 南江堂, 2017.
15) Krischak GD, Krasteva A, Schneider F, et al : Physiotherapy after volar plating of wrist fractures is effective using a home exercise program. Arch Phys Med Rehabil 90 : 537-544, 2009.
P.481 掲載の参考文献
1) 高木辰哉 : がん骨転移に対する包括的治療-職種・診療科横断的アプローチ. 整形・災害外科 62 : 851-861, 2019.
2) 日本整形外科学会診療ガイドライン委員会大腿骨頚部/転子部骨折診療ガイドライン策定委員会 : 大腿骨頚部/転子部骨折診療ガイドライン 2021 (改訂第3版). 南江堂, 2021.
3) 本間康弘 : 活動性の高い症例に対するTHAの選択と注意点Dual Mobility Cupの適応と実際. 整形外科Surgical Technique 11 : 340-346, 2021.
4) Jinnai Y, Homma Y, Baba T, et al : Use of Dual Mobility Acetabular Component and Anterior Approach in Patients With Displaced Femoral Neck Fracture. J Arthroplasty 36 : 2530-2535, 2021.
5) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
6) FLSクリニカルスタンダード作成ワーキンググループ : 骨折リエゾンサービス (FLS) クリニカルスタンダード.
7) Kinoshita M, Ishijima M, Kaneko H, et al : The increase in bone mineral density by bisphosphonate with active vitamin D analog is associated with the serum calcium level within the reference interval in postmenopausal osteoporosis. Mod Rheumatol 29 : 157-164, 2019.
8) Ishijima M, Sakamoto Y, Yamanaka M, et al : Minimum required vitamin D level for optimal increase in bone mineral density with alendronate treatment in osteoporotic women. Calcif Tissue Int 85 : 398-404, 2009.
9) 牛牧誉博, 中原大志, 眞島崇史, ほか : 経験と考察骨粗鬆症性椎体骨折に対する骨粗鬆症治療の現状二次骨折予防と今後の課題. 整形外科 73 : 931-933, 2022.
10) 日本整形外科学会診療ガイドライン委員会橈骨遠位端骨折診療ガイドライン策定委員会 : 橈骨遠位端骨折診療ガイドライン 2017 (改訂第2版). 南江堂, 2017.
11) Waljee JF, Zhong L, Shauver MJ, et al : The influence of surgeon age on distal radius fracture treatment in the United States : a population-based study. J Hand Surg Am 39 : 844-851, 2014.
12) 一般社団法人日本手外科学会 : 手外科専門医名簿 (1023名). [https://www.jssh.or.jp/ippan/senmon/senmoni-meibo.html] (2022年12月閲覧)
P.486 掲載の参考文献
1) 第6章 大腿骨頚部骨折の治療. 大腿骨頚部/転子部骨折診療ガイドライン 2021 改訂第3版 (日本整形外科学会/日本骨折治療学会監, 日本整形外科学会診療ガイドライン委員会/大腿骨頚部/転子部骨折診療ガイドライン策定委員会編), p49-81, 南江堂, 2021.
2) 前原孝 : 転位型大腿骨頚部骨折に対するORIF ; インプラントはどこまで進化したのか? MB Orthopaedics 33 : 14-20, 2020.
3) Palm H, Gosvig K, Krasheninnikoff M, et al : A new measurement for posterior tilt predicts reoperation in undisplaced femoral neck fractures : 113 consecutive patients treated by internal fixation and followed for 1 year. Acta Orthop 80 : 303-307, 2009.
4) Palm H, Krasheninnikoff M, Holck K, et al : A new algorithm for hip fracture surgery. Reoperation rate reduced from 18% to 12% in 2,000 consecutive patients followed for 1 year. Acta Orthop 83 : 26-30, 2012.
5) Okike K, Udogwu UN, Isaac M, et al : Not All Garden-I and II Femoral Neck Fractures in the Elderly Should Be Fixed : Effect of Posterior Tilt on Rates of Subsequent Arthroplasty. J Bone Joint Surg Am 101 : 1852-1859, 2019.
6) 正田悦朗 : 手術適応-骨接合術 vs. 人工物置換術. 関節外科 40 : 1143-1151, 2021.
7) 西田一輝, 神保幸太郎, 森戸伸治, ほか : 非転位型大腿骨頚部骨折の治療成績-外反角は成績に影響するか? -. 骨折 40 : 422-425, 2018.
8) Song HK, Choi HJ, Yang KH : Risk factors of avascular necrosis of the femoral head and fixation failure in patients with valgus angulated femoral neck fractures over the age of 50 years. Injury 47 : 2743-2748, 2016.
9) 田澤浩, 山田晋, 湊貴至, ほか : 外反・陥入型大腿骨頚部骨折後に骨頭壊死をきたした症例の検討. Hip Joint 36 : 442-444, 2010.
10) 脇貴洋, 近藤飛馬, 矢野智則, ほか : 非転位型大腿骨頚部骨折に対する整復の重要性-Garden分類stage Iの骨頭壊死と外反変形の関係性-. 骨折 43 : 277-280, 2021.
11) 阿部靖之, 川谷洋右, 中馬東彦, ほか : 非転位型大腿骨頚部骨折の骨折型と合併症の関連性. 骨折 43 : 281-283, 2021.
14) Duckworth AD, Bennet SJ, Aderinto J, et al : Fixation of intracapsular fractures of the femoral neck in young patients : risk factors for failure. J Bone Joint Surg Br 93 : 811-816, 2011.
P.491 掲載の参考文献
1) 大腿骨頚部/転子部骨折診療ガイドライン 2021 改訂第3版 (日本整形外科学会診療ガイドライン委員会, 大腿骨頚部/転子部骨折診療ガイドライン策定委員会編), 南江堂, 2021.
3) 前原孝 : 大腿骨転子部骨折の分類. 関節外科 40 : 1165-1177, 2021.
4) 山本真弘, 上田泰久 : 大腿骨転子部骨折におけるインプラント選択. 関節外科 40 : 1185-1192, 2021.
7) Haidukewych GJ : Intertrochanteric fractures : ten tips to improve results. J Bone Joint Surg Am 91 : 712-719, 2009.
8) 生田拓也 : 大腿骨転子部骨折における骨折型分類について. 骨折 24 : 158-162, 2002.
11) 佐藤朗 : CHSタイプの特徴と合併症予防. 関節外科 40 : 1211-1218, 2021.
13) 小久保安朗 : 手術適応 : 初回から人工物. 関節外科 40 : 1178-1184, 2021.
P.496 掲載の参考文献
1) 千葉一裕, 吉田宗人, 四宮謙一, ほか : 骨粗鬆症性椎体骨折の保存療法骨粗鬆症性椎体骨折に対する保存療法の指針策定多施設共同前向き無作為化比較パイロット試験の結果より. 日本整形外科学会雑誌 85 : 934-941, 2011.
2) 青木保親, 市村正一, 大鳥精司, ほか : 骨粗鬆症性椎体骨折診療マニュアル. 日本整形外科学会雑誌 94 : 882-906, 2020.
3) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
4) 戸川大輔 : 新鮮骨折と陳旧性骨折. 脊椎脊髄ジャーナル 27 : 557-559, 2014.
5) 安岡宏樹, 朝妻孝仁, 今林英明, ほか : [骨癒合促進の最前線] Balloon kyphoplastyに対するテリパラチド連日投与併用の効果. 整形・災害外科 59 : 523-530, 2016.
6) 武政龍一 : [高齢者の脊椎脆弱性骨折に対する最小侵襲手術] 骨粗鬆症性椎体骨折に対するvertebral body stenting. 整形外科最小侵襲手術ジャーナル 101 : 30-37, 2021.
7) Genant HK, Wu CY, van Kuijk C, et al : Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8 : 1137-1148, 1993.
8) 宗圓聰 : 骨粗鬆症性椎体骨折の診断と治療 2 半定量的評価法の現状-大規模臨床試験から-. Osteoporo JPN 23 : 175-179, 2015.
10) 安岡宏樹, 今井大輔 : より生理的で背骨にやさしい低侵襲手術を目指して可動式PPS (Cosmic MIA) とロッドベンディングシステム (Bendini) を用いた多椎間固定・制動術. Journal of Spine Research 12 : 609, 2021.
11) 井上雅博, 安岡宏樹, 今林英明, ほか : 中下位腰椎圧迫骨折に伴った脊柱管狭窄症に対するCBT-PFの有用性. 関東整形災害外科学会雑誌 47 : 79, 2016.
12) 加藤貴志, 谷戸祥之, 松川啓太朗, ほか : 最小侵襲手術 (MIS) : Cortical bone trajectory (CBT) 法による脊椎固定術-強固な固定性を有する新しい低侵襲手術法. 別冊整形外科63 : 210-214, 2013.
13) Leder BZ, Tsai JN, Uihlein AV, et al : Denosumab and teriparatide transitions in postmenopausal osteoporosis (the DATA-Switch study) : extension of a randomised controlled trial. Lancet 386 : 1147-1155, 2015.
14) 安岡宏樹, 今井大輔 : 骨粗鬆症性脊椎椎体骨折後の高齢者に対するDATA-switch (Denosumab After Teriparatide Administration) 療法3年間の臨床成績. Journal of Spine Research 12 : 145, 2021.
P.501 掲載の参考文献
1) 安藤謙一, 重盛香苗 : 見落としやすい整形外科疾患-診かた治しかたのコツ- 高齢者骨折. Monthly Book Orthopaedics 22 : 99-108, 2009.
2) 萩野浩 : 骨粗鬆症と骨折-最近の進歩日本人における橈骨遠位端骨折の疫学. 整形・災害外科 42 : 1021-1027, 1999.
3) 関節外骨折における徒手整復後の残存変形は許容できるか? 橈骨遠位端骨折診療ガイドライン 2017 (日本整形外科学会診療ガイドライン委員会, 橈骨遠位端骨折診療ガイドライン策定委員会編), p39-40, 南江堂, 2017.
4) 関節外骨折に対して手術療法は保存療法より有用か? 橈骨遠位端骨折診療ガイドライン 2017 (日本整形外科学会診療ガイドライン委員会, 橈骨遠位端骨折診療ガイドライン策定委員会編), p34-36, 南江堂, 2017.
5) 関節内骨折に対して手術療法は保存療法より有用か? 橈骨遠位端骨折診療ガイドライン 2017 (日本整形外科学会診療ガイドライン委員会, 橈骨遠位端骨折診療ガイドライン策定委員会編), p37-38, 南江堂, 2017.
6) 掌側ロッキングプレート固定は有用か? 橈骨遠位端骨折治療ガイドライン 2017 (日本整形外科学会診療ガイドライン委員会, 橈骨遠位端骨折診療ガイドライン策定委員会編), p77-80, 南江堂, 2017.
7) 門馬秀介, 川崎恵吉, 稲垣克記, ほか : 高齢者の掌側転位型橈骨遠位端骨折に対する観血的整復固定術の治療成績Locking plate群とnon-locking plate群の比較. 日本手外科学会雑誌 25 : 778-781, 2009.
8) 近藤秀則, 今谷潤也, 森谷史朗, ほか : 橈骨遠位端骨折に合併するvolar marginal rim fragmentの新分類とその治療戦略. 日本手外科学会雑誌 34 : 963-968, 2018.
9) 今谷潤也 : <Rim 骨折> 掌側月状骨窩辺縁骨片の新しい分類法と治療戦略. Monthly Book Orthopaedics 34 : 51-60, 2021.
12) 高井盛光, 長田伝重, 本田俊夫, ほか : 橈骨遠位端骨折に対する掌側ロッキングプレート固定Kirschner鋼線刺入ガイドを用いた遠位骨片格子状固定の試み. 臨床整形外科 44 : 1097-1103, 2009.
13) 戸部正博 : 骨補填を併用した掌側ロッキングプレート法による橈骨遠位端骨折の治療. 整形外科最小侵襲手術ジャーナル 52 : 19-24, 2009.
14) 外間浩 : 橈骨遠位端骨折に対するプレート, ピンニング. OS NOW Instruction 2 : 120-135, 2007.
15) 経皮的鋼線固定法は有用か? 橈骨遠位端骨折診療ガイドライン 2017 (日本整形外科学会診療ガイドライン委員会, 橈骨遠位端骨折診療ガイドライン策定委員会編), p66-67, 南江堂, 2017.
P.507 掲載の参考文献
1) 日本骨代謝学会, 日本骨粗鬆症学会合同原発性骨粗鬆症診断基準改訂検討委員会 : 原発性骨粗鬆症の診断基準 (2012年度改訂版). Osteoporos Jpn 21 : 9-21, 2013.
2) 大腿骨頚部/転子部骨折診療ガイドライン 2021 [改訂第3版] (日本整形外科学会, 日本骨折治療学会監, 日本整形外科学会診療ガイドライン委員会, 大腿骨頚部/転子部骨折診療ガイドライン策定委員会編), 南江堂, 2021.
3) 大鳥精司, 井上玄, 藤由崇之, ほか : 骨粗鬆症椎体骨折に対する外科治療. MB Orthopaedics 34 : 209-218, 2021.
8) 山田智子, 森脇克行, 城山和久, ほか : 大腿骨頸部骨折手術麻酔中の重篤な呼吸・循環合併症-手術術式別の発生頻度と分析-. 麻酔 56 : 810-816, 2007.
10) 南里康弘 : 大腿骨転子部骨折に対する近位髄内釘法のコツと盲点. 股関節外科の要点と盲点 (岩本幸英監, 久保俊一編), p286-291, 文光堂, 2005.
16) 大腿骨頚部/転子部骨折診療ガイドライン [改訂第2版] (日本整形外科学会, 日本骨折治療学会監, 日本整形外科学会診療ガイドライン委員会大腿骨頚部/転子部骨折診療ガイドライン策定委員会編), 南江堂, 2011.
17) AO Surgery Reference : Proximal femur. [https://surgeryreference.aofoundation.org/orthopedic-trauma/adult-trauma/proximal-femur] (2022年10月閲覧)
P.511 掲載の参考文献
2) 大腿骨頚部/転子部骨折診療ガイドライン 改訂第2版 (日本整形外科学会診療ガイドライン委員会, 大腿骨頚部/転子部骨折診療ガイドライン策定委員会編), 南江堂, 2011.
3) Beringer TR, Crawford VL, Brown JG : Audit of surgical delay in relationship to outcome after proximal femoral fracture. Ulster Med J 65 : 32-38, 1996.
15) 術後感染予防抗菌薬適正使用のための実践ガイドライン (術後感染予防抗菌薬適正使用に関するガイドライン作成委員会編), 日本化学療法学会/日本外科感染症学会, 2016.
P.517 掲載の参考文献
1) 高田潤一, 片平弦一郎, 射場浩介, ほか : 腰背部痛を有する骨粗鬆症患者のquality of lifeの経時的変化. 整形外科 55 : 1265-1270, 2004.
2) 熊澤孝朗 : 関節からの痛覚伝導系. 関節外科 16 : 890-900, 1997.
3) Kanaya K, Iba K, Dohke T, et al : TRPV1, ASICs and P2X2/3 expressed in bone cells simultaneously regulate bone metabolic markers in ovariectomized mice. J Musculoskelet Neuronal Interact 16 : 145-151, 2016.
4) 熱田裕司, 竹光正和, 小林徹也, ほか : 姿勢異常と腰痛-筋原性仏痛の要素について-. 骨・関節・靱帯 16 : 791-797, 2003.
5) 山下敏彦 : 骨・関節の仏痛メカニズム. クリニカ 34 : 7-12, 2007.
6) Ohtori S, Akazawa T, Murata Y, et al : Risedronate decreases bone resorption and improves low back pain in postmenopausal osteoporosis patients without vertebral fractures. J Clin Neurosci 17 : 209-213, 2010.
P.523 掲載の参考文献
1) Hagino H, Endo N, Harada A, et al : Survey of hip fractures in Japan : Recent trends in prevalence and treatment. J Orthop Sci 22 : 909-914, 2017.
3) Kemmler W, Haberle L, von Stengel S : Effects of exercise on fracture reduction in older adults : a systematic review and meta-analysis. Osteoporos Int 24 : 1937-1950, 2013.
4) Howe TE, Shea B, Dawson LJ, et al : Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev (7) : CD000333, 2011.
8) 池添冬芽 : 筋トレの生理学-筋萎縮と筋肥大. Journal of Clinical Rehabilitation 29 : 123-130, 2020.
14) 赤羽根良和, 宿南高則, 篠田光俊, ほか : 骨粗鬆症性脊椎圧迫骨折に対する運動療法の意義-椎体圧潰変形の抑止効果について. 理学療法ジャーナル 44 : 527-533, 2010.

VI 続発性骨粗鬆症の診断と治療

P.532 掲載の参考文献
1) Osteoporosis Prevention, Diagnosis, and Therapy. NIH Consensus statement 17 : 1-45, 2000.
2) 折茂肇, ほか : 原発性骨粗鬆症の診断基準 (2000年度改訂版). 日本骨代謝学会雑誌 18 : 76-82,2001.
4) 滝川一晴, 西山正紀, 村上玲子, ほか : 2019年版 骨系統疾患国際分類の和訳. 日本整形外科学会雑誌 94 : 611-655, 2020.
5) OMIM (Online Mendelian Inheritance in Man). [https://omim.org/]
6) Marini JC, Dang Do AN : Osteogenesis Imperfecta. [Updated 2020 Jul 26]. In : Endotext [Internet] (ed by Feingold KR, et al), MDText.com Inc, South Dartmouth (MA), 2000. [https://www.endotext.org/chapter/osteogenesis-imperfecta/] (2022年12月閲覧)
8) Sillence DO, Senn A, Danks DM : Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16 : 101-116, 1979.
11) Orphanet-The portal for rare diseases and orphan drugs. [https://www.orpha.net/consor/cgibin/index.php]
13) ClinicalTrials.gov. [https://clinicaltrials.gov/]
15) Takeyari S, Kubota T, Ohata Y, et al : 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 296 : 100027, 2021.
P.536 掲載の参考文献
1) Okada Y, Tanaka Y : Immune signals in the context of secondary osteoporosis. Histol Histopathol 19 : 863-866, 2004.
2) Rossouw JE, Anderson GL, Prentice RL, et al : Risks and benefits of estrogen plus progestin in healthy postmenopausal women : principal results From the Women's Health Initiative randomized controlled trial. JAMA 288 : 321-333, 2002.
3) Anderson GL, Limacher M, Assaf AR, et al : Effects of conjugated equine estrogen in postmenopausal women with hysterectomy : the Women's Health Initiative randomized controlled trial. JAMA 291 : 1701-1712, 2004.
P.541 掲載の参考文献
1) Kidney Disease : Improving Global Outcomes (KDIGO) CKD-MBD Work Group : KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int 76 (Suppl 113) : S1-S130, 2009.
2) Ensrud KE, Lui LY, Taylor BC, et al : Renal function and risk of hip and vertebral fractures in older women. Arch Intern Med 167 : 133-139, 2007.
3) Tentori F, McCullough K, Kilpatrick RD, et al : High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int 85 : 166-173, 2014.
4) Jadoul M, Albert JM, Akiba T, et al : Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 70 : 1358-1366, 2006.
5) Kazama JJ, et al : Uremic osteoporosis. Kidney Int Suppl 3 : 446-450, 2013.
6) Iwasaki Y, Kazama JJ, Yamato H, et al : Altered material properties are responsible for bone fragility in rats with chronic kidney injury. Bone 81 : 247-254, 2015.
7) Naylor KL, Prior J, Garg AX, et al : Trabecular Bone Score and Incident Fragility Fracture Risk in Adults with Reduced Kidney Function. Clin J Am Soc Nephrol 11 : 2032-2040, 2016.
8) Komaba H, Zhao J, Yamamoto S, et al : Secondary hyperparathyroidism, weight loss, and longer term mortality in haemodialysis patients : results from the DOPPS. J Cachexia Sarcopenia Muscle 12 : 855-865, 2021.
10) Nakagawa Y, Komaba H, Hamano N, et al : Metacarpal bone mineral density by radiographic absorptiometry predicts fracture risk in patients undergoing maintenance hemodialysis. Kidney Int 98 : 970-978, 2020.
11) Maruyama Y, Taniguchi M, Kazama JJ, et al : A higher serum alkaline phosphatase is associated with the incidence of hip fracture and mortality among patients receiving hemodialysis in Japan. Nephrol Dial Transplant 29 : 1532-1538, 2014.
12) Sprague SM, Bellorin-Font E, Jorgetti V, et al : Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. Am J Kidney Dis 67 : 559-566, 2016.
13) Behets GJ, Spasovski G, Sterling LR, et al : Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 87 : 846-856, 2015.
14) Moe SM, Abdalla S, Chertow GM, et al : Effects of Cinacalcet on Fracture Events in Patients Receiving Hemodialysis : The EVOLVE Trial. J Am Soc Nephrol 26 : 1466-1475, 2015.
15) Wakasugi M, Kazama JJ, Wada A, et al : Hip Fracture Trends in Japanese Dialysis Patients, 2008-2013. Am J Kidney Dis 71 : 173-181, 2018.
16) Abdelhadi M, Nordenstrom J : Bone mineral recovery after parathyroidectomy in patients with primary and renal hyperparathyroidism. J Clin Endocrinol Metab 83 : 3845-3851, 1998.
17) Rudser KD, de Boer IH, Dooley A, et al : Fracture risk after parathyroidectomy among chronic hemodialysis patients. J Am Soc Nephrol 18 : 2401-2407, 2007.
18) Jamal SA, Bauer DC, Ensrud KE, et al : Alendronate treatment in women with normal to severely impaired renal function : an analysis of the fracture intervention trial. J Bone Miner Res 22 : 503-508, 2007.
19) Sugimoto T, Inoue D, Maehara M, et al : Efficacy and safety of once-monthly risedronate in osteoporosis subjects with mild-to-moderate chronic kidney disease : a post hoc subgroup analysis of a phase III trial in Japan. J Bone Miner Metab 37 : 730-740, 2019.
20) Jamal SA, Ljunggren O, Stehman-Breen C, et al : Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res 26 : 1829-1835, 2011.
21) Hiramatsu R, Ubara Y, Sawa N, et al : Denosumab for low bone mass in hemodialysis patients : a noncontrolled trial. Am J Kidney Dis 66 : 175-177, 2015.
22) Ishani A, Blackwell T, Jamal SA, et al : The effect of raloxifene treatment in postmenopausal women with CKD. J Am Soc Nephrol 19 : 1430-1438, 2008.
23) Hernandez E, Valera R, Alonzo E, et al : Effects of raloxifene on bone metabolism and serum lipids in postmenopausal women on chronic hemodialysis. Kidney Int 63 : 2269-2274, 2003.
24) Miller PD, Schwartz EN, Chen P, et al : Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int 18 : 59-68, 2007.
25) Sumida K, Ubara Y, Hoshino J, et al : Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass : a prospective study. Osteoporos Int 27 : 1441-1450, 2016.
26) Sasaki N, Tsunoda M, Ikee R, et al : Efficacy and safety of eldecalcitol, a new active vitamin D3 analog, in the bone metabolism of postmenopausal women receiving maintenance hemodialysis. J Bone Miner Metab 33 : 213-220, 2015.
27) Miller PD, Adachi JD, Albergaria BH, et al : Efficacy and Safety of Romosozumab Among Postmenopausal Women With Osteoporosis and Mild-to-Moderate Chronic Kidney Disease. J Bone Miner Res 37 : 1437-1445, 2022.
28) Sato M, Inaba M, Yamada S, et al : Efficacy of romosozumab in patients with osteoporosis on maintenance hemodialysis in Japan ; an observational study. J Bone Miner Metab 39 : 1082-1090, 2021.
29) Saag KG, Petersen J, Brandi ML, et al : Romosozumab or Alendronate for Fracture Prevention in Women with Osteoporosis. N Engl J Med 377 : 1417-1427, 2017.
P.549 掲載の参考文献
1) Chen YW, Ramsook AH, Coxson HO, et al : Prevalence and Risk Factors for Osteoporosis in Individuals With COPD : A Systematic Review and Meta-analysis. Chest 156 : 1092-1110, 2019.
2) COPD (慢性閉塞性肺疾患) 診断と治療のためのガイドライン 第6版 (日本呼吸器学会COPDガイドライン第6版作成委員会編), メディカルレビュー社, 2022.
5) Morden NE, Sullivan SD, Bartle B, et al : Skeletal health in men with chronic lung disease : rates of testing, treatment, and fractures. Osteoporos Int 22 : 1855-1862, 2011.
7) McEvoy CE, Ensrud KE, Bender E, et al : Association between corticosteroid use and vertebral fractures in older men with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157 : 704-709, 1998.
8) Watanabe R, Tanaka T, Aita K, et al : Osteoporosis is highly prevalent in Japanese males with chronic obstructive pulmonary disease and is associated with deteriorated pulmonary function. J Bone Miner Metab 33 : 392-400, 2015.
9) Thorin MH, Wihlborg A, Akesson K, et al : Smoking, smoking cessation, and fracture risk in elderly women followed for 10 years. Osteoporos Int 27 : 249-255, 2016.
10) Kanis JA, Johnell O, Oden A, et al : Smoking and fracture risk : ameta-analysis. Osteoporos Int 16 : 155-162, 2005.
11) Sepulveda-Loyola W, Osadnik C, Phu S, et al : Diagnosis, prevalence, and clinical impact of sarcopenia in COPD : a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 11 : 1164-1176, 2020.
12) Loke YK, Cavallazzi R, Singh S : Risk of fractures with inhaled corticosteroids in COPD : systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax 66 : 699-708, 2011.
13) Mathioudakis AG, Amanetopoulou SG, Gialmanidis IP, et al : Impact of long-term treatment with low-dose inhaled corticosteroids on the bone mineral density of chronic obstructive pulmonary disease patients : aggravating or beneficial? Respirology 18 : 147-153, 2013.
14) 生活習慣病骨折リスクに関する診療ガイド 2019年版 (日本骨粗鬆症学会生活習慣病における骨折リスク評価委員会編), 日本骨粗鬆症学会, 2019.
15) 井上大輔 : COPD患者における骨粗鬆症とサルコペニア. 老年内科 3 : 649-657, 2021.
P.553 掲載の参考文献
1) Janghorbani M, Van Dam RM, Willett WC, et al : Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166 : 495-505, 2007.
2) Hamada Y, Kitazawa S, Kitazawa R, et al : Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice : a possible role of oxidative stress. Bone 40 : 1408-1414, 2007.
3) Ogata N, Chikazu D, Kubota N, et al : Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover. J Clin Invest 105 : 935-943, 2000.
4) Ikeda K, Matsumoto T, Morita K, et al : The role of insulin in the stimulation of renal 1,25-dihydroxyvitamin D synthesis by parathyroid hormone in rats. Endocrinology 121 : 1721-1726, 1987.
6) Yamamoto M, Yamaguchi T, Yamauchi M, et al : Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24 : 702-709, 2009.
7) Suzuki K, Ishida H, Takeshita N, et al : Circulating levels of tartrate-resistant acid phosphatase in rat models of non-insulin-dependent diabetes mellitus. J Diabetes Complications 12 : 176-180, 1998.
8) Saito M, Fujii K, Mori Y, et al : Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int 17 : 1514-1523, 2006.
9) 骨粗鬆症の予防と治療ガイドライン 2015年版 (骨粗鬆症の予防と治療ガイドライン作成委員会編), 日本骨粗鬆症学会/日本骨代謝学会/骨粗鬆症財団, 2015.
10) Patsch JM, Burghardt AJ, Yap SP, et al : Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res 28 : 313-324, 2013.
11) Dhaliwal R, Cibula D, Ghosh C, et al : Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 25 : 1969-1973, 2014.
12) Conway BN, Long DM, Figaro MK, et al : Glycemic control and fracture risk in elderly patients with diabetes. Diabetes Res Clin Pract 115 : 47-53, 2016.
13) Hung YC, Lin CC, Chen HJ, et al : Severe hypoglycemia and hip fracture in patients with type 2 diabetes : a nationwide population-based cohort study. Osteoporos Int 28 : 2053-2060, 2017.
14) Loke YK, Singh S, Furberg CD : Long-term use of thiazolidinediones and fractures in type 2 diabetes : a meta-analysis. CMAJ 180 : 32-39, 2009.
15) 生活習慣病骨折リスクに関する診療ガイド 2019年版 (日本骨粗鬆症学会生活習慣病における骨折リスク評価委員会 (委員長 : 杉本利嗣) 編), 日本骨粗鬆症学会, 2019.
P.559 掲載の参考文献
1) Smolen JS, Landewe RBM, Bergstra SA, et al : EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs : 2022 update. Ann Rheum Dis, 2020. (in press)
2) McInnes IB, Schett G : Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389 : 2328-2337, 2017.
3) Tanaka Y : Clinical immunity in bone and joints. J Bone Miner Metab 37 : 2-8, 2019.
4) Haugeberg G, Uhlig T, Falch JA, et al : Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis : results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum 43 : 522-530, 2000.
6) Tanaka Y, Ohira T : Mechanisms and therapeutic targets for bone damage in rheumatoid arthritis, in particular the RANK-RANKL system. Curr Opin Pharmacol 40 : 110-119, 2018.
7) Narisawa M, Kubo S, Okada Y, et al : Human dendritic cell-derived osteoclasts with high bone resorption capacity and T cell stimulation ability. Bone 142 : 115616, 2021.
8) Henneicke H, Gasparini SJ, Brennan-Speranza TC, et al : Glucocorticoids and bone : local effects and systemic implications. Trends Endocrinol Metab 25 : 197-211, 2014.
9) Denarie D, Constant E, Thomas T, et al : Could biomarkers of bone, cartilage or synovium turnover be used for relapse prediction in rheumatoid arthritis patients? Mediators Inflamm 2014 : 537324, 2014.
10) Fardellone P, Sejourne A, Paccou J, et al : Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm 2014 : 484280, 2014.
11) Langdahl BL, Silverman S, Fujiwara S, et al : Real-world effectiveness of teriparatide on fracture reduction in patients with osteoporosis and comorbidities or risk factors for fractures : Integrated analysis of 4 prospective observational studies. Bone 116 : 58-66, 2018.
P.564 掲載の参考文献
1) Monegal A, Navasa M, Peris P, et al : Bone disease in patients awaiting liver transplantation. Has the situation improved in the last two decades? Calcif Tissue Int 93 : 571-576, 2013.
2) Rakel A, Sheehy O, Rahme E, et al : Does diabetes increase the risk for fractures after solid organ transplantation? A nested case-control study. J Bone Miner Res 22 : 1878-1884, 2007.
3) Krol CG, Dekkers OM, Kroon HM, et al : Longitudinal changes in BMD and fracture risk in orthotopic liver transplant recipients not using bone-modifying treatment. J Bone Miner Res 29 : 1763-1769, 2014.
4) Koga T, Matsui Y, Asagiri M, et al : NFAT and Osterix cooperatively regulate bone formation. Nat Med 11 : 880-885, 2005.
6) Braith RW, Mills RM, Welsch MA, et al : Resistance exercise training restores bone mineral density in heart transplant recipients. J Am Coll Cardiol 28 : 1471-1477, 1996.
7) Kananen K, Volin L, Laitinen K, et al : Prevention of bone loss after allogeneic stem cell transplantation by calcium, vitamin D, and sex hormone replacement with or without pamidronate. J Clin Endocrinol Metab 90 : 3877-3885, 2005.
8) Crawford BA, Kam C, Pavlovic J, et al : Zoledronic acid prevents bone loss after liver transplantation : a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144 : 239-248, 2006.
10) Bonani M, Frey D, Brockmann J, et al : Effect of Twice-Yearly Denosumab on Prevention of Bone Mineral Density Loss in De Novo Kidney Transplant Recipients : A Randomized Controlled Trial. Am J Transplant 16 : 1882-1891, 2016.
P.569 掲載の参考文献
1) Garcia-Aznar JM, Nasello G, Hervas-Raluy S, et al : Multiscale modeling of bone tissue mechanobiology. Bone 151 : 116032, 2021.
2) Rambaut PC, Johnston RS : Prolonged weightlessness and calcium loss in man. Acta Astronaut 6 : 1113-1122, 1979.
3) LeBlanc AD, Spector ER, Evans HJ, et al : Skeletal responses to space flight and the bed rest analog : a review. J Musculoskelet Neuronal Interact 7 : 33-47, 2007.
4) LeBlanc A, Schneider V, Shackelford L, et al : Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1 : 157-160, 2000.
5) Lang T, LeBlanc A, Evans H, et al : Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19 : 1006-1012, 2004.
6) Vico L, van Rietbergen B, Vilayphiou N, et al : Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions. J Bone Miner Res 32 : 2010-2021, 2017.
7) Watanabe Y, Ohshima H, Mizuno K, et al : Intravenous pamidronate prevents femoral bone loss and renal stone formation during 90-day bed rest. J Bone Miner Res 19 : 1771-1778, 2004.
8) Leblanc AD, Schneider VS, Evans HJ, et al : Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5 : 843-850, 1990.
9) Armbrecht G, Belavy DL, Backstrom M, et al : Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT : WISE 2005. J Bone Miner Res 26 : 2399-2410, 2011.
10) Rolvien T, Amling M : Disuse Osteoporosis : Clinical and Mechanistic Insights. Calcif Tissue Int 110 : 592-604, 2022.
11) Okano H, Mizunuma H, Soda M, et al : The long-term effect of menopause on postmenopausal bone loss in Japanese women : results from a prospective study. J Bone Miner Res 13 : 303-309, 1998.
13) Maimoun L, Couret I, Mariano-Goulart D, et al : Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 76 : 404-411, 2005.
14) Leblanc A, Matsumoto T, Jones J, et al : Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int 24 : 2105-2114, 2013.
15) Gilchrist NL, Frampton CM, Acland RH, et al : Alendronate prevents bone loss in patients with acute spinal cord injury : a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 92 : 1385-1390, 2007.
16) Shapiro J, Smith B, Beck T, et al : Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 80 : 316-322, 2007.
17) Cirnigliaro CM, La Fountaine MF, Parrott JS, et al : Administration of Denosumab Preserves Bone Mineral Density at the Knee in Persons With Subacute Spinal Cord Injury : Findings From a Randomized Clinical Trial. JBMR Plus 4 : e10375, 2020.
P.578 掲載の参考文献
1) Chotiyarnwong P, McCloskey EV : Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol 16 : 437-447, 2020.
2) Chiodini I, Falchetti A, Merlotti D, et al : Updates in epidemiology, pathophysiology and management strategies of glucocorticoid-induced osteoporosis. Expert Rev Endocrinol Metab 15 : 283-298, 2020.
3) Raterman HG, Bultink IEM, Lems WF : Current Treatments and New Developments in the Management of Glucocorticoid-induced Osteoporosis. Drugs 79 : 1065-1087, 2019.
4) Tanaka Y : Clinical immunity in bone and joints. J Bone Miner Metab 37 : 2-8, 2019.
6) Trijau S, de Lamotte G, Pradel V, et al : Osteoporosis prevention among chronic glucocorticoid users : results from a public health insurance database. RMD Open 2 : e000249, 2016.
7) Iki M, Fujimori K, Nakatoh S, et al : Guideline adherence by physicians for management of glucocorticoid-induced osteoporosis in Japan : a nationwide health insurance claims database study. Osteoporos Int 33 : 1097-1108, 2022.
8) van Staa TP, Leufkens HG, Cooper C : The epidemiology of corticosteroid-induced osteoporosis : a meta-analysis. Osteoporos Int 13 : 777-787, 2002.
9) Steinbuch M, Youket TE, Cohen S : Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos Int 15 : 323-328, 2004.
10) De Vries F, Bracke M, Leufkens HG, et al : Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum 56 : 208-214, 2007.
13) Buckley L, Guyatt G, Fink HA, et al : 2017 American College of Rheumatology Guideline for the Prevention and Treatment of Glucocorticoid-Induced Osteoporosis. Arthritis Rheumatol 69 : 1521-1537, 2017.
15) Suzuki Y, Nawata H, Soen S, et al : Guidelines on the management and treatment of glucocorticoid-induced osteoporosis of the Japanese Society for Bone and Mineral Research : 2014 update. J Bone Miner Metab 32 : 337-350, 2014.
16) Soen S, Kaku M, Okubo N, et al : Epidemiology of glucocorticoid-induced osteoporosis and management of associated fracture risk in Japan. J Bone Miner Metab 39 : 1019-1030, 2021.
P.584 掲載の参考文献
1) International osteoporosis foundation : What is osteoporosis? Epidemiology, 2019. [https://www.osteoporosis.foundation/health-professionals/about-osteoporosis/epidemiology] (2022年12月閲覧)
3) Shapiro CL, Van Poznak C, Lacchetti C, et al : Management of Osteoporosis in Survivors of Adult Cancers With Nonmetastatic Disease : ASCO Clinical Practice Guideline. J Clin Oncol 37 : 2916-2946, 2019.
5) Coleman RE, Rathbone E, Brown JE : Management of cancer treatment-induced bone loss. Nat Rev Rheumatol 9 : 365-374, 2013.
6) Almeida M, Laurent MR, Dubois V, et al : Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol Rev 97 : 135-187, 2017.
8) Stava CJ, Jimenez C, Hu MI, et al : Skeletal sequelae of cancer and cancer treatment. J Cancer Surviv 3 : 75-88, 2009.
9) Pfeilschifter J, Diel IJ : Osteoporosis due to cancer treatment : pathogenesis and management. J Clin Oncol 18 : 1570-1593, 2000.
10) Rana T, Chakrabarti A, Freeman M, et al : Doxorubicin-mediated bone loss in breast cancer bone metastases is driven by an interplay between oxidative stress and induction of TGFβ. PLoS One 8 : e78043, 2013.
11) Georgiou KR, King TJ, Scherer MA, et al : Attenuated Wnt/β-catenin signalling mediates methotrexate chemotherapy-induced bone loss and marrow adiposity in rats. Bone 50 : 1223-1233, 2012.
12) Shandala T, Shen Ng Y, Hopwood B, et al : The role of osteocyte apoptosis in cancer chemotherapy-induced bone loss. J Cell Physiol 227 : 2889-2897, 2012.
13) Carina V, Della Bella E, Costa V, et al : Bone's Response to Mechanical Loading in Aging and Osteoporosis : Molecular Mechanisms. Calcif Tissue Int 107 : 301-308, 2020.
14) Handforth C, D'Oronzo S, Coleman R, et al : Cancer Treatment and Bone Health. Calcif Tissue Int 102 : 251-264, 2018.
P.589 掲載の参考文献
2) Eastell R, Adams JE, Coleman RE, et al : Effect of anastrozole on bone mineral density : 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26 : 1051-1057, 2008.
5) Takahashi S, Iwase T, Kohno N, et al : Efficacy of zoledronic acid in postmenopausal Japanese women with early breast cancer receiving adjuvant letrozole : 12-month results. Breast Cancer Res Treat 133 : 685-693, 2012.
6) Ellis GK, Bone HG, Chlebowski R, et al : Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol 26 : 4875-4882, 2008.
8) Nakatsukasa K, Koyama H, Ouchi Y, et al : Effect of denosumab on low bone mineral density in postmenopausal Japanese women receiving adjuvant aromatase inhibitors for non-metastatic breast cancer : 24-month results. Breast Cancer 26 : 106-112, 2019.
9) Kawano H, Sato T, Yamada T, et al : Suppressive function of androgen receptor in bone resorption. Proc Natl Acad Sci USA 100 : 9416-9421, 2003.
10) Wang A, Obertova Z, Brown C, et al : Risk of fracture in men with prostate cancer on androgen deprivation therapy : a population-based cohort study in New Zealand. BMC Cancer 15 : 837, 2015.
11) Michaelson MD, Kaufman DS, Lee H, et al : Randomized controlled trial of annual zoledronic acid to prevent gonadotropin-releasing hormone agonist-induced bone loss in men with prostate cancer. J Clin Oncol 25 : 1038-1042, 2007.
12) Satoh T, Kimura M, Matsumoto K, et al : Single infusion of zoledronic acid to prevent androgen deprivation therapy-induced bone loss in men with hormone-naive prostate carcinoma. Cancer 115 : 3468-3474, 2009.
13) Smith MR, Egerdie B, Hernandez Toriz N, et al : Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 361 : 745-755, 2009.

VII 骨粗鬆症の類縁疾患の診断と治療

P.598 掲載の参考文献
1) Holick MF : Resurrection of vitamin D deficiency and rickets. J Clin Invest 116 : 2062-2072, 2006.
2) 日本内分泌学会日本骨代謝学会, 厚生労働省難治性疾患克服研究事業ホルモン受容機構異常に関する調査研究班 : くる病・骨軟化症の診断マニュアル. 日本内分泌学会雑誌 91 (Suppl) : 1-11, 2015.
3) 日本小児内分泌学会 : ビタミンD 欠乏性くる病・低カルシウム血症の診断の手引き. [http://jspe.umin.jp/medical/files/_vitaminD.pdf] (2022年12月閲覧)
4) Kubota T, Nakayama H, Kitaoka T, et al : Incidence rate and characteristics of symptomatic vitamin D deficiency in children : a nationwide survey in Japan. Endocr J 65 : 593-599, 2018.
7) Haffner D, Emma F, Eastwood DM, et al : Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15 : 435-455, 2019.
8) Beck-Nielsen SS, Mughal Z, Haffner D, et al : FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 14 : 58, 2019.
9) Okazaki R, Ozono K, Fukumoto S, et al : Assessment criteria for vitamin D deficiency/insufficiency in Japan : proposal by an expert panel supported by the Research Program of Intractable Diseases, Ministry of Health, Labour and Welfare, Japan, the Japanese Society for Bone and Mineral Research and the Japan Endocrine Society [Opinion]. J Bone Miner Metab 35 : 1-5, 2017.
10) Munns CF, Shaw N, Kiely M, et al : Global Consensus Recommendations on Prevention and Management of Nutritional Rickets. J Clin Endocrinol Metab 101 : 394-415, 2016.
11) Carpenter TO, Whyte MP, Imel EA, et al : Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med 378 : 1987-1998, 2018.
12) Imel EA, Glorieux FH, Whyte MP, et al : Burosumab versus conventional therapy in children with X-linked hypophosphataemia : a randomised, active-controlled, open-label, phase 3 trial. Lancet 393 : 2416-2427, 2019.
13) Trombetti A, Al-Daghri N, Brandi ML, et al : Interdisciplinary management of FGF23-related phosphate wasting syndromes : a Consensus Statement on the evaluation, diagnosis and care of patients with X-linked hypophosphataemia. Nat Rev Endocrinol 18 : 366-384, 2022.
14) Padidela R, Cheung MS, Saraff V, et al : Clinical guidelines for burosumab in the treatment of XLH in children and adolescents : British paediatric and adolescent bone group recommendations. Endocr Connect 9 : 1051-1056, 2020.
15) Kubota T : X-Linked Hypophosphatemia Transition and Team Management. Endocrines 3 : 411-418, 2022.
P.602 掲載の参考文献
2) Takata S, Hashimoto J, Nakatsuka K, et al : Guidelines for diagnosis and management of Paget's disease of bone in Japan. J Bone Miner Metab 24 : 359-367, 2006.
3) Hashimoto J, Ohno I, Nakatsuka K, et al : Prevalence and clinical features of Paget's disease of bone in Japan. J Bone Miner Metab 24 : 186-190, 2006.
4) Siris ES, Roodman GD : Paget's disease of bone. In : Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 5th ed (ed by Favus MJ), p495-506, American Society of Bone and Mineral Research, Washington, DC, 2003.
5) Selby PL, Davie MW, Ralston SH, et al : Guidelines on the management of Paget's disease of bone. Bone 31 : 366-373, 2002.
6) Cooper C, Schafheutle K, Dennison E, et al : The epidemiology of Paget's disease in Britain : is the prevalence decreasing? J Bone Miner Res 14 : 192-197, 1999.
7) Altman RD, Bloch DA, Hochberg MC, et al : Prevalence of pelvic Paget's disease of bone in the United States. J Bone Miner Res 15 : 461-465, 2000.
8) Rebel A, Basle M, Pouplard A, et al : Bone tissue in Paget's disease of bone. Ultrastructure and Immunocytology. Arthritis Rheum 23 : 1104-1114, 1980.
9) 高田信二郎 : 骨パジェット病. 日本臨牀 71 (増刊 : 最新の骨粗鬆症学) : 596-602, 2013.
10) 高田信二郎, 橋本淳, 中塚喜義, ほか : 骨Paget病の診断と治療ガイドライン委員会成果報告. Osteoporosis Japan 15 : 246-249, 2007.
11) 高田信二郎 : 骨パジェット病. 日本臨牀 63 (増刊 : 臨床分子内分泌学 3) : 219-225, 2005.
12) Delmas PD, Meunier PJ : The management of Paget's disease of bone. N Engl J Med 336 : 558-566, 1997.
13) Ralston SH, Corral-Gudino L, Cooper C, et al : Diagnosis and Management of Paget's Disease of Bone in Adults : A Clinical Guideline. J Bone Miner Res 34 : 579-604, 2019.
14) Gennari L, Rendina D, Falchetti A, et al : Paget's Disease of Bone. Calcif Tissue Int 104 : 483-500, 2019.
15) Pobirci DD, Bogdan F, Pobirci O, et al : Study of malignant fibrous histiocytoma : clinical, statistic and histopatological interrelation. Rom J Morphol Embryol 52 : 385-388, 2011.
P.606 掲載の参考文献
2) Braun S, Vogl FD, Naume B, et al : A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353 : 793-802, 2005.
3) Satcher RL, Zhang XH : Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer 22 : 85-101, 2022.
5) Tian E, Zhan F, Walker R, et al : The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349 : 2483-2494, 2003.
6) Yonou H, Aoyagi Y, Kanomata N, et al : Prostate-specific antigen induces osteoplastic changes by an autonomous mechanism. Biochem Biophys Res Commun 289 : 1082-1087, 2001.
7) Kohno N, Aogi K, Minami H, et al : Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer : a randomized, placebo-controlled trial. J Clin Oncol 23 : 3314-3321, 2005.
8) Rosen LS, Gordon D, Kaminski M, et al : Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma : a randomized, double-blind, multicenter, comparative trial. Cancer 98 : 1735-1744, 2003.
9) Saad F, Gleason DM, Murray R, et al : Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 96 : 879-882, 2004.
10) Rosen LS, Gordon D, Tchekmedyian S, et al : Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors : a phase III, double-blind, randomized trial-the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 21 : 3150-3157, 2003.
13) Lipton A, Fizazi K, Stopeck AT, et al : Superiority of denosumab to zoledronic acid for prevention of skeletal-related events : a combined analysis of 3 pivotal, randomised, phase 3 trials. Eur J Cancer 48 : 3082-3092, 2012.
16) Giordano SH, Freedman RA, Somerfield MR, et al : Abemaciclib With Endocrine Therapy in the Treatment of High-Risk Early Breast Cancer : ASCO Optimal Adjuvant Chemotherapy and Targeted Therapy Guideline Rapid Recommendation Update. J Clin Oncol 40 : 307-309, 2022.
17) Burstein HJ, Somerfield MR, Barton DL, et al : Endocrine Treatment and Targeted Therapy for Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Metastatic Breast Cancer : ASCO Guideline Update. J Clin Oncol 39 : 3959-3977, 2021.
19) Dowsett M, Cuzick J, Ingle J, et al : Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28 : 509-518, 2010.
21) Sverrisdottir A, Fornander T, Jacobsson H, et al : Bone mineral density among premenopausal women with early breast cancer in a randomized trial of adjuvant endocrine therapy. J Clin Oncol 22 : 3694-3699, 2004.
22) Pagani O, Regan MM, Walley BA, et al : Adjuvant exemestane with ovarian suppression in premenopausal breast cancer. N Engl J Med 371 : 107-118, 2014.
23) Blas L, Shiota M, Eto M : Current status and future perspective on the management of metastatic castration-sensitive prostate cancer. Cancer Treat Res Commun 32 : 100606, 2022.
24) Kiratli BJ, Srinivas S, Perkash I, et al : Progressive decrease in bone density over 10 years of androgen deprivation therapy in patients with prostate cancer. Urology 57 : 127-132, 2001.
25) Shahinian VB, Kuo YF, Freeman JL, et al : Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352 : 154-164, 2005.
26) Shahinian VB, Kuo YF, Freeman JL, et al : Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352 : 154-164, 2005.
27) Wu J, Moverare-Skrtic S, Borjesson AE, et al : Enzalutamide Reduces the Bone Mass in the Axial But Not the Appendicular Skeleton in Male Mice. Endocrinology 157 : 969-977, 2016.
28) Coleman R, Hadji P, Body JJ, et al : Bone health in cancer : ESMO Clinical Practice Guidelines. Ann Oncol 31 : 1650-1663, 2020.
P.614 掲載の参考文献
2) van de Donk NWCJ, Pawlyn C, Yong KL : Multiple myeloma. Lancet 397 : 410-427, 2021.
3) Kumar SK, Rajkumar V, Kyle RA, et al : Multiple myeloma. Nat Rev Dis Primers 3 : 17046, 2017.
4) Rajkumar SV, Dimopoulos MA, Palumbo A, et al : International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 15 : e538-548, 2014.
5) Bolamperti S, Villa I, Rubinacci A : Bone remodeling : an operational process ensuring survival and bone mechanical competence. Bone Res 10 : 48, 2022.
6) Delgado-Calle J, Bellido T, Roodman GD : Role of osteocytes in multiple myeloma bone disease. Curr Opin Support Palliat Care 8 : 407-413, 2014.
8) Ozaki S, Tanaka O, Fujii S, et al : Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma. Int J Hematol 86 : 180-185, 2007.
10) Palumbo A, Bringhen S, Mateos MV, et al : Geriatric assessment predicts survival and toxicities in elderly myeloma patients : an International Myeloma Working Group report. Blood 125 : 2068-2074, 2015.
11) 造血器腫瘍診療ガイドライン 2018年版 補訂版 (日本血液学会編), 金原出版, 2020.
12) 多発性骨髄腫の診療指針 第5版 (日本骨髄腫学会編), 文光堂, 2020.
13) Giuliani N, Morandi F, Tagliaferri S, et al : The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110 : 334-338, 2007.
14) Jensen PR, Andersen TL, Hauge EM, et al : A joined role of canopy and reversal cells in bone remodeling--lessons from glucocorticoid-induced osteoporosis. Bone 73 : 16-23, 2015.
15) Raje N, Terpos E, Willenbacher W, et al : Denosumab versus zoledronic acid in bone disease treatment of newly diagnosed multiple myeloma : an international, double-blind, double-dummy, randomised, controlled, phase 3 study. Lancet Oncol 19 : 370-381, 2018.
16) Tanimoto K, Hiasa M, Tenshin H, et al : Mechanical unloading aggravates bone destruction and tumor expansion in myeloma. Haematologica 107 : 744-749, 2022.
17) Anderson KC : Progress and Paradigms in Multiple Myeloma. Clin Cancer Res 22 : 5419-5427, 2016.
P.619 掲載の参考文献
1) Saraux H, Frezal J, Roy C, et al : Pseudo-glioma et fragilite osseuse hereditaire a transmission autosomal recessive. Ann Oculair 200 : 1241-1252, 1967.
2) Frontali M, Dallapiccola B : Osteoporosis-pseudoglioma syndrome and the ocular form of osteogenesis imperfecta. Clin Genet 29 : 262, 1986.
3) Somer H, Palotie A, Somer M, et al : Osteoporosis-pseudoglioma syndrome : clinical, morphological, and biochemical studies. J Med Genet 25 : 543-549, 1988.
4) 大槻大, 田村太資, 加納慎也, ほか : 骨折を繰り返す骨粗鬆症・偽性神経膠腫症候群の1例. 日本整形外科学会雑誌 93 : 992-995, 2019.
5) Gong Y, Slee RB, Fukai N, et al : LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107 : 513-523, 2001.
7) Urano T, Shiraki M, Ezura Y, et al : Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J Bone Miner Metab 22 : 341-345, 2004.
8) Criswick VG, Schepens CL : Familial exudative vitreoretinopathy. Am J Ophthalmol 68 : 578-594, 1969.
9) Qin M, Hayashi H, Oshima K, et al : Complexity of the genotype-phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum Mutat 26 : 104-112, 2005.
11) Jeon H, Meng W, Takagi J, et al : Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 8 : 499-504, 2001.
12) Brown SD, Twells RC, Hey PJ, et al : Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun 248 : 879-888, 1998.
13) Bienz M, Clevers H : Linking colorectal cancer to Wnt signaling. Cell 103 : 311-320, 2000.
14) Avsian-Kretchmer O, Hsueh AJW : Comparative Genomic Analysis of the Eight-Membered Ring Cystine Knot-Containing Bone Morphogenetic Protein Antagonists. Mol Endocrinol 18 : 1-12, 2004.
15) van Bezooijen RL, Roelen BA, Visser A, et al : Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199 : 805-814, 2004.
17) Padhi D, Jang G, Stouch B, et al : Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26 : 19-26, 2011.
18) Streeten EA, McBride D, Puffenberger E, et al : Osteoporosis-pseudoglioma syndrome : description of 9 new cases and beneficial response to bisphosphonates. Bone 43 : 584-590, 2008.
20) Tallapaka KB, Ranganath P, Dalal A : Variable Expressivity and Response to Bisphosphonate Therapy in a Family with Osteoporosis Pseudoglioma Syndrome. Indian Pediatr 54 : 681-683, 2017.
21) Papadopoulos I, Bountouvi E, Attilakos A, et al : Osteoporosis-pseudoglioma syndrome : clinical, genetic, and treatment-response study of 10 new cases in Greece. Eur J Pediatr 178 : 323-329, 2019.
22) Abdel-Hamid MS, Elhossini RM, Otaify GA, et al : Osteoporisis-pseudoglioma syndrome in four new patients : identification of two novel LRP5 variants and insights on patients' management using bisphosphonates therapy. Osteoporos Int 33 : 1501-1510, 2022.
P.625 掲載の参考文献
1) Pignolo RJ, Baujat G, Brown MA, et al : The natural history of fibrodysplasia ossificans progressiva : A prospective, global 36-month study. Genet Med, 2022. (DOI : 10.1016/j.gim.2022.08.013)
2) Cohen RB, Hahn GV, Tabas JA, et al : The natural history of heterotopic ossification in patients who have fibrodysplasia ossificans progressiva. A study of forty-four patients. J Bone Joint Surg Am 75 : 215-219, 1993.
3) Wosczyna MN, Biswas AA, Cogswell CA, et al : Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27 : 1004-1017, 2012.
4) Lees-Shepard JB, Yamamoto M, Biswas AA, et al : Activin-dependent signaling in fibro/adipogenic progenitors causes fibrodysplasia ossificans progressiva. Nat Commun 9 : 471, 2018.
5) Shore EM, Xu M, Feldman GJ, et al : A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38 : 525-527, 2006.
7) Fukuda T, Kohda M, Kanomata K, et al : Constitutively activated ALK2 and increased SMAD1/5 cooperatively induce bone morphogenetic protein signaling in fibrodysplasia ossificans progressiva. J Biol Chem 284 : 7149-7156, 2009.
8) Hastell SJ, Idone V, Wolken DM, et al : ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 7 : 303ra137, 2015.
9) Mundy C, Yao L, Sinha S, et al : Activin A promotes the development of acquired heterotopic ossification and is an effective target for disease attenuation in mice. Sci Signal 14 : eabd0536, 2021.
11) Matsuoka M, Tsukamoto S, Orihara Y, et al : Design of primers for direct sequencing of nine coding exons in the human ACVR1 gene. Bone 138 : 115469, 2020.
13) Chakkalakal SA, Zhang D, Culbert AL, et al : An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res 27 : 1746-1756, 2012.
14) Shimono K, Tung WE, Macolino C, et al : Potent inhibition of heterotopic ossification by nuclear retinoic acid receptor-γ agonists. Nat Med 17 : 454-460, 2011.
16) Hino K, Horigome K, Nishio M, et al : Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest 127 : 3339-3352, 2017.

VIII 特論

P.634 掲載の参考文献
1) 中央社会保険医療協議会における費用対効果評価の分析ガイドライン 第3版, 国立保健医療科学院保健医療経済評価研究センター, 2022. [https://c2h.niph.go.jp/tools/guideline/guideline_ja.pdf] (2022年12月閲覧)
3) Orimo H, Yaegashi Y, Hosoi T, et al : Hip fracture incidence in Japan : Estimates of new patients in 2012 and 25-year trends. Osteoporos Int 27 : 1777-1784, 2016.
5) 藤原佐枝子 : 骨粗鬆症性脊椎骨折の疫学-有病率と発生率-. Clin Calcium 10 : 760-766, 2000.
7) Taguchi Y, Inoue Y, Kido T, et al : Treatment costs and cost drivers among osteoporotic fracture patients in Japan : a retrospective database analysis. Arch Osteoporos 13 : 45, 2018.
8) Black DM, Arden NK, Palermo L, et al : Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. Study of Osteoporotic Fractures Research Group. J Bone Miner Res 14 : 821-828, 1999.
9) 厚生労働省 : 国民生活基礎調査, 2019. [https://www.mhlw.go.jp/toukei/list/20-21.html] (2022年12月閲覧)
10) Bliuc D, Nguyen ND, Milch VE, et al : Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301 : 513-521, 2009.
11) Shiraki M, Kuroda T, Tanaka S : Established osteoporosis associated with high mortality after adjustment for age and co-mobidities in postmenopausal Japanese women. Intern Med 50 : 397-404, 2011.
12) Sakamoto K, Nakamura T, Hagino H, et al : Report on the Japanese Orthopaedic Association's 3-year project observing hip fractures at fixed-point hospitals. J Orthop Sci 11 : 127-134, 2006.
13) Barrionuevo P, Kapoor E, Asi N, et al : Efficacy of Pharmacological Therapies for the Prevention of Fractures in Postmenopausal Women : A Network Meta-Analysis. J Clin Endocrinol Metab 104 : 1623-1630, 2019.
14) Mori T, Crandall CJ, Ganz DA : Cost-effectiveness of denosumab versus oral alendronate for elderly osteoporotic women in Japan. Osteoporos Int 28 : 1733-1744, 2017.
15) Yoshizawa T, Nishino T, Okubo I, et al : Cost-effectiveness analysis of drugs for osteoporosis treatment in elderly Japanese women at high risk of fragility fractures : comparison of denosumab and weekly alendronate. Arch Osteoporos 13 : 94, 2018.
16) Moriwaki K, Mouri M, Hagino H : Cost-effectiveness analysis of once-yearly injection of zoledronic acid for the treatment of osteoporosis in Japan. Osteoporos Int 28 : 1939-1950, 2017.
17) Mori T, Crandall CJ, Fujii T, et al : Cost-effectiveness of zoledronic acid compared with sequential denosumab/alendronate for older osteoporotic women in Japan. Arch Osteoporos 16 : 113, 2021.
18) Mori T, Crandall CJ, Fujii T, et al : Cost-effectiveness of sequential daily teriparatide/weekly alendronate compared with alendronate monotherapy for older osteoporotic women with prior vertebral fracture in Japan. Arch Osteoporos 16 : 72, 2021.
19) Hagino H, Tanaka K, Silverman S, et al : Cost effectiveness of romosozumab versus teriparatide for severe postmenopausal osteoporosis in Japan. Osteoporos Int 32 : 2011-2021, 2021.
P.641 掲載の参考文献
1) Zhang S, Cheng Z, Wang Y, et al : The risks of miRNA therapeutics : In a drug target perspective. Drug Des Devel Ther 15 : 721-733, 2021.
2) Filipowicz W, Bhattacharyya SN, Sonenberg N : Mechanisms of post-transcriptional regulation by microRNAs : are the answers in sight? Nat Rev Genet 9 : 102-114, 2008.
3) Eulalio A, Huntzinger E, Izaurralde E : Getting to the root of miRNA-mediated gene silencing. Cell 132 : 9-14, 2008.
4) Obika S, Nanbu D, Hari Y, et al : Synthesis of 2'-O,4'-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed c3'-endo sugar puckering. Tetrahedron Lett 38 : 8735-8738, 1997.
5) Hong DS, Kang YK, Borad M, et al : Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer 122 : 1630-1637, 2020.
6) van Zandwijk N, Pavlakis N, Kao SC, et al : Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma : a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol 18 : 1386-1396, 2017.
8) Harfe BD, McManus MT, Mansfield JH, et al : The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc Natl Acad Sci USA 102 : 10898-10903, 2005.
9) Miyaki S, Nakasa T, Otsuki S, et al : MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60 : 2723-2730, 2009.
10) Ito Y, Matsuzaki T, Ayabe F, et al : Both microRNA-455-5p and -3p repress hypoxia-inducible factor-2α expression and coordinately regulate cartilage homeostasis. Nat Commun 12 : 4148, 2021.
11) Zhang Y, Li S, Jin P, et al : Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun 13 : 2447, 2022.
12) Zhang H, Zheng W, Li D, et al : MiR-379-5p Promotes Chondrocyte Proliferation via Inhibition of PI3K/Akt Pathway by Targeting YBX1 in Osteoarthritis. Cartilage 13 : 19476035221074024, 2022.
13) Endisha H, Datta P, Sharma A, et al : MicroRNA-34a-5p Promotes Joint Destruction During Osteoarthritis. Arthritis Rheumatol 73 : 426-439, 2021.
15) Hu S, Zhao X, Mao G, et al : MicroRNA-455-3p promotes TGF-β signaling and inhibits osteoarthritis development by directly targeting PAK2. Exp Mol Med 51 : 1-13, 2019.
P.648 掲載の参考文献
2) Takahashi K, Tanabe K, Ohnuki M, et al : Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131 : 861-872, 2007.
4) Castro-Vinuelas R, Sanjurjo-Rodriguez C, Pineiro-Ramil M, et al : Induced pluripotent stem cells for cartilage repair : current status and future perspectives. Eur Cell Mater 36 : 96-109, 2018.
5) Yamashita A, Tsumaki N : Recent progress of animal transplantation studies for treating articular cartilage damage using pluripotent stem cells. Dev Growth Differ 63 : 72-81, 2021.
7) Yamashita A, Morioka M, Yahara Y, et al : Generation of scaffoldless hyaline cartilaginous tissue from human iPSCs. Stem Cell Reports 4 : 404-418, 2015.
8) Yamashita A, Morioka M, Kishi H, et al : Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513 : 507-511, 2014.
9) Yamashita A, Yoshitomi H, Kihara S, et al : Culture substrate-associated YAP inactivation underlies chondrogenic differentiation of human induced pluripotent stem cells. Stem Cells Transl Med 10 : 115-127, 2021.
10) Kimura T, Ozaki T, Fujita K, et al : Proposal of patient-specific growth plate cartilage xenograft model for FGFR3 chondrodysplasia. Osteoarthritis Cartilage 26 : 1551-1561, 2018.
11) Yamada D, Nakamura M, Takao T, et al : Induction and expansion of human PRRX1+ limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng 5 : 926-940, 2021.
12) Bonafe L, Cormier-Daire V, Hall C, et al : Nosology and classification of genetic skeletal disorders : 2015 revision. Am J Med Genet A 167A : 2869-2892, 2015.
P.654 掲載の参考文献
1) Fukuta M, Nakai Y, Kirino K, et al : Derivation of mesenchymal stromal cells from pluripotent stem cells through a neural crest lineage using small molecule compounds with defined media. PLoS One 9 : e112291, 2014.
2) Pretemer Y, Kawai S, Nagata S, et al : Differentiation of Hypertrophic Chondrocytes from Human iPSCs for the In Vitro Modeling of Chondrodysplasias. Stem Cell Reports 16 : 610-625, 2021.
3) Yamada D, Nakamura M, Takao T, et al : Induction and expansion of human PRRX1+ limb-bud-like mesenchymal cells from pluripotent stem cells. Nat Biomed Eng 5 : 926-940, 2021.
4) Kawai S, Yoshitomi H, Sunaga J, et al : In vitro bone-like nodules generated from patient-derived iPSCs recapitulate pathological bone phenotypes. Nat Biomed Eng 3 : 558-570, 2019.
5) Takeyari S, Kubota T, Ohata Y, et al : 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 296 : 100027, 2021.
6) Lee MO, You CH, Son MY, et al : Pro-fibrotic effects of PFKFB4-mediated glycolytic reprogramming in fibrous dysplasia. Biomaterials 107 : 61-73, 2016.
7) Hino K, Ikeya M, Horigome K, et al : Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc Natl Acad Sci USA 112 : 15438-15443, 2015.
8) Hino K, Horigome K, Nishio M, et al : Activin-A enhances mTOR signaling to promote aberrant chondrogenesis in fibrodysplasia ossificans progressiva. J Clin Invest 127 : 3339-3352, 2017.
9) Hino K, Zhao C, Horigome K, et al : An mTOR Signaling Modulator Suppressed Heterotopic Ossification of Fibrodysplasia Ossificans Progressiva. Stem Cell Reports 11 : 1106-1119, 2018.
10) Maekawa H, Jin Y, Nishio M, et al : Recapitulation of pro-inflammatory signature of monocytes with ACVR1A mutation using FOP patient-derived iPSCs. Orphanet J Rare Dis 17 : 364, 2022.
11) Yamashita A, Morioka M, Kishi H, et al : Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 513 : 507-511, 2014.
12) Yokoyama K, Ikeya M, Umeda K, et al : Enhanced chondrogenesis of induced pluripotent stem cells from patients with neonatal-onset multisystem inflammatory disease occurs via the caspase 1-independent cAMP/protein kinase A/CREB pathway. Arthritis Rheumatol 67 : 302-314, 2015.
13) Okada M, Ikegawa S, Morioka M, et al : Modeling type II collagenopathy skeletal dysplasia by directed conversion and induced pluripotent stem cells. Hum Mol Genet 24 : 299-313, 2015.
P.660 掲載の参考文献
1) Frenette PS, Pinho S, Lucas D, et al : Mesenchymal stem cell : keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu Rev Immunol 31 : 285-316, 2013.
3) Mizoguchi T, Pinho S, Ahmed J, et al : Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell 29 : 340-349, 2014.
4) Ono N, Ono W, Nagasawa T, et al : A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat Cell Biol 16 : 1157-1167, 2014.
6) Shi Y, He G, Lee WC, et al : Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Nat Commun 8 : 2043, 2017.
7) Mendez-Ferrer S, Michurina TV, Ferraro F, et al : Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466 : 829-834, 2010.
8) Omatsu Y, Sugiyama T, Kohara H, et al : The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33 : 387-399, 2010.
9) Zhou BO, Yue R, Murphy MM, et al : Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15 : 154-168, 2014.
12) Balani DH, Ono N, Kronenberg HM : Parathyroid hormone regulates fates of murine osteoblast precursors in vivo. J Clin Invest 127 : 3327-3338, 2017.
13) Yang M, Arai A, Udagawa N, et al : Parathyroid Hormone Shifts Cell Fate of a Leptin Receptor-Marked Stromal Population from Adipogenic to Osteoblastic Lineage. J Bone Miner Res 34 : 1952-1963, 2019.
14) Shi Y, Liao X, Long JY, et al : Gli1+ progenitors mediate bone anabolic function of teriparatide via Hh and Igf signaling. Cell Rep 36 : 109542, 2021.
15) Balani DH, Trinh S, Xu M, et al : Sclerostin Antibody Administration Increases the Numbers of Sox9creER+ Skeletal Precursors and Their Progeny. J Bone Miner Res 36 : 757-767, 2021.
P.666 掲載の参考文献
1) 山形薫, 田中良哉 : 間葉系幹細胞の制御による関節軟骨の再生. 日本臨牀 80 (増刊 : 最新関節リウマチ学 (第2版)) : 664-669, 2022.
2) Sonomoto K, Yamaoka K, Oshita K, et al : Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum 64 : 3355-3363, 2012.
3) Tu KN, Lie JD, Wan CKV, et al : Osteoporosis : A Review of Treatment Options. P T 43 : 92-104, 2018.
4) Sanghani-Kerai A, Coathup M, Samazideh S, et al : Osteoporosis and ageing affects the migration of stem cells and this is ameliorated by transfection with CXCR4. Bone Joint Res 6 : 358-365, 2017.
5) Xu JF, Yang GH, Pan XH, et al : Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. PLoS One 9 : e114627, 2014.
6) Oshita K, Yamaoka K, Udagawa N, et al : Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production. Arthritis Rheum 63 : 1658-1667, 2011.
7) Yu Z, Zhu T, Li C, et al : Improvement of intertrochanteric bone quality in osteoporotic female rats after injection of polylactic acid-polyglycolic acid copolymer/collagen type I microspheres combined with bone mesenchymal stem cells. Int Orthop 36 : 2163-2171, 2012.
8) Wang Z, Goh J, Das De S, et al : Efficacy of bone marrow-derived stem cells in strengthening osteoporotic bone in a rabbit model. Tissue Eng 12 : 1753-1761, 2006.
10) Ye X, Zhang P, Xue S, et al : Adipose-derived stem cells alleviate osteoporosis by enhancing osteogenesis and inhibiting adipogenesis in a rabbit model. Cytotherapy 16 : 1643-1655, 2014.
11) Kong F, Shi X, Xiao F, et al : Transplantation of Hepatocyte Growth Factor-Modified Dental Pulp Stem Cells Prevents Bone Loss in the Early Phase of Ovariectomy-Induced Osteoporosis. Hum Gene Ther 29 : 271-282, 2018.
12) Hong B, Lee S, Shin N, et al : Bone regeneration with umbilical cord blood mesenchymal stem cells in femoral defects of ovariectomized rats. Osteoporosis Sarcopenia 4 : 95-101, 2018.
13) Kim G, Jin YM, Yu Y, et al : Double intratibial injection of human tonsil-derived mesenchymal stromal cells recovers postmenopausal osteoporotic bone mass. Cytotherapy 20 : 1013-1027, 2018.

最近チェックした商品履歴

Loading...