眼科学レビュー 2023-’24

出版社: 総合医学社
著者:
発行日: 2023-09-10
分野: 臨床医学:外科  >  眼科学
ISBN: 9784883784738
電子書籍版: 2023-09-10 (第1版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:約3営業日

13,200 円(税込)

電子書籍
章別単位での購入はできません
ブラウザ、アプリ閲覧

13,200 円(税込)

商品紹介

眼科エキスパートが、直近2年間に発表された膨大な数の文献を渉猟し、注目すべき文献をレビュー。この一冊で眼科領域全体 における最近のトピックを把握できます。眼科医はもとより専門医を目指す方にも役立つ内容です。

目次

  • I.前眼部
     1.眼瞼疾患
     2・結膜炎(非感染性)
     3・結膜疾患
     4・角結膜感染症
     5・ドライアイ
     6.角膜疾患(角膜炎,ドライアイ以外)
     7.角膜移植
     8.強膜炎
     9.前眼部画像解析

    II.緑内障
     10.緑内障診断
     11.緑内障薬物療法
     12.緑内障手術

    III.白内障
     13.白内障手術手技
     14.白内障手術合併症
     15.多焦点眼内レンズ
     16.眼内レンズ
     17.眼内レンズ合併症

    IV.ぶどう膜
     18.ぶどう膜炎
     19.生物学的製剤によるぶどう膜炎治療

    V.網 膜
     20.網膜血管異常
     21.糖尿病網膜症
     22.加齢黄斑変性
     23.黄斑前膜,黄斑円孔
     24.網膜剝離
     25.網膜ジストロフィ
     26.網膜色素上皮・脈絡膜
     27.網膜電気生理学的検査
     28.光干渉断層計

    VI.神経眼科
     29.視神経
     30.視覚路・視中枢

    VII.外傷・眼窩・腫瘍・涙道
     31.眼外傷
     32.眼腫瘍
     33.涙腺・涙道
     34.眼形成

    VIII.小児・弱視斜視
     35.小児眼科
     36.弱視・斜視

    IX.視機能
     37.視力・視機能・色覚
     38.視 野
     39.屈折と調節
     40.眼鏡・コンタクトレンズ
     41.屈折矯正手術
     42.最近のロービジョンケア
     43.強度近視
     44.近視進行抑制

    X.その他
     45.全身疾患と眼 —補体標的薬と加齢黄斑変性—
     46.疫学:失明予防とパブリックヘルス
     47.人工知能・ビッグデータ
     48.再生医療
     49.遠隔医療
     50.遺伝子診断・治療

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

I. 前眼部

P.3 掲載の参考文献
1) Jevnikar K, Jaki Mekjavic P, Vidovic Valentincic N et al : An update on COVID-19 related ophthalmic manifestations. Ocul Immunol Inflamm 29 : 684-689, 2021
2) Sopp NM, Sharda V : An eye on COVID-19 : A meta-analysis of positive conjunctival reverse transcriptase-polymerase chain reaction and SARS-CoV-2 conjunctivitis prevalence. Optom Vis Sci 98 : 429-436, 2021
3) Almazroa A, Alamri S, Alabdulkader B et al : Ocular transmission and manifestation for coronavirus disease : a systematic review. Int Health 14 : 113-121, 2022
4) Kumari S, Anand R, Sambyal B et al : Ocular adverse effects of COVID-19 vaccines : A systematic review. J Family Med Prim Care 11 : 5041-5054, 2022
5) Lee YK, Huang YH : Ocular manifestations after receiving COVID-19 vaccine : A systematic review. Vaccines (Basel) 9, 2021 (doi : 10.3390/vaccines9121404)
P.4 掲載の参考文献
6) Desiato VM, Byun YJ, Nguyen SA et al : Sebaceous carcinoma of the eyelid : A systematic review and meta-analysis. Dermatol Surg 47 : 104-110, 2021
7) Peillex D, Passemard L, Magnin B et al : The role of surgery after remission of nonsystemic extensive periorbital basal cell carcinoma treated by vismodegib : A systematic review. Dermatol Surg 48 : 905-911, 2022
8) Sekulic A, Migden MR, Basset-Seguin N et al : Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma : final update of the pivotal ERIVANCE BCC study. BMC Cancer 17 : 332, 2017
9) Aiello F, Gallo Afflitto G, Alessandri Bonetti M et al : Lax eyelid condition (LEC) and floppy eyelid syndrome (FES) prevalence in obstructive sleep apnea syndrome (OSA) patients : a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol, 2022 (doi : 10.1007/s00417-022-05890-5)
10) Cheong AJY, Ho OTW, Wang SKX et al : Association between obstructive sleep apnea and floppy eyelid syndrome : A systematic review and meta-analysis. Surv Ophthalmol 68 : 257-264, 2023
P.5 掲載の参考文献
11) Bulloch G, Seth I, Alphonse S et al : Prevalence of obstructive sleep apnea with floppy eyelid syndrome : A systematic review and meta-analysis. Ophthalmic Plast Reconstr Surg, 2022 (doi : 10.1097/IOP.0000000000002298)
12) Hollander MHJ, Pott JWR, Delli K et al : Impact of upper blepharoplasty, with or without orbicularis oculi muscle removal, on tear film dynamics and dry eye symptoms : A randomized controlled trial. Acta Ophthalmol 100 : 564-571, 2022
13) Sato Y, Mimura M, Fujita Y et al : Chronologic analysis of tear dynamics on blinking using quantitative manometry in healthy humans. Ophthalmic Plast Reconstr Surg 38 : 22-28, 2022
14) Liu C, Zhou Q, Gao ZQ et al : Efficacy of intense pulsed light and meibomian gland expression treatments in meibomian gland dysfunction : A meta-analysis of randomized controlled trials. Medicine (Baltimore) 101 : e32292, 2022
15) Miao S, Yan R, Jia Y et al : Effect of intense pulsed light therapy in dry eye disease caused by meibomian gland dysfunction : A systematic review and meta-analysis. Eye Contact Lens 48 : 424-429, 2022
16) Lei Y, Peng J, Liu J et al : Intense pulsed light (IPL) therapy for meibomian gland dysfunction (MGD) -related dry eye disease (DED) : a systematic review and meta-analysis. Lasers Med Sci 38 : 1, 2022
17) Shin KY, Lim DH, Moon CH et al : Intense pulsed light plus meibomian gland expression versus intense pulsed light alone for meibomian gland dysfunction : A randomized crossover study. PLoS One 16 : e0246245, 2021
18) Fu Y, Xiang H, Hu R et al : Prospective trial of a 2940 nm Er : YAG laser for the treatment of meibomian gland dysfunction. Graefes Arch Clin Exp Ophthalmol 259 : 2269-2278, 2021
19) Leng X, Shi M, Liu X et al : Intense pulsed light for meibomian gland dysfunction : a systematic review and meta-analysis. Graefes Arch Clin Exp Ophthalmol 259 : 1-10, 2021
P.6 掲載の参考文献
20) Martinez-Pulgarin DF, Avila MY, Rodriguez-Morales AJ et al : Interventions for Demodex blepharitis and their effectiveness : A systematic review and meta-analysis. Cont Lens Anterior Eye 44 : 101453, 2021
21) Avila MY, Martinez-Pulgarin DF, Rizo Madrid C et al : Topical ivermectin-metronidazole gel therapy in the treatment of blepharitis caused by Demodex spp. : A randomized clinical trial. Cont Lens Anterior Eye 44 : 101326, 2021
22) Aldhabaan SA, Hudise JY, Obeid AA et al : A meta-analysis of pre- and postoperative corticosteroids for reducing the complications following facial reconstructive and aesthetic surgery. Braz J Otorhinolaryngol 88 : 63-82, 2022
23) Mimura M, Matsuura T, Takagi M et al : A randomized clinical trial of triamcinolone acetonide injection for suppression of inflammation after blepharoptosis surgery. J Plast Reconstr Aesthet Surg 75 : 1744-1749, 2022
24) Anderson L, Vankawala J, Gupta N et al : Evaluation of the risk of hypertrophic scarring and keloid following eyelid procedures : A systematic review. Aesthet Surg J, 2023 (doi : 10.1093/asj/sjad034)
P.7 掲載の参考文献
25) Vu PQ, Yu JJ, Charlson ES et al : Opioid use after orbital, eyelid, or lacrimal surgery. Ophthalmic Plast Reconstr Surg 37 : S62-S65, 2021
P.8 掲載の参考文献
1) Sanchez-Hernandez MC, Dordal MT, Navarro AM et al : Severity and duration of allergic conjunctivitis : are they associated with severity and duration of allergic rhinitis and asthma? Eur Ann Allergy Clin Immunol 54 : 277-283, 2022
P.9 掲載の参考文献
2) Fan Z, Yang B, Sun L et al : Effect of antiallergic therapy on quality of life in children with allergic conjunctivitis and their parents. Ocul Immunol Inflamm, 2022 (doi : 10.1080/09273948.2022.2103830)
3) Fukushima A, Miyazaki D, Kishimoto H et al : Efficacy of proactive topical antihistamine use in patients with seasonal allergic conjunctivitis. Adv Ther 39 : 5568-5581, 2022
P.10 掲載の参考文献
4) Dogan CU, Tuzer C, Turker IC et al : Topical cyclosporine versus allergen specific immunotherapy in perennial allergic conjunctivitis. Int Ophthalmol, 2022 (doi : 10.1007/s10792-022-02612-y)
5) Kirikkaya E, Degirmenci P : Effects of omalizumab on allergic conjunctivitis. Int Ophthalmol 42 : 167-175, 2022
6) Zengarini C, Roda M, Schiavi C et al : Successful treatment of severe recalcitrant vernal keratoconjunctivitis and atopic dermatitis associated with elevated IgE levels with omalizumab. Clin Exp Dermatol 47 : 604-606, 2022
7) Reddy AK, Hauswirth SG, Gregory DG et al : Dupilumab-associated cicatrizing ocular disease. Am J Ophthalmol Case Rep 26 : 101528, 2022
8) Nguyen MT, Tsukikawa M, Lomazow W et al : Irreversible bilateral cicatricial keratoconjunctivitis after dupilumab therapy. Case Rep Ophthalmol 13 : 638-642, 2022
P.11 掲載の参考文献
9) Wu D, Daniel BS, Lai AJX et al : Dupilumab-associated ocular manifestations : A review of clinical presentations and management. Surv Ophthalmol 67 : 1419-1442, 2022
10) Simpson EL, Merola JF, Silverberg JI et al : Safety of tralokinumab in adult patients with moderate-to-severe atopic dermatitis : pooled analysis of five randomized, double-blind, placebo-controlled phase II and phase III trials. Br J Dermatol 187 : 888-899, 2022
11) Wollenberg A, Beck LA, de Bruin Weller M et al : Conjunctivitis in adult patients with moderate-to-severe atopic dermatitis : results from five tralokinumab clinical trials. Br J Dermatol 186 : 453-465, 2022
12) Anesi SD, Tauber J, Nguyen QD et al : Lirentelimab for severe and chronic forms of allergic conjunctivitis. J Allergy Clin Immunol 150 : 631-639, 2022
P.12 掲載の参考文献
13) Okano M, Hirahara K, Kiuchi M et al : Interleukin-33-activated neuropeptide CGRP-producing memory Th2 cells cooperate with somatosensory neurons to induce conjunctival itch. Immunity 55 : 2352-2368.e7, 2022
P.13 掲載の参考文献
14) Zarzuela JC, Reinoso R, Armentia A et al : Conjunctival intraepithelial lymphocytes, lacrimal cytokines and ocular commensal microbiota : analysis of the three main players in allergic conjunctivitis. Front Immunol 13 : 911022, 2022
15) Inada N, Shoji J, Harata G et al : Dysbiosis of ocular surface microbiota in patients with refractive allergic conjunctival diseases. Cornea 41 : 1232-1241, 2022
16) Singh S, Donthineni PR, Shanbhag SS et al : Drug induced cicatrizing conjunctivitis : A case series with review of etiopathogenesis, diagnosis and management. Ocul Surf 24 : 83-92, 2022
P.15 掲載の参考文献
1) Sun Z, Li Y, Liu R et al : Progress of bulbar conjunctival microcirculation alterations in the diagnosis of ocular diseases. Dis Markers 2022 : 4046809, 2022
2) Jesus J, Dias L, Almeida I et al : Analysis of conjunctival vascular density in scleral contact lens wearers using optical coherence tomography angiography. Cont Lens Anterior Eye 45 : 101403, 2022
P.16 掲載の参考文献
3) Perez VL, Stern ME, Pflugfelder SC et al : Inflammatory basis for dry eye disease flares. Exp Eye Res 201 : 108294, 2020
4) Kang TS, Cho J, Kim J et al : Modified ocular surface disease index as a screening criteria for dry eye syndrome presenting after successful dacryocystorhinostomy. PLoS One 16 : e0247168, 2021
5) Muhafiz E, Demir MS : Ability of noninvasive tear break-up time to determine tear instability in contact lens wearers. Int Ophthalmol 42 : 959-968, 2022
6) Brouwer NJ, Marinkovic M, Bleeker JC et al : Anterior segment OCTA of melanocytic lesions of the conjunctiva and iris. Am J Ophthalmol 222 : 137-147, 2021
7) Li X, Xia C, Li X et al : Identifying diabetes from conjunctival images using a novel hierarchical multi-task network. Sci Rep 12 : 264, 2022
P.17 掲載の参考文献
8) Hwang J, Karanam V, Wang J et al : Conjunctival vessels in diabetes using functional slit lamp biomicroscopy. Cornea 40 : 950-957, 2021
9) Patel NR, Duong S, Mirbod P et al : A meta-analysis of variability in conjunctival microvascular hemorheology metrics. Microvasc Res 142 : 104340, 2022
P.18 掲載の参考文献
11) Hayashi R, Ishikawa Y, Katori R et al : Coordinated generation of multiple ocular-like cell lineages and fabrication of functional corneal epithelial cell sheets from human iPS cells. Nat Protoc 12 : 683-696, 2017
12) Nomi K, Hayashi R, Ishikawa Y et al : Generation of functional conjunctival epithelium, including goblet cells, from human iPSCs. Cell Rep 34 : 108715, 2021
13) Welss J, Punchago N, Feldt J et al : The distribution of conjunctival goblet cells in mice. Ann Anat 234 : 151664, 2021
14) Belviranli S, Oltulu P, Uca AU et al : Conjunctival impression cytology and tear film parameters in patients with multiple sclerosis. Int Ophthalmol 42 : 593-600, 2022
P.19 掲載の参考文献
15) Hoffmann M, Kleine-Weber H, Schroeder S et al : SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 : 271-280.e8, 2020
16) Li S, Li D, Fang J et al : SARS-CoV-2 receptor ACE2 is expressed in human conjunctival tissue, especially in diseased conjunctival tissue. Ocul Surf 19 : 249-251, 2021
17) Ma R, Gan L, Jiang S et al : High expression of SARS-CoV-2 entry factors in human conjunctival goblet cells. Exp Eye Res 205 : 108501, 2021
18) Knoop KA, Newberry RD : Goblet cells : multifaceted players in immunity at mucosal surfaces. Mucosal Immunol 11 : 1551-1557, 2018
19) Logeswaran A, Contreras-Ruiz L, Masli S et al : Conjunctival goblet cell responses to TLR5 engagement promote activation of local antigen-presenting cells. Front Immunol 12 : 716939, 2021
P.20 掲載の参考文献
20) Smith-Page K, Kugadas A, Lin T et al : Conjunctival commensal isolation and identification in mice. J Vis Exp, 2021 (doi : 10.3791/61672)
21) Kishimoto T, Ishida W, Nakajima I et al : Promotion of conjunctival fibroblastmediated collagen gel contraction by mast cells through up-regulation of matrix metalloproteinase release and activation. Exp Eye Res 218 : 108980, 2022
P.23 掲載の参考文献
1) Gurnani B, Christy J, Narayana S et al : Retrospective multifactorial analysis of Pythium keratitis and review of literature. Indian J Ophthalmol 69 : 1095-1101, 2021
2) Gurnani B, Kaur K, Venugopal A et al : Pythium insidiosum keratitis-A review. Indian J Ophthalmol 70 : 1107-1120, 2022
3) Vishwakarma P, Mohanty A, Kaur A et al : Pythium keratitis : Clinical profile, laboratory diagnosis, treatment, and histopathology features post-treatment at a tertiary eye care center in Eastern India. Indian J Ophthalmol 69 : 1544-1552, 2021
4) Ahirwar LK, Kalra P, Sharma S et al : Linezolid shows high safety and efficacy in the treatment of Pythium insidiosum keratitis in a rabbit model. Exp Eye Res 202 : 108345, 2021
5) Tanna V, Bagga B, Sharma S et al : Randomized double-masked placebo-controlled trial for the management of Pythium keratitis : combination of antibiotics versus monotherapy. Cornea, 2023 (doi : 10.1097/ICO.0000000000003251)
6) Carnt N, Minassian DC, Dart JKG et al : Acanthamoeba keratitis risk factors for daily wear contact lens users : A case-control study. Ophthalmology 130 : 48-55, 2023
7) Scruggs BA, Quist TS, Zimmerman MB et al : Risk factors, management, and outcomes of Acanthamoeba keratitis : A retrospective analysis of 110 cases. Am J Ophthalmol Case Rep 25 : 101372, 2022
8) Rayamajhee B, Willcox MD, Henriquez FL et al : Acanthamoeba keratitis : an increasingly common infectious disease of the cornea. Lancet Microbe 2 : e345-e346, 2021
9) Thulasi P, Saeed HN, Rapuano CJ et al : Oral miltefosine as salvage therapy for refractory Acanthamoeba keratitis. Am J Ophthalmol 223 : 75-82, 2021
P.24 掲載の参考文献
10) Kato N, Ide T, Kobashi H et al : Infectious keratitis after corneal crosslinking for keratoconus caused by levofloxacin-resistant microorganisms. BMC Ophthalmol 21 : 317, 2021
11) Iwasaki T, Nejima R, Miyata K et al : Ocular surface flora and prophylactic antibiotics for cataract surgery in the age of antimicrobial resistance. Jpn J Ophthalmol 66 : 111-118, 2022
12) Bhatt S, Chatterjee S : Fluoroquinolone antibiotics : Occurrence, mode of action, resistance, environmental detection, and remediation-A comprehensive review. Environ Pollut 315 : 120440, 2022
13) Herbert R, Caddick M, Somerville T et al : Potential new fluoroquinolone treatments for suspected bacterial keratitis. BMJ Open Ophthalmol 7, 2022 (doi : 10.1136/bmjophth-2022-001002)
P.25 掲載の参考文献
14) Brown L, Leck AK, Gichangi M et al : The global incidence and diagnosis of fungal keratitis. Lancet Infect Dis 21 : e49-e57, 2021
15) Hoffman JJ, Yadav R, Sanyam SD et al : Topical chlorhexidine 0.2% versus topical natamycin 5% for the treatment of fungal keratitis in nepal : A randomized controlled noninferiority trial. Ophthalmology 129 : 530-541, 2022
P.26 掲載の参考文献
16) Kimura K, Inoue Y, Asari S et al : Multicenter prospective observational study of fungal keratitis in Japan : analyses of in vitro susceptibility tests for combinations of drugs. Jpn J Ophthalmol 66 : 240-253, 2022
17) Than T, Morettin CE, Harthan JS et al : Efficacy of a single administration of 5% povidone-iodine in the treatment of adenoviral conjunctivitis. Am J Ophthalmol 231 : 28-38, 2021
P.27 掲載の参考文献
18) Imparato R, Rosa N, De Bernardo M et al : Antiviral drugs in adenovirus-induced keratoconjunctivitis. Microorganisms 10, 2022 (doi : 10.3390/microorganisms10102014)
19) Romanowski EG, Hussein ITM, Cardinale SC et al : Filociclovir is an active antiviral agent against ocular adenovirus isolates in vitro and in the Ad5/NZW rabbit ocular model. Pharmaceuticals (Basel) 14, 2021 (doi : 10.3390/ph14040294)
P.28 掲載の参考文献
1) Wirta D, Vollmer P, Paauw J et al : Efficacy and safety of OC-01 (varenicline solution) nasal spray on signs and symptoms of dry eye disease : the ONSET-2 phase 3 randomized trial. Ophthalmology 129 : 379-387, 2022
P.29 掲載の参考文献
2) Sheppard JD, Wirta DL, McLaurin E et al : A water-free 0.1% cyclosporine A solution for treatment of dry eye disease : Results of the randomized phase 2B/3 ESSENCE Study. Cornea 40 : 1290-1297, 2021
3) Wirta DL, Torkildsen GL, Moreira HR et al : A clinical phase II study to assess efficacy, safety, and tolerability of waterfree cyclosporine formulation for treatment of dry eye disease. Ophthalmology 126 : 792-800, 2019
4) Tauber J, Berdy GJ, Wirta DL et al : NOV03 for dry eye disease associated with meibomian gland dysfunction : Results of the randomized phase 3 GOBI study. Ophthalmology 130 : 516-524, 2023
5) Wirta D, Vollmer P, Paauw J et al : Efficacy and safety of OC-01 (varenicline solution) nasal spray on signs and symptoms of dry eye disease : The ONSET-2 phase 3 randomized trial. Ophthalmology 129 : 379-387, 2022
6) Koh S, Soma T, Oie Y et al : First Diquafosol treatment for dry eye : 10-year follow-up. Asia Pac J Ophthalmol (Phila) 12 : 103-104, 2023
7) Uchino M, Yokoi N, Shimazaki J et al : Adherence to eye drops usage in dry eye patients and reasons for non-compliance : A web-based survey. J Clin Med 11 : 2022 (doi : 10.3390/jcm11020367)
8) Hori Y, Oka K, Inai M et al : Efficacy and safety of the long-acting Diquafosol ophthalmic solution DE-089C in patients with dry eye : a randomized, double-masked, placebo-controlled phase 3 study. Adv Ther 39 : 3654-3667, 2022
P.30 掲載の参考文献
9) Asbell PA, Maguire MG, Pistilli M et al : n-3 fatty acid supplementation for the treatment of dry eye disease. N Engl J Med 378 : 1681-1690, 2018
10) Christen WG, Cook NR, Manson JE et al : Efficacy of marine ω-3 fatty acid supplementation vs placebo in reducing incidence of dry eye disease in healthy US adults : A randomized clinical trial. JAMA Ophthalmol 140 : 707-714, 2022
11) Zhou Y, Murrough J, Yu Y et al : Association between depression and severity of dry eye symptoms, signs, and inflammatory markers in the DREAM Study. JAMA Ophthalmol 140 : 392-399, 2022
P.31 掲載の参考文献
12) Greco G, Pistilli M, Asbell PA et al : Association of severity of dry eye disease with work productivity and activity impairment in the Dry Eye Assessment and Management Study. Ophthalmology 128 : 850-856, 2021
13) Chan C, Ziai S, Myageri V et al : Economic burden and loss of quality of life from dry eye disease in Canada. BMJ Open Ophthalmol 6 : e000709, 2021
14) マイボーム腺機能不全診療ガイドライン作成委員会 : マイボーム腺機能不全診療ガイドライン. 日眼会誌 127 : 109-228, 2023
P.32 掲載の参考文献
15) Trattler W, Karpecki P, Rapoport Y et al : The prevalence of Demodex blepharitis in US eye care clinic patients as determined by collarettes : A pathognomonic sign. Clin Ophthalmol 16 : 1153-1164, 2022
16) O'Dell L, Dierker DS, Devries DK et al : Psychosocial impact of Demodex blepharitis. Clin Ophthalmol 16 : 2979-2987, 2022
17) Yeu E, Wirta DL, Karpecki P et al : Lotilaner ophthalmic solution, 0.25%, for the treatment of Demodex blepharitis : Results of a prospective, randomized, vehicle-controlled, double-masked, pivotal trial (Saturn-1). Cornea 42 : 435-443, 2023
18) Gonzalez-Salinas R, Karpecki P, Yeu E et al : Safety and efficacy of lotilaner ophthalmic solution, 0.25% for the treatment of blepharitis due to demodex infestation : A randomized, controlled, double-masked clinical trial. Cont Lens Anterior Eye 45 : 101492, 2022
19) Chalmers RL, Keay L, Hickson-Curran SB et al : Cutoff score and responsiveness of the 8-item Contact Lens Dry Eye Questionnaire (CLDEQ-8) in a Large daily disposable contact lens registry. Cont Lens Anterior Eye 39 : 342-352, 2016
20) Koh S, Chalmers R, Kabata D et al : Translation and validation of the 8-item Contact Lens Dry Eye Questionnaire (CLDEQ-8) among Japanese soft contact lens wearers : The J-CLDEQ-8. Cont Lens Anterior Eye 42 : 533-539, 2019
21) Garza-Leon M, Amparo F, Ortiz G et al : Translation and validation of the contact lens dry eye questionnaire-8 (CLDEQ-8) to the Spanish language. Cont Lens Anterior Eye 42 : 155-158, 2019
22) Dogan AS, Karabulut E, Gurdal C et al : Validation and reliability of the Turkish version of Contact Lens Dry Eye Questionnaire-8 (CLDEQ-8). Cont Lens Anterior Eye 43 : 472-475, 2020
23) Ribeiro M, Vieira MS, Gorgone G et al : The contact lens dry eyes questionnaire (CLDEQ-8) validation and ocular surface dysfunction among soft contact lens wearers. Arq Bras Oftalmol 85 : 68-76, 2022
24) Lortie-Milner E, Boily L, Michaud L et al : Translation and validation of the contact lens dry eye questionnaire 8 (CLDEQ-8) in Canadian French. Cont Lens Anterior Eye 46 : 101779, 2023
P.33 掲載の参考文献
25) Koh S, Chalmers R, Yamasaki K et al : Factors influencing the 8-item contact lens dry eye questionnaire score and comparison of translations in Japanese soft contact lens wearers. Cont Lens Anterior Eye 45 : 101519, 2022
26) Stapleton F, Bakkar M, Carnt N et al : CLEAR - Contact lens complications. Cont Lens Anterior Eye 44 : 330-367, 2021
P.34 掲載の参考文献
1) Fard AM, Patel SP, Sorkhabi RD et al : Posterior pole retinal thickness distribution pattern in keratoconus. Int Ophthalmol 40 : 2807-2816, 2020
2) Hashemi H, Heirani M, Ambrosio R Jr et al : The link between Keratoconus and posterior segment parameters : An updated, comprehensive review. Ocul Surf 23 : 116-122, 2022
P.35 掲載の参考文献
3) Ozsaygili C, Yildirim Y : The relationship between keratoconus stage and the thickness of the retinal layers. Turk J Ophthalmol 51 : 75-82, 2021
4) Pierro L, Bianco L, Bertuzzi F et al : New findings in early-stage keratoconus : Lamina cribrosa curvature, retinal nerve fiber layer thickness, and vascular perfusion. Am J Ophthalmol 246 : 122-129, 2023
5) Bilgin B, Karadag AS : Choroidal thickness in keratoconus. Int Ophthalmol 40 : 135-140, 2020
6) Pinheiro-Costa J, Correia PJ, Pinto JV et al : Increased choroidal thickness is not a disease progression marker in keratoconus. Sci Rep 10 : 19938, 2020
7) Kataria P, Padmanabhan P, Gopalakrishnan A et al : Accuracy of Scheimpflugderived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg 45 : 328-336, 2019
8) Guo LL, Tian L, Cao K et al : Comparison of the morphological and biomechanical characteristics of keratoconus, forme fruste keratoconus, and normal corneas. Semin Ophthalmol 36 : 671-678, 2021
9) Salomao MQ, Hofling-Lima AL, Gomes Esporcatte LP et al : The role of corneal biomechanics for the evaluation of ectasia patients. Int J Environ Res Public Health 17, 2020 (doi : 10.3390/ijerph17062113)
10) Zhang X, Ding L, Sun L et al : Prognostic nomograms predicting risk of keratoconus in very asymmetric ectasia : combined corneal tomographic and biomechanical assessments. Front Bioeng Biotechnol 10 : 839545, 2022
P.36 掲載の参考文献
11) Meyer JJ, Gokul A, Vellara HR et al : Progression of keratoconus in children and adolescents. Br J Ophthalmol 107 : 176-180, 2023
12) Raiskup F, Herber R, Lenk J et al : Corneal crosslinking with riboflavin and UVA light in progressive keratoconus : Fifteen-year results. Am J Ophthalmol 250 : 95-102, 2023
P.37 掲載の参考文献
13) Polido J, Araujo MEXDS, Wakamatsu TH et al : Long-term safety and efficacy of corneal collagen crosslinking in a pediatric group with progressive keratoconus : A 7-year follow-up. Am J Ophthalmol 250 : 59-69, 2023
14) Karam M, Alsaif A, Aldubaikhi A et al : Accelerated corneal collagen cross-linking protocols for progressive keratoconus : Systematic review and meta-analysis. Cornea 42 : 252-260, 2023
15) Rafat M, Jabbarvand M, Sharma N et al : Bioengineered corneal tissue for minimally invasive vision restoration in advanced keratoconus in two clinical cohorts. Nat Biotechnol 41 : 70-81, 2023
P.38 掲載の参考文献
16) Jaakkola AM, Jarventausta PJ, Jarvinen RS et al : A novel missense TGFBI variant p. (Ser591Phe) in a Finnish family with variant lattice corneal dystrophy. Eur J Ophthalmol 32 : NP61-NP66, 2022
17) Ji YW, Ahn H, Shin KJ et al : De novo L509P mutation of the TGFBI gene associated with slit-lamp findings of lattice corneal dystrophy type IIIA. J Clin Med 11, 2022 (doi : 10.3390/jcm11113055)
18) Abe Y, Omoto T, Kitamoto K et al : Corneal irregularity and visual function using anterior segment optical coherence tomography in TGFBI corneal dystrophy. Sci Rep 12 : 13759, 2022
19) Gillings M, Mastro A, Zhang X et al : Loss of corneal nerves and corneal haze in patients with Fuchs' endothelial corneal dystrophy with the transcription factor 4 gene trinucleotide repeat expansion. Ophthalmol Sci 3 : 100214, 2023
P.41 掲載の参考文献
1) Singh T, Ichhpujani P, Singh RB et al : Is ultra-thin Descemet stripping automated endothelial keratoplasty a viable alternative to Descemet membrane endothelial keratoplasty? A systematic review and meta-analysis. Ther Adv Ophthalmol 15 : 25158414221147823, 2023
2) Maier AB, Milek J, Joussen AM et al : Systematic review and meta-analysis : outcomes after Descemet membrane endothelial keratoplasty versus ultrathin Descemet stripping automated endothelial keratoplasty. Am J Ophthalmol 245 : 222-232, 2023
3) Torras-Sanvicens J, Blanco-Dominguez I, Sanchez-Gonzalez JM et al : Visual quality and subjective satisfaction in ultrathin Descemet stripping automated endothelial keratoplasty (UT-DSAEK) versus Descemet membrane endothelial keratoplasty (DMEK) : A fellow-eye comparison. J Clin Med 10, 2021 (doi : 10.3390/jcm10030419)
4) Fogla R : Role of anterior segment OCT for Descemet membrane stripping during Descemet membrane endothelial keratoplasty in eyes with congenital hereditary endothelial dystrophy. Cornea 40 : 458-461, 2021
5) Mohebbi M, Mehrpour M, Sanij AD et al : Pediatric endothelial keratoplasty : a systematic review and individual participant data meta-analysis. Graefes Arch Clin Exp Ophthalmol 260 : 1069-1082, 2022
P.42 掲載の参考文献
6) Mandal S, Asif MI, Maharana PK et al : A review of techniques and outcomes of endothelial keratoplasty in congenital hereditary endothelial dystrophy. Indian J Ophthalmol 70 : 4108-4117, 2022
7) Semler-Collery A, Bloch F, Hayek G et al : Comparison of triple-DMEK to pseudophakic-DMEK : A cohort study of 95 eyes. PLoS One 17 : e0267940, 2022
8) Tey KY, Tan SY, Ting DSJ et al : Effects of combined cataract surgery on outcomes of Descemet's membrane endothelial keratoplasty : A systematic review and meta-analysis. Front Med (Lausanne) 9 : 857200, 2022
9) Hussien AMRM, Elmassry A, Ghaith AA et al : Descemet's membrane endothelial keratoplasty and phacoemulsification : Combined versus sequential surgery. J Curr Ophthalmol 33 : 277-284, 2021
P.43 掲載の参考文献
10) Mimouni M, Sorkin N, Slomovic J et al : Descemet membrane endothelial keratoplasty versus Descemet stripping automated endothelial keratoplasty in complicated vitrectomized eyes. Curr Eye Res 46 : 1283-1290, 2021
11) Phylactou M, Matarazzo F, Din N et al : Descemet membrane endothelial keratoplasty in vitrectomized eyes : a case series of outcomes and complications. Int Ophthalmol 41 : 2425-2432, 2021
12) Maier AB, Pilger D, Gundlach E et al : Graft failure rate and complications after Descemet membrane endothelial keratoplasty in eyes with pre-existing glaucoma. Graefes Arch Clin Exp Ophthalmol 261 : 467-476, 2023
13) Okabe T, Kobayashi W, Hariya T et al : Association between aqueous humor cytokines and postoperative corneal endothelial cell loss after Descemet stripping automated endothelial keratoplasty. PLoS One 16 : e0260963, 2021
14) Kusano Y, Yamaguchi T, Nishisako S et al : Aqueous cytokine levels are associated with progression of peripheral anterior synechiae after Descemet stripping automated endothelial keratoplasty. Transl Vis Sci Technol 10 : 12, 2021
15) Hayashi T, Takahashi H, Inoda S et al : Aqueous humour cytokine profiles after Descemet's membrane endothelial keratoplasty. Sci Rep 11 : 17064, 2021
P.44 掲載の参考文献
16) Hayashi T, Iliasian RM, Matthaei M et al : Transferability of an artificial intelligence algorithm predicting rebubblings after Descemet membrane endothelial keratoplasty. Cornea 42 : 544-548, 2023
17) Bitton K, Zeboulon P, Ghazal W et al : Deep learning model for the detection of corneal edema before Descemet membrane endothelial keratoplasty on optical coherence tomography images. Transl Vis Sci Technol 11 : 19, 2022
18) O'Brien RC, Ishwaran H, Szczotka-Flynn LB et al : Random survival forests analysis of intraoperative complications as predictors of Descemet stripping automated endothelial keratoplasty graft failure in the Cornea Preservation Time Study. JAMA Ophthalmol 139 : 191-197, 2021
19) Moloney G, Garcerant Congote D, Hirnschall N et al : Descemet stripping only supplemented with topical ripasudil for Fuchs endothelial dystrophy 12-month outcomes of the Sydney Eye Hospital Study. Cornea 40 : 320-326, 2021
P.45 掲載の参考文献
20) Fernandez Lopez E, Montolio-Marzo S, Ortega Perez C et al : Descemet stripping only and ripasudil for the treatment of traumatic Descemet's membrane ruptures. Eur J Ophthalmol : 11206721221095598, 2022
21) Pizzuto S, Duffey G, Weant J et al : Acceleration of regeneration of the corneal endothelial layer after Descemet stripping induced by the engineered FGF TTHX1114 in human corneas in organ culture. Cornea 42 : 232-242, 2023
22) Oie Y, Sugita S, Yokokura S et al : Clinical trial of autologous cultivated limbal epithelial cell sheet transplantation for patients with limbal stem cell deficiency. Ophthalmology, 2023 (doi : 10.1016/j.ophtha.2023.01.016)
23) van der Star L, van Dijk K, Vasiliauskaite I et al : Long-term outcomes of Bowman layer inlay transplantation for the treatment of progressive keratoconus. Cornea 41 : 1150-1157, 2022
P.47 掲載の参考文献
1) Promelle V, Goeb V, Gueudry J et al : Rheumatoid arthritis associated episcleritis and scleritis : An update on treatment perspectives. J Clin Med 10 :, 2021 (doi : 10.3390/jcm10102118)
2) Berkenstock MK, Long K, Miller JB et al : Scleritis in Lyme disease. Am J Ophthalmol 241 : 139-144, 2022
3) Provost C, Sene T, Lecler A et al : Bisphosphonate-induced posterior scleritis. Ophthalmology 128 : 371, 2021
4) Mehta N, Taravella MJ, Reddy AK et al : Necrotizing Scleritis Secondary to Exposed Polypropylene Suture. Ophthalmology, 2022 (doi : 10.1016/j.ophtha.2022.08.008)
P.48 掲載の参考文献
5) Sainz de La Maza M, Hernanz I, Moll-Udina A et al : Presumed tuberculosisrelated scleritis. Br J Ophthalmol 107 : 495-499, 2023
6) Gupta A, Sharma A, Bansal R et al : Classification of intraocular tuberculosis. Ocul Immunol Inflamm 23 : 7-13, 2015
7) Agarwal M, Patnaik G, Agarwal S et al : Tuberculous scleritis and multidrug resistance. Ocul Immunol Inflamm 30 : 915-924, 2022
8) Hernandez-Pons A, Ortiz-Seller A, Lopez-Cruz I et al : Fungal necrotizing scleritis after intravitreal injection therapy. Cornea 40 : 1617-1619, 2021
P.49 掲載の参考文献
9) Yu J, Syed ZA, Rapuano CJ et al : Infectious scleritis : pathophysiology, diagnosis, and management. Eye Contact Lens 47 : 434-441, 2021
10) Babu N, Kumar K, Upadhayay A et al : Nodular posterior scleritis-The great masquerader. Taiwan J Ophthalmol 11 : 408-412, 2021
P.50 掲載の参考文献
11) Lee DH, Cho H, Choi EY et al : Clinical features and long-term treatment outcome of posterior scleritis. Ann Transl Med 10 : 1162, 2022
12) Vermeirsch S, Testi I, Pavesio C et al : Choroidal involvement in non-infectious posterior scleritis. J Ophthalmic Inflamm Infect 11 : 41, 2021
13) Tarsia M, Gaggiano C, Gessaroli E et al : Pediatric scleritis : An update. Ocul Immunol Inflamm 31 : 175-184, 2023
P.51 掲載の参考文献
14) Waduthantri S, Chee SP : Pediatric uveitis and scleritis in a multi-ethnic Asian population. Ocul Immunol Inflamm 29 : 1304-1311, 2021
15) Ng CC, Sy A, Cunningham ET Jr et al : Rituximab for non-infectious Uveitis and Scleritis. J Ophthalmic Inflamm Infect 11 : 23, 2021
P.52 掲載の参考文献
1) Maeda N, Klyce SD, Smolek MK et al : Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci 36 : 1327-1335, 1995
2) Smolek MK, Klyce SD : Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci 38 : 2290-2299, 1997
3) Song Y, Feng Y, Qu M et al : Analysis of the diagnostic accuracy of Belin/Ambrosio Enhanced Ectasia and Corvis ST parameters for subclinical keratoconus. Int Ophthalmol 43 : 1465-1475, 2023
4) Kamiya K, Ayatsuka Y, Kato Y et al : Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography : a diagnostic accuracy study. BMJ Open 9 : e031313, 2019
P.53 掲載の参考文献
5) Xu Z, Feng R, Jin X et al : Evaluation of artificial intelligence models for the detection of asymmetric keratoconus eyes using Scheimpflug tomography. Clin Exp Ophthalmol 50 : 714-723, 2022
6) Oshika T, Tomidokoro A, Maruo K et al : Quantitative evaluation of irregular astigmatism by fourier series harmonic analysis of videokeratography data. Invest Ophthalmol Vis Sci 39 : 705-709, 1998
7) Oshika T, Klyce SD, Applegate RA et al : Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis. Am J Ophthalmol 127 : 1-7, 1999
8) Koh S, Inoue R, Maeda N et al : Corneal tomographic changes during corneal rigid gas-permeable contact lens wear in keratoconic eyes. Br J Ophthalmol 106 : 197-202, 2022
P.54 掲載の参考文献
9) Li Z, Jiang J, Chen K et al : Preventing corneal blindness caused by keratitis using artificial intelligence. Nat Commun 12 : 3738, 2021
10) Zhang Z, Wang H, Wang S et al : Deep learning-based classification of infectious keratitis on slit-lamp images. Ther Adv Chronic Dis 13 : 20406223221136071, 2022
11) Lv J, Zhang K, Chen Q et al : Deep learning-based automated diagnosis of fungal keratitis with in vivo confocal microscopy images. Ann Transl Med 8 : 706, 2020
12) Ehlers JP, Dupps WJ, Kaiser PK et al : The prospective intraoperative and Perioperative Ophthalmic ImagiNg with Optical CoherEncE TomogRaphy (PIONEER) Study : 2-year results. Am J Ophthalmol 158 : 999-1007, 2014
P.55 掲載の参考文献
13) Agarwal R, Shakarwal C, Sharma N et al : Intraoperative optical coherence tomography-guided donor corneal tissue assessment and preparation. Indian J Ophthalmol 70 : 3496-3500, 2022

II. 緑内障

P.59 掲載の参考文献
1) De Moraes CG, Hood DC, Thenappan A et al : 24-2 visual fields miss central defects shown on 10-2 tests in glaucoma suspects, ocular hypertensives, and early glaucoma. Ophthalmology 124 : 1449-1456, 2017
2) Mahmoudinezhad G, Moghimi S, Nishida T et al : Association between rate of ganglion cell complex thinning and rate of central visual field loss. JAMA Ophthalmol 141 : 33-39, 2023
3) Mohammadzadeh V, Moghimi S, Nishida T et al : Association of rates of ganglion cell and inner plexiform thinning with development of glaucoma in eyes with suspected glaucoma. JAMA Ophthalmol 141 : 349-356, 2023
4) Kamalipour A, Moghimi S, Khosravi P et al : Combining optical coherence tomography and optical coherence tomography angiography longitudinal data for the detection of visual field progression in glaucoma. Am J Ophthalmol 246 : 141-154, 2023
P.60 掲載の参考文献
5) Kamalipour A, Moghimi S, Jacoba CM et al : Measurements of OCT angiography complement OCT for diagnosing early primary open-angle glaucoma. Ophthalmol Glaucoma 5 : 262-274, 2022
6) Hirasawa K, Smith CA, West ME et al : Discrepancy in loss of macular perfusion density and ganglion cell layer thickness in early glaucoma. Am J Ophthalmol 221 : 39-47, 2021
7) Hou H, Moghimi S, Kamalipour A et al : Macular thickness and microvasculature loss in glaucoma suspect eyes. Ophthalmol Glaucoma 5 : 170-178, 2022
8) Ye C, Wang X, Yu MC et al : Progression of macular vessel density in primary openangle glaucoma : A longitudinal study. Am J Ophthalmol 223 : 259-266, 2021
P.61 掲載の参考文献
9) Rao HL, Dasari S, Puttaiah NK et al : Optical microangiography and progressive ganglion cell-inner plexiform layer loss in primary open-angle glaucoma. Am J Ophthalmol 238 : 36-44, 2022
10) Nishida T, Moghimi S, Wu JH et al : Association of initial optical coherence tomography angiography vessel density loss with faster visual field loss in glaucoma. JAMA Ophthalmol 140 : 319-326, 2022
11) Micheletti E, Moghimi S, Nishida T et al : Rates of choroidal microvasculature dropout and retinal nerve fiber layer changes in glaucoma. Am J Ophthalmol 241 : 130-138, 2022
12) Suh MH, Jung DH, Weinreb RN et al : Optic disc microvasculature dropout in glaucoma detected by Swept-source optical coherence tomography angiography. Am J Ophthalmol 236 : 261-270, 2022
P.62 掲載の参考文献
13) Zangalli CS, Jammal AA, Reis ASC et al : Minimum rim width and peripapillary retinal nerve fiber layer thickness for diagnosing early to moderate glaucoma. J Glaucoma, 2022 (doi : 10.1097/IJG.0000000000002156)
14) Zhang Y, Wang W, Chen J et al : The diagnostic value of optical coherence tomography for detecting glaucoma in high myopia. J Glaucoma 32 : 426-434, 2023
15) Bradley C, Hou K, Herbert P et al : Evidence-based guidelines for the number of peripapillary OCT scans needed to detect glaucoma worsening. Ophthalmology 130 : 39-47, 2023
P.63 掲載の参考文献
16) Susanna FN, Melchior B, Paula JS et al : Variability and power to detect progression of different visual field patterns. Ophthalmol Glaucoma 4 : 617-623, 2021
17) Jackson AB, Martin KR, Coote MA et al : Fast progressors in glaucoma : Prevalence based on global and central visual field loss. Ophthalmology 130 : 462-468, 2023
18) Mahmoudinezhad G, Nishida T, Weinreb RN et al : Impact of smoking on visual field progression in a long-term clinical follow-up. Ophthalmology 129 : 1235-1244, 2022
19) Hood DC, La Bruna S, Tsamis E et al : The 24-2 visual field guided progression analysis can miss the progression of glaucomatous damage of the macula seen using oct. Ophthalmol Glaucoma 5 : 614-627, 2022
P.64 掲載の参考文献
20) Christopher M, Bowd C, Proudfoot JA et al : Deep learning estimation of 10-2 and 24-2 visual field metrics based on thickness maps from macula OCT. Ophthalmology 128 : 1534-1548, 2021
21) Chang J, Lee J, Ha A et al : Explaining the rationale of deep learning glaucoma decisions with adversarial examples. Ophthalmology 128 : 78-88, 2021
22) Benet D, Pellicer-Valero OJ : Artificial intelligence : the unstoppable revolution in ophthalmology. Surv Ophthalmol 67 : 252-270, 2022
P.66 掲載の参考文献
1) 日本緑内障学会緑内障診療ガイドライン改訂委員会 : 緑内障診療ガイドライン (第5版). 日眼会誌 126 : 85-177, 2022
P.67 掲載の参考文献
2) Al-Humimat G, Marashdeh I, Daradkeh D et al : Investigational Rho kinase inhibitors for the treatment of glaucoma. J Exp Pharmacol 13 : 197-212, 2021
3) Saha BC, Kumari R, Kushumesh R et al : Status of Rho kinase inhibitors in glaucoma therapeutics-an overview. Int Ophthalmol 42 : 281-294, 2022
4) Freiberg JC, von Spreckelsen A, Kolko M et al : Rho kinase inhibitor for primary open-angle glaucoma and ocular hypertension. Cochrane Database Syst Rev 6 : CD013817, 2022
5) Tanihara H, Kakuda T, Sano T et al : Long-term intraocular pressure-lowering effects and adverse events of ripasudil in patients with glaucoma or ocular hypertension over 24 months. Adv Ther 39 : 1659-1677, 2022
P.68 掲載の参考文献
6) Sakata R, Fujishiro T, Saito H et al : The additive effect of ROCK inhibitor on prostaglandin-treated Japanese patients with glaucoma indicating 15 mmHg and under : ROCK U-15. Adv Ther 38 : 3760-3770, 2021
7) Xu H, Lee D, Cho J et al : Netarsudil as a predictor of response for MicroPulse Transscleral Laser Therapy : A pilot study. Ophthalmol Glaucoma 5 : 658-662, 2022
8) Xu H, Thomas MT, Lee D et al : Response to netarsudil in goniotomy-treated eyes and goniotomy-naive eyes : a pilot study. Graefes Arch Clin Exp Ophthalmol 260 : 3001-3007, 2022
9) Batra M, Gupta S, Nair AB et al : Netarsudil : A new ophthalmic drug in the treatment of chronic primary open angle glaucoma and ocular hypertension. Eur J Ophthalmol 31 : 2237-2244, 2021
10) Ghanchi F, Bourne R, Downes SM et al : An update on long-acting therapies in chronic sight-threatening eye diseases of the posterior segment : AMD, DMO, RVO, uveitis and glaucoma. Eye (Lond) 36 : 1154-1167, 2022
P.69 掲載の参考文献
11) Kopecny LR, Lee BWH, Coroneo MT et al : A systematic review on the effects of ROCK inhibitors on proliferation and/or differentiation in human somatic stem cells : A hypothesis that ROCK inhibitors support corneal endothelial healing via acting on the limbal stem cell niche. Ocul Surf 27 : 16-29, 2023
12) Kinoshita S, Colby KA, Kruse FE et al : A close look at the clinical efficacy of Rho-associated protein kinase inhibitor eye drops for Fuchs endothelial corneal dystrophy. Cornea 40 : 1225-1228, 2021
13) So S, Park Y, Kang SS et al : Therapeutic potency of induced pluripotent stem-cellderived corneal endothelial-like cells for corneal endothelial dysfunction. Int J Mol Sci 24, 2022 (doi : 10.3390/ijms24010701)
14) Li L, Deng F, Qiu H et al : An adherent drug depot for retinal ganglion cell protection and regeneration in rat traumatic optic neuropathy models. RSC Adv 11 : 22761-22772, 2021
15) Sturdivant J, Williams SS, Ina M et al : Discovery and preclinical development of novel intraocular pressure-lowering Rho kinase inhibitor : Corticosteroid conjugates. J Ocul Pharmacol Ther 39 : 117-127, 2023
16) Yang Z, Wu J, Wu K et al : Identification of nitric oxide-donating ripasudil derivatives with intraocular pressure lowering and retinal ganglion cell protection activities. J Med Chem 65 : 11745-11758, 2022
17) Ren R, Humphrey AA, Kopczynski C et al : Rho kinase inhibitor AR-12286 reverses steroid-induced changes in intraocular pressure, effective filtration areas, and morphology in mouse eyes. Invest Ophthalmol Vis Sci 64 : 7, 2023
P.70 掲載の参考文献
18) Tanihara H, Yamamoto T, Aihara M et al : Ripasudil-brimonidine fixed-dose combination vs ripasudil or brimonidine : two phase 3 randomized clinical trials. Am J Ophthalmol 248 : 35-44, 2023
19) Chen X, Shen T : Advances in innovative delivery systems for antiglaucoma drugs. Curr Opin Ophthalmol 34 : 123-128, 2023
20) Shen Y, Sun J, Sun X et al : Intraocular nano-microscale drug delivery systems for glaucoma treatment : design strategies and recent progress. J Nanobiotechnology 21 : 84, 2023
21) Albarqi HA, Garg A, Ahmad MZ et al : Recent progress in chitosan-based nanomedicine for its ocular application in glaucoma. Pharmaceutics 15, 2023 (doi : 10.3390/pharmaceutics15020681)
22) Abdelmonem R, Elhabal SF, Abdelmalak NS et al : Formulation and characterization of acetazolamide/carvedilol niosomal gel for glaucoma treatment : In vitro, and in vivo study. Pharmaceutics 13, 2021 (doi : 10.3390/pharmaceutics13020221)
P.71 掲載の参考文献
23) Bacharach J, Tatham A, Ferguson G et al : Phase 3, randomized, 20-month study of the efficacy and safety of bimatoprost implant in patients with open-angle glaucoma and ocular hypertension (ARTEMIS 2). Drugs 81 : 2017-2033, 2021
24) Medeiros FA, Sheybani A, Shah MM et al : Single administration of intracameral bimatoprost implant 10 μg in patients with open-angle glaucoma or ocular hypertension. Ophthalmol Ther 11 : 1517-1537, 2022
P.72 掲載の参考文献
25) Weinreb RN, Bacharach J, Brubaker JW et al : Bimatoprost implant biodegradation in the phase 3, randomized, 20-month ARTEMIS studies. J Ocul Pharmacol Ther 39 : 55-62, 2023
P.74 掲載の参考文献
1) Kiuchi Y, Inoue T, Shoji N et al : The Japan Glaucoma Society guidelines for glaucoma 5th edition. Jpn J Ophthalmol 67 : 189-254, 2023
2) Han JE, Myo A, Mathew RG et al : Infographic : Zhongshan Angle Closure Prevention (ZAP) trial. Eye (Lond) 35 : 3185-3186, 2021
3) Liao C, Zhang J, Jiang Y et al : Long-term effect of YAG laser iridotomy on corneal endothelium in primary angle closure suspects : a 72-month randomised controlled study. Br J Ophthalmol 105 : 348-353, 2021
4) Chang DS, Jiang Y, Kim JA et al : Cataract progression after Nd : YAG laser iridotomy in primary angle-closure suspect eyes. Br J Ophthalmol, 2022 (doi : 10.1136/bjophthalmol-2021-320929)
5) Baskaran M, Kumar RS, Friedman DS et al : The Singapore Asymptomatic Narrow Angles Laser Iridotomy Study : Five-year results of a randomized controlled trial. Ophthalmology 129 : 147-158, 2022
6) Chan PP, Tang FY, Leung DY et al : Ten-year clinical outcomes of acute primary angle closure randomized to receive early phacoemulsification versus laser peripheral iridotomy. J Glaucoma 30 : 332-339, 2021
P.75 掲載の参考文献
7) Fujita A, Hashimoto Y, Matsui H et al : Recent trends in glaucoma surgery : a nationwide database study in Japan, 2011-2019. Jpn J Ophthalmol 66 : 183-192, 2022
8) Boland MV, Corcoran KJ, Lee AY et al : Changes in performance of glaucoma surgeries 1994 through 2017 based on claims and payment data for United States Medicare beneficiaries. Ophthalmol Glaucoma 4 : 463-471, 2021
9) Holland LJ, Kirwan JF, Mercieca KJ et al : Effect of COVID-19 pandemic on glaucoma surgical practices in the UK. Br J Ophthalmol 106 : 1406-1410, 2022
10) Gedde SJ, Feuer WJ, Chen PP et al : Comparing treatment outcomes from the Tube Versus Trabeculectomy and Primary Tube Versus Trabeculectomy Studies. Ophthalmology 128 : 324-326, 2021
11) Gedde SJ, Feuer WJ, Lim KS et al : Treatment outcomes in the Primary Tube Versus Trabeculectomy Study after 5 years of follow-up. Ophthalmology 129 : 1344-1356, 2022
12) Gedde SJ, Feuer WJ, Lim KS et al : Postoperative complications in the Primary Tube Versus Trabeculectomy Study during 5 years of follow-up. Ophthalmology 129 : 1357-1367, 2022
P.76 掲載の参考文献
13) Tokumo K, Komatsu K, Yuasa Y et al : Treatment outcomes in the neovascular glaucoma tube versus trabeculectomy study. Graefes Arch Clin Exp Ophthalmol 259 : 3067-3076, 2021
P.77 掲載の参考文献
14) Iwasaki K, Kojima S, Wajima R et al : Comparing surgical outcomes in neovascular glaucoma between tube and trabeculectomy : A multicenter study. Ophthalmol Glaucoma 5 : 672-680, 2022
P.78 掲載の参考文献
15) Nakamura K, Fujimoto T, Okada M et al : Tissue reactivity to, and stability of, glaucoma drainage device materials placed under rabbit conjunctiva. Transl Vis Sci Technol 11 : 9, 2022
16) Fujimoto T, Nakashima KI, Watanabe-Kitamura F et al : Intraocular pressurelowering effects of trabeculectomy versus MicroShunt insertion in rabbit eyes. Transl Vis Sci Technol 10 : 9, 2021
17) Pawiroredjo SSM, Bramer WM, Pawiroredjo ND et al : Efficacy of the PRESERFLO MicroShunt and a meta-analysis of the literature. J Clin Med 11, 2022 (doi : 10.3390/jcm11237149)
18) Baker ND, Barnebey HS, Moster MR et al : Ab-Externo MicroShunt versus trabeculectomy in primary open-angle glaucoma : one-year results from a 2-year randomized, multicenter study. Ophthalmology 128 : 1710-1721, 2021
19) Pillunat KR, Herber R, Haase MA et al : PRESERFLO(TM) MicroShunt versus trabeculectomy : first results on efficacy and safety. Acta Ophthalmol 100 : e779-e790, 2022
20) Atik A, Fahy ET, Rhodes LA et al : Comparative cost-effectiveness of trabeculectomy versus MicroShunt in the US Medicare System. Ophthalmology 129 : 1142-1151, 2022
21) Van Lancker L, Saravanan A, Abu-Bakra M et al : Clinical outcomes and cost analysis of PreserFlo versus trabeculectomy for glaucoma management in the United Kingdom. Ophthalmol Glaucoma, 2022 (doi : 10.1016/j.ogla.2022.11.006)
P.79 掲載の参考文献
22) Wagner FM, Schuster AK, Munder A et al : Comparison of subconjunctival microinvasive glaucoma surgery and trabeculectomy. Acta Ophthalmol 100 : e1120-e1126, 2022
23) Fu MX, Normando EM, Luk SMH et al : MicroShunt versus trabeculectomy for surgical management of glaucoma : a retrospective analysis. J Clin Med 11, 2022 (doi : 10.3390/jcm11185481)
24) Majoulet A, Scemla B, Hamard P et al : Safety and efficacy of the Preserflo(R) Microshunt in refractory glaucoma : A one-year study. J Clin Med 11, 2022 (doi : 10.3390/jcm11237086)
25) Burgos-Blasco B, Garcia-Feijoo J, Gines-Gallego C et al : Efficacy and safety of the PreserFlo implant with mitomycin C in childhood glaucoma after previous failed glaucoma surgeries. Graefes Arch Clin Exp Ophthalmol 261 : 1349-1357, 2023

III. 白内障

P.83 掲載の参考文献
1) Stanojcic N, Roberts HW, Wagh VK et al : A randomised controlled trial comparing femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery : 12-month results. Br J Ophthalmol 105 : 631-638, 2021
2) Oka Y, Sasaki N, Injev VP et al : Comparison of femtosecond laser-assisted cataract surgery and conventional phacoemulsification on endothelial cell density when using torsional modality. Clin Ophthalmol 15 : 4227-4237, 2021
3) Assaf AH, Aly MG, Zaki RG et al : Femtosecond laser-assisted cataract surgery in soft and hard nuclear cataracts : A comparison of effective phacoemulsification time. Clin Ophthalmol 15 : 1095-1100, 2021
4) Cai L, Ma D, Xu X et al : Comparative study of FLACS vs conventional phacoemulsification for complex cataracts in vitrectomized eyes. J Cataract Refract Surg 48 : 1381-1387, 2022
5) Chen L, Hu C, Lin X et al : Clinical outcomes and complications between FLACS and conventional phacoemulsification cataract surgery : a PRISMA-compliant Meta-analysis of 25 randomized controlled trials. Int J Ophthalmol 14 : 1081-1091, 2021
6) Kolb CM, Shajari M, Mathys L et al : Comparison of femtosecond laser-assisted cataract surgery and conventional cataract surgery : a meta-analysis and systematic review. J Cataract Refract Surg 46 : 1075-1085, 2020
7) Levitz LM, Dick HB, Scott W et al : The latest evidence with regards to femtosecond laser-assisted cataract surgery and its use post 2020. Clin Ophthalmol 15 : 1357-1363, 2021
8) Lin CC, Rose-Nussbaumer JR, Al-Mohtaseb ZN et al : Femtosecond laser-assisted cataract surgery : A Report by the American Academy of Ophthalmology. Ophthalmology 129 : 946-954, 2022
P.84 掲載の参考文献
9) Vasavada AR, Vasavada SA, Nath V et al : FLACS vs conventional phacoemulsification by junior cataract surgeons : randomized trial. J Cataract Refract Surg 49 : 159-164, 2023
10) Roper GJ, Hoffer KJ, Pamnani RD et al : Effect of microinterventional endocapsular nucleus disassembly using centripetal loop fragmentation on refractive outcomes after cataract surgery. J Cataract Refract Surg 46 : 1515-1521, 2020
11) Hu EH, Buie T, Jensen RJ et al : Comparative study of safety outcomes following nucleus disassembly with and without the miLOOP lens fragmentation device during cataract surgery. Clin Ophthalmol 16 : 2391-2401, 2022
12) Ianchulev T, Chang DF, Koo E et al : Microinterventional endocapsular nucleus disassembly : novel technique and results of first-in-human randomised controlled study. Br J Ophthalmol 103 : 176-180, 2019
13) Wiley WF, Bafna S, Logothetis HD et al : Comparative study of phacoemulsification parameters with and without nitinol filament nuclear disassembly. J Cataract Refract Surg 47 : 1028-1031, 2021
14) Vivekanandan VR, Nachiappan S, Odayappan A et al : Piggyback miLOOP-assisted phacoemulsification combined with intraocular lens scaffold in hypermature cataracts. J Cataract Refract Surg 47 : e10-e13, 2021
P.85 掲載の参考文献
15) Dahshan D, Kuzbel J, Verma V et al : A role for music in cataract surgery : a systematic review. Int Ophthalmol 41 : 4209-4215, 2021
16) Choi S, Park SG, Bellan L et al : Crossover clinical trial of pain relief in cataract surgery. Int Ophthalmol 38 : 1027-1033, 2018
17) Muddana SK, Hess OM, Sundar S et al : Preoperative and perioperative music to reduce anxiety during first-time phacoemulsification cataract surgery in the high-volume setting : randomized controlled trial. J Cataract Refract Surg 47 : 471-475, 2021
18) Loong LJ, Ling KK, Tai ELM et al : The effect of binaural beat audio on operative pain and anxiety in cataract surgery under topical anaesthesia : A randomized controlled trial. Int J Environ Res Public Health 19, 2022 (doi : 10.3390/ijerph191610194)
P.87 掲載の参考文献
1) 佐藤正樹, 神谷和孝, 小島隆司他 : 2022 JSCRS Clinical Survey. IOL & RS 36, 386-407, 2022
2) Segers MHM, Behndig A, van den Biggelaar FJHM et al : Risk factors for posterior capsule rupture in cataract surgery as reflected in the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg 48 : 51-55, 2022
3) Segers MHM, Behndig A, van den Biggelaar FJHM et al : Outcomes of cataract surgery complicated by posterior capsule rupture in the European Registry of Quality Outcomes for Cataract and Refractive Surgery. J Cataract Refract Surg 48 : 942-946, 2022
4) Day AC, Donachie PH, Sparrow JM et al : The Royal College of Ophthalmologists' National Ophthalmology Database study of cataract surgery : report 1, visual outcomes and complications. Eye (Lond) 29 : 552-560, 2015
5) Bjerager J, van Dijk EHC, Holm LM et al : Previous intravitreal injection as a risk factor of posterior capsule rupture in cataract surgery : a systematic review and meta-analysis. Acta Ophthalmol 100 : 614-623, 2022
P.88 掲載の参考文献
6) Ouchi M : In-the-bag single-piece IOL implantation for cases of posterior capsule rupture with 1-diopter myopic shift over long-term follow-up. J Cataract Refract Surg 47 : 270-271, 2021
7) Matarazzo F, Phylactou M, Day AC et al : Effect of surgical abstinence on the risk for posterior capsule rupture during cataract surgery. J Cataract Refract Surg 48 : 173-176, 2022
8) Tzamalis A, Karafotaki K, Karipidi K et al : The impact of COVID-19 lockdown on cataract surgery : a surgeons' perspective. Clin Exp Optom 104 : 705-710, 2021
P.89 掲載の参考文献
9) Das S, Mehregan C, Richards C et al : Intraoperative complication rates in cataract surgery after resuming surgery following the COVID-19 shutdown. Clin Ophthalmol 17 : 641-647, 2023
10) Magyar M, Sandor GL, Ujvary L et al : Intraoperative complication rates in cataract surgery performed by resident trainees and staff surgeons in a tertiary eyecare center in Hungary. Int J Ophthalmol 15 : 586-590, 2022
11) Low SAW, Braga-Mele R, Yan DB et al : Intraoperative complication rates in cataract surgery performed by ophthalmology resident trainees compared to staff surgeons in a Canadian academic center. J Cataract Refract Surg 44 : 1344-1349, 2018
12) Briszi A, Prahs P, Hillenkamp J et al : Complication rate and risk factors for intraoperative complications in residentperformed phacoemulsification surgery. Graefes Arch Clin Exp Ophthalmol 250 : 1315-1320, 2012
13) Fong CS, Mitchell P, de Loryn T et al : Long-term outcomes of phacoemulsification cataract surgery performed by trainees and consultants in an Australian cohort. Clin Exp Ophthalmol 40 : 597-603, 2012
14) Oliveira-Ferreira C, Leuzinger-Dias M, Tavares Ferreira J et al : Cataract phacoemulsification performed by resident trainees and staff surgeons : intraoperative complications and early postoperative intraocular pressure elevation. J Cataract Refract Surg 46 : 555-561, 2020
15) Ellis EM, Lee JE, Saunders L et al : Complication rates of resident-performed cataract surgery : Impact of early introduction of cataract surgery training. J Cataract Refract Surg 44 : 1109-1115, 2018
16) 佐藤正樹, 神谷和孝, 小島隆司他 : 2021 JSCRS Clinical Survey. IOL & RS 35 : 427-448, 2021
17) Schweitzer C, Brezin A, Cochener B et al : Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT) : a multicentre participantmasked randomised superiority and costeffectiveness trial. Lancet 395 : 212-224, 2020
18) Lin CC, Rose-Nussbaumer JR, Al-Mohtaseb ZN et al : Femtosecond laserassisted cataract surgery : A report by the American Academy of Ophthalmology. Ophthalmology 129 : 946-954, 2022
P.90 掲載の参考文献
19) Chee SP, Wong MH, Jap A et al : Management of severely subluxated cataracts using femtosecond laser-assisted cataract surgery. Am J Ophthalmol 173 : 7-15, 2017
20) Zhu Y, Chen X, Chen P et al : Lens capsule-related complications of femtosecond laser-assisted capsulotomy versus manual capsulorhexis for white cataracts. J Cataract Refract Surg 45 : 337-342, 2019
21) Teshigawara T, Meguro A, Sanjo S et al : The advantages of femtosecond laser-assisted cataract surgery for zonulopathy. Int Med Case Rep J 12 : 109-116, 2019
22) 栗岡隆弘, 西村栄一, 吉田健也 : 成熟白内障におけるフェムトセカンドレーザーの有用性. IOL & RS 36 : 104-108, 2022
P.92 掲載の参考文献
1) Rampat R, Gatinel D : Multifocal and extended depth-of-focus intraocular lenses in 2020. Ophthalmology 128 : e164-e185, 2021
2) Schallhorn JM, Pantanelli SM, Lin CC et al : Multifocal and accommodating intraocular lenses for the treatment of presbyopia : A report by the American Academy of Ophthalmology. Ophthalmology 128 : 1469-1482, 2021
3) Goto S, Maeda N : Corneal topography for intraocular lens selection in refractive cataract surgery. Ophthalmology 128 : e142-e152, 2021
P.93 掲載の参考文献
4) Hecht I, Kanclerz P, Tuuminen R et al : Secondary outcomes of lens and cataract surgery : More than just "best-corrected visual acuity". Prog Retin Eye Res : 101150, 2022
5) Zamora-de La Cruz D, Zuniga-Posselt K, Bartlett J et al : Trifocal intraocular lenses versus bifocal intraocular lenses after cataract extraction among participants with presbyopia. Cochrane Database Syst Rev 6 : CD012648, 2020
6) Oshika T, Arai H, Fujita Y et al : One-year clinical evaluation of rotationally asymmetric multifocal intraocular lens with +1.5 diopters near addition. Sci Rep 9 : 13117, 2019
P.94 掲載の参考文献
7) Doroodgar F, Niazi F, Sanginabadi A et al : Visual performance of four types of diffractive multifocal intraocular lenses and a review of articles. Int J Ophthalmol 14 : 356-365, 2021
8) Mori Y, Miyata K, Suzuki H et al : Clinical performance of a hydrophobic acrylic diffractive trifocal intraocular lens in a Japanese population. Ophthalmol Ther : 1-12, 2022
9) Nov E, Rubowitz A, Dar N et al : Visual performance of a novel optical design of a new multifocal intraocular lens. J Refract Surg 38 : 150-157, 2022
10) Kanclerz P, Toto F, Grzybowski A et al : Extended depth-of-field intraocular lenses : an update. Asia Pac J Ophthalmol (Phila) 9 : 194-202, 2020
11) Ribeiro FJ, Ferreira TB, Silva D et al : Visual outcomes and patient satisfaction after implantation of a presbyopia-correcting intraocular lens that combines extended depth-of-focus and multifocal profiles. J Cataract Refract Surg 47 : 1448-1453, 2021
P.95 掲載の参考文献
12) Shin DE, Lee H, Kim TI et al : Comparison of visual results and optical quality of two presbyopia-correcting intraocular lenses : TECNIS symfony versus TECNIS synergy. Eur J Ophthalmol 32 : 3461-3469, 2022
13) Zhong Y, Wang K, Yu X et al : Comparison of trifocal or hybrid multifocal-extended depth of focus intraocular lenses : a systematic review and meta-analysis. Sci Rep 11 : 6699, 2021
14) Kamiya K, Hayashi K, Shimizu K et al : Multifocal intraocular lens explantation : a case series of 50 eyes. Am J Ophthalmol 158 : 215-220.e1, 2014
15) Chen XY, Wang YC, Zhao TY et al : Tilt and decentration with various intraocular lenses : A narrative review. World J Clin Cases 10 : 3639-3646, 2022
P.97 掲載の参考文献
1) Corbelli E, Iuliano L, Bandello F et al : Comparative analysis of visual outcome with 3 intraocular lenses : monofocal, enhanced monofocal, and extended depth of focus. J Cataract Refract Surg 48 : 67-74, 2022
P.98 掲載の参考文献
2) Tognetto D, Giglio R, De Giacinto C et al : Profile of a new extended range-of-vision IOL : a laboratory study. Graefes Arch Clin Exp Ophthalmol 260 : 913-916, 2022
3) Hovanesian JA, Jones M, Allen Q et al : The Vivity extended range of vision IOL vs the PanOptix trifocal, ReStor 2.5 Active Focus and ReStor 3.0 multifocal lenses : A comparison of patient satisfaction, visual disturbances, and spectacle independence. Clin Ophthalmol 16 : 145-152, 2022
4) Sabur H, Unsal U : Visual outcomes of non-diffractive extended-depth-of-focus and enhanced monofocal intraocular lenses : A case-control study. Eur J Ophthalmol 33 : 262-268, 2023
5) Pieh S, Artmayr C, Pai V et al : Throughfocus response of extended depth of focus intraocular lenses. J Refract Surg 38 : 497-501, 2022
6) Al-Amri SAJ, Alio JL, Milan-Castillo R et al : Clinical retinal image quality of a nondiffractive wavefront-shaping extended depth of focus (Vivity) intraocular lens. J Refract Surg 39 : 103-110, 2023
7) Jeon S, Choi A, Kwon H et al : Clinical outcomes after implantation of extended depth-of-focus AcrySof(R) Vivity(R) intraocular lens in eyes with low-grade epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 260 : 3883-3888, 2022
8) Cheng SM, Yan WT, Zhang JS et al : Comparison of acquisition rate and agreement of axial length with two swept-source optical coherence tomographers and a partial coherence interferometer. Graefes Arch Clin Exp Ophthalmol 260 : 2905-2911, 2022
9) Galzignato A, Lupardi E, Hoffer KJ et al : Repeatability of new optical biometer and agreement with 2 validated optical biometers, all based on SS-OCT. J Cataract Refract Surg 49 : 5-10, 2023
10) Savini G, Hoffer KJ, Carballo L et al : Comparison of different methods to calculate the axial length measured by optical biometry. J Cataract Refract Surg 48 : 685-689, 2022
P.99 掲載の参考文献
11) Danjo Y, Ohji R, Maeno S et al : Lower refractive prediction accuracy of total keratometry using intraocular lens formulas loaded onto a swept-source optical biometer. Graefes Arch Clin Exp Ophthalmol 261 : 137-146, 2023
P.100 掲載の参考文献
12) Goto S, Maeda N, Ohnuma K et al : Preliminary demonstration of a novel intraocular lens power calculation : the O formula. J Cataract Refract Surg 48 : 1305-1311, 2022
13) Raufi N, James C, Kuo A et al : Intraoperative aberrometry vs modern preoperative formulas in predicting intraocular lens power. J Cataract Refract Surg 46 : 857-861, 2020
14) Kane JX, Chang DF : Intraocular lens power formulas, biometry, and intraoperative aberrometry : A review. Ophthalmology 128 : e94-e114, 2021
15) Savini G, Di Maita M, Hoffer KJ et al : Comparison of 13 formulas for IOL power calculation with measurements from partial coherence interferometry. Br J Ophthalmol 105 : 484-489, 2021
16) Savini G, Hoffer KJ, Balducci N et al : Comparison of formula accuracy for intraocular lens power calculation based on measurements by a swept-source optical coherence tomography optical biometer. J Cataract Refract Surg 46 : 27-33, 2020
17) Nemeth G, Kemeny-Beke A, Modis L Jr et al : Comparison of accuracy of different intraocular lens power calculation methods using artificial intelligence. Eur J Ophthalmol 32 : 235-241, 2022
18) Li H, Ye Z, Luo Y et al : Comparing the accuracy of the new-generation intraocular lens power calculation formulae in axial myopic eyes : a meta-analysis. Int Ophthalmol 43 : 619-633, 2023
P.101 掲載の参考文献
19) Luo Y, Li H, Gao L et al : Comparing the accuracy of new intraocular lens power calculation formulae in short eyes after cataract surgery : a systematic review and meta-analysis. Int Ophthalmol 42 : 1939-1956, 2022
20) Ferguson TJ, Downes RA, Randleman JB et al : IOL power calculations after LASIK or PRK : Barrett True-K biometer-only calculation strategy yields equivalent outcomes as a multiple formula approach. J Cataract Refract Surg 48 : 784-789, 2022
21) Ton Y, Barrett GD, Kleinmann G et al : Toric intraocular lens power calculation in cataract patients with keratoconus. J Cataract Refract Surg 47 : 1389-1397, 2021
22) Touze R, Dureau P, Edelson C et al : Congenital cataract surgery : long-term refractive outcomes of a new intraocular lens power correction formula. Acta Ophthalmol 100 : e1641-e1645, 2022
P.102 掲載の参考文献
23) VanderVeen DK, Oke I, Nihalani BR et al : Deviations from age-adjusted normative biometry measures in children undergoing cataract surgery : Implications for postoperative target refraction and IOL power selection. Am J Ophthalmol 239 : 190-201, 2022
24) Zhong Y, Yu Y, Li J et al : Accuracy of intraocular lens power calculation formulas in pediatric cataract patients : A systematic review and meta-analysis. Front Med (Lausanne) 8 : 710492, 2021
25) Lin L, Fang J, Sun W et al : Accuracy of newer generation intraocular lens power calculation formulas in pediatric cataract patients. Graefes Arch Clin Exp Ophthalmol 261 : 1019-1027, 2023
P.103 掲載の参考文献
1) Al-Shymali O, Alio Del Barrio JL, McAlinden C et al : Multifocal intraocular lens exchange to monofocal for the management of neuroadaptation failure. Eye Vis (Lond) 9 : 40, 2022
P.104 掲載の参考文献
2) Alsetri H, Pham D, Masket S et al : Diffractive optic intraocular lens exchange : indications and outcomes. J Cataract Refract Surg 48 : 673-678, 2022
3) Takabatake R, Takahashi M, Yoshimoto T et al : Cases of replacing diffractive bifocal intraocular lens with extended depth of focus intraocular lens due to waxy vision. PLoS One 16 : e0259470, 2021
4) Ang RET, Yoo P, Liu J et al : Evaluation of safety after optic exchange of a modular intraocular lens. J Cataract Refract Surg 47 : 1273-1278, 2021
5) Durr GM, Ahmed IIK : Intraocular lens complications : Decentration, uveitisglaucoma-hyphema syndrome, opacification, and refractive surprises. Ophthalmology 128 : e186-e194, 2021
6) Zhou B, Bekerman VP, Chu DS et al : Late onset uveitis-glaucoma-hyphema syndrome with out-the-bag placement of intraocular lens. J Curr Glaucoma Pract 16 : 205-207, 2022
7) Armonaite L, Behndig A : Seventy-one cases of uveitis-glaucoma-hyphaema syndrome. Acta Ophthalmol 99 : 69-74, 2021
P.105 掲載の参考文献
8) Jo YJ, Lee JS, Byon IS et al : Corneal endothelial cell damage after scleral fixation of intraocular lens surgery. Jpn J Ophthalmol 66 : 68-73, 2022
9) Eom Y, Lee YJ, Park SY et al : Cable tie technique for securing scleral fixation suture to intraocular lens. Am J Ophthalmol Case Rep 27 : 101646, 2022
10) Kokame GT, Card K, Pisig AU et al : In office management of optic capture of scleral fixated posterior chamber intraocular lenses. Am J Ophthalmol Case Rep 25 : 101356, 2022
11) Werner L : The dead bag syndrome. J Cataract Refract Surg 48 : 517-518, 2022
12) Culp C, Qu P, Jones J et al : Clinical and histopathological findings in the dead bag syndrome. J Cataract Refract Surg 48 : 177-184, 2022
13) Wang Q, Yildirim TM, Schickhardt SK et al : Quantification of the in vitro predisposition to glistening formation in one manufacturer's acrylic intraocular lenses made in different decades. Ophthalmol Ther 10 : 165-174, 2021
14) Tandogan T, Auffarth GU, Son HS et al : In-vitro glistening formation in six different foldable hydrophobic intraocular lenses. BMC Ophthalmol 21 : 126, 2021
P.106 掲載の参考文献
15) Memmi B, Knoeri J, Bouheraoua N et al : Intraocular lens calcification after pseudophakic endothelial keratoplasty. Am J Ophthalmol 246 : 86-95, 2023
16) Grzybowski A, Zemaitiene R, Markeviciute A et al : Should we abandon hydrophilic intraocular lenses? Am J Ophthalmol 237 : 139-145, 2022
17) Labuz G, Yildirim TM, Khoramnia R et al : Optical function of intraocular lenses in different opacification patterns : metrology analysis of 67 explants. J Cataract Refract Surg 47 : 1210-1217, 2021
18) Britz L, Schickhardt SK, Yildirim TM et al : Development of a standardized in vitro model to reproduce hydrophilic acrylic intraocular lens calcification. Sci Rep 12 : 7685, 2022
19) Momenaei B, Akbari MR, Tabatabaei SA et al : Etiology, pathogenesis, and management of acute intraocular lens opacification : a systematic review. Int J Ophthalmol 15 : 1190-1197, 2022
20) Masket S, Fram NR : Pseudophakic dysphotopsia : review of incidence, cause, and treatment of positive and negative dysphotopsia. Ophthalmology 128 : e195-e205, 2021
P.107 掲載の参考文献
21) Pamulapati SV, Saeed JM, Pompey N et al : Randomized controlled trial of intraocular lens orientation for dysphotopsia. Am J Ophthalmol 243 : 28-33, 2022
22) Sharma P, Kalia S, Chouhan JK et al : Incidence and causes of negative dysphotopsia after uncomplicated cataract surgery-A randomized clinical trial. Indian J Ophthalmol 69 : 1786-1791, 2021
23) van Vught L, Dekker CE, Stoel BC et al : Evaluation of intraocular lens position and retinal shape in negative dysphotopsia using high-resolution magnetic resonance imaging. J Cataract Refract Surg 47 : 1032-1038, 2021

IV. ぶどう膜

P.111 掲載の参考文献
1) Standardization of Uveitis Nomenclature (SUN) Working Group : Development of classification criteria for the uveitides. Am J Ophthalmol 228 : 96-105, 2021
2) Mudie LI, Reddy AK, Patnaik JL et al : Evaluation of the SUN classification criteria for uveitides in an academic uveitis practice. Am J Ophthalmol 241 : 57-63, 2022
3) Yasaka Y, Hasegawa E, Keino H et al : A multicenter study of ocular inflammation after COVID-19 vaccination. Jpn J Ophthalmol 67 : 14-21, 2023
4) Tomkins-Netzer O, Sar S, Barnett-Griness O et al : Association between vaccination with the BNT162b2 mRNA Coronavirus Disease 2019 vaccine and noninfectious uveitis : A population-based study. Ophthalmology 129 : 1087-1095, 2022
P.112 掲載の参考文献
5) Hashimoto Y, Yamana H, Iwagami M et al : Ocular adverse events after Coronavirus Disease 2019 mRNA vaccination : Matched cohort and self-controlled case 130 : 256-264, 2023
6) Miller DC, Sun Y, Chen EM et al : The association between noninfectious uveitis and Coronavirus Disease 2019 outcomes : An analysis of United States Claims-Based Data. Ophthalmology 129 : 334-343, 2022
7) Sun Y, Miller DC, Akpandak I et al : Association between immunosuppressive drugs and Coronavirus Disease 2019 outcomes in patients with noninfectious uveitis in a Large US Claims Database. Ophthalmology 129 : 1096-1106, 2022
8) Takase H, Acharya NR, Babu K et al : Recommendations for the management of ocular sarcoidosis from the International Workshop on Ocular Sarcoidosis. Br J Ophthalmol 105 : 1515-1519, 2021
P.113 掲載の参考文献
9) Umazume A, Ohguro N, Okada AA et al : Use of systemic corticosteroids in patients newly registered at a claims database with a diagnosis of non-infectious uveitis : results from a real-world claims database analysis. Jpn J Ophthalmol 66 : 394-404, 2022
10) Namba K, Takase H, Usui Y et al : Multicenter, retrospective, observational study for the Treatment Pattern of systemic corticoSTERoids for relapse of non-infectious uveitis accompanying Vogt-Koyanagi-Harada disease or sarcoidosis. Jpn J Ophthalmol 66 : 130-141, 2022
11) Bui AD, Kong CL, Kelly NK et al : Time to uveitis control with methotrexate and mycophenolate mofetil. Ophthalmology 129 : 721-723, 2022
12) Tsui E, Rathinam SR, Gonzales JA et al : Outcomes of Uveitic Macular Edema in the First-line Antimetabolites as Steroid-Sparing Treatment Uveitis Trial. Ophthalmology 129 : 661-667, 2022
13) Kelly NK, Chattopadhyay A, Rathinam SR et al : Health- and vision-related quality of life in a randomized controlled trial comparing methotrexate and mycophenolate mofetil for uveitis. Ophthalmology 128 : 1337-1345, 2021
P.114 掲載の参考文献
14) Ono T, Goto H, Sakai T et al : Comparison of combination therapy of prednisolone and cyclosporine with corticosteroid pulse therapy in Vogt-Koyanagi-Harada disease. Jpn J Ophthalmol 66 : 119-129, 2022
15) Terada Y, Kaburaki T, Takase H et al : Distinguishing features of anterior uveitis caused by herpes simplex virus, varicellazoster virus, and cytomegalovirus. Am J Ophthalmol 227 : 191-200, 2021
16) La Distia Nora R, Putera I, Mayasari YD et al : Clinical characteristics and treatment outcomes of cytomegalovirus anterior uveitis and endotheliitis : A systematic review and meta-analysis. Surv Ophthalmol 67 : 1014-1030, 2022
P.115 掲載の参考文献
17) Sugita S, Usui Y, Watanabe H et al : Adenovirus-associated uveitis with necrotizing retinitis. Ophthalmology 130 : 443-445, 2023
18) Yakin M, Kesav N, Cheng SK et al : The Association between QuantiFERON-TB Gold Test and Clinical Manifestations of Uveitis in the United States. Am J Ophthalmol 230 : 181-187, 2021
19) Danjou W, Pradat P, Jamilloux Y et al : Usefulness of the QuantiFERON test for the diagnosis of tubercular uveitis and the predictions of response to antituberculosis treatment. Br J Ophthalmol 107 : 500-504, 2023
P.116 掲載の参考文献
20) Carbonell D, Mahajan S, Chee SP et al : Consensus recommendations for the diagnosis of vitreoretinal lymphoma. Ocul Immunol Inflamm 29 : 507-520, 2021
21) Gu J, Jiang T, Liu S et al : Cell-free DNA sequencing of intraocular fluid as liquid biopsy in the diagnosis of vitreoretinal lymphoma. Front Oncol 12 : 932674, 2022
22) Demirci H, Rao RC, Elner VM et al : Aqueous humor-derived MYD88 L265P mutation analysis in vitreoretinal lymphoma : A potential less invasive method for diagnosis and treatment response assessment. Ophthalmol Retina 7 : 189-195, 2023
23) Guan W, Wang L, Peng X et al : Targeting Bruton's tyrosine kinase in vitreoretinal lymphoma : an open-label, prospective, single-center, phase 2 study. Exp Hematol Oncol 11 : 95, 2022
P.118 掲載の参考文献
1) Horiguchi N, Kamoi K, Horie S et al : A 10-year follow-up of infliximab monotherapy for refractory uveitis in Behcet's syndrome. Sci Rep 10 : 22227, 2020
2) Takeuchi M, Usui Y, Namba K et al : Ten-year follow-up of infliximab treatment for uveitis in Behcet disease patients : A multicenter retrospective study. Front Med (Lausanne) 10 : 1095423, 2023
3) Keino H, Watanabe T, Nakayama M et al : Long-term efficacy of early infliximab-induced remission for refractory uveoretinitis associated with Behcet's disease. Br J Ophthalmol 105 : 1525-1533, 2021
P.119 掲載の参考文献
4) Ida Y, Takeuchi M, Ishihara M et al : An open-label, prospective, single-arm study of switching from infliximab to cyclosporine for refractory uveitis in patients with Behcet's disease in long-term remission. Jpn J Ophthalmol 65 : 843-848, 2021
5) Kose HC, Yalcindai N : Clinical follow-up of patients with Behcet uveitis after discontinuation of infliximab therapy. Ocul Immunol Inflamm 30 : 203-207, 2022
P.120 掲載の参考文献
6) Leal I, Wong SW, Giuffre C et al : Real-World outcomes of adalimumab in adults with non-infectious uveitis. Acta Ophthalmol 100 : e1496-e1502, 2022
7) Nakai S, Takeuchi M, Usui Y et al : Efficacy and safety of adalimumab for exacerbation or relapse of ocular inflammation in patients with Vogt-Koyanagi-Harada disease : A multicenter study. Ocul Immunol Inflamm : 1-9, 2022
8) Hiyama T, Harada Y, Kiuchi Y et al : Clinical characteristics and efficacy of adalimumab and low-dose methotrexate combination therapy in patients with Vogt-Koyanagi-Harada disease. Front Med (Lausanne) 8 : 730215, 2021
9) Yang S, Tao T, Huang Z et al : Adalimumab in Vogt-Koyanagi-Harada disease refractory to conventional therapy. Front Med (Lausanne) 8 : 799427, 2021
P.121 掲載の参考文献
10) Leclercq M, Andrillon A, Maalouf G et al : Anti-tumor necrosis factor α versus tocilizumab in the treatment of refractory uveitic macular edema : a multicenter study from the French Uveitis Network. Ophthalmology 129 : 520-529, 2022
11) Barroso-Garcia N, Atienza-Mateo B, Ferraz-Amaro I et al : Anti-TNF vs tocilizumab in refractory uveitic cystoid macular edema due to Behcet's disease. Multicenter study of 49 patients. Semin Arthritis Rheum 58 : 152153, 2023
12) Takeda A, Hasegawa E, Yawata N et al : Increased vitreous levels of B cell activation factor (BAFF) and soluble interleukin-6 receptor in patients with macular edema due to uveitis related to Behcet's disease and sarcoidosis. Graefes Arch Clin Exp Ophthalmol 260 : 2675-2686, 2022
13) Matas J, Llorenc V, Fonollosa A et al : Systemic regulatory T cells and IL-6 as prognostic factors for anatomical improvement of uveitic macular edema. Front Immunol 11 : 579005, 2020
14) Ng CC, Sy A, Cunningham ET Jr et al : Rituximab for non-infectious Uveitis and Scleritis. J Ophthalmic Inflamm Infect 11 : 23, 2021
P.122 掲載の参考文献
15) Abu El-Asrar AM, Dheyab A, Khatib D et al : Efficacy of B cell depletion therapy with rituximab in refractory chronic recurrent uveitis associated with Vogt-Koyanagi-Harada disease. Ocul Immunol Inflamm 30 : 750-757, 2022
16) Bolletta E, Gozzi F, Mastrofilippo V et al : Efficacy of rituximab treatment in Vogt-Koyanagi-Harada disease poorly controlled by traditional immunosuppressive treatment. Ocul Immunol Inflamm 30 : 1303-1308, 2022
17) Abu El-Asrar AM, Berghmans N, Al-Obeidan SA et al : Local cytokine expression profiling in patients with specific autoimmune uveitic entities. Ocul Immunol Inflamm 28 : 453-462, 2020
18) Tanaka E, Kawahito Y, Kohno M et al : Systematic review and meta-analysis of biosimilar for the treatment of rheumatoid arthritis informing the 2020 update of the Japan College of Rheumatology clinical practice guidelines for the management of rheumatoid arthritis. Mod Rheumatol 32 : 74-86, 2022
19) Kumar N, Follestad T, Sen HN et al : A systematic switch from originator infliximab to biosimilar infliximab in patients with non-infectious uveitis. Am J Ophthalmol 225 : 178-184, 2021
20) Deaner JD, Srivastava SK, Hajj-Ali RA et al : Recurrence rates of inflammation after switching from the originator infliximab to biosimilar infliximab-abda for noninfectious uveitis. Am J Ophthalmol 225 : 172-177, 2021
P.123 掲載の参考文献
21) Fabiani C, Vitale A, Emmi G et al : The role of biosimilars in uveitis : Long-term real-world outcomes of the switch from original to biosimilar TNF-alpha inhibitors. Front Pharmacol 10 : 1468, 2019
22) Sota J, Gentileschi S, Vitale A et al : Effectiveness of SB5, an adalimumab biosimilar, in patients with noninfectious uveitis : A real-life monocentric experience. Asia Pac J Ophthalmol (Phila) 10 : 360-365, 2021

V. 網膜

P.127 掲載の参考文献
1) Cohen R, Shor R, Segal O et al : Postponed care due to COVID-19 lockdown impact on visual acuity of retinal vein occlusion patients : a large cohort. Graefes Arch Clin Exp Ophthalmol 261 : 43-48, 2023
2) Modjtahedi BS, Do D, Luong TQ et al : Changes in the incidence of retinal vascular occlusions after COVID-19 diagnosis. JAMA Ophthalmol 140 : 523-527, 2022
3) Ashkenazy N, Patel NA, Sridhar J et al : Hemi- and central retinal vein occlusion associated with COVID-19 infection in young patients without known risk factors. Ophthalmol Retina 6 : 520-530, 2022
4) Yeo S, Kim H, Lee J et al : Retinal vascular occlusions in COVID-19 infection and vaccination : a literature review. Graefes Arch Clin Exp Ophthalmol, 2023 (doi : 10.1007/s00417-022-05953-7)
5) Vujosevic S, Limoli C, Romano S et al : Retinal vascular occlusion and SARS-CoV-2 vaccination. Graefes Arch Clin Exp Ophthalmol 260 : 3455-3464, 2022
6) Hashimoto Y, Yamana H, Iwagami M et al : Ocular adverse events after Coronavirus disease 2019 mRNA vaccination : Matched cohort and self-controlled case series studies using a large database. Ophthalmology 130 : 256-264, 2023
P.128 掲載の参考文献
7) Rudnick ND, Vingopoulos F, Wang JC et al : Characterising collateral vessels in eyes with branch retinal vein occlusions using wide-field swept-source optical coherence tomography angiography. Br J Ophthalmol, 2022 (doi : 10.1136/bjo-2021-320356)
8) Arrigo A, Aragona E, Lattanzio R et al : Collateral vessel development in central and branch retinal vein occlusions are associated with worse visual and anatomic outcomes. Invest Ophthalmol Vis Sci 62 : 1, 2021
9) Tanaka S, Tanaka Y, Inoue T et al : Retinal haemorrhages on ultra-wide-field red channel images and perfusion status in central retinal vein occlusion. Eye (Lond), 2022 (doi : 10.1038/s41433-022-02337-3)
10) Matsumoto M, Suzuma K, Akiyama F et al : Retinal vascular resistance significantly correlates with visual acuity after 1 year of anti-VEGF therapy in central retinal vein occlusion. Transl Vis Sci Technol 10 : 19, 2021
11) Ren X, Feng W, Ran R et al : Artificial intelligence to distinguish retinal vein occlusion patients using color fundus photographs. Eye (Lond), 2022 (doi : 10.1038/s41433-022-02239-4)
12) Matsui Y, Imamura K, Ooka M et al : Classification of good visual acuity over time in patients with branch retinal vein occlusion with macular edema using support vector machine. Graefes Arch Clin Exp Ophthalmol 260 : 1501-1508, 2022
P.129 掲載の参考文献
13) Murata T, Kondo M, Inoue M et al : Estimating ranibizumab injection numbers and visual acuity at 12 months based on 2-month data on branch retinal vein occlusion treatment. Sci Rep 12 : 7661, 2022
14) Sasajima H, Tsuboi K, Kiyosawa R et al : Smooth borders between inner nuclear layer and outer plexiform layer predict fewer macular edema recurrences in branch retinal vein occlusion. Sci Rep 11 : 15987, 2021
15) Kang MS, Kim SY, Park SW et al : Association between capillary congestion and macular edema recurrence in chronic branch retinal vein occlusion through quantitative analysis of OCT angiography. Sci Rep 11 : 19886, 2021
16) Scott IU, Oden NL, VanVeldhuisen PC et al : SCORE2 Report 17 : Macular thickness fluctuations in anti-VEGF-treated patients with central or hemiretinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 260 : 1491-1500, 2022
17) Nagasato D, Muraoka Y, Tanabe M et al : Foveal thickness fluctuation in anti-VEGF treatment for branch retinal vein occlusion : A long-term study. Ophthalmol Retina 6 : 567-574, 2022
P.130 掲載の参考文献
18) Hashimoto Y, Kaneko H, Aso S et al : Association between retinal vein occlusion and early-stage hypertension : A propensity score analysis using a large claims database. Eye (Lond), 2022 (doi : 10.1038/s41433-022-02241-w)
19) Kim HR, Lee NK, Lee CS et al : Retinal vascular occlusion risks in high blood pressure and the benefits of blood pressure control. Am J Ophthalmol 250 : 111-119, 2023
20) Khayat M, Perais J, Wright DM et al : Anatomic-functional correlates in lesions of retinal vein occlusion. Invest Ophthalmol Vis Sci 62 : 10, 2021
21) Morikawa S, Okamoto F, Murakami T et al : Time course of changes in visionrelated quality of life following intravitreal ranibizumab treatment for branch retinal vein occlusion. Sci Rep 12 : 13428, 2022
22) Murakami T, Okamoto F, Sugiura Y et al : Contrast sensitivity and quality of life following intravitreal ranibizumab injection for central retinal vein occlusion. Br J Ophthalmol 107 : 254-260, 2023
P.131 掲載の参考文献
23) Chodnicki KD, Tanke LB, Pulido JS et al : Stroke risk before and after central retinal artery occlusion : A population-based analysis. Ophthalmology 129 : 203-208, 2022
24) Scoles D, McGeehan B, VanderBeek BL et al : The association of stroke with central and branch retinal arterial occlusion. Eye (Lond) 36 : 835-843, 2022
25) Zhao PY, Johnson MW, McDonald HR et al : Paracentral acute middle maculopathy and the ischemic cascade : Toward interventional management. Am J Ophthalmol 234 : 15-19, 2022
P.133 掲載の参考文献
1) Iwane Y, Imai H, Yamada H et al : Removal of subfoveal massive hard exudates through an intentional macular hole in patients with diabetic maculopathy : A report of three cases. Case Rep Ophthalmol 13 : 649-656, 2022
2) Zhang J, Zhang J, Zhang C et al : Diabetic macular edema : current understanding, molecular mechanisms and therapeutic implications. Cells 11, 2022 (doi : 10.3390/cells11213362)
3) Kupis M, Samelska K, Szaflik J et al : Novel therapies for diabetic retinopathy. Cent Eur J Immunol 47 : 102-108, 2022
4) Chauhan MZ, Rather PA, Samarah SM et al : Current and novel therapeutic approaches for treatment of diabetic macular edema. Cells 11, 2022 (doi : 10.3390/cells11121950)
5) Yuen YS, Tan GSW, Gan NY et al : Realworld evidence in the management of diabetic macular edema with intravitreal anti-VEGFs in Asia : A systematic literature review. Clin Ophthalmol 16 : 3503-3526, 2022
6) Mehta H, Nguyen V, Barthelmes D et al : Outcomes of over 40,000 eyes treated for diabetic macula edema in routine clinical practice : A systematic review and meta-analysis. Adv Ther 39 : 5376-5390, 2022
7) Mitchell P, Sheidow TG, Farah ME et al : Effectiveness and safety of ranibizumab 0.5 mg in treatment-naive patients with diabetic macular edema : Results from the real-world global LUMINOUS study. PLoS One 15 : e0233595, 2020
8) Sakamoto T, Shimura M, Kitano S et al : Impact on visual acuity and psychological outcomes of ranibizumab and subsequent treatment for diabetic macular oedema in Japan (MERCURY). Graefes Arch Clin Exp Ophthalmol 260 : 477-487, 2022
P.134 掲載の参考文献
9) Brown DM, Emanuelli A, Bandello F et al : KESTREL and KITE : 52-week results from two phase III pivotal trials of brolucizumab for diabetic macular edema. Am J Ophthalmol 238 : 157-172, 2022
10) Kuo BL, Singh RP : Brolucizumab for the treatment of diabetic macular edema. Curr Opin Ophthalmol 33 : 167-173, 2022
11) Wykoff CC, Abreu F, Adamis AP et al : Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE) : two randomised, double-masked, phase 3 trials. Lancet 399 : 741-755, 2022
P.135 掲載の参考文献
12) Shimura M, Kitano S, Ogata N et al : Efficacy, durability, and safety of faricimab with extended dosing up to every 16 weeks in Japanese patients with diabetic macular edema : 1-year results from the Japan subgroup of the phase 3 YOSEMITE trial. Jpn J Ophthalmol 67 : 264-279, 2023
13) Takamura Y, Yamada Y, Inatani M et al : Role of microaneurysms in the pathogenesis and therapy of diabetic macular edema : A descriptive review. Medicina (Kaunas) 59, 2023 (doi : 10.3390/medicina59030435)
14) Chen J, Wang H, Qiu W et al : Intravitreal anti-vascular endothelial growth factor, laser photocoagulation, or combined therapy for diabetic macular edema : A systematic review and network meta-analysis. Front Endocrinol (Lausanne) 14 : 1096105, 2023
15) Sabal B, Teper S, Wylegala E et al : Subthreshold micropulse laser for diabetic macular edema : A review. J Clin Med 12, 2022 (doi : 10.3390/jcm12010274)
16) Lois N, Campbell C, Waugh N et al : Diabetic macular edema and diode subthreshold micropulse laser : A randomized double-masked noninferiority clinical trial. Ophthalmology 130 : 14-27, 2023
17) Patil NS, Mihalache A, Hatamnejad A et al : Intravitreal steroids compared with anti-VEGF treatment for diabetic macular edema : A meta-analysis. Ophthalmol Retina 7 : 289-299, 2023
P.136 掲載の参考文献
18) Laffel LM, Danne T, Klingensmith GJ et al : Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO) : a multicentre, randomised, double-blind, parallel group, phase 3 trial. Lancet Diabetes Endocrinol 11 : 169-181, 2023
19) Tanaka A, Sata M, Okada Y et al : Effect of ipragliflozin on carotid intima-media thickness in patients with type 2 diabetes : a multicenter, randomized, controlled trial. Eur Heart J Cardiovasc Pharmacother 9 : 165-172, 2023
20) Tatsumi T, Oshitari T, Takatsuna Y et al : Sodium-glucose co-transporter 2 inhibitors reduce macular edema in patients with diabetes mellitus. Life (Basel) 12, 2022 (doi : 10.3390/life12050692)
21) Ishibashi R, Takatsuna Y, Koshizaka M et al : Safety and efficacy of ranibizumab and luseogliflozin combination therapy in patients with diabetic macular edema : Protocol for a multicenter, open-label randomized controlled trial. Diabetes Ther 11 : 1891-1905, 2020
22) Arabi A, Tadayoni R, Ahmadieh H et al : Update on management of non-proliferative diabetic retinopathy without diabetic macular edema ; Is there a paradigm shift? J Ophthalmic Vis Res 17 : 108-117, 2022
23) Brown DM, Wykoff CC, Boyer D et al : Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy : Results from the PANORAMA randomized clinical trial. JAMA Ophthalmol 139 : 946-955, 2021
24) Maturi RK, Glassman AR, Josic K et al : Four-year visual outcomes in the Protocol W randomized trial of intravitreous aflibercept for prevention of vision-threatening complications of diabetic retinopathy. JAMA 329 : 376-385, 2023
P.138 掲載の参考文献
1) Kihara Y, Shen M, Shi Y et al : Detection of nonexudative macular neovascularization on structural OCT images using vision transformers. Ophthalmol Sci 2 : 100197, 2022
2) Pramil V, de Sisternes L, Omlor L et al : A deep learning model for automated segmentation of geographic atrophy imaged using Swept-source OCT. Ophthalmol Retina 7 : 127-141, 2023
3) Vogl WD, Riedl S, Mai J et al : Predicting topographic disease progression and treatment response of pegcetacoplan in geographic atrophy quantified by deep learning. Ophthalmol Retina 7 : 4-13, 2023
4) Shah SM, Boopathiraj N, Starr MR et al : Risk, prevalence, and progression of glaucoma in eyes with age-related macular degeneration treated with intravitreal antivascular endothelial growth factor injections. Am J Ophthalmol 243 : 98-108, 2022
5) Tsai HR, Lo RY, Liang KH et al : Risk of subsequent dementia or Alzheimer disease among patients with age-related macular degeneration : A systematic review and meta-analysis. Am J Ophthalmol 247 : 161-169, 2023
6) Hunt MS, Chee YE, Saraf SS et al : Association of environmental factors with age-related macular degeneration using the Intelligent Research in Sight Registry. Ophthalmol Sci 2 : 100195, 2022
7) Liang KH, Chen CH, Tsai HR et al : Association between oral metformin use and the development of age-related macular degeneration in diabetic patients : A systematic review and meta-analysis. Invest Ophthalmol Vis Sci 63 : 10, 2022
8) Domalpally A, Whittier SA, Pan Q et al : Association of metformin with the development of age-related macular degeneration. JAMA Ophthalmol 141 : 140-147, 2023
9) Kido A, Miyake M, Tamura H et al : Incidence and clinical practice of exudative age-related macular degeneration : A nationwide population-based cohort study. Ophthalmol Sci 2 : 100125, 2022
P.139 掲載の参考文献
10) Creuzot-Garcher CP, Srour M, Baudin F et al : Incidence and prevalence of neovascular age-related macular degeneration in France between 2008 and 2018 : The LANDSCAPE Study. Ophthalmol Sci 2 : 100114, 2022
11) Rein DB, Wittenborn JS, Burke-Conte Z et al : Prevalence of age-related macular degeneration in the US in 2019. JAMA Ophthalmol 140 : 1202-1208, 2022
12) Sato-Akushichi M, Kinouchi R, Ishiko S et al : Population-based prevalence and 5-year change of soft drusen, pseudodrusen, and pachydrusen in a Japanese population. Ophthalmol Sci 1 : 100081, 2021
13) Domalpally A, Xing B, Pak JW et al : Extramacular drusen and progression of age-related macular degeneration : Age Related Eye Disease Study 2 Report 30. Ophthalmol Retina 7 : 111-117, 2023
14) Broadhead GK, Agron E, Peprah D et al : Association of dietary nitrate and a mediterranean diet with age-related macular degeneration among US adults : The Age-Related Eye Disease Study (AREDS) and AREDS2. JAMA Ophthalmol 141 : 130-139, 2023
15) Akiyama M, Miyake M, Momozawa Y et al : Genome-wide association study of age-related macular degeneration reveals 2 new loci implying shared genetic components with central serous chorioretinopathy. Ophthalmology 130 : 361-372, 2023
P.140 掲載の参考文献
16) de Breuk A, Lechanteur YTE, Heesterbeek TJ et al : Genetic risk in families with age-related macular degeneration. Ophthalmol Sci 1 : 100087, 2021
17) Kato Y, Oguchi Y, Omori T et al : Agerelated maculopathy susceptibility 2 and complement factor h polymorphism and intraocular complement activation in neovascular age-related macular degeneration. Ophthalmol Sci 2 : 100167, 2022
18) Huan T, Cheng SY, Tian B et al : Identifying novel genes and variants in immune and coagulation pathways associated with macular degeneration. Ophthalmol Sci 3 : 100206, 2023
19) Chaikitmongkol V, Ozimek M, Srisomboon T et al : Polypoidal choroidal vasculopathy based on non-ICGA criteria in white patients with neovascular age-related macular degeneration. Am J Ophthalmol 244 : 58-67, 2022
20) Wakatsuki Y, Hirabayashi K, Yu HJ et al : Optical coherence tomography biomarkers for conversion to exudative neovascular age-related macular degeneration. Am J Ophthalmol 247 : 137-144, 2023
21) Duic C, Pfau K, Keenan TDL et al : Hyperreflective foci in age-related macular degeneration are associated with disease severity and functional impairment. Ophthalmol Retina 7 : 307-317, 2023
22) Laiginhas R, Liu J, Shen M et al : Multimodal imaging, OCT B-scan localization, and en face OCT detection of macular hyperpigmentation in eyes with intermediate age-related macular degeneration. Ophthalmol Sci 2 : 100116, 2022
P.141 掲載の参考文献
23) Harada N, Nagai N, Mushiga Y et al : Choriocapillaris flow imbalance in fellow eyes in age-related macular degeneration. Invest Ophthalmol Vis Sci 63 : 13, 2022
24) Wu Z, Zhou X, Chu Z et al : Impact of reticular pseudodrusen on choriocapillaris flow deficits and choroidal structure on optical coherence tomography angiography. Invest Ophthalmol Vis Sci 63 : 1, 2022
25) Weber S, Simon R, Schwanengel LS et al : Fluorescence lifetime and spectral characteristics of subretinal drusenoid deposits and their predictive value for progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 63 : 23, 2022
26) Wang X, Sadda SR, Ip MS et al : In vivo longitudinal measurement of cone photoreceptor density in intermediate age-related macular degeneration. Am J Ophthalmol 248 : 60-75, 2023
27) Zhang Q, Shi Y, Shen M et al : Does the outer retinal thickness around geographic atrophy represent another clinical biomarker for predicting growth? Am J Ophthalmol 244 : 79-87, 2022
28) Wu Z, Goh KL, Hodgson LAB et al : Incomplete retinal pigment epithelial and outer retinal atrophy : longitudinal evaluation in age-related macular degeneration. Ophthalmology 130 : 205-212, 2023
29) Fukuyama H, Huang BB, BouGhanem G et al : The fovea-protective impact of double-layer sign in eyes with foveal-sparing geographic atrophy and age-related macular degeneration. Invest Ophthalmol Vis Sci 63 : 4, 2022
30) Au A, Santina A, Abraham N et al : Relationship between drusen height and OCT biomarkers of atrophy in non-neovascular AMD. Invest Ophthalmol Vis Sci 63 : 24, 2022
P.142 掲載の参考文献
31) Yanagi Y, Yu RMC, Ahamed W et al : Serum cholesterol efflux capacity in age-related macular degeneration and polypoidal choroidal vasculopathy. Ophthalmol Sci 2 : 100142, 2022
32) Lad EM, Fang V, Tessier M et al : Longitudinal evaluation of visual function impairments in early and intermediate age-related macular degeneration patients. Ophthalmol Sci 2 : 100173, 2022
P.143 掲載の参考文献
1) Soares RR, Mahmoudzadeh R, Salabati M et al : Epiretinal membrane surgery after retinal detachment repair : Visual acuity outcomes and OCT analysis. Ophthalmol Retina 6 : 49-57, 2022
2) Pettenkofer M, Chehaibou I, Pole C et al : Epiretinal proliferation after rhegmatogenous retinal detachment. Graefes Arch Clin Exp Ophthalmol 260 : 1509-1516, 2022
P.144 掲載の参考文献
3) Pan Q, Gao Z, Hu X et al : Risk factors for epiretinal membrane in eyes with primary rhegmatogenous retinal detachment that received silicone oil tamponade. Br J Ophthalmol, 2022 (doi : 10.1136/bjophthalmol-2021-320121)
4) Ishikawa K, Akiyama M, Mori K et al : Drainage retinotomy confers risk of epiretinal membrane formation after vitrectomy for rhegmatogenous retinal detachment repair. Am J Ophthalmol 234 : 20-27, 2022
5) Lam M, Philippakis E, Gaudric A et al : Postoperative outcomes of idiopathic epiretinal membrane associated with foveoschisis. Br J Ophthalmol 106 : 1000-1005, 2022
6) Peck T, Salabati M, Mahmoudzadeh R et al : Epiretinal membrane surgery in eyes with glaucoma : Visual outcomes and clinical significance of inner microcystoid changes. Ophthalmol Retina 6 : 693-701, 2022
7) Israilevich R, Salabati M, Mahmoudzadeh R et al : Secondary epiretinal membrane after laser retinopexy for retinal tear or localized retinal detachment : Surgical outcomes and optical coherence tomography structural analysis. Retina 42 : 38-45, 2022
8) Mahmoudzadeh R, Israilevich R, Salabati M et al : Pars plana vitrectomy for idiopathic epiretinal membrane : OCT biomarkers of visual outcomes in 322 eyes. Ophthalmol Retina 6 : 308-317, 2022
9) Cicinelli MV, Post M, Brambati M et al : Associated factors and surgical outcomes of microcystoid macular edema and cone bouquet abnormalities in eyes with epiretinal membrane. Retina 42 : 1455-1464, 2022
10) Yang X, Wang Z, Yu Y et al : Clinical features and prognosis in idiopathic epiretinal membranes with different types of intraretinal cystoid spaces. Retina 42 : 1874-1882, 2022
11) Kim J, Kim SW, Choi M et al : Clinical implication of retinal nerve fiber layer schisis and macular fluorescein leakage in primary idiopathic epiretinal membrane. Retina 42 : 2294-2300, 2022
12) Kanzaki Y, Doi S, Matoba R et al : Objective and quantitative estimation of the optimal timing for epiretinal membrane surgery on the basis of metamorphopsia. Retina 42 : 704-711, 2022
13) Watanabe A, Ishida M, Shibata M et al : One-year outcomes of metamorphopsia and retinal displacement after epiretinal membrane surgery. Retina 42 : 1756-1761, 2022
P.145 掲載の参考文献
14) Yanagida K, Wakabayashi Y, Usui Y et al : Ectopic inner foveal layer as a factor associated with metamorphopsia after vitrectomy for epiretinal membrane. Acta Ophthalmol 100 : 775-780, 2022
15) Kim SH, Ahn H, Yang S et al : Deep learning-based prediction of outcomes following noncomplicated epiretinal membrane surgery. Retina 42 : 1465-1471, 2022
16) Crincoli E, Savastano MC, Savastano A et al : New artificial intelligence analysis for prediction of long-term visual improvement after epiretinal membrane surgery. Retina 43 : 173-181, 2023
17) Obata S, Ichiyama Y, Kakinoki M et al : Prediction of postoperative visual acuity after vitrectomy for macular hole using deep learning-based artificial intelligence. Graefes Arch Clin Exp Ophthalmol 260 : 1113-1123, 2022
18) Wang X, Zhu Y, Xu H et al : Inverted multi-layer internal limiting membrane flap for macular hole retinal detachment in high myopia. Sci Rep 12 : 10593, 2022
19) Yu X, Li X, Xing Y et al : Long-term continuous assessment of internal limiting membrane filling induced super-large macular hole healing. Am J Ophthalmol 240 : 276-284, 2022
20) Ventre L, Fallico M, Longo A et al : Conventional internal limiting membrane peeling versus inverted flap for small-to-medium idiopathic macular hole : A randomized trial. Retina 42 : 2251-2257, 2022
21) Chou HD, Liu L, Wang CT et al : Single-layer inverted internal limiting membrane flap versus conventional peel for small- or medium-sized full-thickness macular holes. Am J Ophthalmol 235 : 111-119, 2022
22) Yamada K, Oishi A, Kusano M et al : Effect of inverted internal limiting membrane flap technique on small-medium size macular holes. Sci Rep 12 : 731, 2022
P.146 掲載の参考文献
23) Ishida Y, Tsuboi K, Wakabayashi T et al : En face OCT detects preretinal abnormal tissues before and after internal limiting membrane peeling in eyes with macular hole. Ophthalmol Retina 7 : 153-163, 2023
24) Tsuboi K, Guo Y, Wang J et al : Three-dimensional quantification of intraretinal cystoid spaces associated with full-thickness macular hole. Retina 42 : 2267-2275, 2022
25) Govetto A, Bacherini D, Romano MR et al : Full-thickness macular hole : Are Supra-RPE granular deposits remnants of photoreceptors outer segments? Clinical implications. Am J Ophthalmol 245 : 86-101, 2023
P.147 掲載の参考文献
1) Murphy DC, Tzoumas N, Mehta A et al : Infographic : the Pneumatic Retinopexy versus Vitrectomy for the Management of Primary Rhegmatogenous Retinal Detachment Outcomes Randomized Trial (PIVOT). Eye (Lond) 36 : 913-914, 2022
P.148 掲載の参考文献
2) Bansal A, Lee WW, Sarraf D et al : Persistent subfoveal fluid in pneumatic retinopexy versus pars plana vitrectomy for rhegmatogenous retinal detachment : posthoc analysis of the PIVOT randomised trial. Br J Ophthalmol, 2022 (doi : 10.1136/bjo-2021-320981)
3) Francisconi CLM, Marafon SB, Figueiredo NA et al : Retinal displacement after pneumatic retinopexy versus vitrectomy for rhegmatogenous retinal detachment (ALIGN). Ophthalmology 129 : 458-461, 2022
4) Figueiredo N, Warder DC, Muni RH et al : Pneumatic retinopexy as a treatment for rhegmatogenous retinal detachment in pediatric patients meeting PIVOT criteria. Can J Ophthalmol 57 : 359-363, 2022
5) Funatsu R, Terasaki H, Koriyama C et al : Silicone oil versus gas tamponade for primary rhegmatogenous retinal detachment treated successfully with a propensity score analysis : Japan Retinal Detachment Registry. Br J Ophthalmol 106 : 1044-1050, 2022
P.149 掲載の参考文献
6) Minami S, Uchida A, Nagai N et al : Shorter axial length is a risk factor for proliferative vitreoretinopathy grade C in eyes unmodified by surgical invasion. J Clin Med 10, 2021 (doi : 10.3390/jcm10173944)
7) Obata S, Kakinoki M, Sawada O et al : Effect of internal limiting membrane peeling on postoperative visual acuity in macula-off rhegmatogenous retinal detachment. PLoS One 16 : e0255827, 2021
8) Funatsu R, Terasaki H, Sakamoto T et al : Regional and sex differences in retinal detachment surgery : Japan-retinal detachment registry report. Sci Rep 11 : 20611, 2021
10) Ishikawa K, Akiyama M, Mori K et al : Drainage retinotomy confers risk of epiretinal membrane formation after vitrectomy for rhegmatogenous retinal detachment repair. Am J Ophthalmol 234 : 20-27, 2022
11) Fung THM, John NCRA, Guillemaut JY et al : Artificial intelligence using deep learning to predict the anatomical outcome of rhegmatogenous retinal detachment surgery : a pilot study. Graefes Arch Clin Exp Ophthalmol 261 : 715-721, 2023
P.150 掲載の参考文献
9) Yamakiri K, Sakamoto T, Koriyama C et al : Effect of surgeon-related factors on outcome of retinal detachment surgery : analyses of data in Japan-retinal detachment registry. Sci Rep 12 : 4213, 2022
P.151 掲載の参考文献
12) Oh R, Oh BL, Lee EK et al : Detection and localization of retinal breaks in ultrawide-field fundus photography using a YOLO v3 architecture-based deep learning model. Retina 42 : 1889-1896, 2022
13) Wang T, Liao G, Chen L et al : Intelligent diagnosis of multiple peripheral retinal lesions in ultra-wide-field fundus images based on deep learning. Ophthalmol Ther 12 : 1081-1095, 2023
14) Mundae R, Wagley S, Ryan EH et al : COVID-19 vaccination hesitancy and its association with altered presentation of primary rhegmatogenous retinal detachment. Am J Ophthalmol 242 : 7-17, 2022
15) Baudin F, Benzenine E, Mariet AS et al : Impact of COVID-19 lockdown on surgical procedures for retinal detachment in France : a national database study. Br J Ophthalmol 107 : 565-569, 2023
P.152 掲載の参考文献
16) Li J, Zhao M, She H et al : The impact of the COVID-19 pandemic lockdown on rhegmatogenous retinal detachment services-Experiences from the Tongren eye center in Beijing. PLoS One 16 : e0254751, 2021
17) Ferreira A, Afonso M, Silva N et al : The impact of COVID-19 pandemic on surgical primary retinal detachments. Ophthalmologica 245 : 111-116, 2022
18) Schranz M, Georgopoulos M, Sacu S et al : Incidence and surgical care of retinal detachment during the first SARS-CoV-2 lockdown period at a tertiary referral center in Austria. PLoS One 16 : e0248010, 2021
19) Hirakata T, Huang T, Hiratsuka Y et al : Clinical patterns of rhegmatogenous retinal detachment during the first state of emergency for the COVID-19 pandemic in a Tokyo center. PLoS One 16 : e0261779, 2021
20) Kawano S, Imai T, Sakamoto T et al : Differences in primary retinal detachment surgery conducted on holidays and workdays analyzed using the Japan Retinal Detachment Registry. Jpn J Ophthalmol 66 : 271-277, 2022
P.153 掲載の参考文献
21) Saraf SS, Lacy M, Hunt MS et al : Demographics and seasonality of retinal detachment, retinal breaks, and posterio vitreous detachment from the Intelligent Research in Sight Registry. Ophthalmol Sci 2 : 100145, 2022
22) Sothivannan A, Eshtiaghi A, Dhoot AS et al : Impact of the time to surgery on visual outcomes for rhegmatogenous retinal detachment repair : A meta-analysis. Am J Ophthalmol 244 : 19-29, 2022
23) Miyake M, Nakao SY, Morino K et al : Effect of duration of macular detachment on visual prognosis after surgery for macula-off retinal detachment : Japan-Retinal Detachment Registry. Ophthalmol Retina 7 : 375-382, 2023
P.155 掲載の参考文献
1) Britten-Jones AC, Gocuk SA, Goh KL et al : The diagnostic yield of next generation sequencing in inherited retinal diseases : A systematic review and meta-analysis. Am J Ophthalmol 249 : 57-73, 2023
2) Suga A, Yoshitake K, Minematsu N et al : Genetic characterization of 1210 Japanese pedigrees with inherited retinal diseases by whole-exome sequencing. Hum Mutat 43 : 2251-2264, 2022
3) Daich Varela M, Georgiou M, Alswaiti Y et al : CRB1-associated retinal dystrophies : genetics, clinical characteristics, and natural history. Am J Ophthalmol 246 : 107-121, 2023
4) von Krusenstiern L, Liu J, Liao E et al : Changes in retinal sensitivity associated with cotoretigene toliparvovec in X-linked retinitis pigmentosa with RPGR gene variations. JAMA Ophthalmol 141 : 275-283, 2023
5) Sano Y, Koyanagi Y, Wong JH et al : Likely pathogenic structural variants in genetically unsolved patients with retinitis pigmentosa revealed by long-read sequencing. J Med Genet 59 : 1133-1138, 2022
6) Qian X, Wang J, Wang M et al : Identification of deep-intronic splice mutations in a large cohort of patients with inherited retinal diseases. Front Genet 12 : 647400, 2021
7) Rodriguez-Munoz A, Liquori A, Garcia-Bohorquez B et al : Functional assays of noncanonical splice-site variants in inherited retinal dystrophies genes. Sci Rep 12 : 68, 2022
8) Martin-Gutierrez MP, Schiff ER, Wright G et al : Dominant cone rod dystrophy, previously assigned to a missense variant in RIMS1, is fully explained by co-inheritance of a dominant allele of PROM1. Invest Ophthalmol Vis Sci 63 : 14, 2022
P.156 掲載の参考文献
9) Huryn LA, Kozycki CT, Serpen JY et al : Ophthalmic manifestations of ROSAH (retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and headache) syndrome, an inherited NF κB-mediated autoinflammatory disease with retinal dystrophy. Ophthalmology 130 : 423-432, 2023
10) Jurkute N, Cancellieri F, Pohl L et al : Biallelic variants in coenzyme Q10 biosynthesis pathway genes cause a retinitis pigmentosa phenotype. NPJ Genom Med 7 : 60, 2022
11) Velde HM, Reurink J, Held S et al : Usher syndrome type IV : clinically and molecularly confirmed by novel ARSG variants. Hum Genet 141 : 1723-1738, 2022
12) Yusuf IH, Garrett AM, MacLaren RE et al : Retinal cadherins and the retinal cadherinopathies : Current concepts and future directions. Prog Retin Eye Res 90 : 101038, 2022
P.157 掲載の参考文献
13) Kessel L, Christensen UC, Klemp K et al : Inflammation after voretigene neparvovec administration in patients with RPE65-related retinal dystrophy. Ophthalmology 129 : 1287-1293, 2022
14) Gange WS, Sisk RA, Besirli CG et al : Perifoveal chorioretinal atrophy after subretinal voretigene neparvovec-rzyl for RPE65-mediated leber congenital amaurosis. Ophthalmol Retina 6 : 58-64, 2022
15) Reichel FF, Seitz I, Wozar F et al : Development of retinal atrophy after subretinal gene therapy with voretigene neparvovec. Br J Ophthalmol, 2022 (doi : 10.1136/bjophthalmol-2021-321023)
16) Stingl K, Kempf M, Jung R et al : Therapy with voretigene neparvovec. How to measure success? Prog Retin Eye Res 92 : 101115, 2023
17) Hasegawa T, Oishi A, Ikeda HO et al : Detection sensitivity of retinitis pigmentosa progression using static perimetry and optical coherence tomography. Transl Vis Sci Technol 10 : 31, 2021
18) Nishiguchi KM, Fujita K, Miya F et al : Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice. Nat Commun 11 : 482, 2020
19) Vagni P, Airaghi Leccardi MJI, Vila CH et al : POLYRETINA restores light responses in vivo in blind Gottingen minipigs. Nat Commun 13 : 3678, 2022
20) Morimoto T, Fujikado T, Kanda H et al : Testing of newly developed wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in dogs. Transl Vis Sci Technol 10 : 13, 2021
21) Watari K, Yamasaki S, Tu HY et al : Selforganization, quality control, and preclinical studies of human iPSC-derived retinal sheets for tissue-transplantation therapy. Commun Biol 6 : 164, 2023
P.158 掲載の参考文献
22) Guo D, Ru J, Xie L et al : Tmem138 is localized to the connecting cilium essential for rhodopsin localization and outer segment biogenesis. Proc Natl Acad Sci U S A 119 : e2109934119, 2022
23) Karademir D, Todorova V, Ebner LJA et al : Single-cell RNA sequencing of the retina in a model of retinitis pigmentosa reveals early responses to degeneration in rods and cones. BMC Biol 20 : 86, 2022
24) Hata M, Andriessen EMMA, Hata M et al : Past history of obesity triggers persistent epigenetic changes in innate immunity and exacerbates neuroinflammation. Science 379 : 45-62, 2023
25) Kutsyr O, Noailles A, Martinez-Gil N et al : Short-term high-fat feeding exacerbates degeneration in retinitis pigmentosa by promoting retinal oxidative stress and inflammation. Proc Natl Acad Sci U S A 118, 2021 (doi : 10.1073/pnas.2100566118)
26) Ryals RC, Huang SJ, Wafai D et al : A ketogenic & low-protein diet slows retinal degeneration in rd10 mice. Transl Vis Sci Technol 9 : 18, 2020
P.160 掲載の参考文献
1) Sugita S, Mandai M, Kamao H et al : Immunological aspects of RPE cell transplantation. Prog Retin Eye Res 84 : 100950, 2021
2) Bui PTA, Reiter GS, Fabianska M et al : Fundus autofluorescence and optical coherence tomography biomarkers associate with the progression of geographic atrophy secondary to age-related macular degeneration. Eye (Lond) 36 : 2013-2019, 2022
3) Greenstein VC, Castillejos DS, Tsang SH et al : Monitoring lesion area progression in Stargardt disease : A comparison of en face optical coherence tomography and fundus autofluorescence. Transl Vis Sci Technol 12 : 2, 2023
P.161 掲載の参考文献
4) Deleu L, Catherine J, Postelmans L et al : Effect of SCUBA diving on ophthalmic parameters. Medicina (Kaunas) 58, 2022 (doi : 10.3390/medicina58030408)
P.162 掲載の参考文献
5) Muhiddin HS, Mayasari AR, Umar BT et al : Choroidal thickness in correlation with axial length and myopia degree. Vision (Basel) 6, 2022 (doi : 10.3390/vision6010016)
6) Cevher S, Baris Ucer M, Sahin T et al : Disc-fovea distance and choroidal thickness : is there a relationship? Ther Adv Ophthalmol 14 : 25158414221096062, 2022
7) Xie J, Ye L, Chen Q et al : Choroidal thickness and its association with age, axial length, and refractive error in Chinese adults. Invest Ophthalmol Vis Sci 63 : 34, 2022
8) Konuk SG, Kilic R, Turkyilmaz B et al : Choroidal thickness changes in post-COVID-19 cases. Arq Bras Oftalmol 86 : 150-155, 2023
9) Nagasato D, Mitamura Y, Egawa M et al : Changes in choroidal component ratio and circulation after coffee intake in healthy subjects. Invest Ophthalmol Vis Sci 62 : 27, 2021
P.163 掲載の参考文献
10) Mitamura Y, Enkhmaa T, Sano H et al : Changes in choroidal structure following intravitreal aflibercept therapy for retinal vein occlusion. Br J Ophthalmol 105 : 704-710, 2021
11) Shiihara H, Sonoda S, Terasaki H et al : Quantification of vessels of Haller's layer based on en-face optical coherence tomography images. Retina 41 : 2148-2156, 2021
12) Liu J, Laiginhas R, Shen M et al : Multimodal imaging and en face OCT detection of calcified drusen in eyes with age-related macular degeneration. Ophthalmol Sci 2 : 2022 (doi : 10.1016/j.xops.2022.100162)
P.164 掲載の参考文献
13) Corvi F, Corradetti G, Tiosano L et al : Topography of choriocapillaris flow deficit predicts development of neovascularization or atrophy in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 259 : 2887-2895, 2021
14) Kamei T, Ooto S, Uji A et al : Choriocapillaris structure in the fellow eyes of patients with neovascular age-related macular degeneration : An OCT angiography image averaging study. Retina 43 : 286-293, 2023
15) Imanaga N, Terao N, Nakamine S et al : Scleral thickness in central serous chorioretinopathy. Ophthalmol Retina 5 : 285-291, 2021
16) Roberta F, Arturo C, Maurizio F et al : Optical coherence tomography angiography of central serous chorioretinopathy : quantitative evaluation of the vascular pattern and capillary flow density. Graefes Arch Clin Exp Ophthalmol 260 : 1015-1024, 2022
17) Spaide RF, Gemmy Cheung CM, Matsumoto H et al : Venous overload choroidopathy : A hypothetical framework for central serous chorioretinopathy and allied disorders. Prog Retin Eye Res 86 : 100973, 2022
P.165 掲載の参考文献
18) Ganesh SK, Mistry S, Nair N et al : Role of Swept source optical coherence tomography in management of acute Vogt-Koyanagi-Harada's disease. Indian J Ophthalmol 70 : 2458-2463, 2022
19) Liu Y, Wang L, Xu Y et al : The influence of the choroid on the onset and development of myopia : from perspectives of choroidal thickness and blood flow. Acta Ophthalmol 99 : 730-738, 2021
20) Liu L, Fang Y, Igarashi-Yokoi T et al : Clinical and morphologic features of posterior staphyloma edges by ultra-wide-field imaging in pathologic myopia. Retina 41 : 2278-2287, 2021
21) Kuranami A, Maruko R, Maruko I et al : Pachychoroid neovasculopathy has clinical properties that differ from conventional neovascular age-related macular degeneration. Sci Rep 13 : 7379, 2023
22) Schworm B, Luft N, Keidel LF et al : Vanishing pachy-choroid in pachychoroid neovasculopathy under long-term anti-vascular endothelial growth factor therapy. BMC Ophthalmol 21 : 269, 2021
23) Yoon J, Yoon W, Na SK et al : Long-term outcome of intravitreal anti-vascular endothelial growth factor treatment for pachychoroid neovasculopathy. Sci Rep 11 : 12052, 2021
P.167 掲載の参考文献
1) Kato K, Nagashima R, Matsubara H et al : Transient increase of flicker electroretinography amplitudes after cataract surgery : Association with postoperative inflammation. Ophthalmol Sci 3 : 100243, 2023
2) Kato K, Sugawara A, Nagashima R et al : Case of lens-induced uveitis associated with supernormal flicker ERG amplitudes after cataract surgery. Doc Ophthalmol 142 : 233-238, 2021
3) Han KJ, Moon H, Woo JM et al : Using RETeval system flicker electroretinography for evaluation of dense vitreous hemorrhage. Retina 42 : 73-79, 2022
5) Messenio D, Babbi A, Guglielmi A et al : Focal electroretinogram and microperimetry testing of photoreceptor-retinal pigment epithelium function in intermediate age-related macular degeneration. Acta Ophthalmol 100 : 277-284, 2022
P.168 掲載の参考文献
4) Kosacki J, Gallice M, Palombi K et al : Multifocal electroretinography and spectral-domain optical coherence tomography in macula-off rhegmatogenous retinal detachment : A prospective cohort study. Retina 41 : 744-752, 2021
P.169 掲載の参考文献
6) Pandurangan K, Sachidanandam R, Sen P et al : Structural and functional changes among diabetics with no diabetic retinopathy and mild non-proliferative diabetic retinopathy using Swept-source optical coherence tomography angiography and photopic negative response. Doc Ophthalmol 145 : 113-125, 2022
7) Ba-Ali S, Larsen M, Andersen HU et al : Full-field and multifocal electroretinogram in non-diabetic controls and diabetics with and without retinopathy. Acta Ophthalmol 100 : e1719-e1728, 2022
8) Kawai M, Himeno T, Shibata Y et al : Neuroretinal dysfunction revealed by a flicker electroretinogram correlated with peripheral nerve dysfunction and parameters of atherosclerosis in patients with diabetes. J Diabetes Investig 12 : 1236-1243, 2021
P.170 掲載の参考文献
9) Glinton SL, Calcagni A, Lilaonitkul W et al : Phenotyping of ABCA4 retinopathy by machine learning analysis of full-field electroretinography. Transl Vis Sci Technol 11 : 34, 2022
10) Habib F, Huang H, Gupta A et al : MERCI : a machine learning approach to identifying hydroxychloroquine retinopathy using mfERG. Doc Ophthalmol 145 : 53-63, 2022
P.171 掲載の参考文献
11) Byun MS, Park SW, Lee JH et al : Association of retinal changes with Alzheimer disease neuroimaging biomarkers in cognitively normal individuals. JAMA Ophthalmol 139 : 548-556, 2021
12) Moulard M, Cosker E, Angioi-Duprez K et al : Retinal markers of therapeutic responses in major depressive disorder : Effects of antidepressants on retinal function. J Psychiatr Res 154 : 71-79, 2022
13) Peredo R, Hebert M, Merette C et al : Developing a clinical decision tool based on electroretinogram to monitor the risk of severe mental illness. BMC Psychiatry 22 : 718, 2022
14) Hanson JVM, Weber C, Pfaffli OA et al : Flicker electroretinogram in newborn infants. Doc Ophthalmol 145 : 175-184, 2022
P.172 掲載の参考文献
15) Yamashita T, Kato K, Kondo M et al : Photopic negative response recorded with RETeval system in eyes with optic nerve disorders. Sci Rep 12 : 9091, 2022
16) Sugawara A, Kato K, Nagashima R et al : Effects of recording sequence on flicker electroretinographics recorded with natural pupils corrected for pupil area. Acta Ophthalmol 99 : 411-417, 2021
P.173 掲載の参考文献
1) Makita S, Azuma S, Mino T et al : Extending field-of-view of retinal imaging by optical coherence tomography using convolutional Lissajous and slow scan patterns. Biomed Opt Express 13 : 5212-5230, 2022
P.174 掲載の参考文献
2) Ploner SB, Kraus MF, Moult EM et al : Efficient and high accuracy 3-D OCT angiography motion correction in pathology. Biomed Opt Express 12 : 125-146, 2021
3) Lee B, Chen S, Moult EM et al : High-speed, ultrahigh-resolution spectral-domain OCT with extended imaging range using reference arm length matching. Transl Vis Sci Technol 9 : 12, 2020
4) Roorda A : Optoretinography is coming of age. Proc Natl Acad Sci U S A 118 : 2021 (doi : 10.1073/pnas.2119737118)
5) Zhang F, Kurokawa K, Bernucci MT et al : Revealing how color vision phenotype and genotype manifest in individual cone cells. Invest Ophthalmol Vis Sci 62 : 8, 2021
6) Lassoued A, Zhang F, Kurokawa K et al : Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. Proc Natl Acad Sci U S A 118 : 2021 (doi : 10.1073/pnas.2107444118)
7) Tomczewski S, Wegrzyn P, Borycki D et al : Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. Biomed Opt Express 13 : 2186-2201, 2022
8) Pfaffle C, Spahr H, Gercke K et al : Phase-sensitive measurements of depthdependent signal transduction in the inner plexiform layer. Front Med (Lausanne) 9 : 885187, 2022
P.175 掲載の参考文献
9) Ortiz P, Draelos M, Viehland C et al : Robotically aligned optical coherence tomography with 5 degree of freedom eye tracking for subject motion and gaze compensation. Biomed Opt Express 12 : 7361-7376, 2021
10) Draelos M, Ortiz P, Qian R et al : Contactless optical coherence tomography of the eyes of freestanding individuals with a robotic scanner. Nat Biomed Eng 5 : 726-736, 2021
11) Keller B, Draelos M, Zhou K et al : Optical Coherence Tomography-Guided Robotic Ophthalmic Microsurgery via Reinforcement Learning from Demonstration. IEEE Trans Robot 36 : 1207-1218, 2020
12) Kim JE, Tomkins-Netzer O, Elman MJ et al : Evaluation of a self-imaging SD-OCT system designed for remote home monitoring. BMC Ophthalmol 22 : 261, 2022
13) Liu Y, Holekamp NM, Heier JS et al : Prospective, longitudinal study : daily self-imaging with home OCT for neovascular age-related macular degeneration. Ophthalmol Retina 6 : 575-585, 2022
P.176 掲載の参考文献
14) Ni S, Wei X, Ng R et al : High-speed and wide-field handheld Swept-source OCT angiography with a VCSEL light source. Biomed Opt Express 12 : 3553-3570, 2021
15) Chen S, Potsaid B, Li Y et al : High speed, long range, deep penetration Swept source OCT for structural and angiographic imaging of the anterior eye. Sci Rep 12 : 992, 2022
16) Pollreisz A, Desissaire S, Sedova A et al : Early identification of retinal neuropathy in subclinical diabetic eyes by reduced birefringence of the peripapillary retinal nerve fiber layer. Invest Ophthalmol Vis Sci 62 : 24, 2021
P.177 掲載の参考文献
17) Steiner S, Schwarzhans F, Desissaire S et al : Birefringent properties of the peripapillary retinal nerve fiber layer in healthy and glaucoma subjects analyzed by polarization-sensitive OCT. Invest Ophthalmol Vis Sci 63 : 8, 2022
18) Roberts PK, Schranz M, Motschi A et al : Baseline predictors for subretinal fibrosis in neovascular age-related macular degeneration. Sci Rep 12 : 88, 2022
19) Motschi AR, Schwarzhans F, Desissaire S et al : Quantitative assessment of depolarization by the retinal pigment epithelium in healthy and glaucoma subjects measured over a large field of view. PLoS One 17 : e0278679, 2022
20) Grafe MGO, van de Kreeke JA, Willemse J et al : Subretinal fibrosis detection using polarization sensitive optical coherence tomography. Transl Vis Sci Technol 9 : 13, 2020
21) Willemse J, Grafe MGO, Verbraak FD et al : In vivo 3D determination of peripapillary scleral and retinal layer architecture using polarization-sensitive optical coherence tomography. Transl Vis Sci Technol 9 : 21, 2020
22) Miura M, Makita S, Yasuno Y et al : Evaluation of retinal pigment epithelium changes in serous pigment epithelial detachment in age-related macular degeneration. Sci Rep 11 : 2764, 2021
23) Miura M, Makita S, Yasuno Y et al : Objective evaluation of choroidal melanin loss in patients with Vogt-Koyanagi-Harada disease using polarization-sensitive optical coherence tomography. Sci Rep 12 : 3526, 2022
P.178 掲載の参考文献
24) Miura M, Makita S, Yasuno Y et al : Evaluation of choroidal melanin-containing tissue in healthy Japanese subjects by polarization-sensitive optical coherence tomography. Sci Rep 12 : 4048, 2022
25) Fujita A, Amari T, Ueda K et al : Three-dimensional distribution of fundus depolarization and associating factors measured using polarization-sensitive optical coherence tomography. Transl Vis Sci Technol 10 : 30, 2021
26) Harimoto A, Obata R, Yamamoto M et al : Retinal pigment epithelium melanin distribution estimated by polarisation entropy and its association with retinal sensitivity in patients with high myopia. Br J Ophthalmol 106 : 1457-1462, 2022
27) Ueda K, Shiraya T, Araki F et al : Changes in entropy on polarized-sensitive optical coherence tomography images after therapeutic subthreshold micropulse laser for diabetic macular edema : A pilot study. PLoS One 16 : e0257000, 2021
28) Kitano M, Fujita A, Asaoka R et al : Assessment of macular function in patients with non-vascularized pigment epithelial detachment. Sci Rep 11 : 16577, 2021
29) Sakai D, Takagi S, Totani K et al : Retinal pigment epithelium melanin imaging using polarization-sensitive optical coherence tomography for patients with retinitis pigmentosa. Sci Rep 12 : 7115, 2022
P.179 掲載の参考文献
30) Ueno Y, Mori H, Kikuchi K et al : Visualization of anterior chamber angle structures with scattering- and polarization-sensitive anterior segment optical coherence tomography. Transl Vis Sci Technol 10 : 29, 2021
31) Miura M, Makita S, Yasuno Y et al : Birefringence-derived scleral artifacts in optical coherence tomography images of eyes with pathologic myopia. Sci Rep 12 : 19713, 2022

VI. 神経眼科

P.182 掲載の参考文献
1) Petzold A, Fraser CL, Abegg M et al : Diagnosis and classification of optic neuritis. Lancet Neurol 21 : 1120-1134, 2022
P.183 掲載の参考文献
2) Bennett JL, Costello F, Chen JJ et al : Optic neuritis and autoimmune optic neuropathies : advances in diagnosis and treatment. Lancet Neurol 22 : 89-100, 2023
P.184 掲載の参考文献
3) Banwell B, Bennett JL, Marignier R et al : Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease : International MOGAD Panel proposed criteria. Lancet Neurol 22 : 268-282, 2023
4) Tajfirouz D, Padungkiatsagul T, Beres S et al : Optic chiasm involvement in AQP-4 antibody-positive NMO and MOG antibody-associated disorder. Mult Scler 28 : 149-153, 2022
5) Stiebel-Kalish H, Rubarth K, Shouchane-Blum K et al : Obesity is associated with myelin oligodendrocyte glycoprotein antibody-associated disease in acute optic neuritis. Sci Rep 12 : 21312, 2022
6) Chen JJ, Flanagan EP, Bhatti MT et al : Details and outcomes of a large cohort of MOG-IgG associated optic neuritis. Mult Scler Relat Disord 68 : 104237, 2022
P.185 掲載の参考文献
7) Shah SS, Morris P, Buciuc M et al : Frequency of asymptomatic optic nerve enhancement in a large retrospective cohort of patients with aquaporin-4+NMOSD. Neurology 99 : e851-e857, 2022
8) Pittock SJ, Barnett M, Bennett JL et al : Ravulizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. Ann Neurol, 2023 (doi : 10.1002/ana.26626)
9) Pittock SJ, Fujihara K, Palace J et al : Eculizumab monotherapy for NMOSD : Data from PREVENT and its open-label extension. Mult Scler 28 : 480-486, 2022
P.186 掲載の参考文献
10) Luo J, Yu J, Sui Z et al : Comparison on the effect of seven drugs to prevent relapses of neuromyelitis optica spectrum disorders : A modeling analysis of literature aggregate data. Int Immunopharmacol 110 : 109004, 2022
11) Bennett JL, Aktas O, Rees WA et al : Association between B-cell depletion and attack risk in neuromyelitis optica spectrum disorder : An exploratory analysis from N-MOmentum, a double-blind, randomised, placebo-controlled, multicentre phase 2/3 trial. EBioMedicine 86 : 104321, 2022
12) Rensel M, Zabeti A, Mealy MA et al : Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder : Analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for 4 years in the N-MOmentum trial. Mult Scler 28 : 925-932, 2022
13) Kleiter I, Traboulsee A, Palace J et al : Long-term efficacy of satralizumab in AQP4-IgG-seropositive neuromyelitis optica spectrum disorder from SAkuraSky and SAkuraStar. Neurol Neuroimmunol Neuroinflamm 10 :, 2023 (doi : 10.1212/NXI.0000000000200071)
14) Yamamura T, Weinshenker B, Yeaman MR et al : Long-term safety of satralizumab in neuromyelitis optica spectrum disorder (NMOSD) from SAkuraSky and SAkuraStar. Mult Scler Relat Disord 66 : 104025, 2022
15) Yamamura T, Araki M, Fujihara K et al : Exploring steroid tapering in patients with neuromyelitis optica spectrum disorder treated with satralizumab in SAkuraSky : A case series. Mult Scler Relat Disord 61 : 103772, 2022
16) Pardon LP, Greenwald SH, Ferguson CR et al : Identification of factors associated with the development of optic disc edema during spaceflight. JAMA Ophthalmol 140 : 1193-1200, 2022
17) Chen JJ, Flanagan EP, Pittock SJ et al : Visual outcomes following plasma exchange for optic neuritis : An international multicenter retrospective analysis of 395 optic neuritis attacks. Am J Ophthalmol, 2023 (doi : 10.1016/j.ajo.2023.02.013)
18) Fu J, Wang Y, Li H et al : Efficacy of plasma exchange treatment for demyelinating optic neuritis associated with various serum antibodies : A prospective cohort study. Neurol Ther 11 : 797-813, 2022
P.187 掲載の参考文献
19) Takano F, Ueda K, Godefrooij DA et al : Incidence of Leber hereditary optic neuropathy in 2019 in Japan : a second nationwide questionnaire survey. Orphanet J Rare Dis 17 : 319, 2022
20) van Everdingen JAM, Pott JWR, Bauer NJC et al : Clinical outcomes of treatment with idebenone in Leber's hereditary optic neuropathy in the Netherlands : A national cohort study. Acta Ophthalmol 100 : 700-706, 2022
21) Borrelli E, Berni A, Cascavilla ML et al : Visual outcomes and optical coherence tomography biomarkers of vision improvement in patients with leber hereditary optic neuropathy treated with idebenone. Am J Ophthalmol 247 : 35-41, 2023
P.189 掲載の参考文献
1) Horton JC, Dilbeck MD, Economides JR et al : Decussating axons segregate within the anterior core of the primate optic chiasm. Br J Ophthalmol 107 : 447-452, 2023
2) Bosler NSI, Ashton D, Neely AJ et al : Variation in the anatomy of the normal human optic chiasm : an MRI study. J Neuroophthalmol 41 : 194-199, 2021
3) Kosmorsky GS, Dupps WJ Jr, Drake RL et al : Nonuniform pressure generation in the optic chiasm may explain bitemporal hemianopsia. Ophthalmology 115 : 560-565, 2008
4) Horton JC : Wilbrand's knee : to be or not to be a knee? J Neuroophthalmol 40 Suppl 1 : S7-S14, 2020
5) Lee AG : Acromegaly and junctional visual field loss. Ophthalmology 108 : 832-833, 2001
6) Grzybowski A : Harry Moss Traquair (1875-1954), Scottish ophthalmologist and perimetrist. Acta Ophthalmol 87 : 455-459, 2009
7) Harish Bindiganavile S, Bhat N, Adesina OO et al : Optical coherence tomography findings in the junctional scotoma of Traquair. J Neuroophthalmol 41 : e111-e113, 2021
8) Donaldson LC, Eshtiaghi A, Sacco S et al : Junctional scotoma and patterns of visual field defects produced by lesions involving the optic chiasm. J Neuroophthalmol 42 : e203-e208, 2022
P.190 掲載の参考文献
9) Boland MV, Lee IH, Zan E et al : Quantitative analysis of the displacement of the anterior visual pathway by pituitary lesions and the associated visual field loss. Invest Ophthalmol Vis Sci 57 : 3576-3580, 2016
10) Danesh-Meyer HV, Yoon JJ, Lawlor M et al : Visual loss and recovery in chiasmal compression. Prog Retin Eye Res 73 : 100765, 2019
11) Lee GI, Son KY, Park KA et al : Longitudinal changes in the retinal microstructures of eyes with chiasmal compression. Neurology 96 : e131-e140, 2021
12) Chou Y, Wang X, Wang Y et al : Early retinal microcirculation in nonfunctioning pituitary adenomas without visual field defects using optical coherence tomography angiography. J Neuroophthalmol 42 : 509-517, 2022
13) Moon CH, Hwang SC, Ohn YH et al : The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Invest Ophthalmol Vis Sci 52 : 7966-7973, 2011
14) Lang ST, Ryu WHA, Starreveld YP et al : Good visual outcomes after pituitary tumor surgery are associated with increased visual cortex functional connectivity. J Neuroophthalmol 41 : 504-511, 2021
15) Ying J, Li C, Yuan T et al : Increased resting-state functional connectivity in suprasellar tumor patients with postoperative visual improvement. Int J Med Sci 16 : 1245-1253, 2019
P.191 掲載の参考文献
16) de Vries-Knoppert WA, Baaijen JC, Petzold A et al : Patterns of retrograde axonal degeneration in the visual system. Brain 142 : 2775-2786, 2019
17) Murphy OC, Sotirchos ES, Kalaitzidis G et al : Trans-synaptic degeneration following acute optic neuritis in multiple sclerosis. Ann Neurol 93 : 76-87, 2023
18) Pisa M, Pansieri J, Yee S et al : Anterior optic pathway pathology in CNS demyelinating diseases. Brain 145 : 4308-4319, 2022
19) Petzold A, Chua SYL, Khawaja AP et al : Retinal asymmetry in multiple sclerosis. Brain 144 : 224-235, 2021
20) Pisa M, Croese T, Dalla Costa G et al : Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain 144 : 848-862, 2021
P.192 掲載の参考文献
21) Muller-Axt C, Eichner C, Rusch H et al : Mapping the human lateral geniculate nucleus and its cytoarchitectonic subdivisions using quantitative MRI. Neuroimage 244 : 118559, 2021
22) Simmen CF, Fierz FC, Michels L et al : Lateral geniculate nucleus volume determined on mri correlates with corresponding ganglion cell layer loss in acquired human postgeniculate lesions. Invest Ophthalmol Vis Sci 63 : 18, 2022
23) Cho J, Liao E, Trobe JD et al : Correlation of macular sparing and homonymous paracentral scotomas with MRI lesions in posterior cerebral artery infarction. J Neuroophthalmol 42 : 367-371, 2022
P.193 掲載の参考文献
24) Puledda F, Schankin C, Goadsby PJ et al : Visual snow syndrome : A clinical and phenotypical description of 1,100 cases. Neurology 94 : e564-e574, 2020
25) Brooks CJ, Chan YM, Fielding J et al : Visual contrast perception in visual snow syndrome reveals abnormal neural gain but not neural noise. Brain 145 : 1486-1498, 2022

VII. 外傷・眼窩・腫瘍・涙道

P.196 掲載の参考文献
1) Kuhn F, Morris R, Witherspoon CD et al : Birmingham Eye Trauma Terminology (BETT) : terminology and classification of mechanical eye injuries. Ophthalmol Clin North Am 15 : 139-143, v, 2002
P.197 掲載の参考文献
2) Budoff G, Bhagat N, Zarbin MA et al : Traumatic macular hole : diagnosis, natural history, and management. J Ophthalmol 2019 : 5837832, 2019
3) Lei C, Chen L : Traumatic macular hole : clinical management and optical coherence tomography features. J Ophthalmol 2020 : 4819468, 2020
4) Misra DK, Barman M, Deori N et al : Hyperacute spontaneous closure of a traumatic macular hole in a colobomatous eye. Am J Ophthalmol Case Rep 15 : 100504, 2019
5) Zhou Q, Feng H, Lv H et al : Vitrectomy vs. spontaneous closure for traumatic macular hole : a systematic review and meta-analysis. Front Med (Lausanne) 8 : 735968, 2021
6) Ozkan B, Karabas VL : Surgical closure of giant traumatic macular hole with retinal graft. Eur J Ophthalmol 29 : NP14-NP17, 2019
P.198 掲載の参考文献
7) 嶌嵜創平, 三浦咲子, 恩田秀寿 : 眼窩下壁骨折における骨折部の病理学的観察. 日眼会誌 126 : 976-982, 2022
8) Kakeue K, Kanazawa M, Yunoki T et al : Evaluation of saccadic velocity in patients with orbital floor fracture before and after surgery. Semin Ophthalmol 37 : 491-495, 2022
P.199 掲載の参考文献
9) Cohen LM, Shaye DA, Yoon MK et al : Isolated orbital floor fracture management : a survey and comparison of American oculofacial and facial plastic surgeon preferences. Craniomaxillofac Trauma Reconstr 12 : 112-121, 2019
10) Nikunen M, Rajantie H, Marttila E et al : Implant malposition and revision surgery in primary orbital fracture reconstructions. J Craniomaxillofac Surg 49 : 837-844, 2021
11) Blumer M, Essig H, Steigmiller K et al : Surgical outcomes of orbital fracture reconstruction using patient-specific implants. J Oral Maxillofac Surg 79 : 1302-1312, 2021
12) Seen S, Young S, Lang SS et al : Orbital implants in orbital fracture reconstruction : a ten-year series. Craniomaxillofac Trauma Reconstr 14 : 56-63, 2021
13) Watanabe A, Yamanaka Y, Rajak SN et al : Assessment of a consecutive series of orbital floor fracture repairs with the Hess area ratio and the use of unsintered hydroxyapatite particles/poly l-lactide composite sheets for orbital fracture reconstruction. J Oral Maxillofac Surg 79 : 420-428, 2021
14) Hsieh PJ, Liao HT : Outcome analysis of surgical timing in pediatric orbital trapdoor fracture with different entrapment contents : a retrospective study. Children (Basel) 9, 2022 (doi : 10.3390/children9030398)
15) Burnstine MA : Clinical recommendations for repair of isolated orbital floor fractures : an evidence-based analysis. Ophthalmology 109 : 1207-1210, 2002
P.200 掲載の参考文献
16) Li Y, Singman E, McCulley T et al : The biomechanics of indirect traumatic optic neuropathy using a computational head model with a biofidelic orbit. Front Neurol 11 : 346, 2020
17) Levin LA, Beck RW, Joseph MP et al : The treatment of traumatic optic neuropathy : the International Optic Nerve Trauma Study. Ophthalmology 106 : 1268-1277, 1999
18) Martinez-Perez R, Albonette-Felicio T, Hardesty DA et al : Outcome of the surgical decompression for traumatic optic neuropathy : a systematic review and meta-analysis. Neurosurg Rev 44 : 633-641, 2021
19) Wladis EJ, Aakalu VK, Sobel RK et al : Interventions for indirect traumatic optic neuropathy : a report by the American Academy of Ophthalmology. Ophthalmology 128 : 928-937, 2021
20) 木崎順一郎, 恩田秀寿, 岡和田英昭他 : 外傷性視神経症に対する治療成績. 眼科 58 : 787-792, 2016
P.202 掲載の参考文献
1) Garg G, Finger PT, Kivela TT et al : Patients presenting with metastases : stage IV uveal melanoma, an international study. Br J Ophthalmol 106 : 510-517, 2022
P.203 掲載の参考文献
2) Singh L, Singh MK, Kenney MC et al : Prognostic significance of PD-1/PD-L1 expression in uveal melanoma : correlation with tumor-infiltrating lymphocytes and clinicopathological parameters. Cancer Immunol Immunother 70 : 1291-1303, 2021
3) Le Guin CHD, Bornfeld N, Bechrakis NE et al : Early detection of metastatic uveal melanoma by the analysis of tumorspecific mutations in cell-free plasma DNA. Cancer Med 10 : 5974-5982, 2021
4) Im DH, Peng CC, Xu L et al : Potential of aqueous humor as a liquid biopsy for uveal melanoma. Int J Mol Sci 23, 2022 (doi : 10.3390/ijms23116226)
5) Kosydar S, Robertson JC, Woodfin M et al : Systematic review and meta-analysis on the use of photon-based stereotactic radiosurgery versus fractionated stereotactic radiotherapy for the treatment of uveal melanoma. Am J Clin Oncol 44 : 32-42, 2021
6) Pelster MS, Gruschkus SK, Bassett R et al : Nivolumab and ipilimumab in metastatic uveal melanoma : Results from a single-arm phase II study. J Clin Oncol 39 : 599-607, 2021
7) Modi S, Gibson T, Vigneswaran G et al : Chemosaturation with percutaneous hepatic perfusion of melphalan for metastatic uveal melanoma. Melanoma Res 32 : 103-111, 2022
P.204 掲載の参考文献
8) Nathan P, Hassel JC, Rutkowski P et al : Overall survival benefit with tebentafusp in metastatic uveal melanoma. N Engl J Med 385 : 1196-1206, 2021
9) Li HT, Xu L, Weisenberger DJ et al : Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy. Nat Commun 13 : 5523, 2022
10) Global Retinoblastoma Study Group : The Global Retinoblastoma Outcome Study : a prospective, cluster-based analysis of 4064 patients from 149 countries. Lancet Glob Health 10 : e1128-e1140, 2022
11) Kaliki S, Shields CL, Cassoux N et al : Defining high-risk retinoblastoma : A multicenter global survey. JAMA Ophthalmol 140 : 30-36, 2022
P.205 掲載の参考文献
12) Berry JL, Munier FL, Gallie BL et al : Response criteria for intraocular retinoblastoma : RB-RECIST. Pediatr Blood Cancer 68 : e28964, 2021
13) Lumbroso-Le Rouic L, Blanc R, Saint Martin C et al : Selective ophthalmic artery chemotherapy with melphalan in the management of unilateral retinoblastoma : A prospective study. Ophthalmol Retina 5 : e30-e37, 2021
14) Grumme L, Biewald E, Reschke M et al : Comparing efficacy and side effects of two systemic chemotherapy regimens for eye-preserving therapy in children with retinoblastoma. Pediatr Blood Cancer 69 : e29362, 2022
15) Dunkel IJ, Piao J, Chantada GL et al : Intensive multimodality therapy for extraocular retinoblastoma : A Children's Oncology Group Trial (ARET0321). J Clin Oncol 40 : 3839-3847, 2022
16) Zhao J, Li Q, Feng ZX et al : Tylectomy safety in salvage of eyes with retinoblastoma. Cancers (Basel) 13, 2021 (doi : 10.3390/cancers13225862)
P.206 掲載の参考文献
17) Santos MC, Jiang A, Li AS et al : Vitreoretinal lymphoma : Optimizing diagnostic yield and accuracy. Am J Ophthalmol 236 : 120-129, 2022
18) Shumilov E, Mazzeo P, Zinkernagel MS et al : Comprehensive laboratory diagnostic workup for patients with suspected intraocular lymphoma including flow cytometry, molecular genetics and cytopathology. Curr Oncol 29 : 766-776, 2022
19) Rishi P, Manchegowda PT, Gondhale HP et al : Intravitreal rituximab monotherapy for management of eyes with vitreoretinal lymphoma : initial experience from India. Int Ophthalmol 41 : 2495-2504, 2021
20) Lam M, Touitou V, Choquet S et al : Intravenous high-dose methotrexate based systemic therapy in the treatment of isolated primary vitreoretinal lymphoma : An LOC network study. Am J Hematol 96 : 823-833, 2021
21) Yuan Y, Chu G, Gong T et al : To explore MR imaging radiomics for the differentiation of orbital lymphoma and IgG4-related ophthalmic disease. Biomed Res Int 2021 : 6668510, 2021
22) Shimizu N, Oshitari T, Yotsukura J et al : Ten-year epidemiological study of ocular and orbital tumors in Chiba University Hospital. BMC Ophthalmol 21 : 344, 2021
P.207 掲載の参考文献
23) Shelukar S, Fernandez C, Bas Z et al : High local control and low ocular toxicity using ultra-low-dose "boom-boom" radiotherapy for indolent orbital lymphoma. Chin Clin Oncol 11 : 44, 2022
24) Kim SY, Lee WS, Oh SY et al : Relapse in patients with limited-stage ocular adnexal lymphoma treated by chemoimmunotherapy : Extended follow-up of a phase 2 study. Cancer Med 11 : 2817-2823, 2022
25) Goto H, Yamakawa N, Komatsu H et al : Epidemiological characteristics of malignant eyelid tumors at a referral hospital in Japan. Jpn J Ophthalmol 66 : 343-349, 2022
26) Singh L, Singh MK, Rizvi MA et al : Prognostic significance of immune checkpoints in the tumour-stromal microenvironment of sebaceous gland carcinoma. Br J Ophthalmol 105 : 48-56, 2021
27) Wang Y, Li J, Hao P et al : Integrated whole-exome and transcriptome sequencing indicated dysregulation of cholesterol metabolism in eyelid sebaceous gland carcinoma. Transl Vis Sci Technol 12 : 4, 2023
28) Alam MS, Banerjee P, Krishnakumar S et al : The effect of direct cell injury inflicted by cryotherapy on eyelid sebaceous gland carcinoma cells : An ex-vivo experimental study. Indian J Ophthalmol 70 : 630-633, 2022
P.208 掲載の参考文献
1) Mohney BG, Sathiamoorthi S, Frank RD et al : Spontaneous resolution rates in congenital nasolacrimal duct obstruction managed with massage or topical antibiotics compared with observation alone. Br J Ophthalmol 106 : 1196-1199, 2022
P.209 掲載の参考文献
2) Bansal O, Bothra N, Sharma A et al : Congenital nasolacrimal duct obstruction update study (CUP study) : paper I-role and outcomes of Crigler's lacrimal sac compression. Eye (Lond) 35 : 1600-1604, 2021
3) Lekskul A, Preechaharn P, Jongkhajornpong P et al : Age-specific outcomes of conservative approach and probing for congenital nasolacrimal duct obstruction. Clin Ophthalmol 16 : 1821-1828, 2022
4) 先天鼻涙管閉塞診療ガイドライン作成委員会 : 先天鼻涙管閉塞診療ガイドライン. 日眼会誌 126 : 991-1021, 2022
5) Ali MJ, Singh S : Optical coherence tomography and the proximal lacrimal drainage system : a major review. Graefes Arch Clin Exp Ophthalmol 259 : 3197-3208, 2021
6) Bothra N, Saini P, Ali MJ et al : Age-related changes in the lacrimal punctum morphology in a normal population : Punctum Update (PUP) Study-Paper 1. Ophthalmic Plast Reconstr Surg 39 : 34-39, 2023
7) Nowak R, Rekas M, Ali MJ et al : Long-term outcomes of StopLossTM Jones tube (SLJT) and minimally invasive conjunctivodacryocystorhinostomy. Graefes Arch Clin Exp Ophthalmol 260 : 327-333, 2022
P.210 掲載の参考文献
8) Eroglu FC, Sekeroglu MA, Ceran TH et al : Evaluation of lacrimal drainage system in Pseudoexfoliation syndrome. Eye (Lond) 36 : 2094-2098, 2022
9) Quinn MP, Kratky V, Whitehead M et al : Association of topical glaucoma medications with lacrimal drainage obstruction and eyelid malposition. Eye (Lond), 2022 (doi : 10.1038/s41433-022-02322-w)
10) Taniguchi A, Yunoki T, Oiwake T et al : Association between tear meniscus dimensions and higher-order aberrations in patients with surgically treated lacrimal passage obstruction. Int Ophthalmol 43 : 1135-1141, 2023
11) Kamao T, Zheng X, Shiraishi A et al : Outcomes of bicanalicular nasal stent inserted by sheath-guided dacryoendoscope in patients with lacrimal passage obstruction : a retrospective observational study. BMC Ophthalmol 21 : 103, 2021
P.211 掲載の参考文献
12) Schulz CB, Rainsbury P, Hoffman JJ et al : The watery eye quality of life (WEQOL) questionnaire : a patient-reported outcome measure for surgically amenable epiphora. Eye (Lond) 36 : 1468-1475, 2022
13) Bae SH, Park J, Lee JK et al : Comparison of digital subtraction dacryocystography and dacryoendoscopy in patients with epiphora. Eye (Lond) 35 : 877-882, 2021
14) Hoshi S, Tasaki K, Maruo K et al : Improvement in dacryoendoscopic visibility after image processing using comb-removal and image-sharpening algorithms. J Clin Med 11, 2022 (doi : 10.3390/jcm11082073)
15) Nakamura J, Kamao T, Mitani A et al : Analysis of lacrimal duct morphology from cone-beam computed tomography dacryocystography in a Japanese population. Clin Ophthalmol 16 : 2057-2067, 2022
16) Ce M, Grimaldi E, Toto-Brocchi M et al : Non-contrast MR dacryocystography for the evaluation of epiphora and recurrent dacryocystitis : A preliminary study. Neuroradiol J : 19714009221140484, 2022
P.212 掲載の参考文献
17) Kono S, Vaidya A, Naito M et al : Positional relationship between lacrimal sac and skull base : implication of risk of cerebrospinal fluid leakage during dacryocystorhinostomy. Sci Rep 12 : 14459, 2022
18) Sato Y, Mimura M, Fujita Y et al : Chronologic analysis of tear dynamics on blinking using quantitative manometry in healthy humans. Ophthalmic Plast Reconstr Surg 38 : 22-28, 2022
19) Nakamura J, Kamao T, Mitani A et al : Comparison of the efficacies of 1.0 and 1.5 mm silicone tubes for the treatment of nasolacrimal duct obstruction. Sci Rep 12 : 11785, 2022
20) Daigle P, Morand M, Nijhawan N et al : Implantation of a coronary stent into the canaliculus of a human cadaver : A pilot study. Ophthalmic Plast Reconstr Surg 38 : 355-358, 2022
P.213 掲載の参考文献
21) Jang JK, Choi SE, Lew H et al : Liquid-based thin-prep cytology study of lacrimal drainage system in primary acquired nasolacrimal duct obstruction. Graefes Arch Clin Exp Ophthalmol 260 : 3053-3059, 2022
22) Khorrami Kashi A, Keilani C, Nguyen TH et al : Dacryolithiasis diagnosis and treatment : a 25-year experience using nasal endoscopy. Br J Ophthalmol 107 : 289-294, 2023
23) Inoue H, Toriyama K, Ikegawa W et al : Clinical characteristics of lacrimal drainage pathway disease-associated keratopathy. BMC Ophthalmol 22 : 353, 2022
24) Woo SE, Jang SY : Matrix metalloproteinase-9 point-of-care immunoassay after dacryocystorhinostomy in patients with nasolacrimal duct obstruction. Semin Ophthalmol 36 : 128-131, 2021
P.215 掲載の参考文献
1) Qiu Y, Jin R, Dong X et al : Conjoint fascial sheath suspension with levator muscle advancement for severe blepharoptosis. J Plast Surg Hand Surg 57 : 533-538, 2023
2) Sun Y, Huang X, Zhang Q et al : A fully automatic postoperative appearance prediction system for blepharoptosis surgery with image-based deep learning. Ophthalmol Sci 2 : 100169, 2022
3) Asamura S, Wada Y, Tanaka S et al : Study to the effect of involutional blepharoptosis surgery using objective and subjective parameters. Arch Plast Surg 49 : 473-478, 2022
4) Karlin JN, Katsev B, Kapelushnik N et al : Revision ptosis surgery for under-correction after Muller muscle conjunctival resection. J Plast Reconstr Aesthet Surg 75 : 3485-3490, 2022
5) Kunimi K, Goseki T, Fukaya K et al : Analysis of facial features of patients with sagging eye syndrome and intermittent exotropia compared to controls. Am J Ophthalmol 246 : 51-57, 2023
P.216 掲載の参考文献
6) Liu J, Rokohl AC, Liu H et al : Age-related changes of the periocular morphology : a two- and three-dimensional anthropometry study in Caucasians. Graefes Arch Clin Exp Ophthalmol 261 : 213-222, 2023
7) Mateos-Olivares M, Belani-Raju M, Sanchez-Tocino H et al : Anterior versus posterior retractor reinsertion with a lateral tarsal strip for involutional entropion repair : A multicentric experience. Eur J Ophthalmol : 11206721231155665, 2023
8) Yokoyama T, Vaidya A, Kono S et al : Changes in lacrimal punctum position and tear meniscus height after correction of horizontal laxity in involutional lower eyelid entropion. J Ophthalmol 2023 : 4113151, 2023
P.217 掲載の参考文献
9) Yang Y, Chihaia M, Schulz CB et al : 8-0 polyglactin 910 suture in entropion repair : long term follow up and rates of recurrence. Eye (Lond) 37 : 618-623, 2023
10) Chen CY, Lai CH, Chu YC et al : Using A modified quickert procedure combined with prolapsed fat and preseptal orbicularis muscle removal to correct involutional lower eyelid entropion in Asians. Biomed J, 2022 (doi : 10.1016/j.bj.2022.05.008)
11) Yang MK, Sa HS, Kim N et al : Quantitative analysis of morphological and functional alterations of the meibomian glands in eyes with marginal entropion. PLoS One 17 : e0267118, 2022
12) Yvon C, Hunt S, Malhotra R et al : The importance of identifying meibomian gland inversion in patients with floppy eyelid syndrome. Ophthalmic Plast Reconstr Surg 39 : 156-161, 2023
13) AlHarthi AS : Involutional ectropion : etiological factors and therapeutic management. Int Ophthalmol 43 : 1013-1026, 2023
14) Vrcek I, Seamont D, Zapletal A et al : Correction of severe medial ectropion using a novel osseous fixation technique. Orbit 42 : 170-173, 2023
15) Tanwar V, Pushker N, Agrawal S et al : Autologous fat grafting for the correction of cicatricial ectropion. J Plast Reconstr Aesthet Surg 75 : 4496-4512, 2022
P.218 掲載の参考文献
16) Yamanaka Y, Watanabe A, Rajak SN et al : Correlation between surgical timing and postoperative ocular motility in orbital blowout fractures. Graefes Arch Clin Exp Ophthalmol 260 : 319-325, 2022
17) Hong S, Choi KE, Kim J et al : Comparison of blowout fracture sites observed in young and elderly East Asians. J Craniofac Surg 33 : e427-e429, 2022
18) Narita I, Wakayama A, Shiraishi Y et al : Effects of orthoptic training for residual diplopia after surgical repair of blowout fractures. Graefes Arch Clin Exp Ophthalmol 260 : 1395-1404, 2022
19) Tagami M, Honda S, Azumi A et al : Insights into current management strategies for dysthyroid optic neuropathy : A review. Clin Ophthalmol 16 : 841-850, 2022
20) Takahashi Y, Vaidya A, Kakizaki H et al : Changes in eyelid pressure and dry eye status after orbital decompression in thyroid eye disease. J Clin Med 10, 2021 (doi : 10.3390/jcm10163687)
21) Eshraghi B, Moayeri M, Pourazizi M et al : Decreased Bell's phenomenon after inferior and medial orbital wall decompression in thyroid-associated ophthalmopathy : a double-edged sword in management of the patients. Graefes Arch Clin Exp Ophthalmol 260 : 1701-1705, 2022
P.219 掲載の参考文献
22) Ominato J, Oyama T, Cho H et al : Evaluation of the postoperative course of East Asian eyelid reconstruction with free tarsoconjunctival graft transplantation : A Japanese single-centre retrospective study. JPRAS Open 33 : 6-16, 2022
23) Ma R, Li X, Gan L et al : Modified procedure of anterior orbital exenteration enables eye socket reconstruction : A retrospective cohort study. Medicine (Baltimore) 101 : e28698, 2022

VIII. 小児・弱視斜視

P.223 掲載の参考文献
1) Freedman SF, Beck AD, Nizam A et al : Glaucoma-related adverse events at 10 years in the Infant Aphakia Treatment Study : a secondary analysis of a randomized clinical trial. JAMA Ophthalmol 139 : 165-173, 2021
2) Oke I, VanderVeen DK, McClatchey TS et al : The accuracy of intraocular lens calculation varies by age in the Infant Aphakia Treatment Study. J AAPOS 26 : 143-145, 2022
3) Oke I, VanderVeen DK, McClatchey TS et al : The contribution of intraocular lens calculation accuracy to the refractive error predicted at 10 years in the Infant Aphakia Treatment Study. J AAPOS 26 : 294.e1-294.e5, 2022
4) Chan JJT, Wong ES, Lam CPS et al : Ten-year refractive and visual outcomes of intraocular lens implantation in infants with congenital cataract. Hong Kong Med J 29 : 22-30, 2023
5) 日本緑内障学会緑内障診療ガイドライン改訂委員会 : 緑内障診療ガイドライン (第5版). 日眼会誌 126 : 85-177, 2022
6) 厚生労働科学研究費補助金難治性疾患政策研究事業「角膜難病の標準的診断法および治療法の確立を目指した調査研究」研究班診療ガイドライン作成委員会 : 前眼部形成異常の診療ガイドライン. 日眼会誌 125 : 605-629, 2021
7) 厚生労働科学研究費補助金難治性疾患政策研究事業「角膜難病の標準的診断法および治療法の確立を目指した調査研究」研究班診療ガイドライン作成委員会 : 無虹彩症の診療ガイドライン. 日眼会誌 125 : 38-76, 2021
8) Quan AV, Chen J, Wang YE et al : Factors associated with gonioscopy-assisted transluminal trabeculotomy (GATT) complications and failure in children. Am J Ophthalmol 241 : 168-178, 2022
9) Hoffmann EM, Aghayeva F, Schuster AK et al : Results of childhood glaucoma surgery over a long-term period. Acta Ophthalmol 100 : e448-e454, 2022
10) Vahedian Z, Fakhraie G, Ahmed AH et al : Viscocanalostomy combined with trabeculotomy for management of refractory primary congenital glaucoma. J AAPOS 26 : 121.e1-121.e6, 2022
P.224 掲載の参考文献
11) Khan OA, Sesma G, Alawi A et al : Outcomes of non-penetrating deep sclerectomy for primary congenital glaucoma performed by experienced versus trainee surgeons : A cohort study. Clin Ophthalmol 17 : 897-906, 2023
12) Elwehidy AS, Bayoumi NHL, Hagras SM et al : Ahmed glaucoma valve implantation with and without Ologen adjuvant in pediatric glaucoma. J AAPOS 26 : 238.e1-238.e6, 2022
13) Jacobson A, Bohnsack BL : Ologen augmentation of Ahmed valves in pediatric glaucomas. J AAPOS 26 : 122.e1-122.e6, 2022
14) Elhusseiny AM, Abbasian J : Topical netarsudil 0.02% as adjunctive therapy in refractory pediatric glaucoma. J AAPOS 26 : 300.e1-300.e5, 2022
15) Li W, Cheung R, Malvankar-Mehta MS et al : Comparing the diagnostic accuracy of telemedicine utilization versus in-person clinical examination for retinopathy of prematurity in premature infants : a systematic review. J AAPOS 26 : 58.e1-58.e7, 2022
16) Adhikari S, Bajimaya S, Ranjitkar EP et al : Validation of smartphone-based screening for retinopathy of prematurity in a low-resource setting. J AAPOS 25 : 274.e1-274.e5, 2021
17) Chiang MF, Quinn GE, Fielder AR et al : International Classification of Retinopathy of Prematurity, Third Edition. Ophthalmology 128 : e51-e68, 2021
18) 日本小児眼科学会 : 未熟児網膜症国際分類の改訂 (2021年). http://www.japo-web.jp/_pdf/20220126.pdf (2023年3月閲覧)
P.225 掲載の参考文献
19) 未熟児網膜症眼科管理対策委員会 : 未熟児網膜症に対する抗VEGF療法の手引き. 日眼会誌 124 : 1013-1019, 2020
20) Hoppe C, Holt DG, Arnold BF et al : Structural and refractive outcomes of intravitreal ranibizumab followed by laser photocoagulation for type 1 retinopathy of prematurity. J AAPOS 26 : 305.e1-305.e6, 2022
21) Lajoie JE, Pacheco RR, Shah V et al : A comparison of primary laser versus laser after anti-vascular endothelial growth factor for type 1 retinopathy of prematurity. J AAPOS 26 : 191.e1-191.e4, 2022
22) Deng C, Zhao PY, Branham K et al : Real-world outcomes of voretigene neparvovec treatment in pediatric patients with RPE65-associated Leber congenital amaurosis. Graefes Arch Clin Exp Ophthalmol 260 : 1543-1550, 2022
23) 西口康二 : 網膜ジストロフィに対する遺伝子治療の進歩. 眼科 64 : 647-652, 2022
24) Wang JY, Doudna JA : CRISPR technology : A decade of genome editing is only the beginning. Science 379 (6629) : eadd8643, 2023
25) Daich Varela M, Cabral de Guimaraes TA, Georgiou M et al : Leber congenital amaurosis/early-onset severe retinal dystrophy : current management and clinical trials. Br J Ophthalmol 106 : 445-451, 2022
26) Altay HY, Ozdemir F, Afghah F et al : Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection : From proof-of-concept to clinical trial. Front Neurosci 16 : 924917, 2022
P.226 掲載の参考文献
27) 一般社団法人日本リウマチ学会小児リウマチ調査検討小委員会ぶどう膜炎ワーキンググループ : 小児非感染性ぶどう膜炎初期診療の手引き 2020年版. 羊土社, 2020
28) 先天鼻涙管閉塞診療ガイドライン作成委員会 : 先天鼻涙管閉塞診療ガイドライン. 日眼会誌 126 : 991-1021, 2022
P.227 掲載の参考文献
1) Belghmaidi S, Nassih H, Boutgayout S et al : Third cranial nerve palsy presenting with unilateral diplopia and strabismus in a 24-year-old woman with COVID-19. Am J Case Rep 21 : e925897, 2020
2) Meshref M, Shaheen N, Swed S et al : An overview of third, fourth and sixth cranial nerve palsies in the setting of COVID-19 : A case report and systematic review. Medicine (Baltimore) 101 : e32023, 2022
3) Vagge A, Giannaccare G, Scarinci F et al : Acute acquired concomitant esotropia from excessive application of near vision during the COVID-19 lockdown. J Pediatr Ophthalmol Strabismus 57 : e88-e91, 2020
P.228 掲載の参考文献
4) Sumitha M, Sanjay S, Kemmanu V et al : Will COVID-19 pandemic-associated lockdown increase myopia in Indian children? Indian J Ophthalmol 68 : 1496, 2020
5) Hu Y, Zhao F, Ding X et al : Rates of myopia development in young chinese school-children during the outbreak of COVID-19. JAMA Ophthalmol 139 : 1115-1121, 2021
6) Chen D, Li R, Li X et al : Prevalence, incidence and risk factors of strabismus in a Chinese population-based cohort of preschool children : the Nanjing Eye Study. Br J Ophthalmol 105 : 1203-1210, 2021
7) Mohney BG, Lepor L, Hodge DO et al : Subclinical markers of strabismus in children 5-18 years of age. J AAPOS 25 : 139.e1-139.e5, 2021
8) Holmes JM, Hercinovic A, Melia BM et al : Health-related quality of life in children with untreated intermittent exotropia and their parents. J AAPOS 25 : 80.e1-80.e4, 2021
P.229 掲載の参考文献
9) Holmes JM, Hercinovic A, Melia BM et al : Improvement in health-related quality of life following strabismus surgery for children with intermittent exotropia. J AAPOS 25 : 82.e1-82.e7, 2021
10) Chen AM, Erzurum SA, Chandler DL et al : Overminus lens therapy for children 3 to 10 years of age with intermittent exotropia : A randomized clinical trial. JAMA Ophthalmol 139 : 464-476, 2021
11) Arnold RW, Donahue SP, Silbert DI et al : AAPOS uniform guidelines for instrument-based pediatric vision screen validation 2021. J AAPOS 26 : 1.e1-1.e6, 2022
12) Musch DC, Andrews CA, Schumann RA et al : A comparative study of two photoscreening devices with manual vision screening involving preschool children. J Pediatr Ophthalmol Strabismus 59 : 46-52, 2022
13) Hamasaki I, Shibata K, Shimizu T et al : Lights-out surgery for strabismus using a heads-up 3D vision system. Acta Med Okayama 73 : 229-233, 2019

IX. 視機能

P.232 掲載の参考文献
1) Siktberg J, Hamdan S, Liu Y et al : Validation of a standardized home visual acuity test for tele-ophthalmology. Ophthalmol Sci 1 : 100007, 2021
P.233 掲載の参考文献
2) Crossland MD, Dekker TM, Hancox J et al : Evaluation of a home-printable vision screening test for telemedicine. JAMA Ophthalmol 139 : 271-277, 2021
3) Iskander M, Hu G, Sood S et al : Validation of the New York University Langone Eye Test application, a smartphone-based visual acuity test. Ophthalmol Sci 2 : 100182, 2022
4) Khurana RN, Hoang C, Khanani AM et al : A smart mobile application to monitor visual function in diabetic retinopathy and age-related macular degeneration : The CLEAR Study. Am J Ophthalmol 227 : 222-230, 2021
P.234 掲載の参考文献
5) Murakami T, Okamoto F, Sugiura Y et al : Contrast sensitivity and quality of life following intravitreal ranibizumab injection for central retinal vein occlusion. Br J Ophthalmol 107 : 254-260, 2023
6) Wai KM, Vingopoulos F, Garg I et al : Contrast sensitivity function in patients with macular disease and good visual acuity. Br J Ophthalmol 106 : 839-844, 2022
7) Vingopoulos F, Garg I, Kim EL et al : Quantitative contrast sensitivity test to assess visual function in central serous chorioretinopathy. Br J Ophthalmol, 2022 (doi : 10.1136/bjophthalmol-2021-320415)
8) Zeng R, Vingopoulos F, Wang M et al : Structure-function association between contrast sensitivity and retinal thickness (total, regional, and individual retinal layer) in patients with idiopathic epiretinal membrane. Graefes Arch Clin Exp Ophthalmol 261 : 631-639, 2023
P.235 掲載の参考文献
9) Yanagida K, Wakabayashi Y, Usui Y et al : Ectopic inner foveal layer as a factor associated with metamorphopsia after vitrectomy for epiretinal membrane. Acta Ophthalmol 100 : 775-780, 2022
10) Murase A, Asaoka R, Inoue T et al : Relationship between optical coherence tomography parameter and visual function in eyes with epiretinal membrane. Invest Ophthalmol Vis Sci 62 : 6, 2021
11) Watanabe A, Ishida M, Shibata M et al : One-year outcomes of metamorphopsia and retinal displacement after epiretinal membrane surgery. Retina 42 : 1756-1761, 2022
12) Kanzaki Y, Doi S, Matoba R et al : Objective and quantitative estimation of the optimal timing for epiretinal membrane surgery on the basis of metamorphopsia. Retina 42 : 704-711, 2022
13) Park SH, Park KH, Kim HY et al : Square grid deformation analysis of the macula and postoperative metamorphopsia after macular hole surgery. Retina 41 : 931-939, 2021
P.236 掲載の参考文献
14) Thomseth VM, Lindtjorn B, Ushakova A et al : Long-term changes in visual function and en face optical coherence tomography findings in fovea-off retinal detachment : a 2-year prospective study. Retina 43 : 330-337, 2023
15) Kumari N, Surve A, Kumar V et al : Comparative evaluation of outcomes of drainage techniques in vitrectomy for rhegmatogenous retinal detachment. Retina 42 : 27-32, 2022
16) Morikawa S, Okamoto F, Murakami T et al : Visual functions affecting stereopsis in patients with branch retinal vein occlusion. Eye (Lond) 36 : 457-462, 2022
P.237 掲載の参考文献
17) Morikawa S, Okamoto F, Murakami T et al : Relationship between stereopsis and vision-related quality of life in patients with branch retinal vein occlusion. BMJ Open Ophthalmol 7 : e000925, 2022
18) Morikawa S, Okamoto F, Murakami T et al : Visual functions affecting stereopsis in patients with branch retinal vein occlusion. Eye (Lond) 36 : 457-462, 2022
19) Okamoto F, Murakami T, Morikawa S et al : Vision-related parameters affecting stereopsis after retinal detachment surgery. J Clin Med 12, 2023 (doi : 10.3390/jcm12041527)
20) Matsumoto R, Saishin Y, Ohji M et al : Evaluation of acquired color vision deficiency in retinal vein occlusion using the Rabin cone contrast test. Graefes Arch Clin Exp Ophthalmol 259 : 2961-2966, 2021
P.238 掲載の参考文献
21) White KM, Livnat I, Frambach CR et al : Quantitative cone contrast threshold testing in patients with differing pathophysiological mechanisms causing retinal diseases. Int J Retina Vitreous 9 : 9, 2023
22) Vidal KSM, Decleva D, Barboni MTS et al : The association between acquired color deficiency and PET imaging of neurodegeneration in mild cognitive impairment and Alzheimer disease. Invest Ophthalmol Vis Sci 63 : 20, 2022
23) Gan J, Li SM, Atchison DA et al : Association between color vision deficiency and myopia in Chinese children over a five-year period. Invest Ophthalmol Vis Sci 63 : 2, 2022
P.240 掲載の参考文献
1) Chakravarti T, Moghadam M, Proudfoot JA et al : Agreement between 10-2 and 24-2c visual field test protocols for detecting glaucomatous central visual field defects. J Glaucoma 30 : e285-e291, 2021
2) Phu J, Kalloniatis M : Comparison of 10-2 and 24-2c test grids for identifying central visual field defects in glaucoma and suspect patients. Ophthalmology 128 : 1405-1416, 2021
3) West ME, Sharpe GP, Hutchison DM et al : Value of 10-2 visual field testing in glaucoma patients with early 24-2 visual field loss. Ophthalmology 128 : 545-553, 2021
4) Sullivan-Mee M, Kimura B, Kee H et al : Baseline 10-2 visual field loss as a predictor for future glaucoma progression. J Glaucoma 32 : 1-8, 2023
5) Asano S, Murata H, Fujino Y et al : Investigating the clinical usefulness of definitions of progression with 10-2 visual field. Br J Ophthalmol 106 : 1098-1103, 2022
6) Omoto T, Asaoka R, Akagi T et al : The number of examinations required for the accurate prediction of the progression of the central 10-degree visual field test in glaucoma. Sci Rep 12 : 18843, 2022
7) Kamalipour A, Moghimi S, Khosravi P et al : Deep learning estimation of 10-2 visual field map based on circumpapillary retinal nerve fiber layer thickness measurements. Am J Ophthalmol 246 : 163-173, 2023
8) Tomita R, Asaoka R, Hirasawa K et al : Accuracy of pattern deviation in estimating the glaucomatous damage in the central 10° visual field in eyes with glaucoma and cataract. Br J Ophthalmol, 2022 (doi : 10.1136/bjo-2022-322274)
P.241 掲載の参考文献
9) Bro T : Benjamin Esterman (1906-1994) and the binocular visual field scoring grid that became a world standard for assessing driver eligibility. Acta Ophthalmol 100 : 828-833, 2022
10) Faraji Y, Tan-Burghouwt MT, Bredewoud RA et al : Predictive value of the Esterman visual field test on the outcome of the on-road driving test. Transl Vis Sci Technol 11 : 20, 2022
11) Bro T, Andersson J : The effects of visual field loss from glaucoma on performance in a driving simulator. Acta Ophthalmol 100 : 218-224, 2022
12) Yamasaki T, Yuki K, Awano-Tanabe S et al : Binocular superior visual field areas associated with driving self-regulation in patients with primary open-angle glaucoma. Br J Ophthalmol 105 : 135-140, 2021
13) Tigchelaar I, de Waard D, Jansonius NM et al : Exploring the effect of glaucomatous visual field defects of current drivers on a neuropsychological test battery. Acta Ophthalmol 100 : e463-e469, 2022
14) Jorstad OK, Jonsdottir TE, Zysset S et al : A traffic perimetry test that adheres to the European visual field requirements. Acta Ophthalmol 99 : e555-e561, 2021
15) Jorstad OK, Jonsdottir TE, Zysset S et al : A traffic perimetry test that adheres to the European visual field requirements for group 2 drivers. Acta Ophthalmol 99 : e1253-e1254, 2021
16) Gardiner SK, Swanson WH, Mansberger SL et al : Long- and short-term variability of perimetry in glaucoma. Transl Vis Sci Technol 11 : 3, 2022
17) Marin-Franch I, Artes PH, Turpin A et al : Visual field progression in glaucoma : comparison between PoPLR and ANSWERS. Transl Vis Sci Technol 10 : 13, 2021
18) Murata H, Asaoka R, Fujino Y et al : Comparing the usefulness of a new algorithm to measure visual field using the variational Bayes linear regression in glaucoma patients, in comparison to the Swedish interactive thresholding algorithm. Br J Ophthalmol 106 : 660-666, 2022
19) Pham AT, Ramulu PY, Boland MV et al : The effect of transitioning from SITA Standard to SITA Faster on visual field performance. Ophthalmology 128 : 1417-1425, 2021
20) Le CT, Fiksel J, Ramulu P et al : Differences in visual field loss pattern when transitioning from SITA standard to SITA faster. Sci Rep 12 : 7001, 2022
P.242 掲載の参考文献
21) Heijl A, Patella VM, Flanagan JG et al : False positive responses in standard automated perimetry. Am J Ophthalmol 233 : 180-188, 2022
22) Sood D, Czanner G, Somerville T et al : Standard automated perimetry using size III and size V stimuli in advanced stage glaucoma : an observational cross-sectional comparative study. BMJ Open 11 : e046124, 2021
23) Richardson QR, Kumar RS, Ramgopal B et al : Diagnostic accuracy of an iPad application for detection of visual field defects. Eye (Lond), 2022 (doi : 10.1038/s41433-022-02223-y)
24) Kitayama K, Young AG, Ochoa A 3rd et al : The agreement between an iPad visual field app and Humphrey Frequency Doubling Technology in visual field screening at health fairs. J Glaucoma 30 : 846-850, 2021
25) Chia MA, Trang E, Agar A et al : Screening for glaucomatous visual field defects in rural Australia with an iPad. J Curr Glaucoma Pract 15 : 125-131, 2021
26) Ding J, Tecson IC, Ang BCH et al : The performance of iPad-based noise-field perimeter versus Humphrey Field Analyser in detecting glaucomatous visual field loss. Eye (Lond) 36 : 800-811, 2022
27) Arai K, Nishijima E, Ogawa S et al : A novel visual field screening program for glaucoma with a head mounted perimeter. J Glaucoma, 2023 (doi : 10.1097/IJG.0000000000002199)
28) Kang J, De Arrigunaga S, Freeman SE et al : Comparison of perimetric outcomes from a tablet perimeter, smart visual function analyzer, and Humphrey Field Analyzer. Ophthalmol Glaucoma, 2023 (doi : 10.1016/j.ogla.2023.03.001)
29) Nishida T, Eslani M, Weinreb RN et al : Perimetric comparison between the IMOvifa and Humphrey Field Analyzer. J Glaucoma 32 : 85-92, 2023
30) Sakamoto M, Sawamura H, Aihara M et al : Agreement in the detection of chiasmal and postchiasmal visual field defects between imo binocular random single-eye test and Humphrey monocular test. Jpn J Ophthalmol 66 : 413-424, 2022
31) Ishibashi T, Matsumoto C, Nomoto H et al : Measurement of fixational eye movements with the head-mounted perimeter imo. Transl Vis Sci Technol 11 : 26, 2022
32) Grau E, Andrae S, Horn F et al : Teleglaucoma using a new smartphone-based tool for visual field assessment. J Glaucoma 32 : 186-194, 2023
P.243 掲載の参考文献
33) Pradhan ZS, Sircar T, Agrawal H et al : Comparison of the performance of a novel, smartphone-based, head-mounted perimeter (GearVision) with the Humphrey Field Analyzer. J Glaucoma 30 : e146-e152, 2021
34) Alawa KA, Nolan RP, Han E et al : Lowcost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br J Ophthalmol 105 : 440-444, 2021
35) Narang P, Agarwal A, Agarwal A et al : Comparative analysis of 10-2 test on advanced vision analyzer and Humphrey perimeter in glaucoma. Ophthalmol Sci 3 : 100264, 2023
36) Groth SL, Linton EF, Brown EN et al : Evaluation of virtual reality perimetry and standard automated perimetry in normal children. Transl Vis Sci Technol 12 : 6, 2023
37) Stapelfeldt J, Kucur SS, Huber N et al : Virtual reality-based and conventional visual field examination comparison in healthy and glaucoma patients. Transl Vis Sci Technol 10 : 10, 2021
38) Razeghinejad R, Gonzalez-Garcia A, Myers JS et al : Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma 30 : 17-23, 2021
39) Montelongo M, Gonzalez A, Morgenstern F et al : A virtual reality-based automated perimeter, device, and pilot study. Transl Vis Sci Technol 10 : 20, 2021
40) Mayer DL, Fulton AB, Cummings MF et al : Visual fields of infants assessed with a new perimetric technique. Invest Ophthalmol Vis Sci 29 : 452-459, 1988
41) Patel DE, Cumberland PM, Walters BC et al : Study of Optimal Perimetric Testing in Children (OPTIC) : Feasibility, reliability and repeatability of perimetry in children. PLoS One 10 : e0130895, 2015
42) Patel DE, Cumberland PM, Walters BC et al : Study of Optimal Perimetric Testing In Children (OPTIC) : developing consensus and setting research priorities for perimetry in the management of children with glaucoma. Eye (Lond) 36 : 1281-1287, 2022
P.245 掲載の参考文献
1) Wang J, Li Y, Musch DC et al : Progression of myopia in school-aged children after COVID-19 home confinement. JAMA Ophthalmol 139 : 293-300, 2021
2) Yotsukura E, Torii H, Inokuchi M et al : Current prevalence of myopia and association of myopia with environmental factors among schoolchildren in Japan. JAMA Ophthalmol 137 : 1233-1239, 2019
3) Maruyama T, Yotsukura E, Torii H et al : Children in Tokyo have a long sustained axial length from age 3 years : The Tokyo Myopia Study. J Clin Med 11, 2022 (doi : 10.3390/jcm11154413)
4) Hazra D, Yotsukura E, Torii H et al : Relation between dry eye and myopia based on tear film breakup time, higher order aberration, choroidal thickness, and axial length. Sci Rep 12 : 10891, 2022
5) Thakur S, Dhakal R, Verkicharla PK et al : Short-term exposure to blue light shows an inhibitory effect on axial elongation in human eyes independent of defocus. Invest Ophthalmol Vis Sci 62 : 22, 2021
6) Jiang X, Pardue MT, Mori K et al : Violet light suppresses lens-induced myopia via neuropsin (OPN5) in mice. Proc Natl Acad Sci U S A 118, 2021 (doi : 10.1073/pnas.2018840118)
7) Mori K, Torii H, Hara Y et al : Effect of violet light-transmitting eyeglasses on axial elongation in myopic children : A randomized controlled trial. J Clin Med 10 :, 2021 (doi : 10.3390/jcm10225462)
P.246 掲載の参考文献
8) Torii H, Mori K, Okano T et al : Short-term exposure to violet light emitted from eyeglass frames in myopic children : A randomized pilot clinical trial. J Clin Med 11 :, 2022 (doi : 10.3390/jcm11206000)
P.247 掲載の参考文献
9) Zhou L, Tong L, Li Y et al : Photobiomodulation therapy retarded axial length growth in children with myopia : evidence from a 12-month randomized controlled trial evidence. Sci Rep 13 : 3321, 2023
10) Liu H, Yang Y, Guo J et al : Retinal damage after repeated low-level red-light laser exposure. JAMA Ophthalmol, 2023 (doi : 10.1001/jamaophthalmol.2023.1548)
11) Xiong R, Zhu Z, Jiang Y et al : Sustained and rebound effect of repeated low-level red-light therapy on myopia control : A 2-year post-trial follow-up study. Clin Exp Ophthalmol 50 : 1013-1024, 2022
12) Qi Y, Liu L, Li Y et al : Factors associated with faster axial elongation after orthokeratology treatment. BMC Ophthalmol 22 : 62, 2022
P.248 掲載の参考文献
13) Chamberlain P, Bradley A, Arumugam B et al : Long-term effect of dual-focus contact lenses on myopia progression in children : A 6-year multicenter clinical trial. Optom Vis Sci 99 : 204-212, 2022
14) Hieda O, Hiraoka T, Fujikado T et al : Efficacy and safety of 0.01% atropine for prevention of childhood myopia in a 2-year randomized placebo-controlled study. Jpn J Ophthalmol 65 : 315-325, 2021
15) Yam JC, Zhang XJ, Zhang Y et al : Three-year clinical trial of Low-Concentration Atropine for Myopia Progression (LAMP) Study : Continued versus washout : Phase 3 report. Ophthalmology 129 : 308-321, 2022
P.249 掲載の参考文献
16) Foreman J, Salim AT, Praveen A et al : Association between digital smart device use and myopia : a systematic review and meta-analysis. Lancet Digit Health 3 : e806-e818, 2021
17) Enthoven CA, Polling JR, Verzijden T et al : Smartphone use associated with refractive error in teenagers : The Myopia App Study. Ophthalmology 128 : 1681-1688, 2021
18) Thakur S, Verkicharla PK : Greater axial elongation associated with low accommodative lag : new insights on accommodative lag theory for myopia. Ophthalmic Physiol Opt 41 : 1355-1362, 2021
P.251 掲載の参考文献
1) British Contact Lens Association : CEAR-Contact Lens Evidence-based Academic Report. Cont Lens Anterior Eye 44 : 129-430, 2021
P.252 掲載の参考文献
2) Shigeyasu C, Yamada M, Fukuda M et al : Severe ocular complications associated with wearing of contact lens in Japan. Eye Contact Lens 48 : 63-68, 2022
3) 宇野敏彦, 福田昌彦, 大橋裕一他 : 重症コンタクトレンズ関連角膜感染症全国調査. 日眼会誌 110 : 107-115, 2011
4) Ono K, Murakami A, Haishima Y et al : A web-based survey of contact lens-related adverse events among the Japanese female population. Sci Rep 11 : 15939, 2021
P.253 掲載の参考文献
5) Nie L, Li Y, Liu Y et al : Recent applications of contact lenses for bacterial corneal keratitis therapeutics : A review. Pharmaceutics 14, 2022 (doi : 10.3390/pharmaceutics14122635)
6) Malik ANJ, Gilbert C : Cochrane corner : interventions for preventing ophthalmia neonatorum. Eye (Lond) 36 : 356-357, 2022
7) Leal SM Jr, Rodino KG, Fowler WC et al : Practical guidance for clinical microbiology laboratories : Diagnosis of ocular infections. Clin Microbiol Rev 34 : e0007019, 2021
8) Salih AE, Elsherif M, Alam F et al : Gold nanocomposite contact lenses for color blindness management. ACS Nano 15 : 4870-4880, 2021
P.254 掲載の参考文献
9) Gudkov SV, Burmistrov DE, Serov DA et al : A mini review of antibacterial properties of ZnO nanoparticles. Front Phys 9 : 641481, 2021
10) Kalaiselvan P, Konda N, Pampi N et al : Effect of antimicrobial contact lenses on corneal infiltrative events : A randomized clinical trial. Transl Vis Sci Technol 10 : 32, 2021
11) Debourdeau E, Planells G, Chamard C et al : New keratoconus risk factors : a cross-sectional case-control study. J Ophthalmol 2022 : 6605771, 2022
12) Nakao G, Koh S, Inoue R et al : The characteristics and risk factors of very asymmetric keratoconus. Eye Contact Lens 47 : 511-514, 2021
13) Falgayrettes N, Patoor E, Cleymand F et al : Biomechanics of keratoconus : Two numerical studies. PLoS One 18 : e0278455, 2023
P.255 掲載の参考文献
14) Song M, Chen T, Moktar A et al : Diagnosis and management of keratoconus-A narrative review of clinicians' perspectives. Children (Basel) 9, 2022 (doi : 10.3390/children9121973)
15) Santodomingo-Rubido J, Carracedo G, Suzaki A et al : Keratoconus : An updated review. Cont Lens Anterior Eye 45 : 101559, 2022
16) Koh S, Inoue R, Maeda N et al : Corneal tomographic changes during corneal rigid gas-permeable contact lens wear in keratoconic eyes. Br J Ophthalmol 106 : 197-202, 2022
17) Araki S, Koh S, Kabata D et al : Effect of long-term rigid gas-permeable contact lens wear on keratoconus progression. Br J Ophthalmol 105 : 186-190, 2021
18) Scanzera AC, Deeley M, Joslin C et al : Contact lens prescribing trends for keratoconus at an academic medical center : Increased utilization of scleral lenses for severe disease. Eye Contact Lens 48 : 58-62, 2022
P.256 掲載の参考文献
19) Hiraoka T, Kiuchi G, Hiraoka R et al : Clinical performance of a custom-designed soft contact lens in patients with keratoconus and intolerance to rigid contact lenses. Jpn J Ophthalmol 66 : 350-357, 2022
20) Elsherif M, Moreddu R, Alam F et al : Wearable smart contact lenses for continual glucose monitoring : A review. Front Med (Lausanne) 9 : 858784, 2022
21) Kim TY, Mok JW, Hong SH et al : Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma. Nat Commun 13 : 6801, 2022
P.257 掲載の参考文献
22) 日本眼科医会眼鏡技能士対策担当 : 眼鏡作製職種に係る技能検定. 日本の眼科 92 : 750-759, 2021
P.258 掲載の参考文献
1) Kamiya K, Shimizu K, Igarashi A et al : Posterior chamber phakic intraocular lens implantation : comparative, multicentre study in 351 eyes with low-to-moderate or high myopia. Br J Ophthalmol 102 : 177-181, 2018
2) 日本眼科学会屈折矯正委員会 : 屈折矯正手術のガイドライン (第7版). 日眼会誌 123 : 167-169, 2019
P.259 掲載の参考文献
3) Sandoval HP, Donnenfeld ED, Kohnen T et al : Modern laser in situ keratomileusis outcomes. J Cataract Refract Surg 42 : 1224-1234, 2016
4) Russo A, Reinstein DZ, Filini O et al : Visual and refractive outcomes following laser blended vision with non-linear aspheric micro-anisometropia (PRESBYOND) in myopic and hyperopic patients. J Refract Surg 38 : 288-297, 2022
5) Yuan Y, Zhang Y, Sun T et al : Topography-guided FS-LASIK with PAE algorithm and Sirius tomography data for correction of myopia and myopic astigmatism. J Refract Surg 38 : 235-242, 2022
6) Dong R, Zhang Y, Yuan Y et al : A prospective randomized self-controlled study of LASIK combined with accelerated cross-linking for high myopia in Chinese : 24-month follow-up. BMC Ophthalmol 22 : 280, 2022
7) Leccisotti A, Fields SV, De Bartolo G et al : Traumatic flap complications after femto-second LASIK. Cornea 41 : 604-608, 2022
https://www.market-scope.com
P.260 掲載の参考文献
8) Zhao Y, Lin X, Chen Z et al : Five-year stability of posterior corneal surface after small incision lenticule extraction for high myopia. BMC Ophthalmol 22 : 239, 2022
9) Reinstein DZ, Archer TJ, Vida RS et al : Small incision lenticule extraction (SMILE) for the correction of high myopia with astigmatism. J Refract Surg 38 : 262-271, 2022
10) Jiang X, Wang Y, Yuan H et al : Influences of SMILE and FS-LASIK on corneal subbasal nerves : A systematic review and network meta-analysis. J Refract Surg 38 : 277-284, 2022
11) Chiang B, Valerio GS, Manche EE et al : Prospective, randomized contralateral eye comparison of wavefront-guided laser in situ keratomileusis and small incision lenticule extraction refractive surgeries. Am J Ophthalmol 237 : 211-220, 2022
12) Zhou J, Gu W, Gao Y et al : Vector analysis of high astigmatism (2.0 diopters) correction after small-incision lenticule extraction with stringent head positioning and femtosecond laser-assisted laser in situ keratomileusis with compensation of cyclotorsion. BMC Ophthalmol 22 : 157, 2022
P.261 掲載の参考文献
13) Chen D, Zhao X, Chou Y et al : Comparison of visual outcomes and optical quality of femtosecond laser-assisted SMILE and Visian Implantable Collamer Lens (ICL V4c) implantation for moderate to high myopia : A meta-analysis. J Refract Surg 38 : 332-338, 2022
14) Kamiya K, Shimizu K, Igarashi A et al : Posterior chamber phakic intraocular lens implantation after laser in situ keratomileusis. Eye Vis (Lond) 9 : 15, 2022
15) Nakamura T, Nishida T, Isogai N et al : Evaluation of implantable collamer lens sizing developed by reviewing the horizontal compression-vault coefficient. J Cataract Refract Surg 49 : 525-530, 2023
16) Nishida T, Kojima T, Kataoka T et al : Prediction of the trabecular iris angle after posterior chamber phakic intraocular lens implantation. J Cataract Refract Surg 48 : 604-610, 2022
17) Kamiya K, Ryu IH, Yoo TK et al : Prediction of phakic intraocular lens vault using machine learning of anterior segment optical coherence tomography metrics. Am J Ophthalmol 226 : 90-99, 2021
P.262 掲載の参考文献
18) Naslund S, Rehnman JB, Fredriksson A et al : Comparison of two annular photorefractive intrastromal cross-linking protocols in high oxygen for low-grade myopia through 24-month follow-up. Acta Ophthalmol 100 : 549-558, 2022
19) Moshirfar M, Lau CK, Chartrand NA et al : Explantation of KAMRA corneal inlay : 10-year occurrence and visual outcome analysis. Clin Ophthalmol 16 : 3327-3337, 2022
20) Darian-Smith E, Gouvea L, Gendler S et al : KAMRA presbyopic inlay refractive outcomes : a Canadian perspective. Can J Ophthalmol, 2022 (doi : 10.1016/j.jcjo.2022.11.006)
P.263 掲載の参考文献
1) Heinze N, Hussain SF, Castle CL et al : The long-term impact of the COVID-19 pandemic on loneliness in people living with disability and visual impairment. Front Public Health 9 : 738304, 2021
P.264 掲載の参考文献
2) Patel A, Fothergill AS, Barnard KEC et al : Lockdown low vision assessment : an audit of 500 telephone-based modified low vision consultations. Ophthalmic Physiol Opt 41 : 295-300, 2021
3) Bittner AK, Yoshinaga PD, Shepherd JD et al : Acceptability of telerehabilitation for magnification devices for the visually impaired using various approaches to facilitate accessibility. Transl Vis Sci Technol 11 : 4, 2022
4) Crossland MD, Dekker TM, Hancox J et al : Evaluation of a home-printable vision screening test for telemedicine. JAMA Ophthalmol 139 : 271-277, 2021
5) Crossland MD, Dekker TM, Jones PR et al : Comparing home- and clinic-based visual acuity testing. JAMA Ophthalmol 140 : 1021-1022, 2022
6) Steren BJ, Young B, Chow J et al : Visual acuity testing for telehealth using mobile applications. JAMA Ophthalmol 139 : 344-347, 2021
7) Thirunavukarasu AJ, Mullinger D, Rufus-Toye RM et al : Clinical validation of a novel web-application for remote assessment of distance visual acuity. Eye (Lond) 36 : 2057-2061, 2022
P.265 掲載の参考文献
8) Lorenzini MC, Wittich W : Head-mounted visual assistive technology-related quality of life changes after telerehabilitation. Optom Vis Sci 98 : 582-591, 2021
9) Lorenzini MC, Wittich W : Personalized telerehabilitation for a head-mounted low vision aid : A randomized feasibility study. Optom Vis Sci 98 : 570-581, 2021
10) Amore F, Silvestri V, Guidobaldi M et al : Efficacy and patients' satisfaction with the ORCAM MyEye device among visually impaired people : A multicenter study. J Med Syst 47 : 11, 2023
11) Nguyen XT, Koopman J, van Genderen MM et al : Artificial vision : the effectiveness of the OrCam in patients with advanced inherited retinal dystrophies. Acta Ophthalmol 100 : e986-e993, 2022
12) Yeo JH, Bae SH, Lee SH et al : Clinical performance of a smartphone-based low vision aid. Sci Rep 12 : 10752, 2022
13) Pur DR, Lee-Wing N, Bona MD et al : The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation : a systematic review. Graefes Arch Clin Exp Ophthalmol, 2023 (doi : 10.1007/s00417-022-05972-4)
P.266 掲載の参考文献
14) Kaleem MA, Rajjoub R, Schiefer C et al : Characteristics of glaucoma patients attending a vision rehabilitation service. Ophthalmol Glaucoma 4 : 638-645, 2021
15) Deemer AD, Goldstein JE, Ramulu PY et al : Approaching rehabilitation in patients with advanced glaucoma. Eye (Lond), 2022 (doi : 10.1038/s41433-022-02303-z)
16) Bozkurt Oflaz A, Turgut Ozturk B, Gonul S et al : Short-term clinical results of preferred retinal locus training. Turk J Ophthalmol 52 : 14-22, 2022
17) Vice JE, Biles MK, Maniglia M et al : Oculomotor changes following learned use of an eccentric retinal locus. Vision Res 201 : 108126, 2022
18) Maniglia M, Visscher KM, Seitz AR et al : Perspective on vision science-informed interventions for central vision loss. Front Neurosci 15 : 734970, 2021
19) Biles MK, Maniglia M, Yadav IS et al : Training with simulated scotoma leads to behavioral improvements through at least two distinct mechanisms. Invest Ophthalmol Vis Sci 64 : 14, 2023
P.267 掲載の参考文献
1) Ohno-Matsui K, Kawasaki R, Jonas JB et al : International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol 159 : 877-83.e7, 2015
P.268 掲載の参考文献
2) Ohno-Matsui K, Wu PC, Yamashiro K et al : IMI pathologic myopia. Invest Ophthalmol Vis Sci 62 : 5, 2021
P.269 掲載の参考文献
3) Foo LL, Xu L, Sabanayagam C et al : Predictors of myopic macular degeneration in a 12-year longitudinal study of Singapore adults with myopia. Br J Ophthalmol, 2022 (doi : 10.1136/bjophthalmol-2021-321046)
4) Li Z, Wang W, Liu R et al : Choroidal thickness predicts progression of myopic maculopathy in high myopes : a 2-year longitudinal study. Br J Ophthalmol 105 : 1744-1750, 2021
6) Yokoi T, Jonas JB, Shimada N et al : Peripapillary diffuse chorioretinal atrophy in children as a sign of eventual pathologic myopia in adults. Ophthalmology 123 : 1783-1787, 2016
7) Shinohara K, Shimada N, Moriyama M et al : Posterior staphylomas in pathologic myopia imaged by wide-field optical coherence tomography. Invest Ophthalmol Vis Sci 58 : 3750-3758, 2017
8) Liu L, Fang Y, Igarashi-Yokoi T et al : Clinical and morphologic features of posterior staphyloma edges by ultra-wide-field imaging in pathologic myopia. Retina 41 : 2278-2287, 2021
P.270 掲載の参考文献
9) Nakao N, Igarashi-Yokoi T, Takahashi H et al : Quantitative evaluations of posterior staphylomas in highly myopic eyes by ultra-wide-field optical coherence tomography. Invest Ophthalmol Vis Sci 63 : 20, 2022
10) Tanaka N, Shinohara K, Yokoi T et al : Posterior staphylomas and scleral curvature in highly myopic children and adolescents investigated by ultra-wide-field optical coherence tomography. PLoS One 14 : e0218107, 2019
11) Yoshida T, Ohno-Matsui K, Yasuzumi K et al : Myopic choroidal neovascularization : a 10-year follow-up. Ophthalmology 110 : 1297-1305, 2003
12) Du R, Xie S, Lu H et al : Hospital-based study of risk factors associated with development of myopic macular neovascularization in highly myopic eyes. Ophthalmic Res, 2022 (doi : 10.1159/000527183)
13) Xie S, Du R, Fang Y et al : Dilated choroidal veins and their role in recurrences of myopic macular neovascularisations. Br J Ophthalmol 106 : 1429-1435, 2022
P.271 掲載の参考文献
14) Hady SK, Xie S, Freund KB et al : Prevalence and characteristics of multifocal choroiditis/punctate inner choroidopathy in pathologic myopia eyes with patchy atrophy. Retina 42 : 669-678, 2022
15) Chen Q, He J, Hu G et al : Morphological characteristics and risk factors of myopic maculopathy in an older high myopia population-based on the new classification system (atn). Am J Ophthalmol 208 : 356-366, 2019
16) Shinohara K, Tanaka N, Jonas JB et al : Ultrawide-field OCT to investigate relationships between myopic macular retinoschisis and posterior staphyloma. Ophthalmology 125 : 1575-1586, 2018
17) Takahashi H, Tanaka N, Shinohara K et al : Ultra-wide-field optical coherence tomographic imaging of posterior vitreous in eyes with high myopia. Am J Ophthalmol 206 : 102-112, 2019
P.272 掲載の参考文献
18) Uramoto K, Azuma T, Watanabe T et al : Extreme macular schisis-simulating retinal detachment in eyes with pathologic myopia. Retina 42 : 1836-1843, 2022
19) Mochida S, Yoshida T, Nomura T et al : Association between peripheral visual field defects and focal lamina cribrosa defects in highly myopic eyes. Jpn J Ophthalmol 66 : 285-295, 2022
20) Saito H, Kambayashi M, Araie M et al : Deep optic nerve head structures associated with increasing axial length in healthy myopic eyes of moderate axial length. Am J Ophthalmol 249 : 156-166, 2023
P.274 掲載の参考文献
1) Holden BA, Fricke TR, Wilson DA et al : Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology 123 : 1036-1042, 2016
2) Naidoo KS, Fricke TR, Frick KD et al : Potential lost productivity resulting from the Global Burden of Myopia : Systematic review, meta-analysis, and modeling. Ophthalmology 126 : 338-346, 2019
3) Ueda E, Yasuda M, Fujiwara K et al : Trends in the prevalence of myopia and myopic maculopathy in a Japanese population : The Hisayama Study. Invest Ophthalmol Vis Sci 60 : 2781-2786, 2019
4) Najafzadeh MJ, Zand A, Shafiei M et al : Myopia progression during the COVID-19 era : A systematic review and meta-analysis. Semin Ophthalmol : 1-10, 2023
5) Rosenfield M : COVID-19 and myopia. Ophthalmic Physiol Opt 42 : 255-257, 2022
6) Limwattanayingyong J, Amornpetchsathaporn A, Chainakul M et al : The association between environmental and social factors and myopia : A review of evidence from COVID-19 pandemic. Front Public Health 10 : 918182, 2022
7) Flitcroft DI, He M, Jonas JB et al : IMI-Defining and classifying myopia : A proposed set of standards for clinical and epidemiologic studies. Invest Ophthalmol Vis Sci 60 : M20-M30, 2019
8) Troilo D, Smith EL 3rd, Nickla DL et al : IMI-Report on experimental models of emmetropization and myopia. Invest Ophthalmol Vis Sci 60 : M31-M88, 2019
9) Tedja MS, Haarman AEG, Meester-Smoor MA et al : IMI - Myopia genetics report. Invest Ophthalmol Vis Sci 60 : M89-M105, 2019
10) Wildsoet CF, Chia A, Cho P et al : IMI-Interventions myopia institute : Interventions for controlling myopia onset and progression report. Invest Ophthalmol Vis Sci 60 : M106-M131, 2019
11) Wolffsohn JS, Kollbaum PS, Berntsen DA et al : IMI-Clinical myopia control trials and instrumentation report. Invest Ophthalmol Vis Sci 60 : M132-M160, 2019
12) Jones L, Drobe B, Gonzalez-Meijome JM et al : IMI-Industry guidelines and ethical considerations for myopia control report. Invest Ophthalmol Vis Sci 60 : M161-M183, 2019
P.275 掲載の参考文献
13) Wolffsohn JS, Flitcroft DI, Gifford KL et al : IMI-Myopia control reports overview and introduction. Invest Ophthalmol Vis Sci 60 : M1-M19, 2019
14) Ho CL, Wu WF, Liou YM et al : Doseresponse relationship of outdoor exposure and myopia indicators : A systematic review and meta-analysis of various research methods. Int J Environ Res Public Health 16, 2019 (doi : 10.3390/ijerph16142595)
15) Wu PC, Chen CT, Chang LC et al : Increased time outdoors is followed by reversal of the long-term trend to reduced visual acuity in Taiwan primary school students. Ophthalmology 127 : 1462-1469, 2020
16) Kanda H, Oshika T, Hiraoka T et al : Effect of spectacle lenses designed to reduce relative peripheral hyperopia on myopia progression in Japanese children : a 2-year multicenter randomized controlled trial. Jpn J Ophthalmol 62 : 537-543, 2018
17) Lam CSY, Tang WC, Tse DY et al : Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression : a 2-year randomised clinical trial. Br J Ophthalmol 104 : 363-368, 2020
18) Lam CS, Tang WC, Lee PH et al : Myopia control effect of defocus incorporated multiple segments (DIMS) spectacle lens in Chinese children : results of a 3-year follow-up study. Br J Ophthalmol 106 : 1110-1114, 2022
19) Bao J, Yang A, Huang Y et al : Oneyear myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol 106 : 1171-1176, 2022
20) Bao J, Huang Y, Li X et al : Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses : A randomized clinical trial. JAMA Ophthalmol 140 : 472-478, 2022
P.276 掲載の参考文献
21) Guo H, Li X, Zhang X et al : Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control. Sci Rep 13 : 3048, 2023
22) Chamberlain P, Peixoto-de-Matos SC, Logan NS et al : A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom Vis Sci 96 : 556-567, 2019
23) Chamberlain P, Bradley A, Arumugam B et al : Long-term effect of dual-focus contact lenses on myopia progression in children : A 6-year multicenter clinical trial. Optom Vis Sci 99 : 204-212, 2022
24) Sankaridurg P, Bakaraju RC, Naduvilath T et al : Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses : 2 year results from a randomised clinical trial. Ophthalmic Physiol Opt 39 : 294-307, 2019
25) Sun Y, Xu F, Zhang T et al : Orthokeratology to control myopia progression : a meta-analysis. PLoS One 10 : e0124535, 2015
26) Si JK, Tang K, Bi HS et al : Orthokeratology for myopia control : a meta-analysis. Optom Vis Sci 92 : 252-257, 2015
27) Li SM, Kang MT, Wu SS et al : Efficacy, safety and acceptability of orthokeratology on slowing axial elongation in myopic children by meta-analysis. Curr Eye Res 41 : 600-608, 2016
P.277 掲載の参考文献
28) Santodomingo-Rubido J, Villa-Collar C, Gilmartin B et al : Long-term efficacy of orthokeratology contact lens wear in controlling the progression of childhood myopia. Curr Eye Res 42 : 713-720, 2017
29) Hiraoka T, Sekine Y, Okamoto F et al : Safety and efficacy following 10-years of overnight orthokeratology for myopia control. Ophthalmic Physiol Opt 38 : 281-289, 2018
30) VanderVeen DK, Kraker RT, Pineles SL et al : Use of orthokeratology for the prevention of myopic progression in children : A report by the American Academy of Ophthalmology. Ophthalmology 126 : 623-636, 2019
31) Guo B, Cheung SW, Kojima R et al : One-year results of the Variation of Orthokeratology Lens Treatment Zone (VOLTZ) Study : a prospective randomised clinical trial. Ophthalmic Physiol Opt 41 : 702-714, 2021
32) Xu J, Gao B, Tian Q et al : Effects of orthokeratology on axial length elongation in anisometropes. Ophthalmic Res 64 : 991-1001, 2021
33) Zhang KY, Lyu HB, Yang JR et al : Efficacy of long-term orthokeratology treatment in children with anisometropic myopia. Int J Ophthalmol 15 : 113-118, 2022
34) Lau JK, Vincent SJ, Cheung SW et al : Higher-order aberrations and axial elongation in myopic children treated with orthokeratology. Invest Ophthalmol Vis Sci 61 : 22, 2020
35) Lau JK, Vincent SJ, Collins MJ et al : Ocular higher-order aberrations and axial eye growth in young Hong Kong children. Sci Rep 8 : 6726, 2018
36) Chia A, Lu QS, Tan D et al : Five-year clinical trial on atropine for the treatment of myopia 2 : Myopia control with atropine 0.01% eyedrops. Ophthalmology 123 : 391-399, 2016
P.278 掲載の参考文献
37) Yam JC, Jiang Y, Tang SM et al : Low-Concentration Atropine for Myopia Progression (LAMP) Study : A randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology 126 : 113-124, 2019
38) Yam JC, Li FF, Zhang X et al : Two-year clinical trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study : Phase 2 report. Ophthalmology 127 : 910-919, 2020
39) Yam JC, Zhang XJ, Zhang Y et al : Effect of low-concentration atropine eyedrops vs placebo on myopia incidence in children : The LAMP2 Randomized Clinical Trial. JAMA 329 : 472-481, 2023
40) Kinoshita N, Konno Y, Hamada N et al : Additive effects of orthokeratology and atropine 0.01% ophthalmic solution in slowing axial elongation in children with myopia : first year results. Jpn J Ophthalmol 62 : 544-553, 2018
41) Kinoshita N, Konno Y, Hamada N et al : Efficacy of combined orthokeratology and 0.01% atropine solution for slowing axial elongation in children with myopia : a 2-year randomised trial. Sci Rep 10 : 12750, 2020
P.279 掲載の参考文献
42) Tan Q, Ng AL, Choy BN et al : One-year results of 0.01% atropine with orthokeratology (AOK) study : a randomised clinical trial. Ophthalmic Physiol Opt 40 : 557-566, 2020
43) Tan Q, Ng AL, Cheng GP et al : Combined 0.01% atropine with orthokeratology in childhood myopia control (AOK) study : A 2-year randomized clinical trial. Cont Lens Anterior Eye 46 : 101723, 2023
44) Vincent SJ, Tan Q, Ng ALK et al : Higher order aberrations and axial elongation in combined 0.01% atropine with orthokeratology for myopia control. Ophthalmic Physiol Opt 40 : 728-737, 2020
45) Nucci P, Lembo A, Schiavetti I et al : A comparison of myopia control in European children and adolescents with defocus incorporated multiple segments (DIMS) spectacles, atropine, and combined DIMS/atropine. PLoS One 18 : e0281816, 2023
46) Huang Z, Chen XF, He T et al : Synergistic effects of defocus-incorporated multiple segments and atropine in slowing the progression of myopia. Sci Rep 12 : 22311, 2022
47) Jiang Y, Zhu Z, Tan X et al : Effect of repeated low-level red-light therapy for myopia control in children : A multicenter randomized controlled trial. Ophthalmology 129 : 509-519, 2022
48) Xiong R, Zhu Z, Jiang Y et al : Longitudinal changes and predictive value of choroidal thickness for myopia control after repeated low-level red-light therapy. Ophthalmology 130 : 286-296, 2023

X. その他

P.282 掲載の参考文献
1) Schultz NM, Bhardwaj S, Barclay C et al : Global burden of dry age-related macular degeneration : A targeted literature review. Clin Ther 43 : 1792-1818, 2021
2) Keenan TD, Agron E, Domalpally A et al : Progression of geographic atrophy in age-related macular degeneration : AREDS2 report number 16. Ophthalmology 125 : 1913-1928, 2018
3) Madjedi K, Pereira A, Ballios BG et al : Switching between anti-VEGF agents in the management of refractory diabetic macular edema : A systematic review. Surv Ophthalmol 67 : 1364-1372, 2022
P.283 掲載の参考文献
4) Zheng R, Zhang Y, Zhang K et al : The complement system, aging, and aging-related diseases. Int J Mol Sci 23, 2022 (doi : 10.3390/ijms23158689)
P.284 掲載の参考文献
5) Lazar S, Kahlenberg JM : Systemic lupus erythematosus : New diagnostic and therapeutic approaches. Annu Rev Med 74 : 339-352, 2023
6) Raina R, Sethi SK, Dragon-Durey MA et al : Systematic review of atypical hemolytic uremic syndrome biomarkers. Pediatr Nephrol 37 : 1479-1493, 2022
7) Patel SS, Lally DR, Hsu J et al : Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration : 18-month findings from the GATHER1 trial. Eye (Lond), 2023 (doi : 10.1038/s41433-023-02497-w)
8) Liao DS, Grossi FV, El Mehdi D et al : Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration : A randomized phase 2 trial. Ophthalmology 127 : 186-195, 2020
P.285 掲載の参考文献
9) Holz FG, Sadda SR, Busbee B et al : Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration : Chroma and spectri phase 3 randomized clinical trials. JAMA Ophthalmol 136 : 666-677, 2018
10) Kassa E, Ciulla TA, Hussain RM et al : Complement inhibition as a therapeutic strategy in retinal disorders. Expert Opin Biol Ther 19 : 335-342, 2019
P.286 掲載の参考文献
1) GBD 2019 Blindness and Vision Impairment Collaborators ; Vision Loss Expert Group of the Global Burden of Disease Study : Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020 : the Right to Sight : an analysis for the Global Burden of Disease Study. Lancet Glob Health 9 : e144-e160, 2021
P.287 掲載の参考文献
2) GBD 2019 Blindness and Vision Impairment Collaborators ; Vision Loss Expert Group of the Global Burden of Disease Study : Trends in prevalence of blindness and distance and near vision impairment over 30 years : an analysis for the Global Burden of Disease Study. Lancet Glob Health 9 : e130-e143, 2021
3) United Nations : General Assembly. 75/310. Vision for Everyone : accelerating action to achieve the Sustainable Development Goals. 2021
4) IAPB : 2030 in sight. A strategic initiative, 2021. https://www.iapb.org/wp-content/uploads/2022/12/2030inSight-Strategy-Document-Sep2021-English_accessible.pdf (2023年3月参照)
5) Nael V, Moreau G, Monferme S et al : Prevalence and associated factors of uncorrected refractive error in older adults in a population-based study in France. JAMA Ophthalmol 137 : 3-11, 2019
P.288 掲載の参考文献
6) Hiratsuka Y, Ono K, Takesue A et al : The prevalence of uncorrected refractive error in Japan : the Locomotive Syndrome and Health Outcome in Aizu Cohort Study. Jpn J Ophthalmol 66 : 199-204, 2022
7) Sadamatsu Y, Ono K, Hiratsuka Y et al : Prevalence and factors associated with uncorrected presbyopia in a rural population of Japan : the Locomotive Syndrome and Health Outcome in Aizu Cohort Study. Jpn J Ophthalmol 65 : 724-730, 2021
8) Span P. New Dementia Prevention Method May Be Behavioral, Not Prescribed. https://www.nytimes.com/2022/07/03/health/dementia-treatment-behavior-eyecare.html (2023年3月参照)
9) Livingston G, Huntley J, Sommerlad A et al : Dementia prevention, intervention, and care : 2020 report of the Lancet Commission. Lancet 396 : 413-446, 2020
10) Shang X, Zhu Z, Wang W et al : The association between vision impairment and incidence of dementia and cognitive impairment : A systematic review and meta-analysis. Ophthalmology 128 : 1135-1149, 2021
P.289 掲載の参考文献
11) Vu TA, Fenwick EK, Gan ATL et al : The bidirectional relationship between vision and cognition : A systematic review and meta-analysis. Ophthalmology 128 : 981-992, 2021
12) Kuzma E, Littlejohns TJ, Khawaja AP et al : Visual impairment, eye diseases, and dementia risk : A systematic review and meta-analysis. J Alzheimers Dis 83 : 1073-1087, 2021
13) Ehrlich JR, Goldstein J, Swenor BK et al : Addition of vision impairment to a life-course model of potentially modifiable dementia risk factors in the US. JAMA Neurol 79 : 623-626, 2022
14) Burton MJ, Ramke J, Marques AP et al : The Lancet Global Health Commission on Global Eye Health : vision beyond 2020. Lancet Glob Health 9 : e489-e551, 2021
15) Tan BKJ, Man REK, Gan ATL et al : Is sensory loss an understudied risk factor for frailty? A systematic review and meta-analysis. J Gerontol A Biol Sci Med Sci 75 : 2461-2470, 2020
P.290 掲載の参考文献
16) Liljas AEM, Carvalho LA, Papachristou E et al : Self-reported vision impairment and incident prefrailty and frailty in English community-dwelling older adults : findings from a 4-year follow-up study. J Epidemiol Community Health 71 : 1053-1058, 2017
17) Kawaguchi K, Abe N, Hiratsuka Y et al : Self-reported hearing and vision impairment and incident frailty in Japanese older people : A 3-year longitudinal analysis of the Japan Gerontological Evaluation Study. Arch Gerontol Geriatr 104 : 104834, 2023
18) 辻川明孝 : 「アイフレイル」対策活動. 日眼会誌 125 : 459-462, 2021
P.291 掲載の参考文献
19) Itokazu M, Ishizaka M, Uchikawa Y et al : Relationship between eye frailty and physical, social, and psychological/cognitive weaknesses among community-dwelling older adults in Japan. Int J Environ Res Public Health 19, 2022 (doi : 10.3390/ijerph192013011)
20) Satake S, Senda K, Hong YJ et al : Validity of the Kihon Checklist for assessing frailty status. Geriatr Gerontol Int 16 : 709-715, 2016
P.292 掲載の参考文献
1) Ribeiro L, Oliveira CM, Neves C et al : Screening for diabetic retinopathy in the central region of Portugal. Added value of automated 'disease/no disease' grading. Ophthalmologica233 : 96-103, 2015
2) Li F, Pan J, Yang D et al : A multicenter clinical study of the automated fundus screening algorithm. Transl Vis Sci Technol 11 : 22, 2022
P.293 掲載の参考文献
3) Han R, Cheng G, Zhang B et al : Validating automated eye disease screening AI algorithm in community and in-hospital scenarios. Front Public Health 10 : 944967, 2022
4) Lim JI, Regillo CD, Sadda SR et al : Artificial intelligence detection of diabetic retinopathy : Subgroup comparison of the EyeArt System with Ophthalmologists' Dilated Examinations. Ophthalmol Sci 3 : 100228, 2023
P.294 掲載の参考文献
5) Ruamviboonsuk P, Tiwari R, Sayres R et al : Real-time diabetic retinopathy screening by deep learning in a multisite national screening programme : a prospective interventional cohort study. Lancet Digit Health 4 : e235-e244, 2022
6) Bellemo V, Lim ZW, Lim G et al : Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa : a clinical validation study. Lancet Digit Health 1 : e35-e44, 2019
7) Li S, Zhao R, Zou H et al : Artificial intelligence for diabetic retinopathy. Chin Med J (Engl) 135 : 253-260, 2021
8) Hsieh YT, Chuang LM, Jiang YD et al : Application of deep learning image assessment software VeriSeeTM for diabetic retinopathy screening. J Formos Med Assoc 120 : 165-171, 2021
P.295 掲載の参考文献
9) Burlina P, Joshi N, Paul W et al : Addressing artificial intelligence bias in retinal diagnostics. Transl Vis Sci Technol 10 : 13, 2021
10) Ramessur R, Raja L, Kilduff CLS et al : Impact and challenges of integrating artificial intelligence and telemedicine into clinical ophthalmology. Asia Pac J Ophthalmol (Phila) 10 : 317-327, 2021
11) European Commission. White paper on artificial intelligence : a European approach to excellence and trust. Published February 19, 2020. https://ec.europa.eu/info/sites/default/files/commission-whitepaper-artificial-intelligence-feb2020_en.pdf (2021年7月参照)
12) Wangmo T, Lipps M, Kressig RW et al : Ethical concerns with the use of intelligent assistive technology : findings from a qualitative study with professional stakeholders. BMC Med Ethics 20 : 98, 2019
13) Beede E, Baylor E, Hersch F et al : A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. CHI 2020, April 25-30, 2020, Honolulu, HI, USA (doi : 10.1145/3313831.3376718)
P.296 掲載の参考文献
14) Huang XM, Yang BF, Zheng WL et al : Cost-effectiveness of artificial intelligence screening for diabetic retinopathy in rural China. BMC Health Serv Res 22 : 260, 2022
15) Ruamviboonsuk P, Chantra S, Seresirikachorn K et al : Economic evaluations of artificial intelligence in ophthalmology. Asia Pac J Ophthalmol (Phila) 10 : 307-316, 2021
16) Chen EM, Chen D, Chilakamarri P et al : Economic challenges of artificial intelligence adoption for diabetic retinopathy. Ophthalmology 128 : 475-477, 2021
P.297 掲載の参考文献
17) Xie Y, Nguyen QD, Hamzah H et al : Artificial intelligence for tele-ophthalmology-based diabetic retinopathy screening in a national programme : an economic analysis modelling study. Lancet Digit Health 2 : e240-e249, 2020
18) Dismuke C : Progress in examining cost-effectiveness of AI in diabetic retinopathy screening. Lancet Digit Health 2 : e212-e213, 2020
19) Xie Y, Nguyen Q, Bellemo V et al : Cost-effectiveness analysis of an artificial intelligence-assisted deep learning system implemented in the national tele-medicine diabetic retinopathy screening in Singapore. Invest Ophthalmol Vis Sci 60 : 5471, 2019
P.298 掲載の参考文献
20) Sun JK, Aiello LP, Abramoff MD et al : Updating the staging system for diabetic retinal disease. Ophthalmology 128 : 490-493, 2021
21) Burlina P, Paul W, Liu TYA et al : Detecting anomalies in retinal diseases using generative, discriminative, and self-supervised deep learning. JAMA Ophthalmol 140 : 185-189, 2022
22) Chen Z, Xiong Y, Wei H et al : Dualconsistency semi-supervision combined with self-supervision for vessel segmentation in retinal OCTA images. Biomed Opt Express 13 : 2824-2834, 2022
23) Yoo TK, Choi JY, Kim HK et al : Feasibility study to improve deep learning in OCT diagnosis of rare retinal diseases with fewshot classification. Med Biol Eng Comput 59 : 401-415, 2021
24) Hunt MS, Kihara Y, Lee AY et al : Novel low-shot deep learning approach for retinal image classification with few examples. JAMA Ophthalmol 138 : 1077-1078, 2020
P.299 掲載の参考文献
25) Quellec G, Charriere K, Boudi Y et al : Deep image mining for diabetic retinopathy screening. Med Image Anal 39 : 178-193, 2017
26) He A, Li T, Li N et al : CABNet : category attention block for imbalanced diabetic retinopathy grading. IEEE Trans Med Imaging 40 : 143-153, 2021
27) Bora A, Balasubramanian S, Babenko B et al : Predicting the risk of developing diabetic retinopathy using deep learning. Lancet Digit Health 3 : e10-e19, 2021
28) Varadarajan AV, Bavishi P, Ruamviboonsuk P et al : Predicting optical coherence tomography-derived diabetic macular edema grades from fundus photographs using deep learning. Nat Commun 11 : 130, 2020
29) Nagasato D, Sogawa T, Tanabe M et al : Estimation of visual function using deep learning from ultra-wide-field fundus images of eyes with retinitis pigmentosa. JAMA Ophthalmol, 2023 (doi : 10.1001/jamaophthalmol.2022.6393)
P.300 掲載の参考文献
2) Scholl HP, Strauss RW, Singh MS et al : Emerging therapies for inherited retinal degeneration. Sci Transl Med 8 : 368rv6, 2016
3) Maeda T, Mandai M, Sugita S et al : Strategies of pluripotent stem cell-based therapy for retinal degeneration : update and challenges. Trends Mol Med 28 : 388-404, 2022
P.301 掲載の参考文献
4) ジャパン・ティッシュエンジニアリング : 角膜の再生医療について (再生医療ナビ). https://saisei-navi.com/hiza/regenerative_medicine/cornea/ (2023年3月閲覧)
5) Kuwahara A, Yamasaki S, Mandai M et al : Preconditioning the initial state of feeder-free human pluripotent stem cells promotes self-formation of three-dimensional retinal tissue. Sci Rep 9 : 18936, 2019
6) Iraha S, Tu HY, Yamasaki S et al : Establishment of immunodeficient retinal degeneration model mice and functional maturation of human ESC-derived retinal sheets after transplantation. Stem Cell Reports 10 : 1059-1074, 2018
7) Tu HY, Watanabe T, Shirai H et al : Medium-to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39 : 562-574, 2019
8) Akiba R, Matsuyama T, Tu HY et al : Quantitative and qualitative evaluation of photoreceptor synapses in developing, degenerating and regenerating retinas. Front Cell Neurosci 13 : 16, 2019
9) 幹細胞ニュース| iPS細胞による世界発の視細胞移植|神戸市立病院 https://www.amed.go.jp/news/seika/kenkyu/20201118-01.html (2023年3月閲覧)
10) Yamasaki S, Tu HY, Matsuyama T et al : A Genetic modification that reduces ON-bipolar cells in hESC-derived retinas enhances functional integration after transplantation. iScience 25 : 103657, 2022
11) Uyama H, Tu HY, Sugita S et al : Competency of iPSC-derived retinas in MHCmismatched transplantation in non-human primates. Stem Cell Reports 17 : 2392-2408, 2022
12) Sugita S, Mandai M, Hirami Y et al : HLA-matched allogeneic iPS cells-derived RPE transplantation for macular degeneration. J Clin Med 9, 2020 (doi : 10.3390/jcm9072217)
P.302 掲載の参考文献
13) Ho AC, Banin E, Barak A et al : Safety and efficacy of a phase 1/2a clinical trial of transplanted allogeneic retinal pigmented epithelium (RPE, OpRegen) cells in advanced dry age-related macular degeneration (AMD). Invest Ophthalmol Vis Sci 63 : 1862, 2022
14) Gray AP, Sato Y, Meyer T et al : Surgical procedure and applicability of the orbit subretinal delivery system (SDS) TM in the normal adult canine eye. Invest Ophthalmol Vis Sci 63 : 4118-F0355, 2022
15) Nishida M, Tanaka Y, Tanaka Y et al : Human iPS cell derived RPE strips for secure delivery of graft cells at a target place with minimal surgical invasion. Sci Rep 11 : 21421, 2021
16) 神戸市立神戸アイセンター病院 : 「網膜色素上皮 (RPE) 不全症に対する同種iPS細胞由来RPE細胞凝集紐移植に関する臨床研究」の1例目の移植手術の実施について http://kobe.eye.center.kcho.jp/files/20221209/30409d371ff35f4056b211425ddc42511d629987.pdf (2023年3月閲覧)
P.303 掲載の参考文献
17) Takagi S, Mandai M, Gocho K et al : Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina 3 : 850-859, 2019
18) Sharma R, Khristov V, Rising A et al : Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11, 2019 (doi : 10.1126/scitranslmed.aat5580)
19) Kashani AH, Lebkowski JS, Rahhal FM et al : One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell bio-engineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol 10 : 13, 2021
20) Kashani AH, Lebkowski JS, Hinton DR et al : Survival of an HLA-mismatched, bio-engineered RPE implant in dry age-related macular degeneration. Stem Cell Reports 17 : 448-458, 2022
21) Kashani AH, Uang J, Mert M et al : Surgical method for implantation of a biosynthetic retinal pigment epithelium monolayer for geographic atrophy : Experience from a phase 1/2a study. Ophthalmol Retina 4 : 264-273, 2020
22) Pennington BO, Bailey JK, Faynus MA et al : Xeno-free cryopreservation of adherent retinal pigmented epithelium yields viable and functional cells in vitro and in vivo. Sci Rep 11 : 6286, 2021
P.304 掲載の参考文献
23) Thomas BB, Lin B, Martinez-Camarillo JC et al : Co-grafts of human embryonic stem cell derived retina organoids and retinal pigment epithelium for retinal reconstruction in immunodeficient retinal degenerate Royal College of Surgeons Rats. Front Neurosci 15 : 752958, 2021
24) Ben M'Barek K, Bertin S, Brazhnikova E et al : Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials 230 : 119603, 2020
25) 大阪大学大学院医学系研究科・医学部 : iPS細胞から作製した角膜上皮を4人の患者に移植する世界初の臨床研究が完了 https://www.med.osaka-u.ac.jp/archives/29591/(2023年3月閲覧)
P.306 掲載の参考文献
1) Ravindran M, Segi A, Mohideen S et al : Impact of tele-ophthalmology during COVID-19 lockdown in a tertiary care center in South India. Indian J Ophthalmol 69 : 714-718, 2021
2) Gerbutavicius R, Brandlhuber U, Gluck S et al : Evaluation of patient satisfaction with an ophthalmology video consultation during the COVID-19 pandemic. Ophthalmologe 118 : 89-95, 2021
3) Chen EM, Andoh JE, Nwanyanwu K et al : Socioeconomic and demographic disparities in the use of telemedicine for ophthalmic care during the COVID-19 pandemic. Ophthalmology 129 : 15-25, 2022
4) Newman-Casey PA, De Lott L, Cho J et al : Telehealth-based eye care during the COVID-19 pandemic : utilization, safety, and the patient experience. Am J Ophthalmol 230 : 234-242, 2021
5) Sanayei N, Albrecht MM, Martin DC et al : Outcomes of a hybrid ophthalmology telemedicine model for outpatient eye care during COVID-19. JAMA Netw Open 5 : e2226292, 2022
P.307 掲載の参考文献
6) Stewart C, Coffey-Sandoval J, Reid MW et al : Reliability of telemedicine for real-time paediatric ophthalmology consultations. Br J Ophthalmol 106 : 1157-1163, 2022
7) Stewart C, Coffey-Sandoval J, Souverein EA et al : Patient and provider experience in real-time telemedicine consultations for pediatric ophthalmology. Clin Ophthalmol 16 : 2943-2953, 2022
8) Rajalakshmi R, UmaSankari G, Prathiba V et al : Tele-Ophthalmology versus Faceto-Face retinal consultation for assessment of diabetic retinopathy in diabetes care centers in india : a multicenter cross-sectional study. Diabetes Technol Ther 24 : 556-563, 2022
9) Wong JK, Zhu MM, Lam JC et al : Prospective comparative study investigating agreement between tele-ophthalmology and face-to-face consultations in patients presenting with chronic visual loss. Ophthalmol Ther 11 : 1199-1213, 2022
P.308 掲載の参考文献
10) Pareja-Rios A, Ceruso S, Romero-Aroca P et al : A new deep learning algorithm with activation mapping for diabetic retinopathy : backtesting after 10 years of tele-ophthalmology. J Clin Med 11, 2022 (doi : 10.3390/jcm11174945)
11) Kobat SG, Baygin N, Yusufoglu E et al : Automated diabetic retinopathy detection using horizontal and vertical patch division-based pre-trained DenseNET with digital fundus images. Diagnostics (Basel) 12, 2022 (doi : 10.3390/diagnostics12081975)
12) Jimenez-Carmona S, Alemany-Marquez P, Alvarez-Ramos P et al : Validation of an automated screening system for diabetic retinopathy operating under real clinical conditions. J Clin Med 11, 2021 (doi : 10.3390/jcm11010014)
13) Gao Q, Amason J, Cousins S et al : Automated identification of referable retinal pathology in tele-ophthalmology setting. Transl Vis Sci Technol 10 : 30, 2021
14) Keenan TDL, Chen Q, Agron E et al : DeepLensNet : deep learning automated diagnosis and quantitative classification of cataract type and severity. Ophthalmology 129 : 571-584, 2022
15) Shah P, Mishra D, Shanmugam M et al : Acceptability of artificial intelligence-based retina screening in general population. Indian J Ophthalmol 70 : 1140-1144, 2022
16) Chen H, Pan X, Yang J et al : Application of 5G technology to conduct real-time teleretinal laser photocoagulation for the treatment of diabetic retinopathy. JAMA Ophthalmol 139 : 975-982, 2021
P.309 掲載の参考文献
17) Chen E, Mills M, Gallagher T et al : Remote patient monitoring of central retinal function with MACUSTAT(R) : A multimodal macular function scan. Digit Health 8 : 20552076221132105, 2022
18) Sivaraman A, Nagarajan S, Vadivel S et al : A novel, smartphone-based, tele-ophthalmology-enabled, wide-field fundus imaging device with an autocapture algorithm. Transl Vis Sci Technol 10 : 21, 2021
19) Bhaskaran A, Babu M, Abhilash B et al : Comparison of smartphone application-based visual acuity with traditional visual acuity chart for use in tele-ophthalmology. Taiwan J Ophthalmol 12 : 155-163, 2022
20) Sharma P, Ninomiya T, Omodaka K et al : A lightweight deep learning model for automatic segmentation and analysis of ophthalmic images. Sci Rep 12 : 8508, 2022
21) Meshkin RS, Armstrong GW, Hall NE et al : Effectiveness of a telemedicine program for triage and diagnosis of emergent ophthalmic conditions. Eye (Lond) 37 : 325-331, 2023
P.310 掲載の参考文献
22) Das AV, Khanna RC, Kumar N et al : Impact of implementing tele-ophthalmology referral guidelines using the eyeSmart EMR App in 63,703 patients from India. Int J Telemed Appl 2022 : 8523131, 2022
23) Tanya SM, Nguyen AX, Buchanan S et al : Development of a cloud-based clinical decision support system for ophthalmology triage using decision tree artificial intelligence. Ophthalmol Sci 3 : 100231, 2023
24) Han JED, Liu X, Bunce C et al : Teleophthalmology-enabled and artificial intelligence-ready referral pathway for community optometry referrals of retinal disease (HERMES) : a Cluster Randomised Superiority Trial with a linked Diagnostic Accuracy Study-HERMES study report 1-study protocol. BMJ Open 12 : e055845, 2022
25) Al-Khaled T, Acaba-Berrocal L, Cole E et al : Digital education in ophthalmology. Asia Pac J Ophthalmol (Phila) 11 : 267-272, 2022
P.311 掲載の参考文献
1) Russell S, Bennett J, Wellman JA et al : Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy : a randomised, controlled, open-label, phase 3 trial. Lancet 390 : 849-860, 2017
P.312 掲載の参考文献
2) Richards S, Aziz N, Bale S et al : Standards and guidelines for the interpretation of sequence variants : a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17 : 405-424, 2015
3) Oza AM, DiStefano MT, Hemphill SE et al : Expert specification of the ACMG/AMP variant interpretation guidelines for genetic hearing loss. Hum Mutat 39 : 1593-1613, 2018
P.313 掲載の参考文献
4) Gange WS, Sisk RA, Besirli CG et al : Perifoveal chorioretinal atrophy after subretinal voretigene neparvovec-rzyl for RPE65-mediated Leber congenital amaurosis. Ophthalmol Retina 6 : 58-64, 2022
5) Kessel L, Christensen UC, Klemp K et al : Inflammation after voretigene neparvovec administration in patients with RPE65-related retinal dystrophy. Ophthalmology 129 : 1287-1293, 2022
6) Cehajic-Kapetanovic J, Xue K, Martinez-Fernandez de la Camara C et al : Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat Med 26 : 354-359, 2020
P.314 掲載の参考文献
7) Rakoczy EP, Lai CM, Magno AL et al : Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration : 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386 : 2395-2403, 2015
8) Rakoczy EP, Magno AL, Lai CM et al : Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age-related macular degeneration. Am J Ophthalmol 204 : 113-123, 2019
9) Grishanin R, Vuillemenot B, Sharma P et al : Preclinical evaluation of ADVM-022, a novel gene therapy approach to treating wet age-related macular degeneration. Mol Ther 27 : 118-129, 2019
10) Dalkara D, Byrne LC, Klimczak RR et al : In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5 : 189ra76, 2013
P.315 掲載の参考文献
11) Ramachandran PS, Lee V, Wei Z et al : Evaluation of dose and safety of AAV7m8 and AAV8BP2 in the non-human primate retina. Hum Gene Ther 28 : 154-167, 2017

最近チェックした商品履歴

Loading...