整形外科学レビュー 2023-’24

出版社: 総合医学社
著者:
発行日: 2023-04-25
分野: 臨床医学:外科  >  整形外科学
ISBN: 9784883784714
電子書籍版: 2023-04-25 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

14,300 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

14,300 円(税込)

商品紹介

整形外科分野のエキスパートによって厳選された、直近2年間を中心に国内外で発表された最新文献のレビューです。広く整形外科関連の最近のトピックスを把握でき、整形外科専門医だけでなく、専門医を目指す方にも必携の1冊です。

目次

  • I章 脊 椎
     1.頸・胸椎
      1-1.急性期脊髄損傷に対する治療方法
      1-2.脊柱靱帯骨化症に対する診断と治療
      1-3.頚椎症性脊髄症に対する手術法
      1-4.後頭骨・上位頚椎疾患の治療
      1-5.DISHを合併した脊椎骨折の治療
    2.腰 椎
       2-1.腰部脊柱管狭窄症に対する手術治療
      2-2.腰椎椎間板ヘルニア治療の現状
      2-3.腰痛に対する集学的治療
      2-4.骨粗鬆症性椎体骨折に対する治療
      2-5.腰椎椎間板の変性予防と再生治療
     3.脊柱変形
      3-1.早期発症側弯症に対する手術治療
      3-2.思春期特発性側弯症の治療
      3-3.成人脊柱変形に対する手術治療

    II章 上 肢
     1.肩・肘
      4-1.腱板断裂
      4-2.上腕骨近位端骨折
      4-3.上腕骨外側上顆炎
      4-4.上腕骨遠位端骨折
     2.手
      5-1.手指変形性関節症(母指CM関節症含む)
      5-2.橈骨遠位端骨折
      5-3.キーンベック病
      5-4.手指屈筋腱損傷
     3.末梢神経
      6-1.腕神経叢損傷
      6-2.上肢における絞扼性神経障害

    III章 下 肢
     1.股関節
      7-1.特発性大腿骨頭壊死
      7-2.変形性股関節症
      7-3.大腿骨近位部骨折
      7-4.股関節唇損傷
     2.膝関節
      8-1.変形性膝関節症
      8-2.前十字靱帯損傷
      8-3.半月板損傷
      8-4.反復性膝蓋骨脱臼
     3.足関節・足
      9-1.変形性足関節症
      9-2.後脛骨筋腱機能不全症
      9-3.外反母趾
      9-4.距骨骨軟骨損傷

    IV章 骨軟部
     1.骨腫瘍
      10-1.良性骨腫瘍・骨巨細胞腫の診断・治療指針
      10-2.原発性悪性骨腫瘍の治療指針
      10-3.骨転移の診断・治療指針
     2.軟部腫瘍
      11-1.良性軟部腫瘍・デスモイド型線維腫症の診断・治療指針
      11-2.悪性軟部腫瘍の診断・治療指針

    V章 基 礎
     1.骨代謝研究
     2.軟骨代謝・OA研究
     3.整形外科疾患に関連したゲノム研究
     4.筋代謝研究
     5.脊髄損傷に対する再生医療

    VI章 ロコモティブシンドローム
     1.ロコモティブシンドローム  

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I章 脊椎

P.2 掲載の参考文献
1) Miyakoshi N, Suda K, Kudo D et al : A nationwide survey on the incidence and characteristics of traumatic spinal cord injury in Japan in 2018. Spinal Cord 59 : 626-634, 2021
2) Shingu H, Ohama M, Ikata T et al : A nationwide epidemiological survey of spinal cord injuries in Japan from January 1990 to December 1992. Paraplegia 33 : 183-188, 1995
3) Lo J, Chan L, Flynn S : A systematic review of the incidence, prevalence, costs, and activity/work limitations of amputation, osteoarthritis, rheumatoid arthritis, back pain, multiple sclerosis, spinal cord injury, stroke, and traumatic brain injury in the United States : a 2019 update. Arch Phys Med Rehabil 102 : 115-131, 2021
4) Golestani A, Shobeiri P, Sadeghi-Naini M et al : Epidemiology of traumatic spinal cord injury in developing countries from 2009 to 2020 : a systematic review and meta-analysis. Neuroepidemiology 56 : 219-239, 2022
P.3 掲載の参考文献
5) Ahuja CS, Badhiwala JH, Fehlings MG : "Time is spine" : the importance of early intervention for traumatic spinal cord injury. Spinal Cord 58 : 1037-1039, 2020
6) Badhiwala JH, Wilson JR, Witiw CD et al : The influence of timing of surgical decompression for acute spinal cord injury : a pooled analysis of individual patient data. Lancet Neurol 20 : 117-126, 2021
7) Haghnegahdar A, Behjat R, Saadat S : A randomized controlled trial of early versus late surgical decompression for thoracic and thoracolumbar spinal cord injury in 73 patients. Neurotrauma Rep 1 : 78-87, 2020
8) Balas M, Guttman MP, Badhiwala JH et al : Earlier surgery reduces complications in acute traumatic thoracolumbar spinal cord injury : analysis of a multi-center cohort of 4108 patients. J Neurotrauma 39 : 277-284, 2022
9) Balas M, Prommel P, Nguyen L et al : Reality of accomplishing surgery within 24 hours for complete cervical spinal cord injury : clinical practices and safety. J Neurotrauma 38 : 3011-3019, 2021
10) Thompson C, Feldman DE, Mac-Thiong JM : Surgical management of patients following traumatic spinal cord injury : identifying barriers to early surgery in a specialized spinal cord injury center. J Spinal Cord Med 41 : 142-148, 2018
11) OSCIS investigators ; Chikuda H, Koyama Y, Matsubayashi Y et al : Effect of early vs delayed surgical treatment on motor recovery in incomplete cervical spinal cord injury with preexisting cervical stenosis : a randomized clinical trial. JAMA Netw Open 4 : e2133604, 2021
12) Aarabi B, Akhtar-Danesh N, Simard JM et al : Efficacy of early (<=24 hours), late (25-72 hours), and delayed (> 72 hours) surgery with magnetic resonance imagingconfirmed decompression in American Spinal Injury Association Impairment Scale grades C and D acute traumatic central cord syndrome caused by spinal stenosis. J Neurotrauma 38 : 2073-2083, 2021
13) Zheng C, Zhu D, Zhu Y et al : Early surgery improves peripheral motor axonal dysfunction in acute traumatic central cord syndrome : a prospective cohort study. Clin Neurophysiol 132 : 1398-1406, 2021
P.4 掲載の参考文献
14) Ramey WL, Reyes AA, Avila MJ et al : The central cord score : a novel classification and scoring system specific to acute traumatic central cord syndrome. World Neurosurg 156 : e235-e242, 2021
15) Merrill S, Clifton W, Valero-Moreno F et al : Vertebral artery injury with coinciding unstable cervical spine trauma : mechanisms, evidence-based management, and treatment options. Cureus 12 : e7225, 2020
16) Sheppard R, Kennedy GEM, Nelson A et al : Vertebral artery injury in cervical spine fractures : a cohort study and review of the literature. Ulster Med J 89 : 89-94, 2020
17) Biffl WL, Moore EE, Elliott JP et al : The devastating potential of blunt vertebral arterial injuries. Ann Surg 231 : 672-681, 2000
P.5 掲載の参考文献
18) Fessler RG, Ehsanian R, Liu CY et al : A phase 1/2a dose-escalation study of oligodendrocyte progenitor cells in individuals with subacute cervical spinal cord injury. J Neurosurg Spine 37 : 812-820, 2022
19) Tsuji O, Sugai K, Yamaguchi R et al : Concise review : Laying the groundwork for a first-in-human study of an induced pluripotent stem cell-based intervention for spinal cord injury. Stem Cells 37 : 6-13, 2019
20) Honmou O, Yamashita T, Morita T et al : Intravenous infusion of auto serumexpanded autologous mesenchymal stem cells in spinal cord injury patients : 13 case series. Clin Neurol Neurosurg 203 : 106565, 2021
21) Tang QR, Xue H, Zhang Q et al : Evaluation of the clinical efficacy of stem cell transplantation in the treatment of spinal cord injury : a systematic review and meta-analysis. Cell Transplant 30 : 9636897211067804, 2021
22) Chen WC, Liu WF, Bai YY et al : Transplantation of mesenchymal stem cells for spinal cord injury : a systematic review and network meta-analysis. J Transl Med 19 : 178, 2021
P.6 掲載の参考文献
23) Nagoshi N, Tsuji O, Kitamura K et al : Phase I/II study of intrathecal administration of recombinant human hepatocyte growth factor in patients with acute spinal cord injury : a double-blind, randomized clinical trial of safety and efficacy. J Neurotrauma 37 : 1752-1758, 2020
24) Koda M, Hanaoka H, Fujii Y et al : Randomized trial of granulocyte colony-stimulating factor for spinal cord injury. Brain 144 : 789-799, 2021
25) Gorio A, Gokmen N, Erbayraktar S et al : Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA 99 : 9450-9455, 2002
26) Ganjeifer B, Razaee H, Keykhosravi E et al : The effect of combination therapy with erythropoietin and methylprednisolone in patients with traumatic cervical spinal cord injury : a pilot randomized controlled trial. Spinal Cord 59 : 347-353, 2021
27) Canseco JA, Karamian BA, Bowles DR et al : Updated review : the steroid controversy for management of spinal cord injury. World Neurosurg 150 : 1-8, 2021
28) Liu Z, Yang Y, He L et al : High-dose methylprednisolone for acute traumatic spinal cord injury : a meta-analysis. Neurology 93 : e841-e850, 2019
29) Sultan I, Lamba N, Liew A et al : The safety and efficacy of steroid treatment for acute spinal cord injury : a systematic review and meta-analysis. Heliyon 6 : e03414, 2020
30) Falavigna A, Quadros FW, Teles AR et al : Worldwide steroid prescription for acute spinal cord injury. Global Spine J 8 : 303-310, 2018
31) Lee BJ, Jeong JH : Review : steroid use in patients with acute spinal cord injury and guideline update. Korean J Neurotrauma 18 : 22-30, 2022
32) 大谷清, 阿部弘, 角家 暁他 : 急性期脊髄損傷に対するコハク酸メチルプレドニゾロンナトリウムの臨床成績. 脊椎脊髄 7 : 633-647, 1994
P.7 掲載の参考文献
33) 医薬品インタビューフォームソル・メドロール(R) 静注用ファイザー株式会社 http://www.pmda.go.jp/safety/info-services/drugs/0001.html
34) Okimatsu S, Maki S, Furuya T et al : Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning. J Clin Neurosci 96 : 74-79, 2022
35) Buri M, Tanadini LG, Hothorn T et al : Unbiased recursive partitioning enables robust and reliable outcome prediction in acute spinal cord injury. J Neurotrauma 39 : 266-276, 2022
P.9 掲載の参考文献
1) 日本整形外科学会/日本脊椎脊髄病学会監, 日本整形外科学会診療ガイドライン委員会/脊柱靱帯骨化症診療ガイドライン策定委員会編 : 脊柱靱帯骨化症診療ガイドライン 2019. 南江堂, 2019
2) 松本守雄監 : 整形外科レビュー 2021- '22. 総合医学社, 2021
3) Liao X, Jin Z, Shi L et al : Prevalence of ossification of posterior longitudinal ligament in patients with degenerative cervical myelopathy : Cervical spine 3D CT observations in 7210 cases. Spine (Phila Pa 1976) 45 : 1320-1328, 2020
4) Mori K, Yoshii T, Hirai T et al : The characteristics of the young patients with cervical ossification of the posterior longitudinal ligament of the spine : A multicenter cross-sectional study. J Orthop Sci 27 : 760-766, 2022
5) Hirai T, Yoshii T, Hashimoto J et al : Clinical characteristics of patients with ossification of the posterior longitudinal ligament and a high OP index : A multicenter cross-sectional study (JOSL Study). J Clin Med 11 : 3694, 2022
6) Nishimura S, Hirai T, Nagoshi N et al : Association between severity of diffuse idiopathic skeletal hyperostosis and ossification of other spinal ligaments in patients with ossification of the posterior longitudinal ligament. J Clin Med 10 : 4690, 2021
7) Hisada Y, Endo T, Koike Y et al : Distinct progression pattern of ossification of the posterior longitudinal ligament of the thoracic spine versus the cervical spine : a longitudinal whole-spine CT study. J Neurosurg Spine, 2022. doi : 10.3171/2022.1.SPINE211010
P.10 掲載の参考文献
8) Jokoji G, Maeda S, Oishi K et al : CDC5L promotes early chondrocyte differentiation and proliferation by modulating premRNA splicing of SOX9, COL2A1, and WEE1. J Biol Chem 297 : 100994, 2021
9) Zhang H, Zhang Q, Yuan Z et al : Non-coding RNAs in ossification of the posterior longitudinal ligament. Front Genet 13 : 1069575, 2022
10) Chen X, Wang S, Cui Z et al : Bone marrow mesenchymal stem cell-derived extracellular vesicles containing miR-497-5p inhibit RSPO2 and accelerate OPLL. Life Sci 279 : 119481, 2021
11) Xu C, Zhang Z, Liu N et al : Small extracellular vesicle-mediated miR-320e transmission promotes osteogenes is in OPLL by targeting TAK1. Nat Commun 13 : 2467, 2022
12) Endo T, Koike Y, Miyoshi H et al : Close association between non-alcoholic fatty liver disease and ossification of the posterior longitudinal ligament of the spine. Sci Rep 11 : 17412, 2021
13) Doi T, Ohtomo N, Oguchi F et al : Association between deep posterior cervical paraspinal muscle morphology and clinical features in patients with cervical ossification of the posterior longitudinal ligament. Global Spine J 13 : 8-16, 2023
14) Endo T, Imagama S, Kato S et al : Association between vitamin A intake and disease severity in early-onset heterotopic ossification of the posterior longitudinal ligament of the spine. Global Spine J 12 : 1770-1780, 2022
15) Miura M, Maki S, Miura K et al : Automated detection of cervical ossification of the posterior longitudinal ligament in plain lateral radiographs of the cervical spine using a convolutional neural network. Sci Rep 11 : 12702, 2021
16) Ogawa T, Yoshii T, Oyama J et al : Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network : a pilot study. Spine J 22 : 934-940, 2022
17) Jeong HS, Park C, Kim KS et al : Clinical feasibility of MR-generated synthetic CT images of the cervical spine : Diagnostic performance for detection of OPLL and comparison of CT number. Medicine (Baltimore) 100 : e25800, 2021
P.11 掲載の参考文献
18) Funaba M, Imajo Y, Suzuki H et al : The associations between radiological and neurological findings of degenerative cervical myelopathy : radiological analysis based on kinematic CT myelography and evoked potentials of the spinal cord. J Neurosurg Spine, 2021. doi : 10.3171/2020.11.SPINE201626
19) Wang H, Wang Z, Xu T et al : A novel scoring system for ossification of posterior longitudinal ligament of the cervical spine based on magnetic resonance imaging-CSFM Scoring System. World Neurosurg 150 : e466-e473, 2021
20) Shao T, Gu J, Zhu Y et al : Modified axial computed tomography classification of cervical ossification of the posterior longitudinal ligament : selecting the optimal operating procedure and enhancing the accuracy of prognosis. Quant Imaging Med Surg 11 : 1888-1898, 2021
21) Kong QJ, Sun XF, Wang Y et al : New anterior controllable antedisplacement and fusion surgery for cervical ossification of the posterior longitudinal ligament : a biomechanical study. J Neurosurg Spine, 2022. doi : 10.3171/2021.8.SPINE21879
22) Yan C, Zhao TY, Ji CL et al : Anterior controllable antedisplacement and fusion : quantitative analysis of a single surgeon's learning experience. Spine J 22 : 941-950, 2022
23) Liu X, Tan B, Xiao B et al : Modified K-line for making decisions regarding the surgical approach in patients with K-line (-) OPLL. Orthop Surg 13 : 1351-1358, 2021
24) Lee DH, Park S, Kim H et al : The Kappa line as a regional modification of the Kline : A predictor of neurological outcome and indicator of the adequate level of decompression in selective laminoplasty. Clin Spine Surg 35 : E7-E12, 2022
25) Sakai K, Yoshii T, Arai Y et al : K-Line tilt is a predictor of postoperative kyphotic deformity after laminoplasty for cervical myelopathy caused by ossification of the posterior longitudinal ligament. Global Spine J, 2021. doi : 10.1177/21925682211012687
26) Morishita S, Yoshii T, Inose H et al : Perioperative complications of laminoplasty in degenerative cervical myelopathy-A comparative study between ossification of posterior longitudinal ligament and cervical spondylotic myelopathy using a nationwide inpatient database. Global Spine J, 2021. doi : 10.1177/21925682211063867
P.12 掲載の参考文献
27) Morishita S, Yoshii T, Inose H et al : Perioperative complications of anterior decompression with fusion in degenerative cervical myelopathy -A Comparative study between ossification of posterior longitudinal ligament and cervical spondylotic myelopathy using a nationwide inpatient database. J Clin Med, 2022. doi : 10.1177/21925682211063867
28) Nagoshi N, Yoshii T, Egawa S et al : Comparison of surgical outcomes after openand double-door laminoplasties for patients with cervical ossification of the posterior longitudinal ligament : A prospective multicenter study. Spine (Phila Pa 1976) 46 : E1238-E1245, 2021
29) Kimura A, Takeshita K, Yoshii T et al : Impact of diabetes mellitus on cervical spine surgery for ossification of the posterior longitudinal ligament. J Clin Med 10 : 3375, 2021
30) Nakashima H, Imagama S, Yoshii T et al ; Japanese Multicenter Research Organization for Ossification of the Spinal Ligament : Comparison of laminoplasty and posterior fusion surgery for cervical ossification of posterior longitudinal ligament. Sci Rep 12 : 748, 2022
31) Mori K, Yoshii T, Egawa S et al : Impact of obesity on cervical ossification of the posterior longitudinal ligament : a nationwide prospective study. Sci Rep 12 : 8884, 2022
32) Egawa S, Yoshii T, Sakai K et al : Prospective investigation of postoperative complications in anterior decompression with fusion for severe cervical ossification of the posterior longitudinal ligament : A multiinstitutional study. Spine (Phila Pa 1976) 46 : 1621-1629, 2021
33) Yoshii T, Egawa S, Sakai K et al : Perioperative complications in posterior surgeries for cervical ossification of the posterior longitudinal ligament : A prospective nationwide investigation. Clin Spine Surg 34 : E594-E600, 2021
34) Kobayashi K, Imagama S, Yoshida G et al : Efficacy of intraoperative intervention following transcranial motor-evoked potentials alert during posterior decompression and fusion surgery for thoracic ossification of the posterior longitudinal ligament : A prospective multicenter study of the monitoring committee of the Japanese Society for Spine Surgery and Related Research. Spine (Phila Pa 1976) 46 : 268-276, 2021
P.13 掲載の参考文献
35) Eto T, Aizawa T, Kanno H et al : Several pathologies cause delayed postoperative paralysis following posterior decompression and spinal fusion for thoracic myelopathy caused by ossification of the posterior longitudinal ligament. J Orthop Sci 27 : 725-733, 2022
36) Aizawa T, Eto T, Hashimoto K et al : Surgical results of nonambulatory patients caused by ossification of the posterior longitudinal ligaments in the thoracic spine : retrospective comparative study between posterior decompression and instrumented spinal fusion versus anterior decompression through a posterior approach. J Neurosurg Spine 34 : 492-497, 2020
37) Kanno H, Aizawa T, Hashimoto K et al : Anterior decompression through a posterior approach for thoracic myelopathy caused by ossification of the posterior longitudinal ligament : a novel concept in anterior decompression and technical notes with the preliminary outcomes. J Neurosurg Spine, 2021. doi : 10.3171/2021.4.SPINE213
38) Li X, Huang H, Zheng Z et al : Clinical efficacy of endoscopic-assisted resection of single-segment ossification of the posterior longitudinal ligament in the treatment of thoracic spinal stenosis. Front Surg 9 : 897182, 2022
39) Yang P, Ge R, Chen ZQ et al : Treatment of thoracic ossification of posterior longitudinal ligament with One-Stage 360 degree circumferential decompression assisted by piezosurgery. J Invest Surg 35 : 249-256, 2022
40) Sun C, Chen Z, Chen G et al : A new "detension" -guided surgical strategy for multilevel ossification of posterior longitudinal ligament in thoracic spine : a prospective observational study with at least 3-year follow-up. Spine J 22 : 1388-1398, 2022
41) Gao A, Yu M, Wei F et al : One-stage posterior surgery with intraoperative ultrasound assistance for thoracic myelopathy with simultaneous ossification of the posterior longitudinal ligament and ligamentum flavum at the same segment : a minimum 5-year follow-up study. Spine J 20 : 1430-1437, 2020
P.15 掲載の参考文献
1) Ghogawala Z, Terrin N, Dunbar MR et al : Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy : A randomized clinical trial. JAMA 325 : 942-951, 2021
P.16 掲載の参考文献
2) Chang CJ, Liu YF, Hsiao YM et al : Comparison of anterior cervical discectomy and fusion versus artificial disc replacement for cervical spondylotic myelopathy : a meta-analysis. J Neurosurg Spine, 2022. doi : 10.3171/2022.2.SPINE211500
3) Zou T, Wang PC, Chen H et al : Minimally invasive posterior cervical foraminotomy versus anterior cervical discectomy and fusion for cervical radiculopathy : a meta-analysis. Neurosurg Rev 45 : 3609-3618, 2022
4) Platt A, Fessler RG, Traynelis VC et al : Minimally Invasive Posterior Cervical Foraminotomy Versus Anterior Cervical Fusion and Arthroplasty : Systematic Review and Meta-Analysis. Global Spine J 12 : 1573-1582, 2022
P.17 掲載の参考文献
5) Kim N, Suk KS, Kwon JW : Clinical significance of the C2 slope after multilevel cervical spine fusion. J Neurosurg Spine 38 : 24-30, 2022
6) Passfall L, Williamson TK, Krol O et al : Do the newly proposed realignment targets for C2 and T1 slope bridge the gap between radiographic and clinical success in corrective surgery for adult cervical deformity? J Neurosurg Spine, 2022. doi : 10.3171/2022.2.SPINE211576
7) Divi SN, Bronson WH, Canseco JA et al : How do C2 tilt and C2 slope correlate with patient reported outcomes in patients after anterior cervical discectomy and fusion? Spine J 21 : 578-585, 2021
8) Sakamoto R, Nakamoto H, Yoshida Y et al : Does T1 slope minus cervical lordosis mismatch affect surgical outcomes of cervical laminoplasty in the absence of preoperative severe kyphosis? BMC Musculoskelet Disord 23 : 810, 2022
P.18 掲載の参考文献
9) Couch BK, Patel SS, Talentino SE et al : To cross the cervicothoracic junction? Terminating posterior cervical fusion constructs proximal to the cervicothoracic junction does not impart increased risk of reoperation in patients with cervical spondylotic myelopathy. Global Spine J, 2022. doi : 10.1177/21925682221083926
10) Charest-Morin R, Bailey CS, McIntosh G et al : Does extending a posterior cervical fusion construct into the upper thoracic spine impact patient-reported outcomes as long as 2 years after surgery in patients with degenerative cervical myelopathy? J Neurosurg Spine, 2022. doi : 10.3171/2022.3.SPINE211529
11) Scholz C, Klingler JH, Masalha W et al : Long-term results after multilevel fusion of the cervical spine and the cervicothoracic junction : To bridge or not to bridge? World Neurosurg 148 : e556-e564, 2021
12) Okamoto N, Kato S, Doi T et al : Relative risks and benefits of crossing the cervicothoracic junction during multilevel posterior cervical fusion : A multicenter cohort. World Neurosurg 153 : e265-e274, 2021
13) Du L, Gao Y, Zhao C, Zhou T et al : Laminoplasty with selective fusion at unstable segment versus laminectomy with fusion for multilevel cervical myelopathy : a case-control study. BMC Musculoskelet Disord 22 : 426, 2021
P.19 掲載の参考文献
14) Obo T, Fujishiro T, Mizutani M et al : Segmental cervical instability does not drive the loss of cervical lordosis after laminoplasty in patients with cervical spondylotic myelopathy. Spine J 22 : 1837-1847, 2022
15) Lopez WY, Goh BC, Upadhyaya S et al : Laminoplasty-an underutilized procedure for cervical spondylotic myelopathy. Spine J 21 : 571-577, 2021
16) Waddell WH, Weisenthal BM, Golinvaux N et al : Comparative utilization of laminoplasty in the United States and Japan. Spine Surg Relat Res 6 : 460-463, 2022
P.20 掲載の参考文献
17) Kim J, Heo DH, Lee DC et al : Biportal endoscopic unilateral laminotomy with bilateral decompression for the treatment of cervical spondylotic myelopathy. Acta Neurochir (Wien) 163 : 2537-2543, 2021
18) Zhu C, Cheng W, Wang D et al : A helpful third portal for unilateral biportal endoscopic decompression in patients with cervical spondylotic myelopathy : A technical note. World Neurosurg 161 : 75-81, 2022
19) 日本整形外科学会/日本脊椎脊髄病学会監, 日本整形外科学会診療ガイドライン委員会/頚椎症性脊髄症診療ガイドライン策定委員会編 : 頚椎症性脊髄症診療ガイドライン 2020 改訂第3版. 南江堂, 2020
P.21 掲載の参考文献
1) Shimazaki T, Yamada K, Sato K et al : Primary treatment of atlantoaxial rotatory fixation in children : a multicenter, retrospective series of 125 cases. J Neurosurg Spine 34 : 498-505, 2020
2) Spinnato P, Zarantonello P, Guerri S et al : Atlantoaxial rotatory subluxation/fixation and Grisel's syndrome in children : clinical and radiological prognostic factors. Eur J Pediatr 180 : 441-447, 2021
P.22 掲載の参考文献
3) Sae-Huang M, Borg A, Hill CS : Systematic review of the nonsurgical management of atlantoaxial rotatory fixation in childhood. J Neurosurg Pediatr 27 : 108-119, 2021
4) Tsou AY, Bulova P, Capone G et al : Medical care of adults with Down syndrome : A clinical guideline. JAMA 324 : 1543-1556, 2020
5) Howell N, Walker G, Hankinson T et al : Incidental os odontoideum in an adolescent athlete with sports-related concussion. Clin J Sport Med 32 : e652-e654, 2022
6) Hengartner AC, Whelan R, Maj R et al : Evaluation of 2011 AAP cervical spine screening guidelines for children with Down Syndrome. Childs Nerv Syst 36 : 2609-2614, 2020
7) Hedequist DJ, Mo AZ : Os odontoideum in children. J Am Acad Orthop Surg 28 : e100-e107, 2020
8) Goel A, Patil A, Shah A et al : Os odontoideum : Analysis of 190 surgically treated cases. World Neurosurg 134 : e512-e523, 2020
P.23 掲載の参考文献
9) Saarinen AJ, Bauer JM, Verhofste B et al : Results of conservative and surgical management in children with idiopathic and nonidiopathic os odontoideum. World neurosurg 147 : e324-e333, 2021
10) Bull MJ, Committee on Genetics : Health supervision for children with Down Syndrome. Pediatrics 128 : 393-406, 2011
11) Tomlinson C, Campbell A, Hurley A et al : Sport preparticipation screening for asymptomatic atlantoaxial instability in patients with Down syndrome. Clin J Sport Med 30 : 293-295, 2020
P.24 掲載の参考文献
12) Shlobin NA, Dahdaleh NS : Cervical spine manifestations of rheumatoid arthritis : a review. Neurosurg Review 44 : 1957-1965, 2021
13) 日本リウマチ学会編 : 関節リウマチ診療ガイドライン 2020. 診断と治療社, 2021
14) Byun CW, Lee D-H, Park S et al : The association between atlantoaxial instability and anomalies of vertebral artery and axis. Spine J 22 : 249-255, 2022
15) Klepinowski T, Cembik J, Sagan L : Risk of the high-riding variant of vertebral arteries at C2 is increased over twofold in rheumatoid arthritis : a meta-analysis. Neurosurg Rev 44 : 2041-2046, 2021
16) Elia CJ, Brazdzionis J, Toor H et al : Impact of Chronic DMARD therapy in patients with rheumatoid arthritis undergoing surgery of the craniovertebral junction : A multi-center retrospective study. Spine (Phila Pa 1976) 45 : 930-936, 2020
P.25 掲載の参考文献
17) Klepinowski T, Pala B, Cembik J et al : Prevalence of high-riding vertebral artery : a meta-analysis of the anatomical variant affecting choice of craniocervical fusion method and its outcome. World Neurosurg 143 : e474-e481, 2020
18) Ghaith AK, Yolcu YU, Alvi MA et al : Rate and characteristics of vertebral artery injury following C1-C2 posterior cervical fusion : a systematic review and meta-analysis. World Neurosurg 148 : 118-126, 2021
19) Chang MC, Seok H-G, Choo YJ et al : The comparison between transarticular screw fixation and segmental screw-rod fixation for posterior fusion of C1-2 segment : A systematic review and meta-analysis. World Neurosurg 164 : e1007-e1014, 2022
20) Bunmaprasert T, Trirattanapikul V, Sugandhavesa N et al : Reducible nonunited type ii odontoid fracture with atlantoaxial instability : Outcomes of two different fixation techniques. Int J Environ Res Public Health 18 : 7990, 2021
21) Lvov I, Grin A, Talypov A et al : Efficacy and safety of Goel-Harms technique in upper cervical spine surgery : a systematic review and meta-analysis. World Neurosurg, 2022. doi : 10.1016/j.wneu.2022.09.016
22) Sangondimath G, Mallepally AR, Salimath S : Computed tomography-based feasibility study of C1 posterior arch crisscrossing screw fixation. Asian Spine J 14 : 298-304, 2020
23) Du Y-Q, Li T, Ma C et al : Biomechanical evaluation of two alternative techniques to the Goel-Harms technique for atlantoaxial fixation : C1 lateral mass-C2 bicortical translaminar screw fixation and C1 lateral mass-C2/3 transarticular screw fixation. J Neurosurg Spine 32 : 682-688, 2020
P.27 掲載の参考文献
1) 岡田英次朗 : 若手医師のための経験すべき "領域別" 手術講座 脊椎 (PART 1) DISHの手術手技 固定範囲とその手技. 整形外科Surgical Technique 11 : 622-632, 2021
P.28 掲載の参考文献
2) Kuperus JS, Mohamed Hoesein FAA, de Jong PA et al : Diffuse idiopathic skeletal hyperostosis : Etiology and clinical relevance. Best Pract Res Clin Rheumatol 34 : 101527, 2020
3) 土谷弘樹, 石川紘司, 工藤理史他 : びまん性特発性骨増殖症 (DISH) におけるQCTを用いた椎体内3D骨密度評価. J Spine Res 13 : 910-914, 2022
4) Uehara M, Takahashi J, Ikegami S et al : Differences in bone mineral density and bone turnover markers between subjects with and without diffuse idiopathic skeletal hyperostosis. Spine (Phila Pa 1976) 45 : E1677-E1681, 2020
5) Ikuma H, Hirose T, Nakamura D et al : The prevalence and characteristics of diffuse idiopathic skeletal hyperostosis (DISH) : A cross-sectional study of 1519 Japanese individuals. Diagnostics (Basel) 12 : 1088, 2022
6) Nishimura S, Hirai T, Nagoshi N et al : Association between severity of diffuse idiopathic skeletal hyperostosis and ossification of other spinal ligaments in patients with ossification of the posterior longitudinal ligament. J Clin Med 10 : 4690, 2021
7) Yoshihara H, Nadarajah V, Horowitz E : Prevalence and characteristics of thoracic diffuse idiopathic skeletal hyperostosis in 3299 black patients. Sci Rep 11 : 22181, 2021
8) Singh NA, Shetty AP, Jakkepally S et al : Ossification of posterior longitudinal ligament in cervical spine and its association with ossified lesions in the whole spine : A cross-sectional study of 2500 CT scans. Global Spine J, 2021. doi : 10.1177/2192568221993440
9) Murakami Y, Morino T, Hino M et al : Progression of ossification of the anterior longitudinal ligament associated with diffuse idiopathic skeletal hyperostosis by age : A study of computed tomography findings over 5 years. Global Spine J 11 : 656-661, 2021
P.29 掲載の参考文献
10) Kobayashi K, Okada E, Yoshii T et al : Risk factors for delayed diagnosis of spinal fracture associated with diffuse idiopathic skeletal hyperostosis : A nationwide multiinstitution survey. J Orthop Sci 26 : 968-973, 2021
11) 奥田哲教, 岩田栄一朗, 重松英樹他 : 胸椎腰椎損傷の注意すべき合併損傷-伸展損傷は高リスク-. J Spine Res 13 : 784-790, 2022
12) 米本直史, 井口浩一, 澤野 誠 : 胸腰椎骨折患者における強直性脊椎疾患と大動脈損傷の合併に関する臨床的検討. 埼玉医大誌 48 : 71-78, 2022
P.30 掲載の参考文献
13) Okada E, Ishihara S, Azuma K et al : Metabolic syndrome is a predisposing factor for diffuse idiopathic skeletal hyperostosis. Neurospine 18 : 109-116, 2021
14) Kohler FC, Schenk P, Bechstedt-Schimske M et al : Open versus minimally invasive fixation of thoracic and lumbar spine fractures in patients with ankylosing spinal diseases. Eur J Trauma Emerg Surg 48 : 2297-2307, 2022
15) 竹内拓海, 細金直文 : 整形外科手術 名人のknow-how : びまん性特発性骨増殖症 (DISH) に伴う脊椎骨折に対する椎体終板貫通スクリューを用いた後方固定-Single or double endplates penetrating screw (SEPS/DEPS) 法-. 整・災外 65 : 214-217, 2022
16) 生熊久敬, 廣瀬友彦 : びまん性特発性骨増殖症 (DISH) を伴う胸腰椎骨折に対する椎体終板を貫通させる新しいスクリュー挿入法 (Transdiscal Screw for DISH : TSD) と従来法の比較検討. J Spine Research 12 : 714-722, 2021
17) Ishikawa T, Ota M, Umimura T et al : Penetrating endplate screw fixation for thoracolumbar pathological fracture of diffuse idiopathic skeletal hyperostosis. Case Rep Orthop 2022 : 5584397, 2022
18) Hishiya T, Ishikawa T, Ota M : Posterior spinal fixation using penetrating endplate screws in patients with diffuse idiopathic skeletal hyperostosis-related thoracolumbar fractures. J Neurosurg Spine, 2021. doi : 10.3171/2020.10.SPINE201387
19) 石川哲大, 海村朋孝, 菱谷崇寿他 : 【骨粗鬆症性椎体骨折-難治例の診断・治療を中心に-】強直脊椎骨折に対する椎体終板貫通スクリュー法という選択肢-重症骨粗鬆症合併症例に対する工夫. 関節外科 40 : 559-569, 2021
P.31 掲載の参考文献
20) Ikuma H, Hirose T, Takao S et al : The impact of the lateral decubitus position in the perioperative period on posterior fixation for thoracolumbar fracture with ankylosing spinal disorder. J Neurosurg Spine, 2021. doi : 10.3171/2021.8.SPINE21996
21) Yamamoto T, Okada E, Michikawa T et al : The impact of diabetes mellitus on spinal fracture with diffuse idiopathic skeletal hyperostosis : A multicenter retrospective study. J Orthop Sci 27 : 582-587, 2022
P.33 掲載の参考文献
1) 日本整形外科学会診療ガイドライン委員会, 腰部脊柱管狭窄症診療ガイドライン策定委員会編 : 腰部脊柱管狭窄症診療ガイドライン 2021 (改訂第2版). 南江堂, 2021
P.34 掲載の参考文献
2) Bisson E, Guan J, Bydon M et al : Patientreported outcome improvements at 24-month follow-up after fusion added to decompression for grade I degenerative lumbar spondylolisthesis : a multicenter study using the Quality Outcomes Database. J Neurosurg Spine 35 : 42-51, 2021
3) Ushirozako H, Hasegawa T, Ebata S et al : Impact of early intervertebral osseous union after posterior lumbar interbody fusion on health-related quality of life. Global Spine J 12 : 399-408, 2022
P.35 掲載の参考文献
4) Makino T, Takenaka S, Sakai Y et al : Comparison of short-term radiographical and clinical outcomes after posterior lumbar interbody fusion with a 3D porous titanium alloy cage and a titanium-coated PEEK cage. Global Spine J 12 : 931-939, 2022
5) Malone H, Mundis G, Collier M et al : Can a bioactive interbody device reduce the cost burden of achieving lateral lumbar fusion? J Neurosurg Spine 37 : 646-653, 2022
P.36 掲載の参考文献
6) Chu P, Wang T, Zheng J et al : Global and current research trends of unilateral biportal endoscopy/biportal endoscopic spinal surgery in the treatment of lumbar degenerative disease : a bibliometric and visualization study. Orthop Surg 14 : 635-643, 2022
7) Kim JE, Yoo HS, Choi DJ et al : Comparison of minimal invasive versus biportal endoscopic transforaminal lumbar interbody fusion for single-level lumbar disease. Clin Spine Surg 34 : E64-E71, 2021
8) Takaoka H, Inage K, Eguchi Y et al : Comparison between intervertebral oblique lumbar interbody fusion and transforaminal lumbar interbody fusion : a multicenter study. Sci Rep 11 : 16673, 2021
P.37 掲載の参考文献
9) Jung JM, Chung CK, Kim CH et al : Prognosis of symptomatic pseudarthrosis observed at 1 year after lateral lumbar interbody fusion. Spine (Phila Pa 1976) 46 : E1006-E1013, 2021
10) Liang H, Lu S, Jiang D et al : Clinical outcomes of lumbar spinal surgery in patients 80 years or older with lumbar stenosis or spondylolisthesis : a systematic review and meta-analysis. Eur Spine J 29 : 2129-2142, 2020
11) Ogura Y, Kitagawa T, Kobayashi Y et al : Risk factors for persistent numbness following decompression surgery for lumbar spinal stenosis. Clin Neurol Neurosurg 196 : 105952, 2020
P.39 掲載の参考文献
1) Li WS, Yan Q, Cong L : Comparison of endoscopic discectomy versus non-endoscopic discectomy for symptomatic lumbar disc herniation : a systematic review and meta-analysis. Global Spine J 12 : 1012-1026, 2022
2) Gadjradj PS, Rubonstein SM, Peul WC et al : Full endoscopic versus open discectomy for sciatica : randomised controlled noninferiority trial. BMJ 376 : e065846, 2022
3) Gadjradj PS, Harhangiet BS, Amelink J et al : Percutaneous transforaminal endoscopic discectomy versus open microdiscectomy for lumbar disc herniation : a systematic review and meta-analysis. Spine (Phila Pa 1976) 46 : 538-549, 2021
P.40 掲載の参考文献
4) Zhao K, Li LD, Li TT et al : Percutaneous endoscopic lumbar discectomy for the treatment of recurrent lumbar disc herniation : a meta-analysis. Biomed Res Int 2022 : 6488674, 2022
5) Yoshikane K, Kikuchi K, Izumi T et al : Full-endoscopic lumbar discectomy for recurrent lumbar disc herniation : A retrospective study with patient-reported outcome measures. Spine Surg Relat Res 5 : 272-277, 2021
P.41 掲載の参考文献
6) Thome C, Kursumovic A, Klassen PD et al : Effectiveness of an annular closure device to prevent recurrent lumbar disc herniation : A secondary analysis with 5 years of follow-up. JAMA Netw Open 4 : e2136809, 2021
P.42 掲載の参考文献
7) 吉水隆貴, 水野哲太郎, 野坂潮他 : BESS : Biportal Endoscopic Spine Surgeryによる内視鏡下へルニア摘出手術. J Spine Res 12 : 1074-1080, 2021
8) Jiang HW, Chen CD, Zhan BS et al : Unilateral biportal endoscopic discectomy versus percutaneous endoscopic lumbar discectomy in the treatment of lumbar disc herniation : a retrospective study. J Orthop Surg Res 17 : 30, 2022
9) Ma X, Li W, Gao S et al : Comparison of unilateral biportal endoscopic discectomy versus percutaneous endoscopic lumbar discectomy for the treatment of lumbar disc herniation : a systematic review and meta-analysis. Medicine (Baltimore) 101 : e30412, 2022
P.43 掲載の参考文献
10) Matsuyama Y, Seo T, Chiba K : Condoliase chemonucleolysis for lumbar disc herniation : A post-hoc follow-up study of patients in previous clinical trials. J Orthop Sci, 2022. doi : 10.1016/j.jos.2022.04.003
11) Banno T, Hasegawa T, Yamato Y et al : Disc degeneration could be recovered after chemonucleolysis with condoliase : 1 year clinical outcome of condoliase therapy. J Orthop Sci 27 : 767-773, 2022
12) Kobayashi K, Sato K, Ando T : Factors associated with disc degeneration based on Pfirrmann criteria after condoliase treatment for lumbar disc herniation. J Orthop Sci, 2022. doi : 10.1016/j.jos.2022.08.001
14) Kim CH, Choi Y, Chung CK et al : Nonsurgical treatment outcomes for surgical candidates with lumbar disc herniation : a comprehensive cohort study. Sci Rep 11 : 3931, 2021
P.44 掲載の参考文献
13) Oshita Y, Matsuyama D, Sakai D et al : Multicenter retrospective analysis of intradiscal condoliase injection therapy for lumbar disc herniation. Medicina (Kaunas) 58 : 1284, 2022
P.45 掲載の参考文献
15) Sedrak P, Shahbaz M, Gohal C et al : Return to play after symptomatic lumbar disc herniation in elite athletes : A systematic review and meta-analysis of operative versus nonoperative treatment. Sports Health 13 : 446-453, 2021
16) Kapetanakis S, Gkantsinikoudis N, Charitoudis G : Implementation of percutaneous transforaminal endoscopic discectomy in competitive elite athletes with lumbar disc herniation : original study and review of the literature. Am J Sports Med 49 : 3234-3241, 2021
P.46 掲載の参考文献
17) Wu W, Ma Y, Ding R et al : Should adjacent asymptomatic lumbar disc herniation be simultaneously rectified? A retrospective cohort study of 371 cases that received an open fusion or endoscopic discectomy only on symptomatic segments. Spine J 21 : 411-417, 2021
P.47 掲載の参考文献
18) Iorio-Morin C, Fisher CG, Abraham E et al : Low-back pain after lumbar discectomy for disc herniation : what can you tell your patient? J Neurosurg Spine 35 : 715-721, 2021
19) Laasik R, Lankinen P, Kivimaki M et al : Return to work after lumbar disc herniation surgery : an occupational cohort study. Acta Orthop 92 : 638-643, 2021
P.48 掲載の参考文献
1) Urits I, Burshtein A, Sharma M et al : Low back pain, a comprehensive review : Pathophysiology, diagnosis, and treatment. Curr Pain Headache Rep 23 : 23, 2019
P.49 掲載の参考文献
2) Depreitere B, Jonckheer P, Coeckelberghs E et al : The pivotal role for the multidisciplinary approach at all phases and at all levels in the national pathway for the management of low back pain and radicular pain in Belgium. Eur J Phys Rehabil Med 56 : 228-236, 2020
3) 日本整形外科学会, 日本腰痛学会監, 日本整形外科学会診療ガイドライン委員会, 腰痛診療ガイドライン策定委員会編 : 腰痛診療ガイドライン 2019 (改訂第2版). 南江堂, 2019
4) Hegmann KT, Travis R, Andersson GBJ et al : Non-invasive and minimally invasive management of low back disorders. J Occup Environ Med 62 : e111-e138, 2020
5) Frizziero A, Pellizzon G, Vittadini F et al : Efficacy of core stability in non-specific chronic low back pain. J Funct Morphol Kinesiol 6 : 37, 2021
P.50 掲載の参考文献
6) Casey MB, Smart KM, Segurado R et al : Multidisciplinary-based rehabilitation (MBR) compared with active physical interventions for pain and disability in adults with chronic pain : A systematic review and meta-analysis. Clin J Pain 36 : 874-886, 2020
7) Sato T, Shimizu K, Shiko Y et al : Effects of nintendo ring fit adventure exergame on pain and psychological factors in patients with chronic low back pain. Games Health J 10 : 158-164, 2021
8) Nakanishi K, Hijikata Y, Uchino K et al : Prophylactic effect of liaison treatment on the occurrence of skeletal-related events in patients with metastatic spinal tumours : An exploratory interrupted time series study. Spine Surg Relat Res 6 : 26-30, 2022
P.51 掲載の参考文献
9) Schmidt AM, Laurberg TB, Moll LT et al : The effect of an integrated multidisciplinary rehabilitation programme for patients with chronic low back pain : Long-term follow up of a randomised controlled trial. Clin Rehabil 35 : 232-241, 2021
10) Ikemoto T, Miki K, Matsubara T et al : Psychological treatment strategy for chronic low back pain. Spine Surg Relat Res 3 : 199-206, 2019
11) Alpalhao V, Cordeiro N, Pezarat-Correia P : Kinesiophobia and fear avoidance in older adults : A systematic review on constructs and related measures. J Geriatr Phys Ther 45 : 207-214, 2022
12) Ibrahim ME, Weber K, Courvoisier DS et al : Big Five personality traits and disabling chronic low back pain : Association with fear-avoidance, anxious and depressive moods. J Pain Res 13 : 745-754, 2020
P.52 掲載の参考文献
13) Oliveira DS, Velia Ferreira Mendonca L, Sofia Monteiro Sampaio R et al : The impact of anxiety and depression on the outcomes of chronic low back pain multidisciplinary pain management-A multicenter prospective cohort study in pain clinics with one-year follow-up. Pain Med 20 : 736-746, 2019
14) Lewkowicz D, Slosarek T, Wernicke S et al : Digital therapeutic care and decision support interventions for people with low back pain : Systematic review. JMIR Rehabil Assist Technol 8 : e26612, 2021
P.53 掲載の参考文献
15) Levenig CG, Kellmann M, Kleinert J et al : Body image in athletes and nonathletes with low back pain : Avoidanceendurance-related subgroups and sports status play a role. J Sport Rehabil 30 : 182-189, 2020
16) Diez GG, Anitua E, Castellanos N et al : The effect of mindfulness on the inflammatory, psychological and biomechanical domains of adult patients with low back pain : A randomized controlled clinical trial. PLoS One 17 : e0276734, 2022
17) Hampel P, Kopnick A, Roch S : Psychological and work-related outcomes after inpatient multidisciplinary rehabilitation of chronic low back pain : a prospective randomized controlled trial. BMC Psychol 7 : 6, 2019
P.54 掲載の参考文献
18) Garofoli R, Boisson M, Segretin F et al : Feasibility of a short multidisciplinary education and exercise therapy program for patients with non-specific low back pain : A 3-month retrospective open pilot study. Ann Phys Rehabil Med 62 : 382-385, 2019
19) Shimizu K, Inage K, Orita S et al : Background factors for chronic low back pain resistant to cognitive behavioral therapy. Sci Rep 11 : 8227, 2021
P.55 掲載の参考文献
1) Horii C, Iidaka T, Muraki S et al : The cumulative incidence of and risk factors for morphometric severe vertebral fractures in Japanese men and women : the ROAD study third and fourth surveys. Osteoporos Int 33 : 889-899, 2022
P.56 掲載の参考文献
2) di Filippo L, Formenti AM, Doga M et al : Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict disease outcomes. J Clin Endocrinol Metab 106 : e602-e614, 2021
3) Battisti S, Napoli N, Pedone C et al : Vertebral fractures and mortality risk in hospitalised patients during the COVID-19 pandemic emergency. Endocrine 74 : 461-469, 2021
4) Loffler MT, Kallweit M, Niederreiter E et al : Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int 33 : 685-694, 2022
5) Kolanu N, Silverstone EJ, Ho BH et al : Clinical utility of computer-aided diagnosis of vertebral fractures from computed tomography images. J Bone Miner Res 35 : 2307-2312, 2020
P.57 掲載の参考文献
6) Yang J, Cosman F, Stone PW et al : Vertebral fracture assessment (VFA) for osteoporosis screening in US postmenopausal women : is it cost-effective? Osteoporos Int 31 : 2321-2335, 2020
7) Gassert FT, Kufner A, Gassert FG et al : MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures. Osteoporos Int 33 : 487-496, 2022
8) Habibi H, Takahashi S, Hoshino M et al : Impact of paravertebral muscle in thoracolumbar and lower lumbar regions on outcomes following osteoporotic vertebral fracture : a multicenter cohort study. Arch Osteoporos 16 : 2, 2021
9) Geusens P, Feldman R, Oates M et al : Romosozumab reduces incidence of new vertebral fractures across severity grades among postmenopausal women with osteoporosis. Bone 154 : 116209, 2022
P.58 掲載の参考文献
10) Brown JP, Engelke K, Keaveny TM et al : Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women : results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res 36 : 2139-2152, 2021
11) Miyauchi A, Hamaya E, Nishi K et al : Efficacy and safety of romosozumab among Japanese postmenopausal women with osteoporosis and mild-to-moderate chronic kidney disease. J Bone Miner Metab 40 : 677-687, 2022
12) Uemura Y, Sone T, Tanaka S et al ; Adequate Treatment of Osteoporosis (ATOP) Research Group : Randomized headto-head comparison of minodronic acid and raloxifene for fracture incidence in postmenopausal Japanese women : the Japanese Osteoporosis Intervention Trial (JOINT) -04. Curr Med Res Opin 36 : 1847-1859, 2020
13) Hagino H, Uemura Y, Mori S et al : Risk factors for incident vertebral fractures in osteoporosis pharmacotherapy : a 2-year, prospective, observational study. J Bone Miner Metab 39 : 668-677, 2021
14) Hagino H, Sugimoto T, Tanaka S et al : A randomized, controlled trial of once-weekly teriparatide injection versus alendronate in patients at high risk of osteoporotic fracture : primary results of the Japanese Osteoporosis Intervention Trial-05. Osteoporos Int 32 : 2301-2311, 2021
P.59 掲載の参考文献
15) Kweh BTS, Lee HQ, Tan T et al : The Role of spinal orthoses in osteoporotic vertebral fractures of the elderly population (age 60 years or older) : Systematic review. Global Spine J 11 : 975-987, 2021
16) Sanchez-Pinto-Pinto B, Romero-Morales C, Lopez-Lopez D et al : Efficacy of bracing on thoracic kyphotic angle and functionality in women with osteoporosis : A systematic review. Medicina (Kaunas) 58 : 693, 2022
17) Pinto D, Alshahrani M, Chapurlat R et al ; Rehabilitation Working Group of IOF Committee of Scientific Advisors : The global approach to rehabilitation following an osteoporotic fragility fracture : A review of the rehabilitation working group of the International Osteoporosis Foundation (IOF) committee of scientific advisors. Osteoporos Int 33 : 527-540, 2022
18) Brooke-Wavell K, Skelton DA, Barker KL et al : Strong, steady and straight : UK consensus statement on physical activity and exercise for osteoporosis. Br J Sports Med 56 : 837-846, 2022
19) Ding JK, Zhao B, Zhai YF : Subsequent fractures after vertebroplasty in osteoporotic vertebral fractures : a meta-analysis. Neurosurg Rev 45 : 2349-2359, 2022
P.60 掲載の参考文献
20) Sun HB, Shan JL, Tang H : Percutaneous vertebral augmentation for osteoporotic vertebral compression fractures will increase the number of subsequent fractures at adjacent vertebral levels : a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 25 : 5176-5188, 2021
21) Lu K, Yin Y, Li C et al : Efficacy of annual zoledronic acid in initial percutaneous kyphoplasty patients with osteoporotic vertebral compression fractures : a 3-year follow-up study. Osteoporos Int 32 : 1429-1439, 2021
22) Govindarajan V, Diaz A, Perez-Roman RJ et al : Osteoporosis treatment in patients undergoing spinal fusion : a systematic review and meta-analysis. Neurosurg Focus 50 : E9, 2021
23) Tsai SHL, Chien RS, Lichter K et al : Teriparatide and bisphosphonate use in osteoporotic spinal fusion patients : a systematic review and meta-analysis. Arch Osteoporos 15 : 158, 2020
24) Fatima N, Massaad E, Hadzipasic M et al : Assessment of the efficacy of teriparatide treatment for osteoporosis on lumbar fusion surgery outcomes : a systematic review and meta-analysis. Neurosurg Rev 44 : 1357-1370, 2021
P.61 掲載の参考文献
25) Echt M, Ranson W, Steinberger J et al : A systematic review of treatment strategies for the prevention of junctional complications after long-segment fusions in the osteoporotic spine. Global Spine J 11 : 792-801, 2021
26) Iida H, Sakai Y, Seki T et al : Bisphosphonate treatment is associated with decreased mortality rates in patients after osteoporotic vertebral fracture. Osteoporos Int 33 : 1147-1154, 2022
P.63 掲載の参考文献
1) Maurer E, Klinger C, Lorbeer R et al : Long-term effect of physical inactivity on thoracic and lumbar disc degeneration-an MRI-based analysis of 385 individuals from the general population. Spine J 20 : 1386-1396, 2020
2) Horga LM, Henckel J, Fotiadou A et al : What happens to the lower lumbar spine after marathon running : a 3.0 T MRI study of 21 first-time marathoners. Skeletal Radiol 51 : 971-980, 2022
3) Yanagisawa O, Oshikawa T, Matsunaga N et al : Acute physiological response of lumbar intervertebral discs to high-load deadlift exercise. Magn Reson Med Sci 20 : 290-294, 2021
4) Lagerstrand K, Baranto A, Hebelka H : Different disc characteristics between young elite skiers with diverse training histories revealed with a novel quantitative magnetic resonance imaging method. Eur Spine J 30 : 2082-2089, 2021
5) Salo S, Hurri H, Rikkonen T et al : Association between severe lumbar disc degeneration and self-reported occupational physical loading. J Occup Health 64 : e12316, 2022
6) Manav V, Ilhan D, Mercan H et al : Association between intervertebral disc degeneration and Behcet's disease. Dermatol Ther 35 : e15585, 2022
7) Maurer E, Klinger C, Lorbeer R et al : Association between cardiovascular risk factors and degenerative disc disease of the thoracolumbar spine in the general population : results from the KORA MRI Study. Acta Radiol 63 : 750-759, 2022
P.64 掲載の参考文献
8) Walter SS, Lorbeer R, Hefferman G et al : Correlation between thoracolumbar disc degeneration and anatomical spinopelvic parameters in supine position on MRI. PLoS One 16 : e0252385, 2021
9) Mera Y, Teraguchi M, Hashizume H et al : Association between types of Modic changes in the lumbar region and low back pain in a large cohort : the Wakayama spine study. Eur Spine J 30 : 1011-1017, 2021
10) Jain D, Goyal T, Verma N et al : Intradiscal platelet-rich plasma injection for discogenic low back pain and correlation with platelet concentration : A prospective clinical trial. Pain Med 21 : 2719-2725, 2020
11) Lutz C, Cheng J, Prysak M et al : Clinical outcomes following intradiscal injections of higher-concentration platelet-rich plasma in patients with chronic lumbar discogenic pain. Int Orthop 46 : 1381-1385, 2022
P.65 掲載の参考文献
12) Chang MC, Park D : The effect of intradiscal platelet-rich plasma injection for management of discogenic lower back pain : A meta-analysis. J Pain Res 14 : 505-512, 2021
13) Machado ES, Ambach MA, Caldas JM et al : Personalized multitarget biologic injection in the spine : prospective case series of multitarget platelet-rich plasma for low back pain. Regen Med 17 : 11-22, 2022
14) Jiang Y, Zuo R, Yuan S et al : Transforaminal endoscopic lumbar discectomy with versus without platelet-rich plasma injection for lumbar disc herniation : A prospective cohort study. Pain Res Manag 2022 : 6181478, 2022
15) Amirdelfan K, Bae H, McJunkin T et al : Allogeneic mesenchymal precursor cells treatment for chronic low back pain associated with degenerative disc disease : a prospective randomized, placebo-controlled 36-month study of safety and efficacy. Spine J 21 : 212-230, 2021
16) Atluri S, Murphy MB, Dragella R et al : Evaluation of the effectiveness of autologous bone marrow mesenchymal stem cells in the treatment of chronic low back pain due to severe lumbar spinal degeneration : A 12-month, open-label, prospective controlled trial. Pain Physician 25 : 193-207, 2022
17) Xu B, Zhang H, Du L et al : Selective retention of bone marrow stromal cells with gelatin sponge for repair of intervertebral disc defects after microendoscopic discectomy : A prospective controlled study and 2-year follow-up. Biomed Res Int 2021 : 4822383, 2021
P.66 掲載の参考文献
18) Bhujel B, Shin HE, Choi DJ et al : Mesenchymal stem cell-derived exosomes and intervertebral disc regeneration : Review. Int J Mol Sci 23 : 7306, 2022
19) Kamatani T, Hagizawa H, Yarimitsu S et al : Human iPS cell-derived cartilaginous tissue spatially and functionally replaces nucleus pulposus. Biomaterials 284 : 121491, 2022
20) Seki S, Iwasaki M, Makino H et al : Direct reprogramming and induction of human dermal fibroblasts to differentiate into iPSderived nucleus pulposus-like cells in 3D culture. Int J Mol Sci 23 : 4059, 2022
P.67 掲載の参考文献
1) Matsumoto H, Fano AN, Quan T et al : Re-evaluating consensus and uncertainty among treatment options for early onset scoliosis : a 10-year update. Spine Deform 11 : 11-25, 2023
P.68 掲載の参考文献
2) Hughes MS, Swarup I, Makarewich CA et al : Expert consensus for early onset scoliosis surgery. J Pediatr Orthop 40 : e621-e628, 2020
3) Sugawara R, Kikkawa I, Watanabe H et al : Clinical results of corrective cast and brace treatment for early-onset scoliosis : the effectiveness of long-term cast treatment that extends into children's schooldays. J Pediatr Orthop 41 : e635-e640, 2021
4) Klyce W, Mitchell SL, Pawelek J et al : Characterizing use of growth-friendly implants for early-onset scoliosis : A 10-year update. J Pediatr Orthop 40 : e740-e746, 2020
P.69 掲載の参考文献
5) Ruiz G, Torres-Lugo NJ, Marrero-Ortiz P et al : Early-onset scoliosis : a narrative review. EFORT Open Rev 7 : 599-610, 2022
6) Anari JB, Flynn JM, Campbell RM et al : Evaluation and treatment of early-onset scoliosis : a team approach. JBJS Rev 8 : e20.00040, 2020
7) Varley ES, Pawelek JB, Mundis GM et al : The role of traditional growing rods in the era of magnetically controlled growing rods for the treatment of early-onset scoliosis. Spine Deform 9 : 1465-1472, 2021
8) Matsumoto H, Sinha R, Roye BD et al : Contraindications to magnetically controlled growing rods : consensus among experts in treating early onset scoliosis. Spine Deform 10 : 1289-1297, 2022
9) Zarei M, Tavakoli M, Ghadimi E et al : Complications of dual growing rod with all-pedicle screw instrumentation in the treatment of early-onset scoliosis. J Orthop Surg Res 16 : 112, 2021
10) Cengiz B, Ozdemir HM, Sakaogullari A et al : Traditional dual growing rod technique in the management of early onset scoliosis and its effects on spinal growth and lung development : the mid-term prospective results. Cureus 13 : e14422, 2021
11) Migliorini F, Chiu WO, Scrofani R et al : Magnetically controlled growing rods in the management of early onset scoliosis : a systematic review. J Orthop Surg Res 17 : 309, 2022
12) Bednar ED, Bergin B, Kishta W : Comparison of magnetically controlled growing rods with other distraction-based surgical technologies for early-onset scoliosis : a systematic review and meta-analysis. JBJS Rev 9 : e20.00062, 2021
P.70 掲載の参考文献
13) Lebel DE, Rocos B, Helenius I et al : Magnetically controlled growing rods graduation : deformity control with high complication rate. Spine (Phila Pa 1976) 46 : E1105-E1112, 2021
14) El-Hawary R, Morash K, Kadhim M et al : VEPTR treatment of early onset scoliosis in children without rib abnormalities : long-term results of a prospective, multicenter study. J Pediatr Orthop 40 : e406-e412, 2020
15) Bachabi M, McClung A, Pawelek JB et al : Idiopathic early-onset scoliosis : growing rods versus vertically expandable prosthetic titanium ribs at 5-year follow up. J Pediatr Orthop 40 : 142-148, 2020
16) Bin Majid O, Al-Zayed ZS, Alsultan AM et al : Radiological outcomes and complications of vertical expandable titanium rib instrumentation in congenital scoliosis with or without rib fusion : a retrospective study. Cureus 13 : e14167, 2021
17) Peiro-Garcia A, Bourget-Murray J, Suarez-Lorenzo I et al : Early complications in vertically expandable prosthetic titanium rib and magnetically controlled growing rods to manage early onset scoliosis. Int J Spine Surg 15 : 368-375, 2021
18) Murray E, Tung R, Sherman A et al : Continued vertebral body growth in patients with juvenile idiopathic scoliosis following vertebral body stapling. Spine Deform 8 : 221-226, 2020
P.71 掲載の参考文献
19) Raitio A, Syvanen J, Helenius I : Vertebral body tethering : indications, surgical technique, and a systematic review of published results. J Clin Med 11 : 2576, 2022
20) Newton PO, Bartley CE, Bastrom TP et al : Anterior spinal growth modulation in skeletally immature patients with idiopathic scoliosis : a comparison with posterior spinal fusion at 2 to 5 years postoperatively. J Bone Joint Surg Am 102 : 769-777, 2020
21) Shaw KA, Welborn MC, Matsumoto H et al : To tether or fuse? Significant equipoise remains in treatment recommendations for idiopathic scoliosis. Spine Deform 10 : 763-777, 2022
22) Nazareth A, Skaggs DL, Illingworth KD et al : Growth guidance constructs with apical fusion and sliding pedicle screws (SHILLA) results in approximately 1/3rd of normal T1-S1 growth. Spine Deform 8 : 531-535, 2020
P.72 掲載の参考文献
23) Haapala H, Saarinen AJ, Salonen A et al : Shilla growth guidance compared with magnetically controlled growing rods in the treatment of neuromuscular and syndromic early-onset scoliosis. Spine (Phila Pa 1976) 45 : E1604-E1614, 2020
24) Rizkallah M, Sebaaly A, Kharrat K et al : Is there still a place for convex hemiepiphysiodesis in congenital scoliosis in young children? A long-term follow-up. Global Spine J 10 : 406-411, 2020
25) Hardesty CK, Murphy RF, Pawelek JB et al : An initial effort to define an early onset scoliosis "graduate" -The Pediatric Spine Study Group experience. Spine Deform 9 : 679-683, 2021
26) Di Pauli von Treuheim T, Li DT, Mikhail C et al : Reliable skeletal maturity assessment for an AIS patient cohort : external validation of the proximal humerus ossification system (PHOS) and relevant learning methodology. Spine Deform 8 : 613-620, 2020
P.73 掲載の参考文献
27) Cheung PWH, Canavese F, Chan CYW et al : The utility of novel proximal femur maturity index for staging skeletal growth in patients with idiopathic scoliosis. J Bone Joint Surg Am 104 : 630-640, 2022
28) 鈴木哲平, 宇野耕吉, 川北晃平他 : 早期発症側弯症に対する早期固定術は骨未成熟であっても許容できるか-グローイングロッド手術との比較-. J Spine Res 12 : 1319-1325, 2021
29) Li Y, Swallow J, Gagnier J et al : Growth-friendly surgery results in more growth but a higher complication rate and unplanned returns to the operating room compared to single fusion in neuromuscular early-onset scoliosis : a multicenter retrospective cohort study. Spine Deform 9 : 851-858, 2021
30) Xu L, Sun X, Du C et al : Is growth-friendly surgical treatment superior to one-stage posterior spinal fusion in 9- to 11-year-old children with congenital scoliosis? Clin Orthop Relat Res 478 : 2375-2386, 2020
31) Ahuja K, Ifthekar S, Mittal S et al : Is final fusion necessary for growingrod graduates : a systematic review and meta-analysis. Global Spine J, 2022. doi : 10.1177/21925682221090926
P.74 掲載の参考文献
1) Weinstein SL, Dolan LA, Wright JG et al : Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med 369 : 1512-1521, 2013
2) Lin Y, Cheung JPY, Chan CK et al : A randomized controlled trial to evaluate the clinical effectiveness of 3D-printed orthosis in the management of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 47 : 13-20, 2022
P.75 掲載の参考文献
3) Guy A, Labelle H, Barchi S et al : Braces designed using CAD/CAM combined or not with finite element modeling lead to effective treatment and quality of life after 2 years : A randomized controlled trial. Spine (Phila Pa 1976) 46 : 9-16, 2021)
P.76 掲載の参考文献
4) Schreiber S, Parent EC, Khodayari Moez E et al : Schroth physiotherapeutic scoliosis-specific exercises added to the standard of care lead to better Cobb angle outcomes in adolescents with idiopathic scoliosis-an assessor and statistician blinded randomized controlled trial. PLoS One 11 : e0168746, 2016
5) Kocaman H, Bek N, Kaya MH et al : The effectiveness of two different exercise approaches in adolescent idiopathic scoliosis : A single-blind, randomized-controlled trial. PLoS One 16 : e0249492, 2021
6) Mohamed RA, Yousef AM : Impact of Schroth three-dimensional vs. proprioceptive neuromuscular facilitation techniques in adolescent idiopathic scoliosis : a randomized controlled study. Eur Rev Med Pharmacol Sci 25 : 7717-7725, 2021
7) Hu M, Lai A, Zhang Z et al : Intraoperative halo-femoral traction during posterior spinal arthrodesis for adolescent idiopathic scoliosis curves between 70° and 100° : a randomized controlled trial. J Neurosurg Spine 36 : 78-85, 2022
P.77 掲載の参考文献
8) Garg S, Thomas J, Darland H et al : Ultrasonic bone scalpel (USBS) does not reduce blood loss during posterior spinal fusion (PSF) in patients with adolescent idiopathic scoliosis (AIS) : Randomized clinical trial. Spine (Phila Pa 1976) 46 : 845-851, 2021
9) Verma K, Errico T, Diefenbach C et al : The relative efficacy of antifibrinolytics in adolescent idiopathic scoliosis : a prospective randomized trial. J Bone Joint Surg Am 96 : e80, 2014
10) Dong Y, Liang J, Tong B et al : Combined topical and intravenous administration of tranexamic acid further reduces postoperative blood loss in adolescent idiopathic scoliosis patients undergoing spinal fusion surgery : a randomized controlled trial. BMC Musculoskelet Disord 22 : 663, 2021
P.78 掲載の参考文献
11) Zhang Z, Wang LN, Yang X et al : The effect of multiple-dose oral versus intravenous tranexamic acid in reducing postoperative blood loss and transfusion rate after adolescent scoliosis surgery : a randomized controlled trial. Spine J 21 : 312-320, 2021
12) Hasan MS, Yunus SN, Ng CC et al : Tranexamic acid in pediatric scoliosis surgery : A prospective randomized trial comparing high-dose and low-dose tranexamic acid in adolescent idiopathic scoliosis undergoing posterior spinal fusion surgery. Spine (Phila Pa 1976) 46 : E1170-E1177, 2021
P.79 掲載の参考文献
13) Yu L, Ran B, Li M et al : Gabapentin and pregabalin in the management of postoperative pain after lumbar spinal surgery : a systematic review and meta-analysis. Spine (Phila Pa 1976) 38 : 1947-1952, 2013
14) Helenius LL, Oksanen H, Lastikka M et al : Preemptive pregabalin in children and adolescents undergoing posterior instrumented spinal fusion : A double-blinded, placebo-controlled, randomized clinical trial. J Bone Joint Surg Am 102 : 205-212, 2020
15) Ricciardelli RM, Walters NM, Pomerantz M et al : The efficacy of ketamine for postoperative pain control in adolescent patients undergoing spinal fusion surgery for idiopathic scoliosis. Spine Deform 8 : 433-440, 2020
16) Naduvanahalli Vivekanandaswamy A, Prasad Shetty A, Mugesh Kanna R et al : An analysis of the safety and efficacy of dexmedetomidine in posterior spinal fusion surgery for adolescent idiopathic scoliosis : a prospective randomized study. Eur Spine J 30 : 698-705, 2021
P.81 掲載の参考文献
1) Sugawara R, Takeshita K, Takahashi J et al : The complication trends of adult spinal deformity surgery in Japan-The Japanese Scoliosis Society Morbidity and Mortality survey from 2012 to 2017. J Orthop Sci 26 : 533-537, 2021
P.82 掲載の参考文献
2) Batheja D, Dhamija B, Ghodke A et al : Lateral lumbar interbody fusion in adult spine deformity-A review of literature. J Clin Orthop Trauma 22 : 101597, 2021
3) Yang H, Liu J, Hai Y et al : What are the benefits of lateral lumbar interbody fusion on the treatment of adult spinal deformity : A systematic review and meta-analysis deformity. Global Spine J 13 : 172-187, 2023
4) Laverdiere C, Georgiopoulos M, Ames CP et al : Adult spinal deformity surgery and frailty : A systematic review. Global Spine J 12 : 689-699, 2022
P.83 掲載の参考文献
5) Oe S, Watanabe J, Akai T et al : The effect of preoperative nutritional intervention for adult spinal deformity patients. Spine (Phila Pa 1976) 47 : 387-395, 2022
6) Han X, Ren J : Risk factors for proximal junctional kyphosis in adult spinal deformity after correction surgery : A systematic review and meta-analysis. Acta Orthop Traumatol Turc 56 : 158-165, 2022
7) Jakinapally S, Yamato Y, Hasegawa T et al : Effect of sagittal shape on proximal junctional kyphosis following thoracopelvic corrective fusion for adult spinal deformity : postoperative inflection vertebra cranial to T12 is a significant risk factor. Spine Deform 8 : 1313-1323, 2020
P.84 掲載の参考文献
8) Doodkorte RJP, Vercoulen TFG, Roth AK et al : Instrumentation techniques to prevent proximal junctional kyphosis and proximal junctional failure in adult spinal deformity correction-a systematic review of biomechanical studies. Spine J 21 : 842-854, 2021
9) Echt M, Ranson W, Steinberger J et al : A systematic review of treatment strategies for the prevention of junctional complications after long-segment fusions in the osteoporotic spine. Global Spine J 11 : 792-801, 2021
10) Alshabab BS, Lafage R, Smith JS et al ; International Spine Study Group (ISSG) : Evolution of proximal junctional kyphosis and proximal junctional failure rates over 10 years of enrollment in a prospective multicenter adult spinal deformity database. Spine (Phila Pa 1976) 47 : 922-930, 2022
P.85 掲載の参考文献
11) Lee KY, Lee JH, Kang KC et al : Strategies for prevention of rod fracture in adult spinal deformity : cobalt chrome rod, accessory rod technique, and lateral lumbar interbody fusion. J Neurosurg Spine, 2021. doi : 10.3171/2020.8.SPINE201037
12) Rabinovich EP, Buell TJ, Wang TR et al : Reduced occurrence of primary rod fracture after adult spinal deformity surgery with accessory supplemental rods : retrospective analysis of 114 patients with minimum 2-year follow-up. J Neurosurg Spine 35 : 504-515, 2021
13) Yamato Y, Hasegawa T, Togawa D et al : Long additional rod constructs can reduce the incidence of rod fractures following 3-column osteotomy with pelvic fixation in short term. Spine Deform 8 : 481-490, 2020
14) Noh SH, Kim KH, Park JY et al : Characteristics and risk factors of rod fracture following adult spinal deformity surgery : A systematic review and meta-analysis. Neurospine 18 : 447-454, 2021
15) Moridaira H, Inami S, Takeuchi D et al : Can we use shorter constructs while maintaining satisfactory sagittal plane alignment for adult spinal deformity? J Neurosurg Spin 34 : 589-596, 2020
P.86 掲載の参考文献
16) Lee KY, Lee JH, Im SK : Effect of gluteal muscle strengthening exercise on sagittal balance and muscle volume in adult spinal deformity following long-segment fixation surgery. Sci Rep 12 : 9063, 2022
17) Watanabe K, Ohashi M, Hirano T et al : Significance of long corrective fusion to the ilium for physical function in patients with adult spinal deformity. J Orthop Sci 26 : 962-967, 2021
18) Durand WM, Babu JM, Hamilton DK et al;International Spine Study Group (ISSG) : Adult spinal deformity surgery is associated with increased productivity and decreased absenteeism from work and school. Spine(Phila Pa 1976)47 : 287-294, 2022

II章 上肢

P.90 掲載の参考文献
1) Zhao J, Luo M, Liang G et al : What factors are associated with symptomatic rotator cuff tears : A meta-analysis. Clin Orthop Relat Res 480 : 96-105, 2022
P.91 掲載の参考文献
2) Smith KM, Hotaling JM, Presson AP et al : The effect of sex hormone deficiency on the incidence of rotator cuff repair analysis of a large insurance database. J Bone Joint Surg Am 104 : 774-779, 2022
3) Park JH, Rhee SM, Kim HS et al : Effects of anxiety and depression measured via the hospital anxiety and depression scale on early pain and range of motion after rotator cuff repair. Am J Sports Med 49 : 314-320, 2021
4) Fan N, Yuan S, Du P et al : The effects of smoking on clinical and structural outcomes after rotator cuff repair : a systematic review and meta-analysis. J Shoulder Elbow Surg 31 : 656-667, 2022
P.92 掲載の参考文献
5) Ackmann T, Schneider KN, Schorn D et al : Comparison of efficacy of supraspinatus tendon tears diagnostic tests : a prospective study on the "full-can," the "empty-can," and the "Whipple" tests. Musculoskelet Surg 105 : 149-153, 2021
6) Li L, Dong J, Li Q et al : MRA improves sensitivity than MRI for the articular-sided partial-thickness rotator cuff tears. Sci Prog 104 : 368504211059976, 2021
7) Fujiwara Y, Yamamoto S, Kato Y et al : Usefulness of ultrasound in diagnosing long head of the biceps tendon malposition in patients with rotator cuff tears. J Med Ultrason 49 : 289-295, 2022
8) Jeong JY, Khil EK, Kim Y : Utility of preoperative shear-wave elastography of the supraspinatus muscle for predicting successful rotator cuff repair : A prospective observational study with MRI correlation. AJR Am J Roentgenol 218 : 1051-1060, 2022
9) Lemaster NG, Hettrich CM, Jacobs CA et al : Which risk factors are associated with pain and patient-reported function in patients with a rotator cufftear? Clin Orthop Relat Res 479 : 1982-1992, 2021
P.93 掲載の参考文献
10) Shinohara I, Mifune Y, Inui A et al : Biochemical markers of aging (advanced glycation end products) and degeneration are increased in type 3 rotator cuff tendon stumps with increased signal intensity changes on MRI. Am J Sports Med 50 : 1960-1970, 2022
11) Kwong CA, Woodmass M, Gusnowski EM et al : Platelet-rich plasma in patients with partial-thickness rotator cuff tears or tendinopathy leads to significantly improved short-term pain relief and function compared with corticosteroid injection : A double-blind randomized controlled trial. Arthroscopy 37 : 510-517, 2021
12) Cederqvist S, Flinkkila T, Sormaala M et al : Non-surgical and surgical treatments for rotator cuff disease : a pragmatic randomised clinical trial with 2-year follow-up after initial rehabilitation. Ann Rheum Dis 80 : 796-802, 2021
13) Brindisino F, Salomon M, Giagio S et al : Rotator cuff repair vs. nonoperative treatment : a systematic review with meta-analysis. J Shoulder Elbow Surg 30 : 2648-2659, 2021
14) van der List JP, Kok LM, Tjarco D W Alta TDW et al : Role of delay between injury and surgery on the outcomes of rotator cuff repair. A systematic review and meta-analysis. Am J Sports Med 31 : 3635465211069560, 2022
P.94 掲載の参考文献
15) Waterman BR, Newgren J, Gowd AK et al : Randomized trial of arthroscopic rotator cuff with or without acromioplasty : No difference in patient-reported outcomes at long-term follow-up. Arthroscopy 37 : 3072-3078, 2021
16) Caughey WJ, Maher A, Leigh WB et al : Impact of smoking on pain and function in rotator cuff repair : a prospective 5-year cohort follow-up of 1383 patients. ANZ J Surg 91 : 2153-2158, 2021
17) Zhu XM, Leroux T, Ben-David E et al : A meta-analysis of level I evidence comparing tenotomy vs tenodesis in the management of long head of biceps pathology. J Shoulder Elbow Surg 30 : 961-968, 2021
18) Woodmass JM, McRae SMB, Lapner PL et al : Effect of age, gender, and body mass index on incidence and satisfaction of a Popeye deformity following biceps tenotomy or tenodesis : secondary analysis of a randomized clinical trial. J Shoulder Elbow Surg 30 : 1733-1740, 2021
19) Liu B, Kim JU, Kim YK et al : Clinical outcomes of reverse shoulder arthroplasty and rotator cuff repair in patients with massive rotator cuff tears without osteoarthritis : comparison using propensity score matching. J Shoulder Elbow Surg 31 : 2096-2105, 2022
P.95 掲載の参考文献
20) Ozturk BY, Ak S, Gultekin O et al : Prospective, randomized evaluation of latissimus dorsi transfer and superior capsular reconstruction in massive, irreparable rotator cuff tears. J Shoulder Elbow Surg 30 : 1561-1571, 2021
21) Ono Y, LeBlanc J, Bois AJ et al : Graft healing is more important than graft technique : Superior capsular reconstruction versus bridging grafts-A prospective randomized controlled trial. Arthroscopy 38 : 3109-3117, 2022
22) Metcalfe A, Parsons H, Parsons N et al : Subacromial balloon spacer for irreparable rotator cuff tears of the shoulder (START : REACTS) : a group-sequential, double-blind, multicentre randomised controlled trial. Lancet 399 : 1954-1963, 2022
23) Verma N, Srikumaran U, Roden CM et al : InSpace implant compared with partial repair for the treatment of full-thickness massive rotator cuff tears, a multicenter, single-blinded, randomized controlled trial. J Bone Joint Surg Am 104 : 1250-1262, 2022
24) Rizvi SMT, Bishop M, Lam PH et al : Factors predicting frequency and severity of postoperative pain after arthroscopic rotator cuff repair surgery. Am J Sports Med 49 : 146-153, 2021
P.96 掲載の参考文献
25) Farley KX, Wilson JM, Spencer CC et al : Preoperative opioid use is a risk factor for revision surgery, complications, and increased resource utilization after arthroscopic rotator cuff repair. Am J Sports Med 48 : 3339-3346, 2020
26) Kjar BH, Magnusson SP, Henriksen M et al : Effects of 12 weeks of progressive early active exercise therapy after surgical rotator cuff repair : 12 weeks and 1-year results from the CUT-N-MOVE randomized controlled trial. Am J Sports Med 49 : 321-331, 2021
P.97 掲載の参考文献
1) Silva MR, Linhares D, Leite MJ et al : Proximal humerus fractures : epidemiology and trends in surgical management of hospital-admitted patients in Portugal. JSES Int 6 : 380-384, 2022
P.98 掲載の参考文献
2) Wilkinson EB, Williams JF, Paul KD et al : MRI evaluation of axillary neurovasucular bundle : Implications for minimally invasive proximal humerus fracture fixation. JSES Int 5 : 205-211, 2021
3) Chelli M, Gasbarro G, Lavoue V et al : The reliability of the Neer classification for proximal humerus fractures : a survey of orthopedic shoulder surgeons. JSES Int 6 : 331-337, 2022
4) Matsumura N, Furuhata R, Seto T et al : Reproducibility of the modified Neer classification defining displacement with respect to the humeral head fragment for proximal humeral fractures. J Orthop Surg Res 15 : 438, 2020
5) Foruria AM, Martinez-Catalan N, Pardos B et al : Classification of proximal humerus fractures according to pattern recognition is associated with high intraobserver and interobserver agreement. JSES Int 6 : 563-568, 2022
P.99 掲載の参考文献
6) Soler-Peiro M, Garcia-Martinez Lorena, Aguilella L et al : Conservative treatment of 3-part and 4-part proximal humeral fractures : systematic review. J Orthop Surg Res 15 : 347, 2020
7) Furuhata R, Matsumura N, Tsujisaka R et al : Risk factors and prognosis of humeral head inferior subluxation in proximal humeral fractures after osteosynthesis. JSES Int 5 : 739-744, 2021
8) Hiramatsu Y, Takegami Y, Katsuhiro T et al : Displaced humeral head after intramedullary nailing for proximal humeral fracture is associated with worse short-term outcomes-a multicenter TRON study. JSES Int 6 : 374-379, 2022
P.100 掲載の参考文献
9) Wang Q, Sheng N, Rui B et al : The neck-shaft angle is the key factor for positioning of calcar screw when treating proximal humeral fractures with a locking plate. Bone Joint J 102-B : 1629-1635, 2020
10) Bouliane M, Silveira A, AlEidan A et al : Factors associated with maintaining reduction following locking plate fixation of proximal humerus fractures : a population-based retrospective cohort study. JSES Int 4 : 724-729, 2020
11) Konopitski A, Roy D, Beck M et al : The value of lateral glenohumeral offset in predicting construct failure in proximal humerus fractures following internal fixation. J Shoulder Elbow Surg 30 : 819-825, 2021
12) Foruria AM, Martinez-Catalan N, Valencia M et al : Proximal humeral fracture locking plate fixation with anatomic reduction, and a short-and-cemented-screws configuration, dramatically reduces the implant related failure rate in elderly patients. JSES Int 5 : 992-1000, 2021
P.101 掲載の参考文献
13) Crespo AM, Luthringer TA, Frost A et al : Does reverse total shoulder arthroplasty for proximal humeral fracture portend poorer outcomes than for elective indications? J Shoulder Elbow Surg 30 : 40-50, 2021
14) Sasanuma H, Iijima Y, Saito T et al : Clinical results of reverse shoulder arthroplasty for comminuted proximal humerus fractures in elderly patients : a comparison between nonporous stems versus trabecular metal stems. JSES Int 4 : 952-958, 2020
15) Fraser AN, Bjordal J, Wagle TM et al : Reverse shoulder arthroplasty is superior to plate fixation at 2 years for displaced proximal humeral fractures in the elderly : A multicenter randomized controlled trial. J Bone Joint Surg Am 102 : 477-485, 2020
P.102 掲載の参考文献
16) Klug A, Harth J, Hoffmann R et al : Surgical treatment of complex proximal humeral fractures in elderly patients : a matched-pair analysis of angular-stable plating vs. reverse shoulder arthroplasty. J Shoulder Elbow Surg 29 : 1796-1803, 2020
17) Porschke F, Bockmeyer J, Nolte PC et al : More adverse events after osteosyntheses compared to arthroplasty in geriatric proximal humeral fractures involving anatomical neck. J Clin Med 10 : 979, 2021
18) Koppe J, Stolberg-Stolberg J, Rischen R et al : In-hospital complications are more likely to occur after reverse shoulder arthroplasty than after locked plating for proximal humeral fractures. Clin Orthop Relat Res 479 : 2284-2292, 2021
P.103 掲載の参考文献
19) Samborski SA, Haws BE, Karnyski S et al : Outcomes for type C proximal humerus fractures in the adult population : comparison of nonoperaive treatment, locked plate fixation, and reverse shoulder arthroplasty. JSES Int 6 : 755-762, 2022
20) Yahuaca BI, Simon P, Christmas KN et al : Acute surgical management of proximal humerus fractures : ORIF vs. hemiarthroplasty vs. reverse shoulder arthroplasty. J Shoulder Elbow Surg 29 : S32-S40, 2020
21) Khalik HA, Humphries B, Zoratti et al : Reverse total shoulder arthroplasty is the most cost-effective treatment strategy for proximal humerus fractures in older adults : A cost-utility analysis. Clin Orhop Relat Res 480 : 2013-2016, 2022
P.104 掲載の参考文献
22) Ezuma CO, Kosber RL, Kovacevic D : Biological sex impacts perioperative complications after reverse shoulder arthroplasty for proximal humeral fracture. JSES Int 5 : 371-376, 2021
23) Ahlquist S, Hsiue PP, Chen CJ et al : Renal disease is a risk factor for complications and mortality after open reduction internal fixation of proximal humerus fractures. JSES Int 6 : 736-742, 2022
24) Chen CT, Lin SJ, Kuo LT et al : Effect of chronic kidney disease on outcomes following proximal humerus fragility fracture surgery in diabetic patients : A nationwide population-based cohort study. PLoS One 16 : e0258393, 2021
P.105 掲載の参考文献
25) Patel AH, Lee OC, O'Brien MJ et al : Short-term reoperation risk after surgical and nonsurgical management of isolated greater tuberosity fractures. JSES Int 5 : 532-539, 2021
P.106 掲載の参考文献
1) 日本整形外科学会診療ガイドライン委員会/上腕骨外側上顆炎診療ガイドライン策定委員会監 : 上腕骨外側上顆炎診療ガイドライン 2019 改訂第2版. 南江堂, 2019
2) Huang K, Giddins G, Wu LD : Platelet-rich plasma versus corticosteroid injections in the management of elbow epicondylitis and plantar fasciitis : An updated systematic review and meta-analysis. Am J Sports Med 48 : 2572-2585, 2020
P.107 掲載の参考文献
3) Kim YJ, Wood SM, Yoon AP et al : Efficacy of nonoperative treatments for lateral epicondylitis : A systematic review and meta-analysis. Plast Reconstr Surg 147 : 112-125, 2021
4) Karanasios S, Korakakis V, Whiteley R et al : Exercise interventions in lateral elbow tendinopathy have better outcomes than passive interventions, but the effects are small : a systematic review and meta-analysis of 2123 subjects in 30 trials. Br J Sports Med 55 : 477-485, 2021
5) Kim CH, Park YB, Lee JS et al : Plateletrich plasma injection vs. operative treatment for lateral elbow tendinosis : a systematic review and meta-analysis. J Shoulder Elbow Surg 31 : 428-436, 2022
6) Hardy R, Tori A, Fuchs H et al : To improve pain and function, platelet-rich plasma injections may be an alternative to surgery for treating lateral epicondylitis : A systematic review. Arthroscopy 37 : 3360-3367, 2021
7) Li S, Yang G, Zhang H et al : A systematic review on the efficacy of different types of platelet-rich plasma in the management of lateral epicondylitis. J Shoulder Elbow Surg 31 : 1533-1544, 2022
8) Karjalainen TV, Silagy M, O'Bryan E et al : Autologous blood and platelet-rich plasma injection therapy for lateral elbow pain. Cochrane Database Syst Rev 9 : CD010951, 2021
P.108 掲載の参考文献
9) Linnanmaki L, Kanto K, Karjalainen T et al : Platelet-rich plasma or autologous blood do not reduce pain or improve function in patients with lateral epicondylitis : A randomized controlled trial. Clin Orthop Relat Res 478 : 1892-1900, 2020
10) Uygur E, Aktas B, Yilmazoglu EG : The use of dry needling vs. corticosteroid injection to treat lateral epicondylitis : a prospective, randomized, controlled study. J Shoulder Elbow Surg 30 : 134-139, 2021
11) Ang BFH, Mohan PC, Png MA et al : Ultrasonic percutaneous tenotomy for recalcitrant lateral elbow tendinopathy : Clinical and sonographic results at 90 months. Am J Sports Med 49 : 1854-1860, 2021
12) Liu WC, Chen CT, Lu CC et al : Extracorporeal shock wave therapy shows superiority over injections for pain relief and grip strength recovery in lateral epicondylitis : A systematic review and network meta-analysis. Arthroscopy 38 : 2018-2034.e12, 2022
13) Yoon SY, Kim YW, Shin IS et al : Does the type of extracorporeal shock therapy influence treatment effectiveness in lateral epicondylitis? A systematic review and meta-analysis. Clin Orthop Relat Res 478 : 2324-2339, 2020
P.109 掲載の参考文献
14) Song B, Day D, Jayaram P : Efficacy of botulinum toxin in treating lateral epicondylitis-does injection location matter? : A systematic review. Am J Phys Med Rehabil 99 : 1157-1163, 2020
15) Zhu M, Rabago D, Chung VC et al : Effects of hypertonic dextrose injection (prolotherapy) in lateral elbow tendinosis : A systematic review and meta-analysis. Arch Phys Med Rehabil 103 : 2209-2218, 2022
16) Lopez-Alameda S, Varillas-Delgado D, De Felipe-Gallego J et al : Arthroscopic surgery versus open surgery for lateral epicondylitis in an active work population : a comparative study. J Shoulder Elbow Surg 31 : 984-990, 2022
17) Paksoy AE, Laver L, Tok O et al : Arthroscopic lateral capsule resection is enough for the management of lateral epicondylitis. Knee Surg Sports Traumatol Arthrosc 29 : 2000-2005, 2021
18) Kholinne E, Liu H, Kim H et al : Systematic review of elbow instability in association with refractory lateral epicondylitis : Myth or fact? Am J Sports Med 49 : 2542-2550, 2021
P.110 掲載の参考文献
19) Suzuki T, Hayakawa K, Nakane T et al : Repeated magnetic resonance imaging at 6 follow-up visits over a 2-year period after platelet-rich plasma injection in patients with lateral epicondylitis. J Shoulder Elbow Surg 31 : 1581-1587, 2022
20) Ikonen J, Lahdeoja T, Ardern CL et al : Persistent tennis elbow symptoms have little prognostic value : A systematic review and meta-analysis. Clin Orthop Relat Res 480 : 647-660, 2022
P.111 掲載の参考文献
1) 川崎恵吉, 酒井健, 坂本和歌子他 : 成人上腕骨顆部骨折の骨折線の位置の検討-骨折型や年齢による相違-. 骨折 44 : 17-21, 2022
P.112 掲載の参考文献
2) Galloway JD, Shymon SJ, Adams MR et al : Distal humerus traction radiographs is the interobserver and intraobserver reliability comparable with computed tomography? J Orthop Trauma 36 : e265-e270, 2022
3) Luxenhofer M, Beisemann N, Schnetzke M et al : Diagnostic accuracy of intraoperative CT-imaging in complex articular fractures-a cadaveric study. Sci Rep 10 : 4530, 2020
4) Sudah SY, Puzzitiello RN, Nasra MH et al : Nonoperative treatment of distal humerus fractures in the elderly yields satisfactory functional outcomes and low conversion to delayed surgery : a systematic review. JSES Rev Rep Tech 2 : 96-102, 2022
P.113 掲載の参考文献
5) Jeong HS, Yang JY, Jeon SJ et al : Comparison of olecranon osteotomy and paratricipital approach in distal humerus intra-articular fracture : A systematic review and meta-analysis. Medicine (Baltimore) 101 : e30216, 2022
6) Spierings KE, Schoolmeesters BJ, Doornberg JN et al : Complications of olecranon osteotomy in the treatment of distal humerus fracture. Clin Shoulder Elb 25 : 163-169, 2022
P.114 掲載の参考文献
7) Daneshvar P, Gee A, Schemitsch EH, et al : Proximal ulna osteotomy for complex fractures of the distal humerus : a 3-dimensional laser analysis and comparison with olecranon osteotomy. J Hand Surg Am 47 : 320-328, 2022
8) 今谷潤也 : 肘関節手術のための機能解剖と手術アプローチ. 日整会誌 96 : 411-426, 2022
9) Wang X, Liu G : A comparison between perpendicular and parallel plating methods for distal humerus fractures A meta-analysis of randomized controlled trials. Medicine (Baltimore) 99 : e19602, 2020
9) Galal S, Mattar Y, Solyman AME et al : Locking versus non-locking plates in fixation of extra-articular distal humerus fracture : a randomized controlled study. Int Orthop 44 : 2761-2767, 2020
10) Yetter TR, Weatherby PJ, Somerson JS : Complications of articular distal humerus fracture fixation : a systematic review and meta-analysis. J Shoulder Elbow Surg 30 : 1957-1967, 2021
P.115 掲載の参考文献
11) 池田将吾, 阿部真悟, 栗山幸治 : 上腕骨遠位端骨折固定術後にインプラント周囲骨折をきたした2例. 骨折 43 : 180-183, 2021
12) Macken AA, Prkic A, Kodde IF et al : Global trends in indications for total elbow arthroplasty : a systematic review of national registries. EFORT Open Rev 5 : 215-220, 2020
13) Seok HG, Park JJ, Park SG : Comparison of the complications, reoperations, and clinical outcomes between open reduction and internal fixation and total elbow arthroplasty for distal humeral fractures in the elderly : A systematic review and meta-analysis. J Clin Med 11 : 5775, 2022
14) 川崎恵吉, 稲垣克記 : 高齢者の上腕骨遠位端骨折に対するプレート固定術および人工関節置換術について. Orthopaedics 34 : 31-40, 2021
P.116 掲載の参考文献
15) 小川智永, 大谷和裕, 柿木良介他 : 高齢者の上腕骨遠位端骨折に対する人工肘関節置換術. 骨折 42 : 1166-1169, 2020
16) Burden EG, Batten T, Smith C et al : Hemiarthroplasty or total elbow arthroplasty for unreconstructable distal humeral fractures in patients aged over 65 years : a systematic review and meta-analysis of patient outcomes and complications. Bone Joint J 104-B : 559-566, 2022
17) Nielsen AF, Al-Hamdani A, Rasmussen JV et al : Elbow hemiarthroplasty vs. open reduction internal fixation for acute Arbeitsgemeinschaft for Osteosynthesefragen/Orthopaedic Trauma Association (AO/OTA) type 13C fractures -A systematic review. JSES Int 6 : 713-722, 2022
18) Dehghan N, Nauth A, Hall J et al ; Canadian Orthopaedic Trauma Society : In situ placement versus anterior transposition of the ulnar nerve for distal humerus fractures treated with plate fixation : A multicenter randomized controlled trial. J Orthop Trauma 35 : 465-471, 2021
19) Alfred ML : Controversies in the management of bicolumnar fractures of the distal humerus. J Hand Surg Am, 2022. doi : 10.1016/j.jhsa.2022.10.006
P.117 掲載の参考文献
20) 今谷潤也 : 上腕骨遠位端粉砕骨折における手術アプローチ. Orthopaedics 34 : 53-61, 2021
P.118 掲載の参考文献
1) Mulrooney E, Neogi T, Dagfinrud H et al : The associations of psychological symptoms and cognitive patterns with pain and pain sensitization in people with hand osteoarthritis. Osteoarthr Cartil Open 4 : 100267, 2022
P.119 掲載の参考文献
2) Gandolfi S, Carloni R, Mouton J et al : Finger joint denervation in hand osteoarthritis : Indications, surgical techniques and outcomes. A systematic review of published cases. Hand Surg Rehabil 39 : 239-250, 2020
3) Servasier L, Laulan J, Marteau E et al : Denervation of the proximal interphalangeal joint : Results from 54 cases in 42 patients. Orthop Traumatol Surg Res 107 : 102976, 2021
4) Hensler S, Behm P, Wehrli M et al : Lateral stability in healthy proximal interphalangeal joints versus surface replacement and silicone arthroplasty : Results of a three-dimensional motion analysis study. Hand Surg Rehabil 39 : 296-301, 2020
5) Kulkarni K, Sheikh N, Aujla R et al : Outcomes of unconstrained proximal interphalangeal joint arthroplasty : A systematic review. J Hand Surg Asian Pac Vol 27 : 300-312, 2022
P.120 掲載の参考文献
6) Reischenbock V, Marks M, Herren DB et al : Surface replacing arthroplasty of the proximal interphalangeal joint using the CapFlex-PIP implant : a prospective study with 5-year outcomes. J Hand Surg Eur Vol 46 : 496-503, 2021
7) Millrose M, Gesslein M, Ittermann T et al : Arthrodesis of the proximal interphalangeal joint of the finger-a systematic review. EFORT Open Rev 7 : 49-58, 2022
8) Rydberg M, Dahlin LB, Gottsater A et al : High body mass index is associated with increased risk for osteoarthritis of the first carpometacarpal joint during more than 30 years of follow-up. RMD Open 6 : e001368, 2020
P.121 掲載の参考文献
9) Garcia-Lopez E, Moore DC, Kenney DE et al : Evaluation of the PROMIS upper extremity against validated patient-reported outcomes in patients with early carpometacarpal osteoarthritis. J Hand Surg Am 47 : 621-628, 2022
10) Copeland A, Gallo L, Weber C et al : Reporting outcomes and outcome measures in thumb carpometacarpal joint osteoarthritis : A systematic review. J Hand Surg Am 46 : 65.e1-65.e11, 2021
11) Pisano K, Wolfe T, Lubahn J et al : Effect of a stabilization exercise program versus standard treatment for thumb carpometacarpal osteoarthritis : A randomized trial. J Hand Ther, 2022. doi : 10.1016/j.jht.2022.03.009
12) 加家壁正知, 田村剛志 : 母指CM関節症における疼痛誘発動作より考案した積極的運動療法の試み. 日手外科会誌 37 : 509-513, 2021
P.122 掲載の参考文献
13) Katt BM, Tawfik AM, Aryee J et al : The efficacy of intra-articular versus extraarticular corticosteroid injections in the thumb carpometacarpal joint. J Hand Surg Glob Online 4 : 128-134, 2022
14) Nishimura K, Uehara K, Miura T et al : Factors associated with surgical intervention for osteoarthritis of the thumb carpometacarpal joint. J Hand Surg Am 46 : 817.e1-817.e7, 2021
15) Schloemann D, Hammert WC, Liu S et al : Risk factors for failed nonsurgical treatment resulting in surgery on thumb carpometacarpal arthritis. J Hand Surg Am 46 : 471-477.e1, 2021
16) Baca ME, Rozental TD, McFarlane K et al : Trapeziometacarpal joint arthritis : Is duration of symptoms a predictor of surgical outcomes? J Hand Surg Am 45 : 1184.e1-1184.e7, 2020
17) Kazmers NH, Grasu B, Presson AP et al : The prognostic value of preoperative patient-reported function and psychological characteristics on early outcomes following trapeziectomy with ligament reconstruction tendon interposition for treatment of thumb carpometacarpal osteoarthritis. J Hand Surg Am 45 : 469-478, 2020
P.123 掲載の参考文献
18) Tanaka H, Soejima O, Muraoka K et al : Prognostic factors and clinical features in metacarpophalangeal joint hyperextension after ligament reconstruction withtrapeziectomy : A retrospective cohort study. J Orthop Sci, 2022. doi : 10.1016/j.jos.2022.03.010
19) McGinley BM, Siracuse BL, Gottschalk MB et al : Treatment of first carpometacarpal osteoarthritis with arthroscopy : A systematic review. J Wrist Surg 11 : 509-520, 2022
20) Wilcke MK, Evans K, Franko MA et al : Trapeziectomy with or without a tendon-based adjunct : a registry-based study of 650 thumbs. J Hand Surg Eur Vol 47 : 728-733, 2022
P.124 掲載の参考文献
21) van Laarhoven CMCA, Ottenhoff JSE, van Hoorn BTJA et al : Medium to long-term follow-up after pyrocarbon disc interposition arthroplasty for treatment of CMC thumb joint arthritis. J Hand Surg Am 46 : 150.e1-150.e14, 2021
22) 白川健 : 進行期母指CM関節症に対する第1中手骨外転対立位骨切り術による関節適合性の変化. 日手外科会誌 38 : 606-609, 2022
23) Winter R, Hasiba-Pappas SK, Tuca AC et al : Autologous fat and platelet-rich plasma injections in trapeziometacarpal osteoarthritis : A systematic review and meta-analysis. Plast Reconstr Surg 151 : 119-131, 2023
P.125 掲載の参考文献
24) Komine S, Morizaki Y, Uehara K et al : Risk factors for residual pain after ligament reconstruction and tendon interposition on osteoarthritis of the first carpometacarpal joint. J Orthop Surg (Hong Kong) 30 : 10225536221103301, 2022
25) Qin MM, Qin CD, Johnson DJ et al : Risk of infection in thumb carpometacarpal surgery after corticosteroid injection. J Hand Surg Am 46 : 765-771.e2, 2021
26) Zelenski NA, Rizzo M, Moran SL : Outcomes of secondary trapeziectomy following carpometacarpal pyrocarbon prosthetic arthroplasty. J Hand Surg Am 47 : 429-436, 2022
27) 三浦俊樹, 樫山尚弘, 森崎裕他 : 母指CM関節症に対する再手術例の検討. 日手外科会誌 38 : 617-620, 2022
P.126 掲載の参考文献
28) 井川真依子, 面川庄平, 清水隆昌他 : 母指CM関節形成術後の再手術症例についての検討. 日手外科会誌 38 : 163-167, 2021
P.127 掲載の参考文献
1) Costa ML, Achten J, Ooms A et al ; DRAFFT 2 Collaborators : Moulded cast compared with K-wire fixation after manipulation of an acute dorsally displaced distal radius fracture : the DRAFFT 2 RCT. Health Technol Assess 26 : 1-80, 2022
2) Combined Randomised and Observational Study of Surgery for Fractures in the Distal Radius in the Elderly (CROSSFIRE) Study Group : Surgical plating vs closed reduction for fractures in the distal radius in older patients : A randomized clinical trial. JAMA Surg 156 : 229-237, 2021
3) Chung KC, Kim HM, Malay S et al ; WRIST Group : The Wrist and Radius Injury Surgical Trial (WRIST) : 12-month outcomes from a multicenter international randomized clinical trial. Plast Reconstr Surg 145 : 1054e-1066e, 2020
P.128 掲載の参考文献
4) Png ME, Petrou S, Achten J et al ; DRAFFT2 trial collaborators : Cost-utility analysis of surgical fixation with Kirschner wire versus casting after fracture of the distal radius : a health economic evaluation of the DRAFFT2 trial. Bone Joint J 104-B : 1225-1233, 2022
5) Chung KC, Cho HE, Kim Y et al : Assessment of anatomic restoration of distal radius fractures among older adults : A secondary analysis of a randomized clinical trial. JAMA Netw Open 3 : e1919433, 2020
6) Chung KC, Sasor SE, Speth KA et al ; WRIST Group : Patient satisfaction after treatment of distal radial fractures in older adults. J Hand Surg Eur Vol 45 : 77-84, 2020
7) Chung KC, Kim HM, Malay S et al ; WRIST Group : Comparison of 24-month outcomes after treatment for distal radius fracture : The WRIST randomized clinical trial. JAMA Netw Open 4 : e2112710, 2021
8) Tahir M, Zimri FK, Ahmed N et al : Plaster immobilization versus anterior plating for dorsally displaced distal radial fractures in elderly patients in Pakistan. J Hand Surg Eur Vol 46 : 647-653, 2021
9) Hassellund SS, Williksen JH, Laane MM et al : Cast immobilization is non-inferior to volar locking plates in relation to Quick-DASH after one year in patients aged 65 years and older : a randomized controlled trial of displaced distal radius fractures. Bone Joint J 103-B : 247-255, 2021
P.129 掲載の参考文献
10) Kamal RN, Shapiro LM : American Academy of Orthopaedic Surgeons/American Society for Surgery of the Hand Clinical Practice Guideline Summary Management of Distal Radius Fractures. J Am Acad Orthop Surg 30 : e480-e486, 2022
11) Mulders MAM, Walenkamp MMJ, van Dieren S et al ; VIPER Trial Collaborators : Volar plate fixation in adults with a displaced extra-articular distal radial fracture is cost-effective. J Bone Joint Surg Am 102 : 609-616, 2020
12) Selles CA, Mulders MAM, van Dieren S et al ; VIPAR Collaborators : Cost analysis of volar plate fixation versus plaster cast immobilization for intra-articular distal radial fractures. J Bone Joint Surg Am 103 : 1970-1976, 2021
P.130 掲載の参考文献
13) Perry DC, Achten J, Knight R et al : Immobilisation of torus fractures of the wrist in children (FORCE) : a randomised controlled equivalence trial in the UK. Lancet 400 : 39-47, 2022
14) Arti HR, Farahnak R : A comparative study on treatment outcomes of bandage and casting in non-displaced extra-articular fracture of distal radius : A clinical trial study. Pol Przegl Chir 92 : 12-15, 2020
15) Raittio L, Launonen AP, Hevonkorpi T et al : Two casting methods compared in patients with Colles' fracture : A pragmatic, randomized controlled trial. PLoS One 15 : e0232153, 2020
16) van Delft EAK, van Gelder TG, Vermeulen J et al : Does position of the wrist during cast immobilisation in patients with distal radius fractures affect outcome? Eur J Trauma Emerg Surg 48 : 1751-1757, 2022
17) Jamnik AA, Pirkle S, Chacon J et al : The effect of immobilization position on functional outcomes and complications associated with the conservative treatment of distal radius fractures : A systematic review. J Hand Surg Glob Online 4 : 25-31, 2021
18) Okamura A, de Moraes VY, Neto JR et al : No benefit for elbow blocking on conservative treatment of distal radius fractures : A 6-month randomized controlled trial. PLoS One 16 : e0252667, 2021
P.131 掲載の参考文献
19) Saka N, Hoshika S, Inoue M et al : Belowor above-elbow immobilization in conservative treatment of distal radius fractures : a systematic review and meta-analysis. Injury 53 : 250-258, 2022
20) Olech J, Kopczynski B, Tomczyk L et al : The functional and radiographic outcomes following distal radius fracture treatment in a cast for 4 and 6 weeks in the elderly : A randomized trial. Adv Clin Exp Med 31 : 701-706, 2022
21) Lari A, Jarragh A, Alherz M et al : Circumferential periosteal block versus hematoma block for the reduction of distal radius and ulna fractures : a randomized controlled trial. Eur J Trauma Emerg Surg, 2022. doi : 10.1007/s00068-022-02078-8
22) Beck S, Brunner-Parker A, Stamm R et al : Periosteal block versus intravenous regional anesthesia for reduction of distal radius fractures : A randomized controlled trial. Acad Emerg Med 29 : 1213-1220, 2022
P.132 掲載の参考文献
23) Wong SS, Chan WS, Fang C et al : Infraclavicular nerve block reduces postoperative pain after distal radial fracture fixation : a randomized controlled trial. BMC Anesthesiol 20 : 130, 2020
24) Nho JH, Jang BW, An CY et al : General versus brachial plexus block anesthesia in pain management after internal fixation in patients with distal radius fracture : A randomized controlled trial. Int J Environ Res Public Health 19 : 9155, 2022
25) Tu TY, Hsu CY, Lin PC et al : Wideawake local anesthesia with no tourniquet versus general anesthesia for the plating of distal radius fracture : A systematic review and meta-analysis. Front Surg 9 : 922135, 2022
26) Gouveia K, Harbour E, Gazendam A et al : Fixation of distal radius fractures under wide-awake local anesthesia : A systematic review. Hand (N Y), 2022. doi : 10.1177/15589447221109632
27) Low S, Papay M, Spies CK et al : The requirement for closed reduction of dorsally displaced unstable distal radius fractures before operative treatment. Dtsch Arztebl Int 117 : 783-789, 2020
28) Goorens CK, De Keyzer PB, Van Royen K et al : Pronator quadratus repair after volar plate fixation in distal radial fractures : evaluation of the clinical and functional outcome and of the protective role on the flexor tendons-a randomized controlled study. Eur J Orthop Surg Traumatol 31 : 541-548, 2021
29) Lu CK, Liu WC, Chang CC et al : A systematic review and meta-analysis of the pronator quadratus repair following volar plating of distal radius fractures. J Orthop Surg Res 15 : 419, 2020
30) Shi F, Ren L : Is pronator quadratus repair necessary to improve outcomes after volar plate fixation of distal radius fractures? A systematic review and meta-analysis. Orthop Traumatol Surg Res 106 : 1627-1635, 2020
P.133 掲載の参考文献
31) Shihab Z, Sivakumar B, Graham D et al : Outcomes of arthroscopic-assisted distal radius fracture volar plating : A meta-analysis. J Hand Surg Am 47 : 330-340.e1, 2022
32) Selles CA, Mulders MAM, Colaris JW et al : Arthroscopic debridement does not enhance surgical treatment of intra-articular distal radius fractures : a randomized controlled trial. J Hand Surg Eur Vol 45 : 327-332, 2020
33) Xiao AX, Graf AR, Dawes A et al : Management of acute distal radioulnar joint instability following a distal radius fracture : A systematic review and meta-analysis. J Hand Surg Glob Online 3 : 133-138, 2021
34) Maradei-Pereira JAR, Dos Santos AP, Martins JR et al : Infection after buried or exposed K-wire fixation of distal radial fractures : a randomized clinical trial. J Hand Surg Eur Vol 46 : 154-158, 2021
P.134 掲載の参考文献
35) Karantana A, Handoll HH, Sabouni A : Percutaneous pinning for treating distal radial fractures in adults. Cochrane Database Syst Rev 2 : CD006080, 2020
36) Lundqvist E, Fischer P, Wretenberg P et al : Volar locking plate compared with combined plating of ao type c distal radius fractures : A randomized controlled study of 150 cases. J Hand Surg Am 47 : 813-822, 2022
37) Fares AB, Childs BR, Polmear MM : Dorsal bridge plate for distal radius fractures : A systematic review. J Hand Surg Am 46 : 627.e1-627.e8, 2021
38) Beeres FJP, van de Wall BJM, Hug U et al : Temporary spanning plate wrist fixation of complex distal radius fractures : a systematic review of 353 patients. Eur JTrauma Emerg Surg 48 : 1649-1662, 2022
39) Mohamed MA, Abdel-Wanis ME, Said E et al : Dorsal bridge plating versus bridging external fixation for management of complex distal radius fractures. Injury 53 : 3344-3351, 2022
P.135 掲載の参考文献
40) Aliuskevicius M, Ostgaard SE, Hauge EM et al : Influence of ibuprofen on bone healing after Colles' fracture : A randomized controlled clinical trial. J Orthop Res 38 : 545-554, 2020
41) Holmberg A, Hassellund SS, Draegni T et al : Analgesic effect of intravenous dexamethasone after volar plate surgery for distal radius fracture with brachial plexus block anaesthesia : a prospective, double-blind randomised clinical trial. Anaesthesia 75 : 1448-1460, 2020
42) Gottschalk MB, Dawes A, Hurt J et al : A prospective randomized controlled trial of methylprednisolone for postoperative pain management of surgically treated distal radius fractures. J Hand Surg Am 47 : 866-873, 2022
P.136 掲載の参考文献
1) Asfuroglu ZM, Guvenc K, Gumusoglu E et al : Order of importance of anatomical risk factors in Kienbock's disease : An artificial neural network study. Hand Surg Rehabil 41 : 328-333, 2022
P.137 掲載の参考文献
2) Yildirim T, Unsal SS, Armangil M : Association of the interfacet angle and the lunate facet inclination angle with Kienbock disease. J Hand Surg Am 47 : 391.e1-391.e6, 2022
3) MacLean SBM, Bain GI : Kinematics of the wrist in Kienbock's disease : a four-dimensional computed tomography study. J Hand Surg Eur Vol 46 : 504-509, 2021
4) Lee J-H, Son J, Park M-J : Clinical outcomes of patients with stage II and IIIA Kienbock's disease after undergoing conservative management. Indian J Orthop 56 : 79-86, 2022
5) DeGeorge BR Jr, Chawla SS, Lewallen L et al : Functional and radiographic disease progression in nonoperatively managed Kienbock disease. Plast Reconstr Surg 147 : 1117-1123, 2021
6) Wang PQ, Charron BP, Chan KTK et al : Potential role for non-salvage procedures in the treatment of Kienbock disease stage IV : A systematic review. Hand (N Y) 19 : 15589447211066613, 2022
P.138 掲載の参考文献
7) Said E, Addosooki A, Assaghir Y et al : Radial shortening, bone grafting and vascular pedicle implantation versus radial shortening alone in Kienbock's disease. J Hand Surg Eur Vol 46 : 516-522, 2021
8) van Leeuwen WF, Pong TM, Gottlieb RW et al : Radial shortening osteotomy for symptomatic Kienbock's disease : Complications and long-term patient-reported outcome. J Wrist Surg 10 : 17-22, 2020
9) Kamrani RS, Najafi E, Azizi H et al : Outcomes of arthroscopic lunate core decompression versus radial osteotomy in treatment of Kienbock disease. J Hand Surg Am 47 : 692.e1-692.e8, 2022
P.139 掲載の参考文献
10) Hunter AR, Temperley D, Trail IA : Capitate shortening osteotomy and vascularized bone grafting for Kienbock's disease in ulnar positive or neutral wrists. J Hand Surg Eur Vol 46 : 581-586, 2021
11) Kayaokay K, Ozcan C, Bulut T et al : Radial shortening osteotomy vs partial capitate shortening osteotomy in Kienbock's disease : Medium-term radiological and clinical results. Hand Surg Rehabil 40 : 427-432, 2021
12) Namazi H, Ghaedi E, Karimi MT : Comparison of biomechanical results about the effect of three surgery methods in decompression of lunate bone. J Wrist Surg 10 : 296-302, 2021
13) Shiota J, Momma D, Matsui Y et al : Changes in wrist joint contact area following radial shortening osteotomy for Kienbock's disease. Sci Rep 12 : 4001, 2022
14) MacLean SBM, Bain GI : Long-term outcome of surgical treatment for Kienbock disease using an articular-based classification. J Hand Surg AM 46 : 386-395, 2022
P.140 掲載の参考文献
15) Teng X-F, Yuan H-Z, Chen H : Evaluation of the efficacy of wrist arthroscopic surgery for aseptic necrosis of lunate bone. Orthopaedic Surgery 14 : 486-491, 2022
16) Ayik O, Demirel M, Turgut N et al : Arthroscopic debridement and arthrolysis for the treatment of advanced Kienbock's disease : 18-month and 5-year postoperative results. J Wrist Surg 10 : 280-285, 2021
17) Ozden E, Ozcelik IB : Comparison of clinical outcomes in open and arthroscopically-assisted mini open proximal row carpectomy for Lichtman stage IIIB and IIIC Kienbock disease. J Hand Surg Am, 2022. doi : 10.1016/j.jhsa.2022.03.005
18) Shimizu T, Omokawa S, Kawamura K et al : Arthroscopic lunate excision provides excellent outcomes for low-demand patients with advanced Kienbock's disease. Arthrosc Sports Med Rehabil 3 : e1387-e1394, 2021
P.141 掲載の参考文献
19) Goyal N, Singh V, Barik S et al : Limited carpal fusion in Kienbock's Disease : Early results following scaphocapitate arthrodesis. J Wrist Surg 9 : 404-410, 2020
20) Meena A, Shaina S, Saikia SS et al : Management of type 3 Kienbock's disease in manual workers by scaphocapitate fusion with minimum 7-year follow-up. J Clin Orthop Trauma 28 : 101854, 2022
21) Collon S, Tham SKY, McCombe D et al : Scaphocapitate fusion for the treatment of Lichtman stage III Kienbock's disease. Results of a single center study with literature review. Hand Surg Rehabil 39 : 201-206, 2020
22) Park JH, Kang JW, Choi JS et al : Influence of carpal?ulnar translation on clinical outcome after scaphocapitate arthrodesis for the treatment of late-stage Kienbock disease. J Plast Reconstr Aesthet Surg 75 : 348-355, 2022
23) Li X, Lu L, Gong X et al : Vascularized capitate transposition for the treatment of stage IIIB Kienbock disease. J Hand Surg Am 45 : 1085.e1-1085.e11, 2020
24) Van Handel AC, Lynch LM, Daruwalla JH et al : Medial femoral trochlea flap reconstruction versus proximal row carpectomy for Kienbock's disease : a morphometric comparison. J Hand Surg Eur Vol 46 : 1042-1048, 2021
P.142 掲載の参考文献
25) Windhofer CM, Anoshina M, Ivusits P et al : The free vascularized lateral femoral trochlea osteochondral graft : a reliable alternative for Stage III Kienbock's disease. J Hand Surg Eur Vol 46 : 1032-1041, 2021
P.143 掲載の参考文献
1) Tang JB, Lalonde D, Harhaus L et al : Flexor tendon repair : recent changes and current methods. J Hand Surg Eur Vol 47 : 31-39, 2022
2) 森谷浩治 : 手指屈筋腱一次修復術の最前線. 日ハンドセラピィ会誌 13 : 6-18, 2021
3) Munz G, Poggetti A, Cenci L et al : Up to five-week delay in primary repair of Zone 2 flexor tendon injuries : outcomes and complications. J Hand Surg Eur Vol 46 : 818-824, 2021
4) Keane G, Stonner M, Pet MA : Does digital nerve injury affect range of motion recovery after zone 2 flexor tendon repair? Hand (NY), 2021. doi : 10.1177/15589447211003187
P.144 掲載の参考文献
5) Diehm YF, Haug V, Thome J et al : The impact of digital nerve injury on the outcome of flexor tendon tenolysis : A retrospective case-control study. Ann Plast Surg 87 : 514-517, 2021
6) Townsend CB, Henry TW, Matzon JL et al : Functional outcomes of flexor tendon repair in the fingers : A comparison of wide-awake local anesthesia no tourniquet versus traditional anesthesia. Hand (NY), 2022. doi : 10.1177/15589447211064364
7) Kadhum M, Georgiou A, Kanapathy M et al : Operative outcomes for wide awake local anesthesia versus regional and general anesthesia for flexor tendon repair. Hand Surg Rehabil 41 : 125-130, 2022
8) Compton J, Wall LB, Romans S et al : Outcomes of acute repair versus nonrepair of zone I flexor digitorum profundus tendon injuries. J Hand Surg Am, 2022. doi : 10.1016/j.jhsa.2022.02.005
P.145 掲載の参考文献
9) Payne A, Sawhney A, Thacoor A et al : A comparison of outcomes at twelve weeks of traditional button-over-nail versus bone anchor repair of zone I flexor digitorum profundus tendon injury. J Hand Surg Asian Pac Vol 27 : 43-48, 2022
10) Lebot G, Halbaut M, Chantelot C et al : Medium-term clinical outcomes of Zone 2B/2C finger flexor tendon repairs : influence of management of flexor digitorum superficialis. J Hand Surg Eur Vol 47 : 1056-1063, 2022
11) Sadek AF : Flexor digitorum profundus with or without flexor digitorum superficialis tendon repair in acute Zone 2B injuries. J Hand Surg Eur Vol 45 : 1034-1044, 2020
12) Natal-Albelo EJ, Olivella G, Paraliticci-Marquez GU et al : Functional and disability assessment among Hispanics with zone 2 flexor tendon injuries : Comparative study between flexor digitorum superficialis repair and flexor digitorum superficialis excision. J Am Acad Orthop Surg Glob Res Rev 4 : e20.00081, 2020
13) Bruin LL, Lans J, Wang F et al : Reoperation following zone II flexor tendon repair. Hand (NY), 2022 doi : 10.1177/15589447211043220
P.146 掲載の参考文献
14) Moriya K, Yoshizu T, Maki Y : Early active mobilization after primary repair of the flexor pollicis longus tendon. J Orthop Sci 26 : 792-797, 2021
15) Lautenbach G, Guidi M, Tobler-Ammann B et al : Six-strand flexor pollicis longus tendon repairs with and without circumferential sutures : A multicenter study. Hand (NY), 2022. doi : 10.1177/15589447211057295
16) Karakaplan M, Kilinc O, Ceylan MF et al : Mid-term results of two-stage tendon reconstruction of zone II flexor tendon injuries. Niger J Clin Pract 24 : 1174-1180, 2021
17) Lin JS, Samora JB : Functional outcomes of a modified Duran postoperative rehabilitation protocol after primary repairs of pediatric hand flexor tendon injuries. J Pediatr Orthop B 31 : 597-602, 2022
18) Huynh MNQ, Ghumman A, Agarwal A et al : Outcomes after flexor tendon injuries in the pediatric population : A 10-year retrospective review. Hand (NY) 17 : 278-284, 2022
P.147 掲載の参考文献
19) Peters SE, Jha B, Ross M : Rehabilitation following surgery for flexor tendon injuries of the hand. Cochrane Database Syst Rev 1 : CD012479, 2021
20) Xu H, Huang X, Guo Z et al : Outcome of surgical repair and rehabilitation of flexor tendon injuries in zone II of the hand : Systematic review and meta-analysis. J Hand Surg Am, 2022. doi : 10.1016/j.jhsa.2021.11.013
21) Chevalley S, Tenfalt M, Ahlen M et al : Passive mobilization with place and hold versus active motion therapy after flexor tendon repair : A randomized trial. J Hand Surg Am 47 : 348-357, 2022
22) Jokinen K, Hakkinen A, Luokkala T et al : Clinical outcomes after aggressive active early motion and modified Kleinert regimens : Comparison of 2 consecutive cohorts. Hand (NY), 2021. doi : 10.1177/15589447211017222
P.148 掲載の参考文献
23) Sakamoto S, Doi K, Hattori Y et al : Tension reducing muscle stretch protocol to obtain full distal tendon excursion : A new rehabilitation protocol after flexor tendon repair. J Hand Surg Asian Pac Vol 26 : 660-665, 2021
24) Svingen J, Wiig M, Turesson C et al : Risk factors for reoperation after flexor tendon repair : A registry study. J Hand Surg Eur Vol 47 : 1071-1076, 2022
P.149 掲載の参考文献
1) Kang GH, Lim RQ, Yong FC : Elbow flexion reconstruction in brachial plexus avulsion injuries-Results with intercostal nerve and distal nerve transfers. J Hand Surg Asian Pac Vol 25 : 307-314, 2020
P.150 掲載の参考文献
2) Chia DSY, Doi K, Hattori Y et al : Elbow flexion strength and contractile activity after partial ulnar nerve or intercostal nerve transfers for brachial plexus injuries. J Hand Surg Eur Vol 45 : 818-826, 2020
3) Hems T : Re : Chia DSY et al. Elbow flexion strength and contractile activity after partial ulnar nerve or intercostal nerve transfers for brachial plexus injuries. J Hand Surg Eur. 2020. DOI : 10.1177/1753193420922184. J Hand Surg Eur 45 : 998-999, 2020
4) Cho AB, Ferreira CHV, Towata F et al : Feasibility of the oberlin procedure in late presentation cases of C5-C6 and C5-C7 brachial plexus injuries in adults. Hand (N Y) 17 : 214-218, 2022
5) Bhatia A, Kulkarni A, Zancolli P et al : The effect of age and the delay before surgery on the outcomes of intercostal nerve transfers to the musculocutaneous nerve : A retrospective study of 232 cases of posttraumatic total and near-total brachial plexus injuries. Indian J Plast Surg Vol 53 : 260-265, 2020
P.151 掲載の参考文献
6) Socolovsky M, Bonilla G, Lovaglio AC et al : Differences in strength fatigue when using different donors in traumatic brachial plexus injuries. Acta Neurochir (Wien) 162 : 1913-1919, 2020
7) Oliver JD, Beal C, Graham EM et al : Functioning free muscle transfer for brachial plexus injury : A systematic review and pooled analysis comparing functional outcomes of intercostal nerve and spinal accessory nerve grafts. J Reconstr Microsurg 36 : 567-571, 2020
8) Suroto H, Wardhani IL, Haryadi RD et al : The relationship between patient factors and clinical outcomes of free functional muscle transfer in patients with complete traumatic brachial plexus injury. Orthop Res Rev 14 : 225-233, 2022
P.152 掲載の参考文献
9) De Rezende MR, Veronesi BA, Paulos RG et al : Free gracilis muscle transfer with ulnar nerve neurotization for elbow flexion restoration. Int Orthop 45 : 689-696, 2021
10) Solla DJF, de Oliveira AJM, Riechelmann RS et al : Functional outcome predictors after spinal accessory nerve to suprascapular nerve transfer for restoration of shoulder abduction in traumatic brachial plexus injuries in adults : the effect of time from injury to surgery. Eur J Trauma Emerg Surg 48 : 1217-1223, 2022
P.153 掲載の参考文献
11) Doi K, Sem SH, Ghanghurde B et al : Pearls and pitfalls of phrenic nerve transfer for shoulder reconstruction in brachial plexus injury. J Brachial Plex Peripher Nerve Inj 16 : e1-e9, 2021
12) Ellabban MA, Sadek AF, Galhom A et al : Comparison between long and lower medial head triceps branches in dual neurotization for shoulder function restoration in upper brachial plexus palsy. Microsurgery 41 : 124-132, 2021
P.154 掲載の参考文献
13) Cho AB, Choi HJ, Ferreira CHV et al : Shoulder arthrodesis for traumatic brachial plexus injuries : Functional outcomes and complications. Hand (N Y), 2021. doi : 10.1177/1558944721998008
14) Zhang D, Garg R, Earp BE et al : Shoulder arthrodesis versus upper trapezius transfer for traumatic brachial plexus injury : A proportional meta-analysis. Adv Orthop 2021 : 4445498, 2021
P.155 掲載の参考文献
15) Yukata K, Doi K, Okabayashi T et al : Shrug radiographs for the diagnosis of long thoracic nerve palsy in traumatic brachial plexus injury. J Shoulder Elbow Surg 29 : 2595-2600, 2020
16) Bordalo-Rodrigues M, Siqueira MG, Kurimori CO et al : Diagnostic accuracy of imaging studies for diagnosing root avulsions in post-traumatic upper brachial plexus traction injuries in adults. Acta Neurochir (Wien) 162 : 3189-3196, 2020
P.156 掲載の参考文献
17) Doi K, Marei AE, Hattori Y et al : Diagnostic accuracy of magnetic resonance imaging with 3-dimensional T2-SPACE techniques for preganglionic injury of the brachial plexus. J Hand Surg Am 47 : 953-961, 2022
P.158 掲載の参考文献
1) Skuladottir AT, Bjornsdottir G, Ferkingstad E et al : A genome-wide meta-analysis identifies 50 genetic loci associated with carpal tunnel syndrome. Nat Commun 13 : 1598, 2022
2) Johnson NA, Darwin O, Chasiouras D et al : The effect of social deprivation on the incidence rate of carpal and cubital tunnel syndrome surgery. J Hand Surg Eur Vol 46 : 265-269, 2021
3) Johnson NA, Darwin O, Chasiouras D et al : The association between surgery for carpal and cubital tunnel syndrome : analysis of incidence and risk factors within a geographical area. J Hand Surg Eur Vol 46 : 260-264, 2021
4) DiBenedetto M, Soong M, Hunter A et al : Prevalence and subtypes of tenosynovial amyloid in patients undergoing carpal tunnel release. J Hand Surg Am 47 : 540-543, 2022
P.159 掲載の参考文献
5) Sood RF, Kamenko S, McCreary E et al : Diagnosing systemic amyloidosis presenting as carpal tunnel syndrome : A risk nomogram to guide biopsy at time of carpal tunnel release. J Bone Joint Surg Am 103 : 1284-1294, 2021
6) Postma JD, Kemler MA : The effect of carpal tunnel release on health-related quality of life of 2346 patients over a 5-year period. J Hand Surg Eur Vol 47 : 347-352, 2022
7) Grandizio LC, Barreto Rocha DF, Foster BK et al : Evaluation of a comprehensive telemedicine pathway for carpal tunnel syndrome : A comparison of virtual and in-person assessments. J Hand Surg Am 47 : 111-119, 2022
P.160 掲載の参考文献
8) Bernstein DN, Englert CH, Hammert WC : Evaluation of PROMIS' ability to detect immediate postoperative symptom improvement following carpal tunnel Release. J Hand Surg Am 46 : 445-453, 2021
9) Ratasvuori M, Sormaala M, Kinnunen A et al : Ultrasonography for the diagnosis of carpal tunnel syndrome : correlation of clinical symptoms, cross-sectional areas and electroneuromyography. J Hand Surg Eur Vol 47 : 369-374, 2022
10) Yildiran G, Seher N, Sutcu M et al : Median nerve's microcirculation in carpal tunnel syndrome : Superb microvascular imaging. Plast Reconstr Surg 147 : 1355-1360, 2021
P.161 掲載の参考文献
11) Yamanaka Y, Tajima T, Tsujimura Y et al : Molecular and clinical elucidation of the mechanism of action of steroids in idiopathic carpal tunnel syndrome. J Bone Joint Surg Am 103 : 1777-1787, 2021
12) Hsu PC, Liao KK, Lin KP et al : Comparison of corticosteroid injection dosages in mild to moderate idiopathic carpal tunnel syndrome : A randomized controlled trial. Arch Phys Med Rehabil 101 : 1857-1864, 2020
13) Hofer M, Ranstam J, Atroshi I : Extended follow-up of local steroid injection for carpal tunnel syndrome : A randomized clinical trial. JAMA Netw Open 4 : e2130753, 2021
14) Mezian K, Sobotova K, Kuliha M et al : Ultrasound-guided perineural vs. peritendinous corticosteroid injections in carpal tunnel syndrome : A randomized controlled trial. Eur J Phys Rehabil Med 57 : 775-782, 2021
15) de Moraes VY, Queiroz J Jr, Raduan-Neto J et al : Nonsurgical treatment for symptomatic carpal tunnel syndrome : A randomized clinical trial comparing local corticosteroid injection versus night orthosis. J Hand Surg 46 : 295-300.e1, 2021
16) Kirby D, Donnelly M, Buchalter D et al : Influence of corticosteroid injections on postoperative infections in carpal tunnel release. J Hand Surg Am 46 : 1088-1093, 2021
P.162 掲載の参考文献
17) Jiang J, Xing F, Luo R et al : Effectiveness of platelet-rich plasma for patients with carpal tunnel syndrome : A systematic review and meta-analysis of current evidence in randomized controlled trials. Front Pharmacol 13 : 834213, 2022
18) Buntragulpoontawee M, Chang KV, Vitoonpong T et al : The effectiveness and safety of commonly used injectates for ultrasound-guided hydrodissection treatment of peripheral nerve entrapment syndromes : A systematic review. Front Pharmacol 11 : 621150, 2021
19) Lin MT, Liao CL, Hsiao MY et al : Volume matters in ultrasound-guided perineural dextrose injection for carpal tunnel syndrome : A randomized, double-blinded, three-arm trial. Front Pharmacol 11 : 625830, 2020
20) Xie Q, Shao X, Song X et al : Ulnar nerve decompression and transposition with versus without supercharged end-to-side motor nerve transfer for advanced cubital tunnel syndrome : a randomized comparison study. J Neurosurg 136 : 845-855, 2022
21) Dengler J, Dolen U, Patterson JMM et al : Supercharge end-to-side anterior interosseous-to-ulnar motor nerve transfer restores intrinsic function in cubital tunnel syndrome. Plast Reconstr Surg 146 : 808-818, 2020
P.163 掲載の参考文献
22) Wade RG, Griffiths TT, Flather R et al : Safety and outcomes of different surgical techniques for cubital tunnel decompression : A systematic review and network meta-analysis. JAMA Netw Open 3 : e2024352, 2020
23) Wessel LE, Gu A, Asadourian PA et al : The epidemiology of carpal tunnel revision over a 1-year follow-up period. J Hand Surg Am 46 : 758-764, 2021
24) Thompson Orfield NJ, Badger AE, Tegge AN et al : Modeled wide-awake, local-anesthetic, no-tourniquet surgical procedures do not impair driving fitness : An experimental on-road noninferiority study. J Bone Joint Surg Am 102 : 1616-1622, 2020

III章 下肢

P.166 掲載の参考文献
1) 日本整形外科学会・厚生労働省指定難病特発性大腿骨頭壊死症研究班監 : 特発性大骨頭壊死症診療ガイドライン 2019. 南江堂, 2019
2) Ando W, Sakai T, Fukushima W et al : Japanese Orthopaedic Association 2019 Guidelines for seven years later. J Orthop Sci 26 : 46-68, 2021
3) Mont MA, Salem HS, Piuzzi NS et al : Nontraumatic Osteonecrosis of the femoral head : Where do we stand today? : A 5-year update. J Bone Joint Surg Am 102 : 1084-1099, 2020
P.167 掲載の参考文献
4) Mont MA, Cherian JJ, Sierra RJ et al : Nontraumatic osteonecrosis of the femoral head : Where do we stand today? A tenyear update. J Bone Joint Surg Am 97 : 1604-1627, 2015
5) Zhao D, Zhang F, Wang B et al : Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults (2019 version). J Orthop Translat 21 : 100-110, 2020
6) Cheng EY, Cui Q, Goodman SB et al : Diagnosis and treatment of femoral head osteonecrosis : A protocol for development of evidence-based clinical practice guidelines. Surg Technol Int 38 : 371-378, 2021
7) Sato R, Ando W, Fukushima W et al : Epidemiological study of osteonecrosis of the femoral head using the national registry of designated intractable diseases in Japan. Mod Rheumatol 32 : 808-814, 2022
8) Ando W, Takao M, Tani T et al : Geographical distribution of the associated factors of osteonecrosis of the femoral head, using the designated intractable disease database in Japan. Mod Rheumatol 32 : 1006-1012, 2022
9) Sugano N, Atsumi T, Ohzono K et al : The 2001 revised criteria for diagnosis, classification, and staging of idiopathic osteonecrosis of the femoral head. J Orthop Sci 7 : 601-605, 2002
P.168 掲載の参考文献
10) Koo KH, Mont MA, Cui Q et al : The 2021 association research circulation osseous classification for early-stage osteonecrosis of the femoral head to computed tomography-based study. J Arthroplasty 37 : 1074-1082, 2022
11) Sugano N, Ohzono K, Masuhara K et al : Prognostication of osteonecrosis of the femoral head in patients with systemic lupus erythematosus by magnetic resonance imaging. Clin Orthop Relat Res 305 : 190-199, 1994
12) Shimizu K, Moriya H, Akita T et al : Prediction of collapse with magnetic resonance imaging of avascular necrosis of the femoral head. J Bone Joint Surg Am 76-A : 215-223, 1994
13) Nishii T, Sugano N, Ohzono K et al : Significance of lesion size and location in the prediction of collapse of osteonecrosis of the femoral head : a new three-dimensional quantification using magnetic resonance imaging. J Orthop Res 20 : 130-136, 2002
14) Nam KW, Kim YL, Yoo JJ et al : Fate of untreated asymptomatic osteonecrosis of the femoral head. J Bone Joint Surg Am 90 : 477-484, 2008
15) Zhao FC, Guo KJ, Li ZR : Osteonecrosis of the femoral head in SARS patients : seven years later. Eur J Orthop Surg Traumatol 23 : 671-677, 2008
16) Zeng J, Zeng Y, Wu Y et al : Acetabular anatomical parameters in patients with idiopathic osteonecrosis of the femoral head. J Arthroplasty 35 : 331-334, 2020
17) Kwon HM, Yang IH, Park KK et al : High pelvic incidence is associated with disease progression in nontraumatic osteonecrosis of the femoral head. Clin Orthop Relat Res 478 : 1870-1876, 2020
18) Iwasa M, Ando W, Uemura K et al : Is there an association between femoral head collapse and acetabular coverage in patients with osteonecrosis? Clin Orthop Relat Res 481 : 51-59, 2022
P.169 掲載の参考文献
19) Amin N, Kraft J, Fishlock A et al : Surgical management of symptomatic osteonecrosis and utility of core decompression of the femoral study head in young people with acute lymphoblastic leukaemia recruited into UKALL 2003. Bone Joint J 103-B : 589-596, 2021
20) Bernhard ME, Barnes CL, DeFeo BM et al : Total hip arthroplasty in adolescents and young adults for management of advanced corticosteroid-induced osteonecrosis secondary to treatment for hematologic malignancies. J Arthroplasty 36 : 1352-1360, 2021
21) Kim SC, Lim YW, Jo WL et al : Long-Term results of total hip arthroplasty in young patients with osteonecrosis after allogeneic bone marrow transplantation for hematological disease : A multicenter, propensity-matched cohort study with a mean 11-year follow-up. J Arthroplasty 36 : 1049-1054, 2021
22) Takao M, Abe H, Sakai T et al : Transitional changes in the incidence of hip osteonecrosis among renal transplant recipients. J Orthop Sci 25 : 466-471, 2020
23) Quinlan ND, Chen DQ, Werner BC et al : Outcomes following total hip arthroplasty for femoral head osteonecrosis in patients with history of solid organ transplant. J Bone Joint Surg Am 104 (Suppl 2) : 76-83, 2022
P.170 掲載の参考文献
24) Mitsuzawa S, Kuroda Y, Okuzu Y et al : Corticosteroid-associated osteonecrosis of the femoral head after orthotopic liver transplantation and the outcomes of subsequent total hip arthroplasty. J Orthop Sci 27 : 395-401, 2022
25) Martinot P, Dartus J, Leclerc JT et al : Hip survival after plain core decompression alone versus bone morphogenetic protein and/or bone marrow reinjection with core decompression for avascular osteonecrosis of the femoral head : a retrospective case control study in ninety two patients. Int Orthop 44 : 2275-2282, 2020
26) Kuroda Y, Tanaka T, Miyagawa T et al : Recombinant human FGF-2 for the treatment of early-stage osteonecrosis of the femoral head : TRION, a single-arm, multicenter, Phase II trial. Regen Med 16 : 535-548, 2021
27) Hoogervorst P, Campbell JC, Scholz N et al : Core decompression and bone marrow aspiration concentrate grafting for osteonecrosis of the femoral head. J Bone Joint Surg Am 104 (Suppl 2) : 54-60, 2022
28) Kaneko S, Takegami Y, Seki T et al : Surgery trends for osteonecrosis of the femoral head : a fifteen-year multi-centre study in Japan. Int Orthop 44 : 761-769, 2020
P.171 掲載の参考文献
29) Baba S, Motomura G, Ikemura S et al : Risk factors for radiological changes after bipolar hemiarthroplasty for osteonecrosis of the femoral head. Mod Rheumatol 31 : 725-732, 2021
30) Osawa Y, Seki T, Okura T et al : Long-term outcomes of curved intertrochanteric varus osteotomy combined with bone impaction grafting for non-traumatic osteonecrosis of the femoral head. Bone Joint J 103-B : 665-671, 2021
31) Mehta P, McAuley DF, Brown M et al : COVID-19 : consider cytokine storm syndromes and immunosuppression. Lancet 395 : 1033-1034, 2020
32) Guo KJ, Zhao FC, Guo Y et al : The influence of age, gender and treatment with steroids on the incidence of osteonecrosis of the femoral head during the management of severe acute respiratory syndrome : a retrospective study. Bone Joint J 96-B : 259-262, 2014
33) Tang C, Wang Y, Lv H et al : Caution against corticosteroid-based COVID-19 treatment. Lancet 395 : 1759-1760, 2020
34) Dhanasekararaja P, Soundarrajan D, Kumar KS et al : Aggressive presentation and rapid progression of osteonecrosis of the femoral head after COVID-19. Indian J Orthop 56 : 1259-1267, 2022
P.172 掲載の参考文献
1) American Academy of Orthopaedic Surgeons : Management of osteoarthritis of the hip. 2017
P.173 掲載の参考文献
2) Geenen R, Overman CL, Christensen R et al : EULAR recommendations for the health professional's approach to pain management in inflammatory arthritis and osteoarthritis. Ann Rheum Dis 77 : 797-807, 2018
3) Kolasinski SL, Neogi T, Hochberg MC et al : 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken) 72 : 149-162, 2020
4) Bannuru RR, Osani MC, Vaysbrot EE et al : OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis Cartilage 27 : 1578-1589, 2019
5) Gwinnutt JM, Wieczorek M, Balanescu A et al : 2021 EULAR recommendations regarding lifestyle behaviours and work participation to prevent progression of rheumatic and musculoskeletal diseases. Ann Rheum Dis 82 : 48-56, 2023
P.174 掲載の参考文献
6) Kawai T, Shimizu T, Goto K et al : Number of levels of spinal fusion associated with the rate of joint-space narrowing in the hip. J Bone Joint Surg Am 103 : 953-960, 2021
7) Iwasa M, Ando W, Uemura K et al : Pelvic incidence is not associated with the development of hip osteoarthritis. Bone Joint J 103-B : 1656-1661, 2021
8) Kawai T, Shimizu T, Goto K et al : The impact of spinopelvic parameters on hip degeneration after spinal fusion. Spine 47 : 1093-1102, 2022
P.175 掲載の参考文献
9) Kraus VB, Blanco FJ, Englund M et al : Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 23 : 1233-1241, 2015
10) Oo WM, Hunter DJ : Repurposed and investigational disease-modifying drugs in osteoarthritis (DMOADs). Ther Adv Musculoskelet Dis 14 : 1759720X221090297, 2022
11) van den Bosch MHJ, van Lent PLEM, van der Kraan PM : Identifying effector molecules, cells, and cytokines of innate immunity in OA. Osteoarthritis Cartilage 28 : 532-543, 2020
12) Millerand M, Berenbaum F, Jacques C : Danger signals and inflammaging in osteoarthritis. Clin Exp Rheumatol 37 : 48-56, 2019
13) Glyn-Jones S, Palmer AJ, Agricola R et al : Osteoarthritis. Lancet 386 : 376-387, 2015
14) Walsh DA, Sofat N, Guermazi A et al : Osteoarthritis bone marrow lesions. Osteoarthritis Cartilage 31 : 11-17, 2023
P.176 掲載の参考文献
15) Shabestari M, Vik J, Reseland JE et al : Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthritis Cartilage 24 : 1745-1752, 2016
16) Simeone FJ, Vicentini JRT, Bredella MA et al : Are patients more likely to have hip osteoarthritis progression and femoral head collapse after hip steroid/anesthetic injections? A retrospective observational study. Skeletal Radiol 48 : 1417-1426, 2019
P.177 掲載の参考文献
17) Abraham PF, Varady NH, Small KM et al : Safety of intra-articular hip corticosteroid injections : A matched-pair cohort study. Orthop J Sports Med 9 : 23259671211035099, 2021
18) Brander V, Skrepnik N, Petrella RJ et al : Evaluating the use of intra-articular injections as a treatment for painful hip osteoarthritis : a randomized, double-blind, multicenter, parallel-group study comparing a single 6-mL injection of hylan G-F 20 with saline. Osteoarthritis Cartilage 27 : 59-70, 2019
19) Ferrara PE, Codazza S, Coraci D et al : State of art in intra-articular hip injections of different medications for osteoarthritis : a systematic review. BMC Musculoskelet Disord 22 (Suppl 2) : 997, 2021
20) 池裕之, 稲葉裕 : ジクロフェナクエタルヒアルロン酸ナトリウム. Loco CURE 8 : 71-74, 2022
P.178 掲載の参考文献
21) Campbell A, Emara AK, Klika A et al : Does implant selection affect patient-reported outcome measures after primary total hip arthroplasty? J Bone Joint Surg Am 103 : 2306-2317, 2021
22) Deere K, Matharu GS, Ben-Shlomo Y et al : The risk of all-cause mortality, heart outcomes, cancer, and neurodegenerative disorders with cobalt-chrome-containing total hip arthroplasty implants : an analysis of the National Joint Registry. Bone Joint J 104-B : 359-367, 2022
23) Kayani B, Baawa-Ameyaw J, Fontalis A et al : Oxidized zirconium versus cobaltchrome femoral heads in total hip arthroplasty : a multicentre prospective randomized controlled trial with ten years' followup. Bone Joint J 104-B : 833-843, 2022
P.179 掲載の参考文献
1) 日本整形外科学会診療ガイドライン委員会, 大腿骨頚部/転子部骨折診療ガイドライン策定委員会編 : 大腿骨頚部/転子部骨折診療ガイドライン 2021 改訂第3版. 南江堂, 2021
P.180 掲載の参考文献
2) Haj-Mirzaian A, Eng J, Khorasani R et al : Use of advanced imaging for radiographically occult hip fracture in elderly patients : A systematic review and meta-analysis. Radiology 296 : 521-531, 2022
3) Welford P, Jones CS, Davies G et al : The association between surgical fixation of hip fractures within 24 hours and mortality : a systematic review and meta-analysis. Bone Joint J 103-B : 1176-1186, 2021
4) Hagino H, Endo N, Harada A et al : Survey of hip fractures in Japan : Recent trends in prevalence and treatment. J Orthop Sci 22 : 909-914, 2017
5) 植木正明, 深澤高広, 伊藤達也他 : 大腿骨近位部骨折早期手術のボトルネックと改善策. 整形外科 73 : 776-779, 2022
P.181 掲載の参考文献
6) Nikolaou VS, Masouros P, Floros T et al : Single dose of tranexamic acid effectively reduces blood loss and transfusion rates in elderly patients undergoing surgery for hip fracture : a randomized controlled trial. Bone Joint J 103-B : 442-448, 2021
7) Narkbunnam R, Chompoonutprapa A, Ruangsomboon P et al : Blood loss and transfusion rate compared among different dosing regimens of tranexamic acid administration in patients undergoing hip hemiarthroplasty for femoral neck fracture : A randomized controlled trial. Injury 52 : 2986-2990, 2021
8) Porter SB, Spaulding AC, Duncan CM et al : Tranexamic acid was not associated with increased complications in high-risk patients with hip fracture undergoing arthroplasty. J Bone Joint Surg Am 103 : 1880-1889, 2021
9) Palm H, Gosvig K, Krasheninnikoff M et al : A new measurement for posterior tilt predicts reoperation in undisplaced femoral neck fractures : 113 consecutive patients treated by internal fixation and followed for 1 year. Acta Orthop 80 : 303-307, 2009
10) Nielsen LL, Smidt NS, Erichsen JL et al : Posterior tilt in nondisplaced femoral neck fractures increases the risk of reoperations after osteosynthesis. A systematic review and meta-analysis. Injury 51 : 2771-2778, 2020
P.182 掲載の参考文献
11) van der List JP, El Saddy S, Vos SJ et al : Role of preoperative posterior tilt on the outcomes of internal fixation of nondisplaced femoral neck fractures : A systematic review and meta-analysis. Injury 52 : 316-323, 2021
12) HEALTH Investigators : Total hip arthroplasty or hemiarthroplasty for hip fracture. N Engl J Med 381 : 2199-2208, 2019
13) Ekhtiari S, Gormley J, Axelrod DE et al : Total hip arthroplasty versus hemiarthroplasty for displaced femoral neck fracture : A systematic review and meta-analysis of randomized controlled trials. J Bone Joint Surg Am 102 : 1638-1645, 2020
P.183 掲載の参考文献
14) Fernandez MA, Achten J, Parsons N et al : Cemented or uncemented hemiarthroplasty for intracapsular hip fracture. N Engl J Med 386 : 521-530, 2022
15) Dahl OE, Pripp AH : Does the risk of death within 48 hours of hip hemiarthroplasty differ between patients treated with cemented and cementless implants? A meta-analysis of large, national registries. Clin Orthop Relat Res 480 : 343-350, 2022
16) 乾貴博, 渡部欣忍, 松井健太郎他 : 大腿骨転子部骨折の髄内型整復はカットアウトのリスクを高める-多施設共同コホート内ケースコントロール研究-. 骨折 44 : 161-168, 2022
17) Yamamoto N, Imaizumi T, Noda T et al : Postoperative computed tomography assessment of anteromedial cortex reduction is a predictor for reoperation after intramedullary nail fixation for pertrochanteric fractures. Eur J Trauma Emerg Surg 48 : 1437-1444, 2022
P.184 掲載の参考文献
18) 前原孝, 早川敬, 向山俊輔他 : 不安定型大腿骨転子部骨折に対するanterior support screw (AS2) の効果-多施設共同前向き無作為化比較試験-. 骨折 43 : 115-122, 2021
19) Rompen IF, Knobe M, Link BC et al : Cement augmentation for trochanteric femur fractures : A meta-analysis of randomized clinical trials and observational studies. PLoS One 16 : e0251894, 2021
20) Mochizuki Y, Yamamoto N, Fujii T et al : Effectiveness of cement augmentation on early postoperative mobility in patients treated for trochanteric fractures with cephalomedullary nailing : A prospective cohort study. J Pers Med 12 : 1392, 2022
P.186 掲載の参考文献
1) Storaci HW, Utsunomiya H, Kemler BR et al : The hip suction seal, Part I : The role of acetabular labral height on hip distractive stability. Am J Sports Med 48 : 2726-2732, 2020
2) Kamenaga T, Hashimoto S, Hayashi S et al : Larger acetabular labrum is associated with hip dysplasia, joint incongruence, and clinical symptoms. Arthroscopy 36 : 2446-2453, 2020
3) Zhang P, Li C, Wang W et al : 3.0 T MRI is more recommended to detect acetabular labral tears than MR Arthrography : an updated meta-analysis of diagnostic accuracy. J Orthop Surg Res 17 : 126, 2022
4) Tiegs-Heiden CA, Adkins MC, Carter RE et al : Does gadolinium improve magnetic resonance arthrography of the hip beyond fluid distension alone? Clin Radiol 75 : 713.e1-713.e9, 2020
P.187 掲載の参考文献
5) Gao G, Fu Q, Cui L et al : The diagnostic value of ultrasound in anterosuperior acetabular labral tear. Arthroscopy 35 : 2591-2597, 2019
6) Gao G, Fu Q, Wu R et al : Ultrasound and ultrasound-guided hip injection have high accuracy in the diagnosis of femoroacetabular impingement with atypical symptoms. Arthroscopy 37 : 128-135, 2021
7) Zogby AM, Bomar JD, Johnson KP et al : Nonoperative management of femoroacetabular impingement in adolescents : Clinical outcomes at a mean of 5 years : A prospective study. Am J Sports Med 49 : 2960-2967, 2021
8) Kobayashi N, Higashihira S, Kitayama H et al : Effect of decreasing the anterior pelvic tilt on range of motion in femoroacetabular impingement : A computersimulation study. Orthop J Sports Med 9 : 2325967121999464, 2021
9) Arciero E, Kakazu R, Garvin P et al : Favorable patient-reported outcomes and high return to sport rates following hip arthroscopy in adolescent athletes : A systematic review. Arthroscopy 38 : 2730-2740, 2022
10) Migliorini F, Maffulli N : Arthroscopic management of femoroacetabular impingement in adolescents : A systematic review. Am J Sports Med 49 : 3708-3715, 2021
11) Fukase N, Murata Y, Pierpoint LA et al : Outcomes and survivorship at a median of 8.9 years following hip arthroscopy in adolescents with femoroacetabular impingement : A matched comparative study with adults. J Bone Joint Surg Am 104 : 902-909, 2022
12) Kunze KN, Polce EM, Clapp I et al : Machine learning algorithms predict functional improvement after hip arthroscopy for femoroacetabular impingement syndrome in athletes. J Bone Joint Surg Am 103 : 1055-1062, 2021
13) Murata Y, Fukase N, Martin M et al : Comparison between hip arthroscopic surgery and periacetabular osteotomy for the treatment of patients with borderline developmental dysplasia of the hip : A systematic review. Orthop J Sports Med 9 : 23259671211007401, 2021
P.188 掲載の参考文献
14) Hatakeyama A, Utsunomiya H, Nishikino S et al : Predictors of poor clinical outcome after arthroscopic labral preservation, capsular plication, and cam osteoplasty in the setting of borderline hip dysplasia. Am J Sports Med 46 : 135-143, 2018
15) Okanoue Y, Dan J, Aso K et al : Arthroscopic labral repair combined with less invasive open-shelf acetabuloplasty for patients with developmental dysplasia of the hip. Eur J Orthop Surg Traumatol, 2022. doi : 10.1007/s00590-022-03328-6
16) Uchida S, Murata Y, Tsukamoto M et al : Endoscopic shelf acetabuloplasty concomitant with labral repair, cam osteoplasty, and capsular plication to treat acetabular dysplasia in artistic athletes : A case series. Orthop J Sports Med 9 : 23259671211049222, 2021
17) Griffin DR, Dickenson EJ, Wall PDH et al : Hip arthroscopy versus best conservative care for the treatment of femoroacetabular impingement syndrome (UK FASHIoN) : a multicentre randomised controlled trial. Lancet 391 : 2225-2235, 2018
18) Palmer AJR, Ayyar Gupta V, Fernquest S et al : Arthroscopic hip surgery compared with physiotherapy and activity modification for the treatment of symptomatic femoroacetabular impingement : multicentre randomised controlled trial. BMJ 364 : l185, 2019
19) Martin SD, Abraham PF, Varady NH et al : Hip arthroscopy versus physical therapy for the treatment of symptomatic acetabular labral tears in patients older than 40 years : A randomized controlled trial. Am J Sports Med 49 : 1199-1208, 2021
P.189 掲載の参考文献
20) Nakashima H, Tsukamoto M, Ohnishi Y et al : Clinical and radiographic predictors for unsalvageable labral tear at the time of initial hip arthroscopic management for femoroacetabular impingement. Am J Sports Med 47 : 2029-2037, 2019
21) Rahl MD, LaPorte C, Steinl GK et al : Outcomes after arthroscopic hip labral reconstruction : A systematic review and meta-analysis. Am J Sports Med 48 : 1748-1755, 2020
22) Philippon MJ, Arner JW, Crawford MD et al : Acetabular labral reconstruction with iliotibial band autograft : Outcome and survivorship at a minimum 10-year follow-up. J Bone Joint Surg Am 102 : 1581-1587, 2020
23) Maldonado DR, Kyin C, Simpson JR et al : Minimum 5-year outcomes after primary segmental labral reconstruction for irreparable labral tears in the hip with hamstring grafts : With a subanalysis comparing autograft versus allograft. Am J Sports Med 50 : 1876-1887, 2022
24) Suppauksorn S, Parvaresh KC, Rasio J et al : The effect of rim preparation, labral augmentation, and labral reconstruction on the suction seal of the hip. Arthroscopy 38 : 365-373, 2022
25) Soares RW, Ruzbarsky JJ, Arner JW et al : Midterm outcomes after hip labral augmentation in revision hip arthroscopy. Am J Sports Med 50 : 1299-1305, 2022
P.190 掲載の参考文献
1) Mahmoudian A, Lohmander LS, Mobasheri A et al : Early-stage symptomatic osteoarthritis of the knee-time for action. Nat Rev Rheumatol 17 : 621-632, 2021
2) Sanchez-Lopez E, Coras R, Torres A et al : Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 18 : 258-275, 2022
P.191 掲載の参考文献
3) Liu L, Ishijima M, Futami I et al : Correlation between synovitis detected on enhanced-magnetic resonance imaging and a histological analysis with a patientoriented outcome measure for Japanese patients with end-stage knee osteoarthritis receiving joint replacement surgery. Clin Rheumatol 29 : 1185-1190, 2010
4) Ishijima M, Watari T, Naito K et al : Relationships between biomarkers of cartilage, bone, synovial metabolism and knee pain provide insights into the origins of pain in early knee osteoarthritis. Arthritis Res Ther 13 : R22, 2011
5) Yusup A, Kaneko H, Liu L et al : Bone marrow lesions, subchondral bone cysts and subchondral bone attrition are associated with histological synovitis in patients with end-stage knee osteoarthritis : a crosssectional study. Osteoarthritis Cartilage 23 : 1858-1864, 2015
6) Aso K, Shahtaheri SM, McWilliams DF et al : Association of subchondral bone marrow lesion localization with weight-bearing pain in people with knee osteoarthritis : data from the Osteoarthritis Initiative. Arthritis Res Ther 23 : 35, 2021
7) Rahman MS, Winsvold BS, Chavez Chavez SO et al : Genome-wide association study identifies RNF123 locus as associated with chronic widespread musculoskeletal pain. Ann Rheum Dis 80 : 1227-1235, 2021
8) Bowes MA, Kacena K, Alabas OA et al : Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis : data from the Osteoarthritis Initiative. Ann Rheum Dis 80 : 502-508, 2021
9) Arita H, Kaneko H, Ishibashi M et al : Medial meniscus extrusion is a determinant factor for the gait speed among MRI-detected structural alterations of knee osteoarthritis. Osteoarthr Cartil Open 3 : 100176, 2021
10) Hada S, Kaneko H, Sadatsuki R et al : The degeneration and destruction of femoral articular cartilage shows a greater degree of deterioration than that of the tibial and patellar articular cartilage in early stage knee osteoarthritis : a cross-sectional study. Osteoarthritis Cartilage 22 : 1583-1589, 2021
11) Hada S, Ishijima M, Kaneko H et al : Association of medial meniscal extrusion with medial tibial osteophyte distance detected by T2 mapping MRI in patients with early-stage knee osteoarthritis. Arthritis Res Ther 19 : 201, 2017
P.192 掲載の参考文献
12) Studenski S, Perera S, Patel K et al : Gait speed and survival in older adults. JAMA 305 : 50-58, 2011
13) Hada S, Kaneko H, Liu L et al : Medial meniscus extrusion is directly correlated with medial tibial osteophyte in patients received reconstruction surgery for anterior cruciate ligament injury : A longitudinal study. Osteoarthr Cartil Open 4 : 100320, 2022
14) Miura Y, Ozeki N, Katano H et al : Difference in the joint space of the medial knee compartment between full extension and Rosenberg weight-bearing radiographs. Eur Radiol 32 : 1429-1437, 2022
15) Roemer FW, Felson DT, Wang K et al : Co-localisation of non-cartilaginous articular pathology increases risk of cartilage loss in the tibiofemoral joint-the MOST study. Ann Rheum Dis 72 : 942-948, 2013
16) Katano H, Ozeki N, Koga H et al : Threedimensional MRI shows cartilage defect extension with no separation from the meniscus in women in their 70 s with knee osteoarthritis. Sci Rep 12 : 4198, 2022
17) Snoeker BAM, Ishijima M, Kumm J et al : Are structural abnormalities on knee MRI associated with osteophyte development? Data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 29 : 1701-1708, 2021
P.193 掲載の参考文献
18) Roelofs AJ, Kania K, Rafipay AJ et al : Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann Rheum Dis 79 : 1625-1634, 2020
19) Hochberg MC, Guermazi A, Guehring H et al : Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis : The FORWARD randomized clinical trial. JAMA 322 : 1360-1370, 2019
20) Bacon K, LaValley MP, Jafarzadeh SR et al : Does cartilage loss cause pain in osteoarthritis and if so, how much? Ann Rheum Dis 79 : 1105-1110, 2020
21) Guermazi A, Niu J, Hayashi D et al : Prevalence of abnormalities in knees detected by MRI in adults without knee osteoarthritis : population based observational study (Framingham Osteoarthritis Study). BMJ 345 : e5339, 2012
22) Ishijima M, Kaneko H, Kaneko K : The evolving role of biomarkers for osteoarthritis. Ther Adv Musculoskelet Dis 6 : 144-153, 2014
23) Ishijima M, Kaneko H, Hada S et al : Osteoarthritis as a cause of locomotive syndrome : Its influence on functional mobility and activities of daily living. Clinic Rev Bone Miner Metab 14 : 77-104, 2016
24) Katz JN, Arant KR, Loeser RF : Diagnosis and treatment of hip and knee osteoarthritis : A Review. JAMA 325 : 568-578, 2021
25) Bandak E, Christensen R, Overgaard A et al : Exercise and education versus saline injections for knee osteoarthritis : a randomised controlled equivalence trial. Ann Rheum Dis 81 : 537-543, 2022
P.194 掲載の参考文献
26) Messier SP, Mihalko SL, Beavers DP et al : Effect of high-intensity strength training on knee pain and knee joint compressive forces among adults with knee osteoarthritis : The START randomized clinical trial. JAMA 325 : 646-657, 2021
27) Reichenbach S, Felson DT, Hincapie CA et al : Effect of biomechanical footwear on knee pain in people with knee osteoarthritis : The BIOTOK randomized clinical trial. JAMA 323 : 1802-1812, 2020
28) Nishida Y, Kano K, Nobuoka Y et al : Sustained-release diclofenac conjugated to hyaluronate (diclofenac etalhyaluronate) for knee osteoarthritis : a randomized phase 2 study. Rheumatology (Oxford) 60 : 1435-1444, 2020
29) 石島旨章, 金子晴香, 羽田晋之介他 : 変形性膝関節症の疼痛と関連する病態. リウマチ科 56 : 632-640, 2016
30) 石島旨章, 金子晴香, 岡田保典他 : 軟骨研究と変形性関節症Review変形性膝関節症の診断・治療の現状と今後の展望. Clinical Calcium 28 : 749-759, 2018
P.195 掲載の参考文献
31) 石島旨章, 金子晴香, 吉田圭一他 : 整形外科疾患に対する最近の新薬変形性関節症 : ONO-5704/SI-613. 関節外科 40 : 290-297, 2021
32) Bennell KL, Paterson KL, Metcalf BR et al : Effect of intra-articular platelet-rich plasma vs placebo injection on pain and medial tibial cartilage volume in patients with knee osteoarthritis : The RESTORE randomized clinical trial. JAMA 326 : 2021-2030, 2021
P.196 掲載の参考文献
33) Eckstein F, Kraines JL, Aydemir A et al : Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint : post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann Rheum Dis 79 : 525-528, 2020
34) Noorduyn JCA, van de Graaf VA, Willigenburg NW et al : Effect of physical therapy vs arthroscopic partial meniscectomy in people with degenerative meniscal tears : Five-year follow-up of the ESCAPE randomized clinical trial. JAMA Netw Open 5 : e2220394, 2022
35) van de Graaf VA, Noorduyn JCA, Willigenburg NW et al : Effect of early surgery vs physical therapy on knee function among patients with nonobstructive meniscal tears : The ESCAPE randomized clinical trial. JAMA 320 : 1328-1337, 2018
36) Katano H, Ozeki N, Kohno Y et al : Trends in arthroplasty in Japan by a complete survey, 2014-2017. J Orthop Sci 26 : 812-822, 2021
P.197 掲載の参考文献
37) Bernard L, Arvieux C, Brunschweiler B et al : Antibiotic therapy for 6 or 12 weeks for prosthetic joint infection. N Engl J Med 384 : 1991-2001, 2021
P.198 掲載の参考文献
1) Ishibashi Y, Adachi N, Koga H et al : Japanese Orthopaedic Association (JOA) clinical practice guidelines on the management of anterior cruciate ligament injury-Secondary publication. J Orthop Sci 25 : 6-45, 2020
2) American Academy of Orthopaedic Surgeons : Management of Anterior Cruciate Ligament Injuries. Evidence-Based Clinical Practice Guideline. Published August 22, 2022 www.aaos.org/aclcpg
3) Musahl V, Engler ID, Nazzal EM et al : Current trends in the anterior cruciate ligament part II : evaluation, surgical technique, prevention, and rehabilitation. Knee Surg Sports Traumatol Arthrosc 30 : 34-51, 2022
P.199 掲載の参考文献
4) Baba R, Kondo E, Iwasaki K et al : Impact of surgical timing on clinical outcomes in anatomic double-bundle anterior cruciate ligament reconstruction using hamstring tendon autografts. Orthop J Sports Med 11 : 2325967119880553, 2019
5) Chua K, Kang JBY, Fook-Chong S et al : Anterior cruciate ligament surgery performed less than 3 weeks after injury is not inferior to delayed surgery. J Knee Surg 34 : 1469-1475, 2021
6) Keyhani S, Esmailiejah AA, Mirhoseini MS et al : The prevalence, zone, and type of the meniscus tear in patients with anterior cruciate ligament (ACL) injury ; Does delayed ACL reconstruction affects the meniscal injury? Arch Bone Jt Surg 8 : 432-438, 2020
7) Snoeker BA, Roemer FW, Turkiewicz A et al : Does early anterior cruciate ligament reconstruction prevent development of meniscal damage? Results from a secondary analysis of a randomised controlled trial. Br J Sports Med 54 : 612-617, 2020
8) Miura S, Iwasaki K, Kondo E et al : Stress on the posteromedial region of the proximal tibia increased over time after anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 30 : 1744-1751, 2022
9) Lord L, Cristiani R, Edman G et al : One sixth of primary anterior cruciate ligament reconstructions may undergo reoperation due to complications or new injuries within 2 years. Knee Surg Sports Traumatol Arthrosc 28 : 2478-2485, 2020
10) Hoshino T, Nakagawa Y, Inomata K et al : Effects of different surgical procedures for meniscus injury on two-year clinical and radiological outcomes after anterior cruciate ligament reconstructions. -TMDU MAKS study. J Orthop Sci 27 : 199-206, 2022
P.200 掲載の参考文献
11) Eken G, Misir A, Demirag B et al : Delayed or neglected meniscus tear repair and meniscectomy in addition to ACL reconstruction have similar clinical outcome. Knee Surg Sports Traumatol Arthrosc 28 : 3511-3516, 2020
12) Cristiani R, Janarv P, Engstrom E et al : Delayed anterior cruciate ligament reconstruction increases the risk of abnormal prereconstruction laxity, cartilage, and medial meniscus injuries. Arthroscopy 37 : 1214-1220, 2021
13) Hatayama K, Terauchi M, Saito K et al : Healing status of meniscal ramp lesion affects anterior knee stability after ACL reconstruction. Orthop J Sports Med 8 : 2325967120917674, 2020
14) Irrgang JJ, Tashman S, Patterson CG et al : Anatomic single vs. double-bundle ACL reconstruction : a randomized clinical trial-Part 1 : clinical outcomes. Knee Surg Sports Traumatol Arthrosc 29 : 2665-2675, 2021
15) Seppanen A, Suomalainen P, Huhtala H et al : Double bundle ACL reconstruction leads to better restoration of knee laxity and subjective outcomes than single bundle ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 30 : 1795-1808, 2022
16) Eliya Y, Qureshi A, Kay J et al : Anatomical double-bundle anterior cruciate ligament reconstruction moderately improved tegner scores over the long-term : a systematic review and meta-analysis of randomized controlled trials. Knee Surg Sports Traumatol Arthrosc, 2022. doi : 10.1007/s00167-022-07046-8
P.201 掲載の参考文献
17) Zhao D, Pan JK, Lin FZ et al : Risk factors for revision or rerupture after anterior cruciate ligament reconstruction : a systematic review and meta-analysis. Am J Sports Med, 2022. doi : 10.1177/03635465221119787
18) Cruz AI Jr, Beck JJ, Ellington MD et al : Failure rates of autograft and allograft ACL reconstruction in patients 19 years of age and younger : a systematic review and meta-analysis. JB JS Open Access 5 : e20.00106, 2020
19) King E, Richter C, Jackson M et al : Factors influencing return to play and second anterior cruciate ligament injury rates in level 1 athletes after primary anterior cruciate ligament reconstruction : 2-year follow-up on 1432 reconstructions at a single center. Am J Sports Med 48 : 812-824, 2020
20) Rahardja R, Zhu M, Love H et al : Effect of graft choice on revision and contralateral anterior cruciate ligament reconstruction : results from the New Zealand ACL registry. Am J Sports Med 48 : 63-69, 2020
21) MOON Knee Group ; Spindler KP, Hustonet LJ, Zajichek A et al : Anterior cruciate ligament reconstruction in high school and college-aged athletes : does autograft choice influence anterior cruciate ligament revision rates? Am J Sports Med 48 : 298-309, 2020
P.202 掲載の参考文献
22) Yarsiasat J, Sumannont S, Manimmanakorn N et al : Effectiveness of the prevent injury enhance performance (PEP) training program in reducing injury incidence rates among adolescent female Sepak takraw players : a randomised controlled trial. J Med Assoc Thai 6 : 98-105, 2019
23) Beischer S, Gustavsson L, Senorski EH et al : Young athletes who return to sport before 9 months after anterior cruciate ligament reconstruction have a rate of new injury 7 times that of those who delay return. J Orthop Sports Phys Ther 2 : 83-90, 2020
24) Webster KE, Feller JA, Klemm HJ : Second ACL injury rates in younger athletes who were advised to delay return to sport until 12 months after ACL reconstruction. Orthop J Sports Med 9 : 2325967120985636, 2021
P.203 掲載の参考文献
25) Funchal LFZ, Astur DC, Ortiz R et al : The presence of the arthroscopic "floating meniscus" sign as an indicator for surgical intervention in patients with combined anterior cruciate ligament and grade II medial collateral ligament injury. Arthroscopy 35 : 930-937, 2019
26) Svantesson E, Senorski EH, Eduard Alentorn-Geli E et al : Increased risk of ACL revision with non-surgical treatment of a concomitant medial collateral ligament injury : a study on 19, 457 patients from the Swedish National Knee Ligament Registry. Knee Surg Sports Traumatol Arthrosc 27 : 2450-2459, 2019
27) Getgood AMJ, Bryant DM, Litchfield R et al : Lateral extra-articular tenodesis reduces failure of hamstring tendon autograft anterior cruciate ligament reconstruction : 2-year outcomes from the STABILITY study. Randomized clinical trial. Am J Sports Med 48 : 285-297, 2020
28) King E, Richter C, Jackson M et al : Factors influencing return to play and second anterior cruciate ligament injury rates in level 1 athletes after primary anterior cruciate ligament reconstruction : 2-year follow-up on 1432 reconstructions at a single center. Am J Sports Med 48 : 812-824, 2020
P.204 掲載の参考文献
29) Castoldi M, Magnussen RA, Gunst S et al : Randomized controlled trial of bonepatellar tendon-bone anterior cruciate ligament reconstruction with and without lateral extra-articular tenodesis. Am J Sports Med 48 : 1665-1672, 2020
30) Getgood A, Hewison C, Bryant D et al : No difference in functional outcomes when lateral extra-articular tenodesis is added to anterior cruciate ligament reconstruction in young active patients : the stability study. Arthroscopy 36 : 1690-1701, 2020
P.205 掲載の参考文献
1) Jacquet C, Mouton C, Becker R et al : Does practice of meniscus surgery change over time? A report of the 2021 'THE MENISCUS' Webinar. J Exp Orthop 8 : 46, 2021
P.206 掲載の参考文献
2) Nepple JJ, Block AM, Eisenberg MT et al : Meniscal repair outcomes at greater than 5 years : A systematic review and meta-analysis. J Bone Joint Surg Am 104 : 1311-1320, 2022
3) Petersen W, Karpinski K, Bierke S et al : A systematic review about long-term results after meniscus repair. Arch Orthop Trauma Surg 142 : 835-844, 2022
4) Ronnblad E, Barenius B, Stalman A et al : Failed meniscal repair increases the risk for osteoarthritis and poor knee function at an average of 9 years follow-up. Knee Surg Sports Traumatol Arthrosc 30 : 192-199, 2022
5) Noorduyn JCA, van de Graaf VA, Willigenburg NW et al : Effect of physical therapy vs arthroscopic partial meniscectomy in people with degenerative meniscal tears : Five-year follow-up of the ESCAPE randomized clinical trial. JAMA Netw Open 5 : e2220394, 2022
6) Ding DY, Tucker LY, Vieira AL et al : Surgical outcomes after bucket-handle meniscal repairs : Analysis of a large contained cohort. Am J Sports Med 50 : 2390-2396, 2022
7) Kalifis G, Raoulis V, Panteliadou F et al : Long-term follow-up of bucket-handle meniscal repairs : chondroprotective effect outweighs high failure risk. Knee Surg Sports Traumatol Arthrosc 30 : 2209-2214, 2022
8) Costa GG, Grassi A, Zocco G et al : What is the failure rate after arthroscopic repair of bucket-handle meniscal tears? A systematic review and meta-analysis. Am J Sports Med 50 : 1742-1752, 2022
P.207 掲載の参考文献
9) Morris JH, Magnussen RA, DiBartola AC et al : Patient outcomes after horizontal cleavage tear repair : A systematic review. Arthroscopy 36 : 2316-2331, 2020
10) Yeh SH, Hsu FW, Chen KH et al : Repairing complete radial tears of the lateral meniscus : Arthroscopic all-inside double vertical cross-suture technique is effective and safe with 2-year minimum follow-up. Arthroscopy 38 : 1919-1929, 2022
11) Kunze KN, Wright-Chisem J, Polce EM et al : Risk factors for ramp lesions of the medial meniscus : A systematic review and meta-analysis. Am J Sports Med 49 : 3749-3757, 2021
12) Laurens M, Cavaignac E, Fayolle H et al : The accuracy of MRI for the diagnosis of ramp lesions. Skeletal radiology 51 : 525-533, 2022
13) Albayrak K, Buyukkuscu MO, Kurk MB et al : Leaving the stable ramp lesion unrepaired does not negatively affect clinical and functional outcomes as well as return to sports rates after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 29 : 3773-3781, 2021
14) Tuphe P, Foissey C, Unal P et al : Long-term natural history of unrepaired stable ramp lesions : A retrospective analysis of 28 patients with a minimum follow-up of 20 years. Am J Sports Med 50 : 3273-3279, 2022
P.208 掲載の参考文献
15) Shekhar A, Tapasvi S, Williams A : Outcomes of combined lateral meniscus posterior root repair and anterior cruciate ligament reconstruction. Orthop J Sports Med 10 : 23259671221083318, 2022
16) Wu TY : Arthroscopic medial meniscus posterior root repair with centralization using knotless suture anchors. Arthrosc Tech 11 : e661-e668, 2022
17) Eseonu KC, Neale J, Lyons A et al : Are outcomes of acute meniscus root tear repair better than debridement or nonoperative management? A systematic review. Am J Sports Med 50 : 3130-3139, 2022
18) Krivicich LM, Kunze KN, Parvaresh KC et al : Comparison of long-term radiographic outcomes and rate and time for conversion to total knee arthroplasty between repair and meniscectomy for medial meniscus posterior root tears : A systematic review and meta-analysis. Am J Sports Med 50 : 2023-2031, 2022
19) Krych AJ, Song BM, Nauert RF 3rd et al : Prospective consecutive clinical outcomes after transtibial root repair for posterior meniscal root tears : A multicenter study. Orthop J Sports Med 10 : 23259671221079794, 2022
20) Chung KS, Ha JK, Ra HJ et al : Preoperative varus alignment and postoperative meniscus extrusion are the main long-term predictive factors of clinical failure of meniscal root repair. Knee Surg Sports Traumatol Arthrosc 29 : 4122-4130, 2021
21) Nishino K, Hashimoto Y, Iida K et al : Intrameniscal degeneration and meniscotibial ligament loosening are associated factors with meniscal extrusion of symptomatic discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc, 2022. doi : 10.1007/s00167-022-07161-6
22) Nishino K, Hashimoto Y, Tsumoto S et al : Morphological changes in the residual meniscus after reshaping surgery for a discoid lateral meniscus. Am J Sports Med 49 : 3270-3278, 2021
23) Nishino K, Hashimoto Y, Iida K et al : Association of postoperative lateral meniscal extrusion with cartilage degeneration on magnetic resonance imaging after discoid lateral meniscus reshaping surgery. Orthop J Sports Med 10 : 23259671221091997, 2022
P.209 掲載の参考文献
24) Allam E, Boychev G, Aiyedipe S et al : Subchondral insufficiency fracture of the knee : unicompartmental correlation to meniscal pathology and degree of chondrosis by MRI. Skeletal Radiol 50 : 2185-2194, 2021
25) Koga H, Nakamura T, Katagiri H et al : Two-year outcomes after meniscoplasty by capsular advancement with the application of arthroscopic centralization technique for lateral compartment knee osteoarthritis. Am J Sports Med 48 : 3154-3162, 2020
26) Koga H, Nakamura T, Nakagawa Y et al : Arthroscopic centralization using knotless anchors for extruded medial meniscus. Arthroscopy techniques 10 : e639-e645, 2021
27) Ozeki N, Koga H, Nakamura T et al : Surgical repair of symptomatic Wrisberg variant discoid lateral mensicus with pull-out repair and capsulodesis. Arthrosc Tech 11 : e61-e68, 2021
28) Katagiri H, Nakagawa Y, Miyatake K et al : Short-term outcomes after high tibial osteotomy aimed at neutral alignment combined with arthroscopic centralization of medial meniscus in osteoarthritis patients. J Knee Surg, 2021. doi : 10.1055/s-0041-1731738
29) Sekiya I, Koga H, Katano H et al : Second-look arthroscopy after meniscus repair and synovial mesenchymal stem cell transplantation to treat degenerative flaps and radial tears of the medial meniscus : A case report. J Orthop Sci 27 : 821-834, 2022
30) Ronnblad E, Rotzius P, Eriksson K : Autologous semitendinosus tendon graft could function as a meniscal transplant. Knee Surg Sports Traumatol Arthrosc 30 : 1520-1526, 2022
P.210 掲載の参考文献
1) Wierer G, Krabb N, Kaiser P et al : The patellar instability probability calculator : A multivariate-based model to predict the individual risk of recurrent lateral patellar dislocation. Am J Sports Med 50 : 471-477, 2022
P.211 掲載の参考文献
2) Tan SHS, Chua KCX, Yeo LKP et al : Predictive scoring for recurrent patellar instability after a first-time patellar dislocation. J Pediatr Orthop 42 : e839-e846, 2022
3) Wang HJ, Song YF, Ma Y et al : Higher pathologic threshold of increased tibial tuberosity-trochlear groove distance should be considered for taller patients. Knee Surg Sports Traumatol Arthrosc 30 : 3760-3766, 2022
4) Xu C, Cui Z, Yan L et al : Anatomical components associated with increased tibial tuberosity-trochlear groove distance. Orthop J Sports Med 10 : 23259671221113841, 2022
5) Dong Z, Zhang X, Xu C et al : The tibial tubercle-posterior cruciate ligament (TTPCL) distance does not truly reflect the lateralization of the tibial tubercle. Knee Surg Sports Traumatol Arthrosc 30 : 3470-3479, 2022
6) Chen J, Yin B, Yao J et al : Femoral anteversion measured by the surgical transepicondylar axis is a reliable parameter for evaluating femoral rotational deformities in patients with patellar dislocation. Knee Surg Sports Traumatol Arthrosc, 2022. doi : 10.1007/s00167-022-07016-0
7) Chen C, Min L, Sun M et al : Abnormal femur rotation in patients with recurrent patellar dislocation : A study on upright standing three-dimensionally reconstructed EOS images. Knee 32 : 131-139, 2021
8) Dong C, Hao K, Zhao C et al : A new factor predicting excessive femoral anteversion in patients with recurrent patellar dislocation. J Orthop Surg Res 17 : 366, 2022
9) Shu L, Yang X, He H et al : Morphological study of the vastus medialis oblique in recurrent patellar dislocation based on magnetic resonance images. BMC Med Imaging 21 : 3, 2021
P.212 掲載の参考文献
10) DeVries CA, Bomar JD, Pennock AT : Prevalence of trochlear dysplasia and associations with patellofemoral pain and instability in a skeletally mature population. J Bone Joint Surg Am 103 : 2126-2132, 2021
11) Honkonen EE, Sillanpaa PJ, Reito A et al : A randomized controlled trial comparing a patella-stabilizing, motion-restricting knee brace versus a neoprene nonhinged knee brace after a first-time traumatic patellar dislocation. Am J Sports Med 50 : 1867-1875, 2022
12) Cohen D, Le N, Zakharia A et al : MPFL reconstruction results in lower redislocation rates and higher functional outcomes than rehabilitation : a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc 30 : 3784-3795, 2022
13) Liu Z, Yi Q, He L et al : Comparing nonoperative treatment, MPFL repair, and MPFL reconstruction for patients with patellar dislocation : A systematic review and network meta-analysis. Orthop J Sports Med 9 : 23259671211026624, 2021
14) Straume-Nasheim TM, Randsborg PH, Mikaelsen JR et al : Medial patellofemoral ligament reconstruction is superior to active rehabilitation in protecting against further patella dislocations. Knee Surg Sports Traumatol Arthrosc 30 : 3428-3437, 2022
15) Xing X, Shi H, Feng S : Does surgical treatment produce better outcomes than conservative treatment for acute primary patellar dislocations? A meta-analysis of 10 randomized controlled trials. J Orthop Surg Res 15 : 118, 2020
16) Migliorini F, Driessen A, Quack V et al : Surgical versus conservative treatment for first patellofemoral dislocations : a meta-analysis of clinical trials. Eur J Orthop Surg Traumatol 30 : 771-780, 2020
17) Corey RM, Rabe J, Yalcin S et al : Factors associated with pain and function before medial patellofemoral ligament reconstruction. Orthop J Sports Med 10 : 23259671221116150, 2022
18) Zlak N, Kacin A, Martincic D et al : Age, body mass index, female gender, and patellofemoral cartilage degeneration predict worse patient outcome after patellofemoral instability surgery. Knee Surg Sports Traumatol Arthrosc 30 : 3751-3759, 2022
P.213 掲載の参考文献
19) Qiao Y, Ye Z, Xu J et al : Preoperative serum calcium could be a prognostic factor for surgical treatment of recurrent patellar dislocation : a retrospective study. BMC Musculoskelet Disord 23 : 578, 2022
20) Sasaki E, Kimura Y, Sasaki S et al : Clinical outcomes of medial patellofemoral ligament reconstruction using FiberTape and knotless SwiveLock anchors. Knee 37 : 71-79, 2022
21) Migliorini F, Eschweiler J, Spiezia F et al : Synthetic graft for medial patellofemoral ligament reconstruction : a systematic review. J Orthop Traumatol 23 : 41, 2022
22) Migliorini F, Driessen A, Quack V et al : Patellar fixation graft via suture anchors versus tunnel techniques during isolated MPFL reconstruction for recurrent patellofemoral instability : a systematic review of the literature. Arch Orthop Trauma Surg 140 : 1201-1210, 2020
23) Olotu O, Siddiqui A, Peterson D et al : The superficial "swing-down" quadriceps tendon autograft is a viable option for medial patellofemoral ligament reconstruction : A systematic review. Arthroscopy 37 : 3187-3197, 2021
24) Markus DH, Hurley ET, Gipsman A et al : Adding a tibial tubercle osteotomy with anteromedialisation to medial patellofemoral ligament reconstruction does not impact patient-reported outcomes in the treatment of patellar instability. J ISAKOS 7 : 3-6, 2022
25) Song YF, Wang HJ, Yan X et al : Tibial tubercle osteotomy may not provide additional benefit in treating patellar dislocation with increased tibial tuberosity-trochlear groove distance : A systematic review. Arthroscopy 37 : 1670-1679.e1, 2021
26) Kim JM, Sim JA, Yang H et al : Clinical comparison of medial patellofemoral ligament reconstruction with or without tibial tuberosity transfer for recurrent patellar instability. Am J Sports Med 49 : 3335-3343, 2021
27) Hiemstra LA, Kerslake S, Lafave MR et al : Patella alta is reduced following MPFL reconstruction but has no effect on quality-of-life outcomes in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc 29 : 546-552, 2021
28) Hidalgo Perea S, Shannon SR, Green DW : Medial patellofemoral ligament reconstruction with open physes. Clin Sports Med 41 : 97-108, 2022
P.214 掲載の参考文献
29) D'Ambrosi R, Corona K, Capitani P et al : Complications and recurrence of patellar instability after medial patellofemoral ligament reconstruction in children and adolescents : A systematic review. Children (Basel) 8 : 434, 2021
30) Shatrov J, Vialla T, Sappey-Marinier E et al : At 10-year minimum follow-up, onethird of patients have patellofemoral arthritis after isolated medial patellofemoral ligament reconstruction using gracilis tendon autograft. Arthroscopy 39 : 349-357, 2023
31) Hinz M, Cotic M, Diermeier T et al : Derotational distal femoral osteotomy for patients with recurrent patellar instability and increased femoral antetorsion improves knee function and adequately treats both torsional and valgus malalignment. Knee Surg Sports Traumatol Arthrosc, 2022. doi : 10.1016/j.arthro.2022.07.021
32) Orfanos G, William Glover A, Sharma N et al : Trochleoplasty for severe trochlear dysplasia significantly improves the quality of life of patients with symptomatic patellar instability. Knee 37 : 95-102, 2022
33) Magnussen RA, Peters NJ, Long J et al : Accelerated rehabilitation program following medial patellofemoral ligament reconstruction does not increase risk of recurrent instability. Knee 38 : 178-183, 2022
34) Koshino Y, Taniguchi S, Kobayashi T et al : Protocols of rehabilitation and return to sport, and clinical outcomes after medial patellofemoral ligament reconstruction with and without tibial tuberosity osteotomy : a systematic review. Int Orthop 46 : 2517-2528, 2022
35) Platt BN, Bowers LC, Magnuson JA et al : Return to sport after medial patellofemoral ligament reconstruction : A systematic review and meta-analysis. Am J Sports Med 50 : 282-291, 2022
36) Rueth MJ, Koehl P, Schuh A et al : Return to sports and short-term follow-up of 101 cases of medial patellofemoral ligament reconstruction using gracilis tendon autograft in children and adolescents. Arch Orthop Trauma Surg, 2022. doi : 10.1007/s00402-022-04365-w
P.215 掲載の参考文献
1) Kurokawa H, Taniguchi A, Miyamoto T et al : The relationship between the distal tibial fibular syndesmosis and the varus deformity in patients with varus ankle osteoarthritis. Foot Ankle Orthop 6 : 24730114211041111, 2021
2) Kurokawa H, Kosugi S, Fujinuma T et al : Evaluation of subtalar joint's compensatory function in varus ankle osteoarthritis using Globally Optimal Iterative Closest Points (Go-ICP). Foot Ankle Orthop 27 : 24730114221103584, 2022
P.216 掲載の参考文献
3) Harada S, Teramoto T, Takenaka N et al : Distal tibial oblique osteotomy for reconstruction of ankle joint congruity and stability. J Clin Orthop Trauma 22 : 101588, 2021
4) Choi JY, Cho JH, Song TH et al : Radiographic outcomes of proximal vs distal syndesmotic low tibial osteotomy. Foot Ankle Int 43 : 211-222, 2022
5) 小林勇人, 紫藤洋二 : 低位脛骨骨切り術における骨補填材の検討-β-TCPブロックと自家腸骨ブロックの比較-. 中部整災誌 64 : 559-560, 2021
6) Halai MM, Pinsker E, Mann MA et al : Should 15° of valgus coronal-plane deformity be the upper limit for a total ankle arthroplasty? Bone Joint J 102-B : 1689-1696, 2020
7) Piga C, Maccario C, D'Ambrosi R et al : Total ankle arthroplasty with valgus deformity. Foot Ankle Int 42 : 867-876, 2021
8) Yamamoto T, Nagai K, Kanzaki N et al : Anterior placement of the talar component in total ankle arthroplasty : A risk factor for talar component subsidence. Foot Ankle Surg 27 : 311-315, 2021
P.217 掲載の参考文献
9) D'Ambrosi R, Tiusanen HT, Ellington JK et al : Fixed-bearing trabecular metal total ankle arthroplasty using the transfibular approach for end-stage ankle osteoarthritis : An international non-designer multicenter prospective cohort study. JB JS Open Access 7 : e21.00143, 2022
10) Henricson A, Unden A, Carlsson A et al : Outcomes of trabecular metal total ankle replacement : a longitudinal observational cohort study of 239 consecutive cases from the Swedish Ankle Registry. Acta Orthop 93 : 689-695, 2022
11) Maccario C, Paoli T, Romano F et al : Transfibular total ankle arthroplasty : a new reliable procedure at five-year followup. Bone Joint J 104-B : 472-478, 2022
13) Yamamoto T, Nagai K, Kanzaki N et al : Comparison of clinical outcomes between ceramic-based total ankle arthroplasty with ceramic total talar prosthesis and ceramic-based total ankle arthroplasty. Foot Ankle Int 43 : 529-539, 2022
P.218 掲載の参考文献
14) Morita S, Taniguchi A, Miyamoto T et al : Application of a customized total talar prosthesis for revision total ankle arthroplasty. JB JS Open Access 5 : e20.00034, 2020
15) Maccario C, Tan EW, Di Silvestri CA et al : Learning curve assessment for total ankle replacement using the transfibular approach. Foot Ankle Surg 27 : 129-137, 2021
16) Kurokawa H, Taniguchi A, Miyamoto T et al : What is the best way for an inexperienced surgeon to learn total ankle arthroplasty? J Orthop Sci 6 : S0949-2658 (22) 00128-2, 2022
17) Saiga K, Yokoo S, Ohashi H et al : Effect of lateral gutter osteophyte resection on correction of varus deformity in arthroscopic ankle arthrodesis. Foot Ankle Int 41 : 683-688, 2020
18) 大澤誠也, 吉原由樹 : 高度内反を伴う変形性足関節症に対して上腕骨近位用プレートを用いて足関節固定術を行った1例. 中部整災誌 63 : 643-644, 2020
19) 小林勇人, 柴藤洋二 : 患側用TomoFix anatomicalプレートにテリパラチド製剤を併用した足関節固定術の治療経験. 中部整災誌 63 : 645-646, 2020
P.219 掲載の参考文献
20) Yang XQ, Zhang Y, Wang Q et al : Supramalleolar osteotomy vs arthrodesis for the treatment of Takakura 3B ankle osteoarthritis. Foot Ankle Int 43 : 1185-1193, 2022
21) Morelli F, Princi G, Cantagalli MR et al : Arthroscopic vs open ankle arthrodesis : A prospective case series with seven years follow-up. World J Orthop 12 : 1016-1025, 2021
22) Norvell DC, Ledoux WR, Shofer JB et al : Effectiveness and safety of ankle arthrodesis versus arthroplasty : a prospective multicenter study. J Bone Joint Surg Am 101 : 1485-1494, 2019
23) 小久保哲郎, 橋本健史, 関広幸 : 人工足関節置換術と鏡視下足関節固定術の手術成績の比較. 日足外会誌 40 : 135-139, 2019
P.220 掲載の参考文献
1) Myerson MS, Thordarson DB, Johnson JE et al : Classification and nomenclature : progressive collapsing foot deformity. Foot Ankle Int 41 : 1271-1276, 2020
P.221 掲載の参考文献
2) Lee HY, Barbachan Mansur NS, Lalevee M et al : Progressive Collapsing Foot Deformity Consensus Group, de Cesar Netto C : Intra- and interobserver reliability of the new classification system of progressive collapsing foot deformity. Foot Ankle Int 43 : 582-589, 2022
3) Li S, Zhu M, Gu W et al : Diagnostic accuracy of the progressive collapsing foot deformity (PCFD) classification. Foot Ankle Int 43 : 800-809, 2022
4) Lalevee M, Barbachan Mansur NS, Lee HY et al : A comparison between the Bluman et al. and the progressive collapsing foot deformity classifications for flatfeet assessment. Arch Orthop Trauma Surg, 2021. doi : 10.1007/s00402-021-04279-z
5) Zhang YJ, Guo Y, Long X et al : Analysis of the main soft tissue stress associated with flexible flatfoot deformity : a finite element study. Biomech Model Mechanobiol 20 : 2169-2177, 2021
6) Peng Y, Niu W, Wong DW et al : Biomechanical comparison among five mid/hindfoot arthrodeses procedures in treating flatfoot using a musculoskeletal multibody driven finite element model. Comput Methods Programs Biomed 211 : 106408, 2021
7) Park S, Lee J, Cho HR et al : The predictive role of the posterior tibial tendon cross-sectional area in early diagnosing posterior tibial tendon dysfunction. Medicine (Baltimore) 99 : e21823, 2020
P.222 掲載の参考文献
8) Auch E, Barbachan Mansur NS, Alexandre Alves T et al : Distal tibiofibular syndesmotic widening in progressive collapsing foot deformity. Foot Ankle Int 42 : 768-775, 2021
9) Shakoor D, de Cesar Netto C, Thawait GK et al : Weight-bearing radiographs and cone-beam computed tomography examinations in adult acquired flatfoot deformity. Foot Ankle Surg 27 : 201-206, 2021
10) Dibbern KN, Li S, Vivtcharenko V et al : Three-dimensional distance and coverage maps in the assessment of peritalar subluxation in progressive collapsing foot deformity. Foot Ankle Int 42 : 757-767, 2021
11) de Cesar Netto C, Saito GH, Roney A et al : Combined weightbearing CT and MRI assessment of flexible progressive collapsing foot deformity. Foot Ankle Surg 27 : 884-891, 2021
12) Krahenbuhl N, Kvarda P, Susdorf R et al : Assessment of progressive collapsing foot deformity using semiautomated 3D measurements derived from weightbearing CT scans. Foot Ankle Int 43 : 363-370, 2022
P.223 掲載の参考文献
13) de Cesar Netto C, Silva T, Li S et al : Assessment of posterior and middle facet subluxation of the subtalar joint in progressive flatfoot deformity. Foot Ankle Int 41 : 1190-1197, 2020
14) Barbachan Mansur NS, Lalevee M, Maly C et al : Association between middle facet subluxation and foot and ankle offset in progressive collapsing foot deformity. Foot Ankle Int 43 : 96-100, 2022
15) Schon LC, de Cesar Netto C, Day J et al : Consensus for the indication of a medializing displacement calcaneal osteotomy in the treatment of progressive collapsing foot deformity. Foot Ankle Int 41 : 1282-1285, 2020
16) Catani O, Cautiero G, Sergio F et al : Medial displacement calcaneal osteotomy for unilateral adult acquired flatfoot : Effects of minimally invasive surgery on pain, alignment, functioning, and quality of life. J Foot Ankle Surg 60 : 358-361, 2021
17) Thordarson DB, Schon LC, de Cesar Netto C et al : Consensus for the indication of lateral column lengthening in the treatment of progressive collapsing foot deformity. Foot Ankle Int 41 : 1286-1288, 2020
18) Lamm BM, Knight J, Ernst JJ : Evans calcaneal osteotomy : Assessment of multiplanar correction. J Foot Ankle Surg 61 : 700-705, 2022
19) Wapner K, Freeland E, Kirwan G et al : A retrospective radiographic evaluation of a modified method of lateral column lengthening. Foot Ankle Spec 14 : 386-392, 2021
20) Osman AE, El-Gafary KA, Khalifa AA et al : Medial displacement calcaneal osteotomy versus lateral column lengthening to treat stage II tibialis posterior tendon dysfunction, a prospective randomized controlled study. Foot (Edinb) 47 : 101798, 2021
P.224 掲載の参考文献
21) Abousayed MM, Coleman MM, Wei L et al : Radiographic outcomes of cotton osteotomy in treatment of adult-acquired flatfoot deformity. Foot Ankle Int 42 : 1384-1390, 2021
22) Au B, Patel NB, Smith CN et al : Short- to intermediate-term radiographic outcomes following cotton osteotomy. J Foot Ankle Surg 61 : 812-820, 2022
23) Vacketta VG, Jones JM, Catanzariti AR : Radiographic analysis and clinical efficacy of hindfoot arthrodesis with versus without cotton osteotomy in stage III adult acquired flatfoot deformity. J Foot Ankle Surg 61 : 879-885, 2022
24) Deland JT, Ellis SJ, Day J et al : Indications for deltoid and spring ligament reconstruction in progressive collapsing foot deformity. Foot Ankle Int 41 : 1302-1306, 2020
P.225 掲載の参考文献
25) Raikin SM, Rogero RG, Raikin J et al : Outcomes of 2B adult acquired flatfoot deformity correction in patients with and without spring ligament tear. Foot Ankle Int 42 : 1517-1524, 2021
26) Davies JP, Ma X, Garfinkel J et al : Subtalar fusion for correction of forefoot abduction in stage II adult-acquired flatfoot deformity. Foot Ankle Spec 15 : 221-235, 2022
27) Ferreira GF, Nava N, Durigon TS et al : Double hindfoot arthrodesis using a single-incision medial approach in the correction of adult-acquired flatfoot deformity : a case series. Int Orthop 45 : 2375-2381, 2021
28) Fadle AA, El-Adly W, Attia AK et al : Double versus triple arthrodesis for adult-acquiredflatfoot deformity due to stage III posterior tibial tendon insufficiency : a prospective comparative study of two cohorts. Int Orthop 45 : 2219-2229, 2021
P.226 掲載の参考文献
1) Puszczalowska-Lizis E, Lukasiewicz A, Lizis S et al : The impact of functional excess of footwear on the foot shape of 7-year-old girls and boys. PeerJ 9 : e11277, 2021
P.227 掲載の参考文献
2) Fotoohabadi M, Spink MJ, Menz HB : Relationship between lower limb muscle strength and hallux valgus severity in older people. Foot (Edinb) 46 : 101751, 2021
3) 加藤俊宏, 西村明展, 大槻 誠他 : 地域在住高齢者における外反母趾と足趾筋力・歩行速度との関係. 靴の医学 35 : 73-77, 2022
4) 和田悠矢, 松本佳奈, 倉秀治 : 外反母趾患者と骨粗鬆症との関連要因. 靴の医学 35 : 101-104, 2022
5) Niki H, Tatsunami S, Haraguchi N et al : Validity of a self-administered foot evaluation questionnaire (SAFE-Q). J Orthop Sci 18 : 298-320, 2013
6) Niki H, Haraguchi N, Aoki T et al : Responsiveness of the Self-administered foot evaluation Questionnaire (SAFE-Q) in patients with hallux valgus. J Orthop Sci 22 : 737-742, 2017
7) Niki H, Aoki H, Inokuchi S et al : Development and reliability of a standard rating system for outcome measurement of foot and ankle disorders I : Development of standard rating system. J Orthop Sci 10 : 457-465, 2005
8) Niki H, Aoki H, Inokuchi S et al : Development and reliability of a standard rating system for outcome measurement of foot and ankle disorders II : interclinician and intraclinician reliability and validity of the newly established standard rating scales and Japanese Orthopaedic Association rating scale. J Orthop Sci 10 : 466-474, 2005
9) Mahmoud K, Metikala S, Mehta SD et al : the role of weightbearing computed tomography scan in hallux valgus. Foot Ankle Int 42 : 287-293, 2021
10) Lalevee M, Barbachan Mansur NS, Lee HY et al : Distal metatarsal articular angle in hallux valgus deformity. Fact or fiction? A 3-dimensional weightbearing CT assessment. Foot Ankle Int 43 : 495-503, 2022
11) Clarke AJ, Conti SF, Conti MS et al : The association of crista volume with sesamoid position as measured from 3D reconstruction of weightbearing CT scans. Foot Ankle Int 43 : 658-664, 2022
12) Day J, de Cesar Natto C, Burssens A et al : A case control study of 3D vs 2D weightbearing CT measurements of the M1-M2 intermetatarsal angle in hallux valgus. Foot Ankle Int 43 : 1049-1052, 2022
P.228 掲載の参考文献
13) Najefi AA, Malhotra K, Patel S et al : Assessing the rotation of the first metatarsal on computed tomography scans : A systematic literature review. Foot Ankle Int 43 : 66-76, 2022
14) Kim Y, Kim JS, Young KW et al : A new measure of tibial sesamoid position in hal-lux valgus in relation to the coronal rotation of the first metatarsal in CT scans. Foot Ankle Int 36 : 944-952, 2015
15) Mansur NSB, Lalevee M, Schmidt E et al : Correlation between indirect radiographic parameters of first metatarsal rotation in hallux valgus and values on weight-bearing computed tomography. Int Orthop 45 : 3111-3118, 2021
16) Ying J, Xu Y, Istvan B et al : Adjusted indirect and mixed comparisons of conservative treatments for hallux valgus : A systematic review and network meta-analysis. Int J Environ Res Public Health 18 : 3841, 2021
17) Hurn SE, Matthews BG, Munteanu SE et al : Effectiveness of nonsurgical interventions for hallux valgus : A systematic review and meta-analysis. Arthritis Care Res 74 : 1676-1688, 2022
18) Lewis TL, Ray R, Robinson P et al : Percutaneous chevron and Akin (PECA) osteotomies for severe hallux valgus deformity with mean 3-year follow-up. Foot Ankle Int 42 : 1231-1240, 2021
19) Castellini JLA, Grande Ratti MF, Gonzalez DL : Clinical and radiographic outcomes of percutaneous third-generation double first metatarsal osteotomy combined with closing-wedge proximal phalangeal osteotomy for moderate and severe hallux valgus. Foot Ankle Int 43 : 1438-1449, 2022
P.229 掲載の参考文献
20) 千田秀一, 倉 秀治, 柏倉 剛他 : 重度外反母趾に対する第1中足骨遠位斜め骨切り術 (DOMO法) の治療. 日足外会誌 41 : 132-135, 2020
21) 小久保哲郎, 橋本健史, 池澤裕子他 : 重度外反母趾の手術成績. 日足外会誌 41 : 170-173, 2020
22) 多田昌弘, 北野利夫 : 重度外反母趾に対するTMT関節固定術と中足骨近位骨切り術の短期臨床成績比較. 日足外会誌 42 : 46-49, 2021
23) Symeonidis PD, Anderson JG : Original and modified Lapidus procedures : Proposals for a new terminology. J Bone Joint Surg Am 103 : e15, 2021
24) 金澤和貴 : 外反母趾に対するMTP関節固定術の治療成績の検討. 日足外会誌 42 : 88-90, 2021
P.230 掲載の参考文献
25) Riediger M, Sheridan GA, Gul R : Outcomes of first metatarsophalangeal joint fusion using a precontoured plate. Foot Ankle Spec, 2021. doi : 10.1177/19386400211000594
26) Li WS, Lui TH : Supraligamentous approach of lateral release in endoscopic lateral softttissue procedure. Arthrosc Tech 11 : e827-831, 2022
27) Yeung T, Lui TH : Arthroscopic Lapidus arthrodesis of the first tarsometatarsal joint for treatment of hallux valgus deformity of the foot. Arthrosc Tech 11 : e1065-e1069, 2022
P.231 掲載の参考文献
1) van Diepen PR, Dahmen J, Nienke Antink J et al : Location distribution of 2,087 osteochondral lesions of the talus. Cartilage 13 (suppl 1) : 1334S-1353S, 2021
P.232 掲載の参考文献
2) Li J, Wang Y, Wei Y et al : The effect of the talus osteochondral defects of different area size on ankle joint stability : a finite element analysis. BMC Musculoskelet Disord 23 : 500, 2022
3) Corr D, Raikin BS, O'Neil J et al : Long-term outcomes of microfracture for treatment of osteochondral lesions of talus. Foot Ankle Int 42 : 833-840, 2021
4) Rikken QG, Dahmen J, Stufken SA et al : Satisfactory long-term clinical outcomes after bone marrow stimulation of osteochondral lesions of the talus. Knee Surg Sport Traummatol Arthrosc 29 : 3525-3522, 2021
5) Lambers KT, Dahmen J, Altink JN et al : Bone marrow stimulation for talar osoteochondral lesions at long-term follow-up shows a high sports participation through a decrease in clinical outcomes over time. Knee Surg Sport Traummatol Arthrosc 29 : 1562-1569, 2021
P.233 掲載の参考文献
6) Ahn J, Choi JG, Jeong BO : Clinical outcomes after arthroscopic microfracture for osteochondral lesions of the talus are better in patients with decreased postoperative subchondral bone marrow edema. Knee Surg Sport Traummatol Arthrosc 29 : 1570-1576, 2021
7) Lee KT, Song SY, Hyuk J Kim et al : Lesion size may predict return to play in young elite athletes undergoing microfracture for osteochondral lesions of the talus. Arthroscopy 37 : 1612-1619, 2021
8) Dilley JE, Everhart JS, Klitzman RG : Hyaluronic acid as an adjunct to microfracture in the treatment of osteochondral lesions of the talus : a systematic review of randomized controlled trials. BMC Musculoskelet Disord 23 : 313, 2022
P.234 掲載の参考文献
9) Hwang YG, Lee JW, Park KH et al : Intraarticular injections of hyaluronic acid on osteochondral lesions of the talus after failed arthroscopic bone marrow stimulation. Foot Ankle Int 41 : 1376-1382, 2020
10) Carlson MJ, Antkowiak TT, Larsen NJ et al : Arthroscopic treatment of osteochondral lesions of the talus in a pediatric population : A minimum 2-year follow-up. Am J Sport Med 48 : 1989-1998, 2020
11) Dahmen J, Steman JA, Buck TMF et al : Treatment of osteochondral lesions of the talus in the skeletally immature population : a systematic review. J Pediatr Orthop 42 : e852-e860, 2022
P.235 掲載の参考文献
12) Park CH, Song KS, Kim JR et al : Retrospective evaluation of outcomes of bone peg fixation for osteochondral lesion of the talus. Bone Joint J 102-B : 1349-1353, 2020
13) Choi YR, Kim BS, Kim YM et al : Internal fixation of osteochondral lesion of the talus involving a large bone fragment. Am J Sport Med 49 : 1031-1039, 2021
14) Ikuta Y, Nakasa T, Sumii J et al : Histopathologocal and radiographic features of osteolysis after fixation of osteochondral fragments using poly-L-lactic acid pins for osteochondral lesions of the talus. Am J Sport Med 49 : 1585-1595, 2021

IV章 骨軟部

P.239 掲載の参考文献
1) Asano N, Saito M, Kobayashi E et al : Preoperative denosumab therapy against giant cell tumor of bone is associated with an increased risk of local recurrence after curettage surgery. Ann Surg Oncol 29 : 3992-4000, 2022
2) Chen X, Li H, Zhu S et al : Pre-operative denosumab is associated with higher risk of local recurrence in giant cell tumor of bone : a systematic review and meta-analysis. BMC Musculoskelet Disord 21 : 256, 2020
3) Noh SH, Ha Y, Cho PG et al : The effect of denosumab and risk factors for recurrence in spinal giant cell tumors : A systematic review and meta-analysis. Yonsei Med J 63 : 834-841, 2022
P.240 掲載の参考文献
4) Kikuta K, Oguro S, Yamamoto T et al : Osteoid osteoma of the acetabulum successfully treated with computed tomography-guided resection and ablation using a standard electrosurgical generator : a case report. J Med Case Rep 10 : 348, 2016
5) Fukuda S, Susa M, Watanabe I et al : Computed tomography-guided resection of osteoid osteoma of the sacrum : a case report. J Med Case Rep 8 : 206, 2014
6) 渡部逸央, 穴澤卯圭, 中山ロバート他 : 骨・軟部腫瘍のマネジメント (その2) III. 良性骨腫瘍・腫瘍類似疾患の治療 (3) 類骨骨腫 類骨骨腫の臨床像 (画像所見, 発生部位, 局在, 年齢) の特徴と治療成績. 別冊整形外科 80 : 55-62, 2021
7) 一般社団法人日本インターベンショナルラジオロジー学会 (日本IVR学会) : ラジオ波焼灼術 (RFA) 適応拡大の適応使用指針. 2022年8月30日 https://www.jsir.or.jp/info/rfa/rfa_guideline/ (2022年12月閲覧)
P.241 掲載の参考文献
8) Sangiorgio A, Oldrini LM, Candrian C et al : Radiofrequency ablation is as safe and effective as surgical excision for spinal osteoid osteoma : a systematic review and meta-analysis. Eur Spine J, 2022. doi : 10.1007/s00586-022-07411-8
9) Tordjman M, Perronne L, Madelin G et al : CT-guided radiofrequency ablation for osteoid osteomas : a systematic review. Eur Radiol 30 : 5952-5963, 2020
P.242 掲載の参考文献
10) Miyazaki M, Saito K, Yanagawa T et al : Phase I clinical trial of percutaneous cryoablation for osteoid osteoma. Jpn J Radiol 36 : 669-675, 2018
11) Lindquester WS, Crowley J, Hawkins CM : Percutaneous thermal ablation for treatment of osteoid osteoma : a systematic review and analysis. Skeletal Radiol 49 : 1403-1411, 2020
P.243 掲載の参考文献
12) Shanmugasundaram S, Nadkarni S, Kumar A et al : Percutaneous ablative therapies for the management of osteoid osteomas : A systematic review and meta-analysis. Cardiovasc Intervent Radiol 44 : 739-749, 2021
P.244 掲載の参考文献
1) Andreou D, Ranft A, Gosheger G ; GPOH-Euro-EWING99 consortium et al : Which factors are associated with local control and survival of patients with localized pelvic Ewing's sarcoma? A retrospective analysis of data from the Euro-EWING99 trial. Clin Orthop Relat Res 478 : 290-302, 2020
P.245 掲載の参考文献
2) Lex JR, Kurisunkal V, Kaneuchi Y et al : Pelvic Ewing sarcoma : Should all patients receive pre-operative radiotherapy, or should it be delivered selectively? Eur J Surg Oncol 47 : 2618-2626, 2021
3) Houdek MT, Hevesi M, Schwab JH et al : Association between patient age and the risk of mortality following local recurrence of a sacral chordoma. J Surg Oncol 121 : 267-271, 2020
4) Fujiwara T, Tsuda Y, Stevenson J et al : Sacral chordoma : do the width of surgical margin and the use of photon/proton radiotherapy affect local disease control? Int Orthop 44 : 381-389, 2020
5) Takemori T, Kawamoto T, Hara H et al : Clinical outcome of patients with pelvic and retroperitoneal bone and soft tissue sarcoma : A retrospective multicenter study in Japan. Cancers (Basel) 14 : 3023, 2022
6) Kiiski J, Parry MC, Le Nail LR et al : Surgical and oncological outcomes after hindquarter amputation for pelvic sarcoma. Bone Joint J 102-B : 788-794, 2020
7) Erol B, Sofulu O, Sirin E et al : Pelvic ring reconstruction after iliac or iliosacral resection of pediatric pelvic Ewing sarcoma : use of a double-barreled free vascularized fibular graft and minimal spinal instrumentation. J Bone Joint Surg Am 103 : 1000-1008, 2021
P.246 掲載の参考文献
8) Lazarides AL, Burke ZDC, Gundavda MK et al : How do the outcomes of radiationassociated pelvic and sacral bone sarcomas compare to primary osteosarcomas following surgical resection? Cancers (Basel) 14 : 2179, 2022
9) Takenaka S, Tamiya H, Wakamatsu T et al : Impact of surgical resection and reasons for poor prognosis of pelvic osteosarcoma based on the bone tumor registry in Japan. Cancers (Basel) 13 : 3320, 2021
10) Liang H, Guo W, Tang X et al : Venous tumor thrombus in primary bone sarcomas in the pelvis : A clinical and radiographic study of 451 cases. J Bone Joint Surg Am 103 : 1510-1520, 2021
11) Tsoi KM, Lowe M, Tsuda Y et al : How are indeterminate pulmonary nodules at diagnosis associated with survival in patients with high-grade osteosarcoma? Clin Orthop Relat Res 479 : 298-308, 2021
P.247 掲載の参考文献
12) Tsuda Y, Lowe M, Evans S et al : Surgical outcomes and prognostic factors of non-metastatic radiation-induced sarcoma of bone. Eur J Surg Oncol 46 : 293-298, 2020
13) Nakamura T, Sugaya J, Naka N et al : Standard treatment remains the recommended approach for patients with bone sarcoma who underwent unplanned surgery : Report from the Japanese Musculoskeletal Oncology Group. Cancer Manag Res 12 : 10017-10022, 2020
14) Italiano A, Mir O, Mathoulin-Pelissier S et al : Cabozantinib in patients with advanced Ewing sarcoma or osteosarcoma (CABONE) : a multicentre, single-arm, phase 2 trial. Lancet Oncol 21 : 446-455, 2020
15) Koch R, Gelderblom H, Haveman L et al : High-dose treosulfan and melphalan as consolidation therapy versus standard therapy for high-risk (metastatic) Ewing sarcoma. J Clin Oncol 40 : 2307-2320, 2022
P.248 掲載の参考文献
16) Takenaka S, Araki N, Outani H et al : Complication rate, functional outcomes, and risk factors associated with carbon ion radiotherapy for patients with unresectable pelvic bone sarcoma. Cancer 126 : 4188-4196, 2020
17) Lex JR, Evans S, Cool P et al ; British Orthopaedic Oncology Society VTE Committee : Venous thromboembolism in orthopaedic oncology. Bone Joint J 102-B : 1743-1751, 2020
18) Iwata S, Kawai A, Ueda T ; Japanese Musculoskeletal Oncology Group (JMOG) : Symptomatic venous thromboembolism in patients with malignant bone and soft tissue tumors : A prospective multicenter cohort study. Ann Surg Oncol 28 : 3919-3927, 2021
19) Zhang L, Michihata N, Matsui H et al : Preoperative arterial embolization and wound complications after resection of malignant bone tumor in the pelvis : a nationwide database study. Jpn J Clin Oncol 52 : 1176-1182, 2022
20) WHO Classification of Tumours Editorial Board : World Health Organization Classification of Tumours, 5th ed, vol.3 : Soft Tissue and Bone Tumours. IARC, Lyon, 2020
P.249 掲載の参考文献
21) 日本整形外科学会監, 日本整形外科学会診療ガイドライン委員会/原発性悪性骨腫瘍診療ガイドライン策定委員会編 : 原発性悪性骨腫瘍診療ガイドライン 2022. 南江堂, 2022
P.250 掲載の参考文献
1) Kawano H, Hirahata M, Imanishi J : Locomotive syndrome in cancer patients : a new role of orthopaedic surgeons as a part of comprehensive cancer care. Int J Clin Oncol 27 : 1233-1237, 2022
2) Arvinius C, Parra JL, Mateo LS et al : Benefits of early intramedullary nailing in femoral metastases. Int Orthop 38 : 129-132, 2014
P.251 掲載の参考文献
3) Anract P, Biau D, Boudou-Rouquette P : Metastatic fractures of long limb bones. Orthop Traumatol Surg Res 103 : S41-S51, 2017
4) Mirels H : Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res 249 : 256-264, 1989
5) van der Linden YM, Kroon HM, Dijkstra SP et al : Simple radiographic parameter predicts fracturing in metastatis femoral bone lesion : results from a randomized trial. Radiother Oncol 69 : 21-31, 2003
6) Shinoda Y, Kobayashi H, Kaneko M et al : Prediction of the pathological fracture risk during stance and fall-loading configurations for metastases in the proximal femur, using a computed tomography-based finite element method. J Orthop Sci 24 : 1074-1080, 2019
7) Shinoda Y, Sawada R, Ishibashi Y et al : Prediction of pathological fracture in patients with lower limb bone metastasis using computed tomography imaging. Clin Exp Metastases 37 : 607-616, 2020
8) Ben Gal O, Soh TCF, Vaughan S et al : The prediction of survival after surgical management of bone metastases of the extremities-A comparison of prognostic models. Curr Oncol 29 : 4703-4716, 2022
9) Anderson AB, Wedin R, Fabbri N et al : External validation of PATHFx version 3.0 in patients treated surgically and nonsurgically for symptomatic skeletal metastases. Clin Orthop Relat Res 478 : 808-818, 2020
10) Ricard MM, Stavropoulos NA, Nooh A et al : Intramedullary nailing versus plate osteosynthesis for humeral shaft metastatic lesions. Cureus 13 : e13788, 2021
11) Rovere G, Meschini C, Piazza P et al : Proximal humerus fractures treatment in adult patients with bone metastasis. Eur Rev Med Pharmacol Sci 26 (1 Suppl) : 100-105, 2022
P.252 掲載の参考文献
12) Hara H, Sakai Y, Kawamoto T et al : Surgical outcomes of metastatic bone tumors in the extremities (Surgical outcomes of bone metastases). J Bone Oncol 27 : 100352, 2021
13) Sze WM, Shelley M, Held I et al : Palliation of metastatic bone pain : single fraction versus multifraction radiotherapy-a systematic review of the randomised trials. Cochrane Database Syst Rev 2002 : CD004721, 2004
14) Chow E, Zeng L, Salvo N et al : Update on the systematic review of palliative radiotherapy trials for bone metastases. Clin Oncol (R Coll Radiol) 24 : 112-124, 2012
15) Shimoyama T, Katagiri H, Harada H et al : Fracture after radiation therapy for femoral metastasis : incidence, timing and clinical features. J Radiat Res 58 : 661-668, 2017
16) Rosen LS, Gordon D, Tchekmedyian S et al : Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors : a phase III, double-blind, randomized trial-the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 21 : 3150-3157, 2003
17) Cole JS, Patchell RA : Metastatic epidural spinal cord compression. Lancet Neurol 7 : 459-466, 2008
P.253 掲載の参考文献
18) Lun DX, Chen NW, Feng JT et al : Visceral metastasis : A prognostic factor of survival in patients with spinal metastases. Orthop Surg 12 : 552-560, 2020
19) Wu XG, Zhu BQ, Li AM et al : Prognostic factors affecting overall survival in patients with spinal metastasis due to lung cancer : a systematic review and meta-analysis. Eur Rev Med Pharmacol Sci 26 : 1683-1694, 2022
20) Bach F, Larsen BH, Rohde K et al : Metastatic spinal cord compression. Occurrence, symptoms, clinical presentations and prognosis in 398 patients with spinal cord compression. Acta Neurochir (Wien) 107 : 37-43, 1990
21) Lo SS, Ryu S, Chang EL et al : ACR Appropriateness Criteria (R) metastatic epidural spinal cord compression and recurrent spinal metastasis. J Palliat Med 18 : 573-584, 2015
22) Fisher CG, DiPaola CP, Ryken TC et al : A novel classification system for spinal instability in neoplastic disease : an evidence-based approach and expert consensus from the Spine Oncology Study Group. Spine (Phila Pa 1976) 35 : E1221-1229, 2010
23) Kim YR, Lee CH, Yang SH et al : Accuracy and precision of the spinal instability neoplastic score (SINS) for predicting vertebral compression fractures after radiotherapy in spinal metastases : a meta-analysis. Sci Rep 11 : 5553, 2021
24) Bilsky MH, Laufer I, Fourney DR et al : Reliability analysis of the epidural spinal cord compression scale. J Neurosurg Spine 13 : 324-328, 2010
25) Dakson A, Leck E, Brandman DM et al : The clinical utility of the Spinal Instability Neoplastic Score (SINS) system in spinal epidural metastases : a retrospective study. Spinal Cord 58 : 892-899, 2020
26) Patchell RA, Tibbs PA, Regine WF et al : Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer : a randomised trial. Lancet 366 : 643-648, 2005
P.254 掲載の参考文献
27) Luksanapruksa P, Buchowski JM, Zebala LP et al : Perioperative complications of spinal metastases surgery. Clin Spine Surg 30 : 4-13, 2017
28) Tarawneh AM, Pasku D, Quraishi NA : Surgical complications and re-operation rates in spinal metastases surgery : a systematic review. Eur Spine J 30 : 2791-2799, 2021
29) Kumar N, Madhu S, Bohra H et al : Is there an optimal timing between radiotherapy and surgery to reduce wound complications in metastatic spine disease? A systematic review. Eur Spine J 29 : 3080-3115, 2020
30) Alshareef M, Klapthor G, Alawieh A et al : Evaluation of open and minimally invasive spinal surgery for the treatment of thoracolumbar metastatic epidural spinal cord compression : a systematic review. Eur Spine J 30 : 2906-2914, 2021
31) Pranata R, Lim MA, Vania R et al : Minimal invasive surgery instrumented fusion versus conventional open surgical instrumented fusion for the treatment of spinal metastases : A systematic review and meta-analysis. World Neurosurg 148 : e264-e274, 2021
P.255 掲載の参考文献
1) Gronchi A, Miah AB, Dei Tos AP et al : Soft tissue and visceral sarcomas : ESMOEURACAN-GENTURIS Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 32 : 1348-1365, 2021
P.256 掲載の参考文献
2) Nishida Y, Hamada S, Sakai T et al : Lessinvasive fascia-preserving surgery for abdominal wall desmoid. Sci Rep 11 : 19379, 2021
3) Nishida Y, Hamada S, Urakawa H et al : Desmoid with biweekly methotrexate and vinblastine shows similar effects to weekly administration : A phase II clinical trial. Cancer Sci 111 : 4187-4194, 2020
4) Zhou MY, Bui NQ, Charville GW et al : Current management and recent progress in desmoid tumors. Cancer Treat Res Commun 31 : 100562, 2022
5) Cazzato RL, Gantzer J, de Marini P et al : Sporadic desmoid tumours : Systematic review with reflection on the role of cryoablation. Cardiovasc Intervent Radiol 45 : 613-621, 2022
P.257 掲載の参考文献
6) Solares I, Vinal D, Morales-Conejo M et al : Novel molecular targeted therapies for patients with neurofibromatosis type 1 with inoperable plexiform neurofibromas : a comprehensive review. ESMO Open 6 : 100223, 2021
7) Weiss BD, Wolters PL, Plotkin SR et al : NF106 : A neurofibromatosis clinical trials consortium phase II trial of the MEK inhibitor mirdametinib (PD-0325901) in adolescents and adults with NF1-related plexiform neurofibromas. J Clin Oncol 39 : 797-806, 2021
8) Jackson S, Baker EH, Gross AM et al : The MEK inhibitor selumetinib reduces spinal neurofibroma burden in patients with NF1 and plexiform neurofibromas. Neurooncol Adv 2 : vdaa095, 2020
9) Fisher MJ, Shih CS, Rhodes SD et al : Cabozantinib for neurofibromatosis type 1-related plexiform neurofibromas : a phase 2 trial. Nat Med 27 : 165-173, 2021
10) Gelderblom H, Wagner AJ, Tap WD et al : Long-term outcomes of pexidartinib in tenosynovial giant cell tumors. Cancer 127 : 884-893, 2021
P.258 掲載の参考文献
11) Lewis JH, Gelderblom H, van de Sande M et al : Pexidartinib long-term hepatic safety profile in patients with tenosynovial giant cell tumors. Oncologist 26 : e863-e873, 2021
12) Van De Sande M, Tap WD, Gelhorn HL et al : Pexidartinib improves physical functioning and stiffness in patients with tenosynovial giant cell tumor : results from the ENLIVEN randomized clinical trial. Acta Orthop 92 : 493-499, 2021
13) 尾崎峰編 : もう迷わない血管腫・血管奇形 : 分類・診断と治療・手技のコツ. 克誠堂出版, 2020
14) Kunimoto K, Yamamoto Y, Jinnin M : ISSVA Classification of Vascular Anomalies and molecular biology. Int J Mol Sci 23 : 2358, 2022
P.259 掲載の参考文献
15) Maruani A, Tavernier E, Boccara O et al : Sirolimus (rapamycin) for slow-flow malformations in children : The observational-phase randomized clinical PERFORMUS Trial. JAMA Dermatol 157 : 1289-1298, 2021
16) WHO Classification of Tumours Editorial Board : WHO Classification of Tumours, 5th Ed, Vol 3 : Soft Tissue and Bone Tumours. IARC, Lyon, 2020
17) Pizem J, Sekoranja D, Zupan A et al : FUS-NFATC2 or EWSR1-NFATC2 fusions are present in a large proportion of simple bone cysts. Am J Surg Pathol 44 : 1623-1634, 2020
18) Hung YP, Fisch AS, Diaz-Perez JA et al : Identification of EWSR1-NFATC2 fusion in simple bone cysts. Histopathology 78 : 849-856, 2021
19) Ong SLM, Lam SW, van den Akker BEWM et al : Expanding the spectrum of EWSR1-NFATC2-rearranged benign tumors : A common genomic abnormality in vascular malformation/hemangioma and simple bone cyst. Am J Surg Pathol 45 : 1669-1681, 2021
P.260 掲載の参考文献
20) Mantilla JG, Gross JM, Liu YJ et al : Characterization of novel USP6 gene rear-rangements in a subset of so-called cellular fibroma of tendon sheath. Mod Pathol 34 : 13-19, 2021
21) Broski SM, Wenger DE : Multimodality imaging features of USP6-associated neoplasms. Skeletal Radiol 52 : 297-313, 2023
P.261 掲載の参考文献
1) Ghert M, Schneider P, Guyatt G et al : Comparison of prophylactic intravenous antibiotic regimens after endoprosthetic reconstruction for lower extremity bone tumors : A randomized clinical trial. JAMA Oncol 8 : 345-353, 2022
P.262 掲載の参考文献
2) Basile G, Mattei JC, Alshaygy I et al : Curability of patients with lymph node metastases from extremity soft-tissue sarcoma. Cancer 126 : 5098-5108, 2020
3) Nakamura T, Kawai A, Hagi T et al : A comparison of clinical outcomes between additional excision after unplanned and planned excisions in patients with soft-tissue sarcoma of the limb : a propensity matching cohort study. Bone Joint J 103-B : 1809-1814, 2021
P.263 掲載の参考文献
4) Frobisher C, Glaser A, Levitt GA et al : Risk stratification of childhood cancer survivors necessary for evidence-based clinical long-term follow-up. Br J Cancer 117 : 1723-1731, 2017
5) Kube SJ, Blattmann C, Bielack SS et al : Secondary malignant neoplasms after bone and soft tissue sarcomas in children, adolescents, and young adults. Cancer 128 : 1787-1800, 2022
6) Woll PJ, Reichardt P, Le Cesne A et al : Adjuvant chemotherapy with doxorubicin, ifosfamide, and lenograstim for resected soft-tissue sarcoma (EORTC 62931) : a multicentre randomised controlled trial. Lancet Oncol 13 : 1045-1054, 2012
P.264 掲載の参考文献
7) Gronchi A, Palmerini E, Quagliuolo V et al : Neoadjuvant chemotherapy in high-risk soft tissue sarcomas : Final results of a randomized trial from Italian (ISG), Spanish (GEIS), French (FSG), and Polish (PSG) sarcoma groups. J Clin Oncol 38 : 2178-2186, 2020
8) Tanaka K, Machida R, Kawai A et al : Perioperative Adriamycin plus ifosfamide vs. gemcitabine plus docetaxel for high-risk soft tissue sarcomas : randomised, phase II/III study JCOG1306. Br J Cancer 127 : 1487-1496, 2022
9) 日本整形外科学会監 : 軟部腫瘍診療ガイドライン 2020 (改訂第3版). 南江堂, pp56-57, 2020
10) Squires MH, Ethun CG, Donahue EE et al : Extremity soft tissue sarcoma : A multi-institutional validation of prognostic nomograms. Ann Surg Oncol 29 : 3291-3301, 2022
11) Pasquali S, Pizzamiglio S, Touati N et al : The impact of chemotherapy on survival of patients with extremity and trunk wall soft tissue sarcoma : revisiting the results of the EORTC-STBSG 62931 randomised trial. Eur J Cancer 109 : 51-60, 2019
P.265 掲載の参考文献
12) Pasquali S, Palmerini E, Quagliuolo V et al : Neoadjuvant chemotherapy in high-risk soft tissue sarcomas : A Sarculator-based risk stratification analysis of the ISG-STS 1001 randomized trial. Cancer 128 : 85-93, 2022
13) Acem I, Verhoef C, Rueten-Budde AJ et al : Age-related differences of oncological outcomes in primary extremity soft tissue sarcoma : a multistate model including 6260 patients. Eur J Cancer 141 : 128-136, 2020
14) Acem I, van Houdt WJ, Grunhagen DJ et al : The role of perioperative chemotherapy in primary high-grade extremity soft tissue sarcoma : a risk-stratified analysis using PERSARC. Eur J Cancer 165 : 71-80, 2022
15) Bertucci F, Finetti P, Monneur A et al : Pathological grade-independent prediction of chemosensitivity by CINSARC should rehabilitate adjuvant chemotherapy in soft tissue sarcomas of any grade. Ann Oncol 30 : 342-343, 2019
16) Filleron T, Le Guellec S, Chevreau C et al : Value of peri-operative chemotherapy in patients with CINSARC high-risk localized grade 1 or 2 soft tissue sarcoma : study protocol of the target selection phase III CHIC-STS trial. BMC Cancer 20 : 716, 2020
17) Gounder MM, Agaram NP, Trabucco SE et al : Clinical genomic profiling in the management of patients with soft tissue and bone sarcoma. Nat Commun 13 : 3406, 2022
18) Fletcher CDM, Bridge JA, Hogendoorn PCW : World Health Organization classification of tumours of soft tissue and bone. Lyon, IARC Press, 2013
P.266 掲載の参考文献
19) Doebele RC, Drilon A, Paz-Ares L et al : Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours : integrated analysis of three phase 1-2 trials. Lancet Oncol 21 : 271-282, 2020
20) Hong DS, DuBois SG, Kummar S et al : Larotrectinib in patients with TRK fusion-positive solid tumours : a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 21 : 531-540, 2020
21) Demetri GD, Antonescu CR, Bjerkehagen B et al : Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas : expert recommendations from the World Sarcoma Network. Ann Oncol 31 : 1506-1517, 2020
22) Kobayashi H, Makise N, Shinozaki-Ushiku A et al : Dramatic response to entrectinib in a patient with malignant peripheral nerve sheath tumor harboring novel SNRNP70-NTRK3 fusion gene. Genes Chromosomes Cancer, 2022. doi : 10.1002/gcc.23089
23) Brcic I, Godschachner TM, Bergovec M et al : Broadening the spectrum of NTRK rearranged mesenchymal tumors and usefulness of pan-TRK immunohistochemistry for identification of NTRK fusions. Mod Pathol 34 : 396-407, 2021
25) Nozzoli F, Lazar AJ, Castiglione F et al : NTRK Fusions Detection in Paediatric Sarcomas to Expand the Morphological Spectrum and Clinical Relevance of Selected Entities. Pathol Oncol Res 28 : 1610237, 2022

V章 基礎

P.268 掲載の参考文献
1) Yoshimura N, Iidaka T, Horii C et al : Trends in osteoporosis prevalence over a 10-year period in Japan : the ROAD study 2005-2015. J Bone Miner Metab 40 : 829-838, 2022
P.269 掲載の参考文献
2) Hata R, Miyamoto K, Abe Y : Osteoporosis and sarcopenia are associated with each other and reduced IGF1 levels are a risk for both diseases in the very old elderly. Bone 166 : 116570, 2023
3) Horii C, Asai Y, Iidaka T et al : The incidence and risk factors for adjacent vertebral fractures in community-dwelling people with prevalent vertebral fracture : the 3rd and 4th survey of the ROAD study. Arch Osteoporos 15 : 74, 2020
4) Chen M, Du Y, Tang W et al : Risk factors of mortality and second fracture after elderly hip fracture surgery in Shanghai, China. J Bone Miner Metab 40 : 951-959, 2022
5) 令和4年度診療報酬改定 IV-6 : 重症化予防の取組の推進- (2). https://www.mhlw.go.jp/content/12400000/000912336.pdf (2023年1月閲覧)
P.270 掲載の参考文献
6) 青木保親, 市村正一, 大鳥精司他 : 骨粗鬆症性椎体骨折診療マニュアル. 日整会誌 94 : 882-906, 2020
7) 令和4年度診療報酬改定 III-1 : 患者にとって安心・安全に医療を受けられるための体制の評価や医薬品の安定供給の確保等- (5). https://www.mhlw.go.jp/content/12400000/000954826.pdf (2023年1月閲覧)
8) Miyamoto K, Hirayama A, Sato Y et al : A metabolomic profile predictive of new osteoporosis or sarcopenia development. Metabolites 11 : 278, 2021
9) Yang J, Liao M, Wang Y et al : Opportunistic osteoporosis screening using chest CT with artificial intelligence. Osteoporos Int 33 : 2547-2561, 2022
10) Sukegawa S, Fujimura A, Taguchi A et al : Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates. Sci Rep 12 : 6088, 2022
11) Nakamoto T, Taguchi A, Kakimoto N : Osteoporosis screening support system from panoramic radiographs using deep learning by convolutional neural network. Dentomaxillofac Radiol 51 : 20220135, 2022
12) Jang M, Kim M, Bae SJ et al : Opportunistic osteoporosis screening using chest radiographs with deep learning : Development and external validation with a cohort dataset. J Bone Miner Res 37 : 369-377, 2022
13) Sato Y, Yamamoto N, Inagaki N et al : Deep learning for bone mineral density and T-score prediction from chest Xrays : A multicenter study. Biomedicines 10 : 2323, 2022
P.271 掲載の参考文献
14) Chiba K, Okazaki N, Kurogi A et al : Randomized controlled trial of daily teriparatide, weekly high-dose teriparatide, or bisphosphonate in patients with postmenopausal osteoporosis : The TERABIT study. Bone 160 : 116416, 2022
15) Matsumoto T, Sone T, Soen S et al : Abaloparatide increases lumbar spine and hip BMD in Japanese patients with osteoporosis : The phase 3 ACTIVE-J Study. J Clin Endocrinol Metab 107 : e4222-e4231, 2022
16) Cosman F, Kendler DL, Langdahl BL et al : Romosozumab and antiresorptive treatment : the importance of treatment sequence. Osteoporos Int 33 : 1243-1256, 2022
17) Miyauchi A, Hamaya E, Yang W et al : Romosozumab followed by denosumab in Japanese women with high fracture risk in the FRAME trial. J Bone Miner Metab 39 : 278-288, 2021
18) Ebina K, Tsuboi H, Nagayama Y et al : Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis. Joint Bone Spine 88 : 105219, 2021
19) Kobayakawa T, Miyazaki A, Takahashi J et al : Verification of efficacy and safety of ibandronate or denosumab for postmenopausal osteoporosis after 12-month treatment with romosozumab as sequential therapy : The prospective VICTOR study. Bone 162 : 116480, 2022
20) Ebina K, Etani Y, Tsuboi H et al : Effects of prior osteoporosis treatment on the treatment response of romosozumab followed by denosumab in patients with postmenopausal osteoporosis. Osteoporos Int 33 : 1807-1813, 2022
P.272 掲載の参考文献
21) Kiyota Y, Muramatsu H, Sato Y et al : Smoking cessation increases levels of osteocalcin and uncarboxylated osteocalcin in human sera. Sci Rep 10 : 16845, 2020
22) Ruggiero SL, Dodson TB, Aghaloo T et al : American Association of Oral and Maxillofacial Surgeons' position paper on medication-related osteonecrosis of the jaws-2022 update. J Oral Maxillofac Surg 80 : 920-943, 2022
23) Ito E, Sato Y, Kobayashi T et al : Transient alendronate administration to pregnant or lactating mothers prevents bone loss in mice without adverse effects on offspring. Bone 153 : 116133, 2021
P.273 掲載の参考文献
24) Soma T, Iwasaki R, Sato Y et al : Tooth extraction in mice administered zoledronate increases inflammatory cytokine levels and promotes osteonecrosis of the jaw. J Bone Miner Metab 39 : 372-384, 2021
25) Soma T, Iwasaki R, Sato Y et al : Osteonecrosis development by tooth extraction in zoledronate treated mice is inhibited by active vitamin D analogues, anti-inflammatory agents or antibiotics. Sci Rep 12 : 19, 2022
26) Kobayashi H, Nakamura S, Sato Y et al : ALDH2 mutation promotes skeletal muscle atrophy in mice via accumulation of oxidative stress. Bone 142 : 115739, 2021
P.275 掲載の参考文献
1) Mizuhashi K, Ono W, Matsushita Y et al : Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563 : 254-258, 2018
2) Murphy MP, Koepke LS, Lopez MT et al : Articular cartilage regeneration by activated skeletal stem cells. Nat Med 26 : 1583-1592, 2020
3) Roelofs AJ, Kania K, Rafipay AJ et al : Identification of the skeletal progenitor cells forming osteophytes in osteoarthritis. Ann Rheum Dis 79 : 1625-1634, 2020
4) Chijimatsu R, Saito T : Mechanisms of synovial joint and articular cartilage development. Cell Mol Life Sci 76 : 3939-3952, 2019
P.276 掲載の参考文献
5) Usami Y, Gunawardena AT, Francois NB et al : Possible contribution of wnt-responsive chondroprogenitors to the postnatal murine growth plate. J Bone Miner Res 34 : 964-974, 2019
6) Tsukasaki M, Komatsu N, Negishi-Koga T et al : Periosteal stem cells control growth plate stem cells during postnatal skeletal growth. Nat Commun 13 : 4166, 2022
7) Saito T, Tanaka S : Molecular mechanisms underlying osteoarthritis development : Notch and NF-κB. Arthritis Res Ther 19 : 94, 2017
8) Catheline SE, Bell RD, Oluoch LS et al : IKKβ-NF-κB signaling in adult chondrocytes promotes the onset of age-related osteoarthritis in mice. Sci Signal 14 : eabf3535, 2021
9) Kaneko T, Horiuchi K, Chijimatsu R et al : Regulation of osteoarthritis development by ADAM17/Tace in articular cartilage. J Bone Miner Metab 40 : 196-207, 2022
10) Wei Y, Ma X, Sun H et al : EGFR signaling is required for maintaining adult cartilage homeostasis and attenuating osteoarthritis progression. J Bone Miner Res 37 : 1012-1023, 2022
P.277 掲載の参考文献
11) Momoeda M, de Vega S, Kaneko H et al : Deletion of hyaluronan-binding protein involved in hyaluronan depolymerization (HYBID) results in attenuation of osteoarthritis in mice. Am J Pathol 191 : 1986-1998, 2021
12) Maenohara Y, Chijimatsu R, Tachibana N et al : Lubricin contributes to homeostasis of articular cartilage by modulating differentiation of superficial zone cells. J Bone Miner Res 36 : 792-802, 2021
13) Ogawa H, Kozhemyakina E, Hung HH et al : Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways. Genes Dev 28 : 127-139, 2014
14) Xuan F, Yano F, Mori D et al : Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther 21 : 247, 2019
15) Nakamoto H, Katanosaka Y, Chijimatsu R et al : Involvement of transient receptor potential vanilloid channel 2 in the induction of lubricin and suppression of ectopic endochondral ossification in mouse articular cartilage. Arthritis Rheumatol 73 : 1441-1450, 2021
16) Kawata M, Teramura T, Ordoukhanian P et al : Kruppel-like factor-4 and Kruppel-like factor-2 are important regulators of joint tissue cells and protect against tissue destruction and inflammation in osteoarthritis. Ann Rheum Dis, 2022. doi : 10.1136/annrheumdis-2021-221867
17) Tavallaee G, Lively S, Rockel JS et al : Contribution of microRNA-27b-3p to synovial fibrotic responses in knee osteoarthritis. Arthritis Rheumatol, 2022. doi : 10.1002/art.42285
18) Zhang Y, Li S, Jin P et al : Dual functions of microRNA-17 in maintaining cartilage homeostasis and protection against osteoarthritis. Nat Commun 13 : 2447, 2022
P.278 掲載の参考文献
19) Nanus DE, Badoume A, Wijesinghe SN et al : Synovial tissue from sites of joint pain in knee osteoarthritis patients exhibits a differential phenotype with distinct fibroblast subsets. EBioMedicine 72 : 103618, 2021
20) Sebastian A, Hum NR, McCool JL et al : Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol 13 : 938075, 2022
P.279 掲載の参考文献
1) 池川志郎 : 整形外科領域のゲノム医療-現状と今後の課題-. 日整会誌 94 : 27-31, 2020
P.280 掲載の参考文献
2) Otomo N, Lu HF, Koido M et al : Polygenic risk score of adolescent idiopathic scoliosis for potential clinical use. J Bone Miner Res 36 : 1481-1491, 2021
3) Kou I, Otomo N, Takeda K et al : Genomewide association study identifies 14 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. Nat Commun 10 : 3685, 2019
4) Oates AC, Morelli LG, Ares S : Patterning embryos with oscillations : structure, function and dynamics of the vertebrate segmentation clock. Development 139 : 625-639, 2012
5) Matsuda M, Hayashi H, Garcia-Ojalvo J et al : Species-specific segmentation clock periods are due to differential biochemical reaction speeds. Science 369 : 1450-1455, 2020
6) Otomo N, Takeda K, Kawai S et al : Biallelic loss of function variants of TBX6 causes a spectrum of malformation of spine and rib including congenital scoliosis and spondylocostal dysostosis. J Med Genet 56 : 622-628, 2019
7) Boer CG, Hatzikotoulas K, Southam L et al : Deciphering osteoarthritis genetics across 826, 690 individuals from 9 populations. Cell 184 : 4784-4818, 2021
P.281 掲載の参考文献
8) Sakamoto Y, Yamamoto T, Sugano N et al : Genome-wide association study of idiopathic osteonecrosis of the femoral head. Sci Rep 7 : 15035, 2017
9) Suetsugu H, Kim K, Yamamoto T et al : Novel susceptibility loci for steroid-associated osteonecrosis of the femoral head in systemic lupus erythematosus. Hum Mol Genet 31 : 1082-1095, 2022
10) Baek SH, Kim KI, Yoon KS et al : Genome-wide association scans for idiopathic osteonecrosis of the femoral head in a Korean population. Mol Med Rep 15 : 750-728, 2017
11) Zhang Y, Bowen TR, Lietman SA et al : PPARGC1B is associated with nontraumatic osteonecrosis of the femoral head : A genomewide association study on a chart-reviewed cohort. J Bone Joint Surg Am 102 : 1628-1636, 2020
12) Maenohara Y, Chijimatsu R, Tachibana N et al : Lubricin contributes to homeostasis of articular cartilage by modulating differentiation of superficial zone cells. J Bone Miner Res 36 : 792-802, 2021
13) Koshizuka Y, Ikegawa S, Sano M et al : Isolation of novel mouse genes associated with ectopic ossification by differential display method using ttw, a mouse model for ectopic ossification. Cytogenet Cell Genet 94 : 163-168, 2001
14) Tachibana N, Chijimatsu R, Okada H et al : RSPO2 defines a distinct undifferentiated progenitor in the tendon/ligament and suppresses ectopic ossification. Sci Adv 8 : eabn2138, 2022
P.282 掲載の参考文献
15) Nakajima M, Takahashi A, Tsuji T et al ; Genetic Study Group of Investigation Committee on Ossification of the Spinal Ligaments : A genome-wide association study identifies susceptibility loci for ossification of the posterior longitudinal ligament of the spine. Nat Genet 46 : 1012-1016, 2014
16) Nakajima M, Kou I, Ohashi H et al : Identification and functional characterization of RSPO2 as a susceptibility gene for ossification of the posterior longitudinal ligament of the spine. Am J Hum Genet 99 : 202-207, 2016
17) 池川志郎 : ゲノム解析による骨系統疾患の原因遺伝子探求-現状と今後の展望. 整形外科 71 : 1205-1208, 2020
18) Guo L, Iida A, Bhavani GS et al : Deficiency of TMEM53 causes a previously unknown sclerosing bone disorder by dysregulation of BMP-SMAD signaling. Nat Commun 12 : 2046, 2021
P.283 掲載の参考文献
19) Itai T, Wang Z, Nishimura G et al : De novo heterozygous variants in KIF5B cause kyphomelic dysplasia. Clin Genet 102 : 3-11, 2022
20) Kalantari S, Filges I : 'Kinesinopathies' : emerging role of the kinesin family member genes in birth defects. J Med Genet 57 : 797-807, 2020
21) Xue JY, Grigelioniene G, Wang Z et al : SLC4A2 deficiency causes a new type of osteopetrosis. J Bone Miner Res 37 : 226-235, 2022
P.284 掲載の参考文献
1) Uezumi A, Ikemoto-Uezumi M, Zhou H et al : Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J Clin Invest 131 : e139617, 2021
P.285 掲載の参考文献
2) Kaneshige A, Kaji T, Zhang L et al : Relayed signaling between mesenchymal progenitors and muscle stem cells ensures adaptive stem cell response to increased mechanical load. Cell Stem Cell 29 : 265-280.e6, 2022
3) Saito Y, Chikenji TS, Matsumura T et al : Exercise enhances skeletal muscle regeneration by promoting senescence in fibroadipogenic progenitors. Nat Commun 11 : 889, 2020
4) Nawaz A, Bilal M, Fujisaka S et al : Depletion of CD206+ M2-like macrophages induces fibro-adipogenic progenitors activation and muscle regeneration. Nat Commun 13 : 7058, 2022
5) Julien A, Kanagalingam A, Martinez-Sarra E et al : Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat Commun 12 : 2860, 2021
P.286 掲載の参考文献
6) Yoshioka K, Nagahisa H, Miura F et al : Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Sci Adv 7 : eabd7924, 2021
P.287 掲載の参考文献
7) Sakai H, Sawada Y, Tokunaga N et al : Uhrf1 governs the proliferation and differentiation of muscle satellite cells. iScience 25 : 103928, 2022
8) Nakka K, Hachmer S, Mokhtari Z et al : JMJD3 activated hyaluronan synthesis drives muscle regeneration in an inflammatory environment. Science 377 : 666-669, 2022
9) Shang M, Cappellesso F, Amorim R et al : Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature 587 : 626-631, 2020
10) Ratnayake D, Nguyen PD, Rossello FJ et al : Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 591 : 281-287, 2021
P.288 掲載の参考文献
11) Christianto A, Baba T, Takahashi F et al : Sex differences in metabolic pathways are regulated by Pfkfb3 and Pdk4 expression in rodent muscle. Commun Biol 4 : 1264, 2021
12) Salamone IM, Quattrocelli M, Barefield DY et al : Intermittent glucocorticoid treatment enhances skeletal muscle performance through sexually dimorphic mechanisms. J Clin Invest 132 : e149828, 2022
13) Sakakibara I, Yanagihara Y, Himori K et al : Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4. iScience 24 : 102303, 2021
P.289 掲載の参考文献
1) Kitamura K, Iwanami A, Nakamura M et al : Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res 85 : 2332-2342, 2007
2) Kitamura K, Fujiyoshi K, Yamane J et al : Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One 6 : e27706, 2011
3) Nagoshi N, Tsuji O, Kitamura K et al : Phase I/II study of intrathecal administration of recombinant human hepatocyte growth factor in patients with acute spinal cord injury : a double-blind, randomized clinical trial of safety and efficacy. J Neurotrauma 37 : 1752-1758, 2020
P.290 掲載の参考文献
4) Wu Y, Satkunendrarajah K, Teng Y et al : Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma 30 : 441-452, 2013
5) Takahashi H, Yamazaki M, Okawa A et al : Neuroprotective therapy using granulocyte colony-stimulating factor for acute spinal cord injury : a phase I/II a clinical trial. Eur Spine J 21 : 2580-2587, 2012
6) Inada T, Takahashi H, Yamazaki M et al : Multicenter prospective nonrandomized controlled clinical trial to prove neurotherapeutic effects of granulocyte colony-stimulating factor for acute spinal cord injury : analyses of follow-up cases after at least 1 year. Spine (Phila Pa 1976) 39 : 213-219, 2014
7) Koda M, Hanaoka H, Fujii Y et al : Randomized trial of granulocyte colonystimulating factor for spinal cord injury. Brain 144 : 789-799, 2021
P.291 掲載の参考文献
8) Morita T, Sasaki M, Kataoka-Sasaki Y et al : Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury. Neuroscience 335 : 221-231, 2016
9) Honmou O, Yamashita T, Morita T et al : Intravenous infusion of auto serumexpanded autologous mesenchymal stem cells in spinal cord injury patients : 13 case series. Clin Neurol Neurosurg 203 : 106565, 2021
10) Nori S, Okada Y, Yasuda A et al : Grafted human-induced pluripotent stem-cell-derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proc Natl Acad Sci U S A 108 : 16825-16830, 2011
11) Kobayashi Y, Okada Y, Itakura G et al : Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity. PLoS One 7 : e52787, 2012
12) Sugai K, Sumida M, Shofuda T et al : First-in-human clinical trial of transplantation of iPSC-derived NS/PCs in subacute complete spinal cord injury : Study protocol. Regen Ther 18 : 321-333, 2021
P.292 掲載の参考文献
13) Keirstead HS, Nistor G, Bernal G et al : Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci 25 : 4694-4705, 2005
14) Fessler RG, Ehsanian R, Liu CY et al : A phase 1/2a dose-escalation study of oligodendrocyte progenitor cells in individuals with subacute cervical spinal cord injury. J Neurosurg Spine 37 : 812-820, 2022
15) McKenna SL, Ehsanian R, Liu CY et al : Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J Neurosurg Spine, 2022. doi : 10.3171/2021.12.SPINE21622
16) Okawara H, Sawada T, Matsubayashi K et al : Gait ability required to achieve therapeutic effect in gait and balance function with the voluntary driven exoskeleton in patients with chronic spinal cord injury : a clinical study. Spinal Cord 58 : 520-527, 2020
17) Okawara H, Tashiro S, Sawada T et al : Neurorehabilitation using a voluntary driven exoskeletal robot improves trunk function in patients with chronic spinal cord injury : a single-arm study. Neural Regen Res 17 : 427-432, 2022

VI章 ロコモティブシンドローム

P.294 掲載の参考文献
1) 日本整形外科学会, 日本運動器科学会監, ロコモティブシンドローム診療ガイド策定委員会編 : ロコモティブシンドローム診療ガイド 2021. 文光堂, 2021
2) Yamada K, Ito YM, Akagi M et al : Reference values for the locomotive syndrome risk test quantifying mobility of 8681 adults aged 20-89 years : A cross-sectional nationwide study in Japan. J Orthop Sci 25 : 1084-1092, 2020
P.295 掲載の参考文献
3) Kobayashi T, Morimoto T, Shimanoe C et al : Development of a tool for screening the severity of locomotive syndrome by the loco-check. J Orthop Sci 27 : 701-706, 2022
4) Kobayashi K, Imagama S, Ando K et al : Weakness of grip strength reflects future locomotive syndrome and progression of locomotive risk stage : A 10-year longitudinal cohort study. Mod Rheumatol 30 : 573-579, 2020
5) Yoshimura N, Iidaka T, Horii C et al : Epidemiology of locomotive syndrome using updated clinical decision limits : 6-year follow-ups of the ROAD study. J Bone Miner Metab 40 : 623-635, 2022
6) Ide K, Yamato Y, Hasegawa T et al : Prospective nursing care certification using the 25-question Geriatric Locomotive Function Scale. Geriatr Gerontol Int 21 : 492-497, 2021
P.296 掲載の参考文献
7) Niwa H, Ojima T, Watanabe Y et al : Association between the 25-question Geriatric Locomotive Function Scale score and the incidence of certified need of care in the long-term care insurance system : The TOEI study. J Orthop Sci 26 : 672-677, 2021
8) Yamada T, Yamato Y, Hasegawa T et al : Influence of the sagittal vertical axis on the risk of falls in community-dwelling elderly people : A retrospective longitudinal study. Spine Surg Relat Res 4 : 237-241, 2020
9) Shigematsu H, Wada M, Miyata S et al : Can the loco-check be used as a self-check tool for evaluating fall risk among older subjects? A prospective study. J Orthop Sci 26 : 891-895, 2021
10) Asahi R, Nakamura Y, Koike Y, et al : Does locomotive syndrome severity predict future fragility fractures in community-dwelling women with osteoporosis? Mod Rheumatol, 2022. doi : 10.1093/mr/roac101
P.297 掲載の参考文献
11) Yamaguchi S, Yamada K, Ito YM et al : frequency-response relationship between exercise and locomotive syndrome across age groups : Secondary analysis of a nationwide cross-sectional study in Japan. Mod Rheumatol, 2022. doi : 10.1093/mr/roac050
12) Sato H, Kondo S, Saito M et al : Effects of strengthening the hip flexor muscles on walking ability and the locomotive syndrome rank test : An intervention study. J Orthop Sci 25 : 892-896, 2020
13) Kato S, Demura S, Kurokawa Y et al : Efficacy and safety of abdominal trunk muscle strengthening using an innovative device in elderly patients with chronic low back pain : A pilot study. Ann Rehabil Med 44 : 246-255, 2020
14) Fujita N, Michikawa T, Miyamoto A et al : Lumbar spinal surgery improves locomotive syndrome in elderly patients with lumbar spinal canal stenosis : A multicenter prospective study. J Orthop Sci 25 : 213-218, 2020
15) Kato S, Demura S, Kabata T et al : Evaluation of locomotive syndrome in patients receiving surgical treatment for degenerative musculoskeletal diseases : A multicentre prospective study using the new criteria. Mod Rheumatol, 2021. doi : 10.1093/mr/roab045
16) Miyazaki S, Tsuruta K, Yoshinaga S et al : Effect of total hip arthroplasty on improving locomotive syndrome in hip disease patients : A prospective cohort study focused on total clinical decision limits stage 3. J Orthop Sci 27 : 408-413, 2022
P.298 掲載の参考文献
17) Ninomiya K, Takahira N, Ikeda T et al : Prevalence of locomotive syndrome in Japanese patients more than 10 years after total hip arthroplasty : A cross-sectional cohort study. J Orthop Sci 27 : 176-180, 2022
18) Kawano H, Hirahata M, Imanishi J : Locomotive syndrome in cancer patients : a new role of orthopaedic surgeons as a part of comprehensive cancer care. Int J Clin Oncol 27 : 1233-1237, 2022
19) Sato M, Furuya T, Shiga Y et al : Assessment of locomotive syndrome in patients with visceral cancer, the comparison with non-cancer patients using propensity score matching. J Orthop Sci 27 : 1328-1332, 2022
20) Chua KY, Lin X, Wang Y et al : Visceral fat area is the measure of obesity best associated with mobility disability in community dwelling oldest-old Chinese adults. BMC Geriatr 21 : 282, 2021
21) Morita Y, Ito H, Kawaguchi S et al : Systemic chronic diseases coexist with and affect locomotive syndrome : The Nagahama Study. Mod Rheumatol, 2022. doi : 10.1093/mr/roac039
P.299 掲載の参考文献
22) Yamada K, Yamaguchi S, Ito YM et al : Factors associated with mobility decrease leading to disability : a cross-sectional nationwide study in Japan, with results from 8681 adults aged 20-89 years. BMC Geriatr 21 : 651, 2021
23) Yamada T, Yamato Y, Hasegawa T et al : Prevalence of locomotive dysfunction exacerbating systolic blood pressure and abdominal circumference : A longitudinal cohort analysis. Metab Syndr Relat Disord 19 : 562-566, 2021
24) Nakamura M, Imaoka M, Nakao H et al : Association between subjective oral dysfunction and locomotive syndrome in community-dwelling older adults. Sci Rep 11 : 12591, 2021

最近チェックした商品履歴

Loading...