軽度認知障害(MCI)診療マニュアル

出版社: 中外医学社
著者:
発行日: 2023-09-30
分野: 臨床医学:一般  >  プライマリケア
ISBN: 9784498229525
電子書籍版: 2023-09-30 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

2,640 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

2,640 円(税込)

商品紹介

プライマリケア医,高齢者をみるすべての医療スタッフに役立つ認知症を予防するための1冊
EBMに基づく非薬物的アプローチでMCIを適切にマネジメント! MCIの診断・治療・管理の必須知識を基礎から解説し,臨床現場で実際に出るCQについてエキスパートの対応を伝授.MCI の診断後支援に役立つ患者・家族へのアドバイス付き.早期発見と的確な対応で認知症予防に役立つ実践的知識が学べる1冊.注目の新薬レカネマブについても解説!

目次

  • 第1章 軽度認知障害(MCI)とは
     CQ1-1 MCIの概念とは?
     CQ1-2 なぜMCIの概念が作られたか?
     CQ1-3 MCIの概念はどのように変化してきたか?
     CQ1-4 MCIの種類(サブタイプ)に何があるか?
     CQ1-5 MCIに類似する概念に何があるか?
     CQ1-6 MCIの症状は何か?

    第2章 軽度認知障害(MCI)の疫学と予後
     CQ2-1 MCIの有病率はどのくらいか?
     CQ2-2 MCIから認知症へのコンバート率はどのくらいか? 
     CQ2-3 MCIから認知症への進展(conversion)に影響する要因はあるか? 
     CQ2-4 MCIから認知機能正常状態へのリバート率はどのくらいか?
     CQ2-5 MCIから認知機能正常状態への回復(reversion)に影響する要因はあるか? 
     CQ2-6 MCIの亜型により,認知症へのコンバート率に違いはあるか? 

    第3章 軽度認知障害(MCI)の原因 ―生活習慣病の関与―
     CQ3-1 MCIの原因は何か?
     CQ3-2 MCIに関与する生活習慣病は何か?
     CQ3-3 MCIに高血圧はどのように関与するか?
     CQ3-4 MCIに糖尿病はどのように関与するか?
     CQ3-5 MCIに肥満(メタボリック症候群)はどのように関与するか?
     CQ3-6 MCIにうつはどのように関与するか?
     CQ3-7 MCIに難聴はどのように関与するか?
     CQ3-8 その他にMCIに関与する生活習慣病はあるか?

    第4章 軽度認知障害(MCI)の検査とバイオマーカー
     CQ4-1 MCIの診断において必要な検査にはどのようなものがあるか?
     CQ4-2 MCIの鑑別診断に有用な画像検査にはどのようなものがあるか?
     CQ4-3 アルツハイマー病によるMCIの診断に有用なバイオマーカーには
         どのようなものがあるか?
     CQ4-4 アルツハイマー病によるMCIを診断するのに有用なPET検査には
         どのようなものがあるか?
     CQ4-5 アルツハイマー病によるMCIを診断するのに有用な脳脊髄液バイオマーカーには
         どのようなものがあるか?
     CQ4-6 アルツハイマー病によるMCIを診断するのに有用な血液バイオマーカーには
         どのようなものがあるか?

    第5章 軽度認知障害(MCI)の診断と評価尺度
     CQ5-1 MCIはどのように診断するか
     CQ5-2 MCIの診断基準にはどのようなものがあるか
     CQ5-3 MCIの評価に推奨される尺度には何があるか
     CQ5-4 MCI評価尺度はどのように実施するか

    第6章 軽度認知障害(MCI)から認知症への進行予防法
     CQ6-1 身体活動を増加させることで認知症への進行を予防できるか?
     CQ6-2 どのような食事が認知症への進行予防に効果的か?
     CQ6-3 社会的活動によって認知症への進行を予防できるか?
     CQ6-4 認知トレーニングや知的活動によって認知症への進行を予防できるか?
     CQ6-5 高血圧,脂質異常症,肥満,糖尿病の治療によって認知症への進行を予防できるか?
     CQ6-6 飲酒によって認知症の危険性は上昇するか?
     CQ6-7 禁煙によって認知症への進行を予防できるか?
     CQ6-8 聴力障害に対して補聴器を利用することで,認知症への進行を予防できるか?
     CQ6-9 多因子介入によって認知症への進行を予防できるか?

    第7章 軽度認知障害(MCI)への診断後支援
     CQ7-1 病状告知の際の注意点
     CQ7-2 生活習慣病対策はどのようにすればよいか?
     CQ7-3 その他の生活習慣に関わる対策にはどのようなものがあるか?
     CQ7-4 自動車運転についてどのようにアドバイスすればよいか?
     CQ7-5 成年後見制度についての情報提供は?
     CQ7-6 MCIと診断後の経過観察

    第8章 軽度認知障害(MCI)に対する地域での取り組み
     CQ8-1 MCIに対して地域でどのような取り組みがなされているか?
     CQ8-2 身体活動はMCIの認知機能向上に有効か?
     CQ8-3 認知活動はMCIの認知機能向上に有効か?
     CQ8-4 社会参加はMCIの認知機能向上に有効か?
     CQ8-5 多因子介入はMCIの認知機能向上に有効か?
     CQ8-6 ICTの利活用は認知機能向上に有効か?

    第9章 軽度認知障害(MCI)に対する治療研究
     CQ9-1 MCIの発症や増悪に影響する因子にはどのようなものがあるか?
     CQ9-2 MCIの発症や増悪を抑制できるサプリメント療法などはあるのか?
     CQ9-3 MCIに対する抗体療法にはどのようなものがあるのか?どの程度期待できるのか?
     CQ9-4 MCIに対する抗体療法が実際に始まった場合に危惧される問題点とは
         どのようなものがあるのだろうか?
     CQ9-5 MCIに対する治療法で他に有望なものはないのか?

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

第1章 軽度認知障害 ( MCI ) とは

P.8 掲載の参考文献
1) 朝田隆. 4. 軽度認知機能障害(MCI)の概念. In:日本認知症学会. 認知症テキストブック. 東京:中外医学社;2014. p. 103-10.
2) 鷲見幸彦. 内科医に必要な軽度認知障害・認知症の診方. 日内会誌. 2020;109:1504-10.
3) Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment:A clinical review. JAMA. 2014;312:2551-61.
4) van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease. N Engl J Med. 2023;388:9-21.
5) Petersen RC. Mild cognitive impairment. Continuum (Minneap Minn). 2016;22:404-18.
6) Anderson ND. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019;24:78-87.
7) Kasper S, Bancher C, Eckert A, et al. Management of mild cognitive impairment (MCI):The need for national and international guidelines. World J Biol Psychiatry. 2020;21:579-94.
8) Reisberg B, Ferris S, de Leon MJ. Stage-specific behavioral, cognitive, and in vivo changes in community residing subjects with age-associated memory impairment and primary degenerative dementia of the Alzheimer type. Drug Dev Res. 1988;15:101-14.
9) Zaudig M, Mittelhammer J, Hiller W, et al. SIDAM-A structured interview for the diagnosis of dementia of the Alzheimer type, multi-infarct dementia and dementias of other etiology according to ICD-10 and DSM-III-R. Psychol Med. 1991;21:225-36.
10) Flicker C, Ferris SH, Reisberg B. Mild cognitive impairment in the elderly:predictors of dementia. Neurology. 1991;41:1006-9.
11) Morris JC. The clinical dementia rating (CDR):Current version and scoring rules. Neurology. 1993;43:2412-4.
12) Petersen RC, Smith GE, Waring SC, et al. Aging, memory, and mild cognitive impairment. Int Psychogeriatr. 1997;9:65-9.
13) Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment:clinical characterization and outcome. Arch Neurol. 1999;56:303-8.
14) Winblad B, Palmer K, Kivipelto M, et al. Mild cognitive impairment--beyond controversies, towards a consensus:report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256:240-6.
15) Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease:recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:270-9.
16) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, fifth edition. Washington, DC:American Psychiatric Publishing. 2013.
17) World Health Organization. 2018. International statistical classification of diseases and related health problems (11th Revision). https://www.who.int/classifications/icd/en/
18) 「認知症疾患診療ガイドライン」作成委員会. 認知症疾患診療ガイドライン2017. 東京:医学書院;2017.
19) Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease:recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:280-92.
20) Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease:the IWG-2 criteria. Lancet Neurol. 2014;13:614-29.
21) Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N:an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539-47.
22) Martin E, Velayudhan L. Neuropsychiatric symptoms in mild cognitive impairment:A Literature Review. Dement Geriatr Cogn Disord. 2020;49:146-55.

第2章 軽度認知障害 ( MCI ) の疫学と予後

P.14 掲載の参考文献
1) 朝田隆. 都市部における認知症有病率と認知症の生活機能障害への対応. 厚生労働科学研究費補助金認知症対策総合研究事業 平成23年度~平成24年度 総合研究報告書. 2013.
2) Wada-Isoe K, Uemura Y, Nakashita S, et al. Prevalence of dementia and mild cognitive impairment in the Rural Island Town of Ama-cho, Japan. Dement Geriatr Cogn Dis Extra. 2012;2:190-9.
3) Ninomiya T, Nakaji S, Maeda T, et al. Study design and baseline characteristics of a population-based prospective cohort study of dementia in Japan:the Japan Prospective Studies Collaboration for Aging and Dementia (JPSC-AD). Environ Health Prev Med. 2020;25:64.
4) Liu LY, Lu Y, Shen L, et al. Prevalence, risk and protective factors for mild cognitive impairment in a population-based study of Singaporean elderly. J Psychiatr Res. 2021;145:111-7.
5) Xue J, Li J, Liang J, et al. The prevalence of mild cognitive impairment in China:A systematic review. Aging Dis. 2018;9:706-15.
6) Mohan D, Iype T, Varghese S, et al. A cross-sectional study to assess prevalence and factors associated with mild cognitive impairment among older adults in an urban area of Kerala, South India. BMJ Open. 2019;9:e025473.
7) Hanninen T, Hallikainen M, Tuomainen S, et al. Prevalence of mild cognitive impairment:a population-based study in elderly subjects. Acta Neurologica Scand. 2002;106:148-54.
8) Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment:Clinical characterization and outcome. Archi Neurol. 1999;56:303-8.
9) Roberts RO, Knopman DS, Mielke MM, et al. Higher risk of progression to dementia in mild cognitive impairment cases who revert to normal. Neurology. 2014;82:317-25.
10) Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia--meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252-65.
11) Manly JJ, Tang MX, Schupf N, et al. Frequency and course of mild cognitive impairment in a multiethnic community. Annals Neurol. 2008;63:494-506.
12) Li JQ, Tan L, Wang HF, et al. Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease:a systematic review and meta-analysis of cohort studies. J Neurol Neurosurg Psychiatr. 2016;87:476-84.
13) Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care:2020 report of the Lancet Commission. Lancet. 2020;396:413-46.
14) Bucholc M, Bauermeister S, Kaur D, et al. The impact of hearing impairment and hearing aid use on progression to mild cognitive impairment in cognitively healthy adults:An observational cohort study. Alzheimers Dement (N Y). 2022;8:e12248.
15) Bucholc M, McClean PL, Bauermeister S, et al. Association of the use of hearing aids with the conversion from mild cognitive impairment to dementia and progression of dementia:A longitudinal retrospective study. Alzheimers Dement (N Y). 2021;7:e12122.
16) Canevelli M, Grande G, Lacorte E, et al. Spontaneous reversion of mild cognitive impairment to normal cognition:A systematic review of literature and meta-analysis. J Am Med Dir Assoc. 2016;17:943-8.
17) Malek-Ahmadi M. Reversion From Mild Cognitive Impairment to Normal Cognition:A Meta-Analysis. Alzheimer Dis Assoc Disord. 2016;30:324-30.
18) Sachdev PS, Lipnicki DM, Crawford J, et al. Factors predicting reversion from mild cognitive impairment to normal cognitive functioning:a population-based study. PloS One. 2013;8:e59649.
19) Aerts L, Heffernan M, Kochan NA, et al. Effects of MCI subtype and reversion on progression to dementia in a community sample. Neurology. 2017;88:2225-32.
20) Tifratene K, Robert P, Metelkina A, et al. Progression of mild cognitive impairment to dementia due to AD in clinical settings. Neurology. 2015;85:331-8.
21) Shimada H, Makizako H, Doi T, et al. Conversion and Reversion Rates in Japanese Older People With Mild Cognitive Impairment. J Am Med Dir Assoc. 2017;18:e801-808 e806.

第3章 軽度認知障害 ( MCI ) の原因 - 生活習慣病の関与 -

P.23 掲載の参考文献
1) Morris JC, Roe CM, Xiong C, et al. APOE predicts amyloid-beta but not tau Alzheimer pathology in cognitively normal aging. Ann Neurol. 2010;67:122-31.
2) Rogaev EI, Sherrington R, Rogaeva EA, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature. 1995;376:775-8.
4) Long JM, Holtzman DM. Alzheimer disease:An update on pathobiology and treatment strategies. Cell. 2019;179:312-39.
5) 認知症疾患診療ガイドライン2017. 日本神経学会, 監修. 東京:医学書院;2017.
6) Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673-734.
7) Kivipelto M, Helkala EL, Laakso MP, et al. Midlife vascular risk factors and Alzheimer's disease in later life:longitudinal, population based study. BMJ. 2001;322:1447-51.
8) Williamson JD, Pajewski NM, Auchus AP, et al. SPRINT MIND Investigators for the SPRINT Research Group. Effect of intensive vs standard blood pressure control on probable dementia:A randomized clinical trial. JAMA. 2019;321:553-61.
9) Parsons C, Murad MH, Andersen S, et al. The effect of antihypertensive treatment on the incidence of stroke and cognitive decline in the elderly:a meta-analysis. Future Cardiol. 2016;12:237-48.
10) Weiss J, Kerfoot A, Freeman M, et al. Benefits and harms of treating blood pressure in older adults:A systematic review and meta-analysis. VA evidence-based synthesis program reports. Washington (DC):Department of Veterans Affairs (US);2016.
11) Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12:822-38.
12) Sparks DL, Scheff SW, Liu H, et al. Increased incidence of neurofibrillary tangles (NFT) in non-demented individuals with hypertension. J Neurological Sci. 1995;131:162-9.
13) Tayler HM, Palmer JC, Thomas TL, et al. Cerebral Abeta40 and systemic hypertension. J Cereb Blood Flow Metab. 2018;38:1993-2005.
14) Luchsinger JA. Diabetes, related conditions, and dementia. J Neurol Sci. 2010;299:35-8.
15) Profenno LA, Porsteinsson AP, Faraone SV. Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biol Psychiatry. 2010;67:505-12.
16) Yaffe K, Falvey C, Hamilton N, et al. Diabetes, glucose control, and 9-year cognitive decline among older adults without dementia. Arch Neurol. 2012;69:1170-5.
17) Bruce DG, Davis WA, Starkstein SE, et al. Mid-life predictors of cognitive impairment and dementia in type 2 diabetes mellitus:the Fremantle Diabetes Study. J Alzheimers Dis. 2014;42 Suppl 3:S63-70.
18) Areosa Sastre A, Vernooij RW, Gonzalez-Colaco Harmand M, et al. Effect of the treatment of Type 2 diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev. 2017;6:CD003804.
20) Matsuzaki T, Sasaki K, Tanizaki Y, et al. Insulin resistance is associated with the pathology of Alzheimer disease The Hisayama Study. Neurology. 2010;75:764-70.
21) Bennett S, Grant MM, Aldred S. Oxidative stress in vascular dementia and Alzheimer's disease:a common pathology. J Alzheimers Dis. 2009;17:245-57.
22) Albanese E, Launer LJ, Egger M, et al. Body mass index in midlife and dementia:Systematic review and meta-regression analysis of 589,649 men and women followed in longitudinal studies. Alzheimers Dement (Amst). 2017;8:165-78.
23) da Silva J, Goncalves-Pereira M, Xavier M, et al. Affective disorders and risk of developing dementia:systematic review. Br J Psychiatry. 2013;202:177-86.
24) Baune BT, Brignone M, Larsen KG. A network meta-analysis comparing effects of various antidepressant classes on the digit symbol substitution test (DSST) as a measure of cognitive dysfunction in patients with major depressive disorder. Int J Neuropsychopharmacol. 2018;21:97-107.
25) Ciorba A, Bianchini C, Pelucchi S, et al. The impact of hearing loss on the quality of life of elderly adults. Clin Interv Aging. 2012;7:159-63.
26) Lin FR, Yaffe K, Xia J, et al. Hearing loss and cognitive decline in older adults. JAMA Intern Med. 2013;173:293-9.
27) Zheng Y, Fan S, Liao W, et al. Hearing impairment and risk of Alzheimer's disease:a meta-analysis of prospective cohort studies. Neurol Sci. 2017;38:233-9.
28) Roberts RO, Christianson TJ, Kremers WK, et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and alzheimer disease dementia. JAMA Neurol. 2016;73:93-101.
29) Urakami K. Dementia prevention and aromatherapy in Japan. Yonago Acta Medica. 2022;65:184-90.
30) Poggesi A, Inzitari D, Pantoni L. Atrial fibrillation and cognition:Epidemiological data and possible mechanisms. Stroke. 2015;46:3316-21.
31) Friberg L, Rosenqvist M. Less dementia with oral anticoagulation in atrial fibrillation. Eur Heart J. 2018;39:453-60.
32) Otto CM. Heartbeat:lower risk of dementia with a direct oral anticoagulatant, compared to a vitamin K antagonist, for patients with atrial fibrillation. Heart. 2021;107:1847-9.
33) Jin MN, Kim TH, Kang KW, et al. Atrial fibrillation catheter ablation improves 1-year follow-up cognitive function, especially in patients with impaired cognitive function. Circ Arrhythm Electrophysiol. 2019;12:e007197.
34) Park SH, Lee SR, Choi EK, et al. Low risk of dementia in patients with newly diagnosed atrial fibrillation and a clustering of healthy lifestyle behaviors:A nationwide population-based cohort study. J Am Heart Assoc. 2022;11:e023739.
35) Koh YH, Lew LZW, Franke KB, et al. Predictive role of atrial fibrillation in cognitive decline:a systematic review and meta-analysis of 2.8 million individuals. Europace. 2022;24:1229-39.
36) Xiao J, Katsumata N, Bernier F, et al. Probiotic bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment:A randomized, double-blind, placebo-controlled trial. J Alzheimers Dis. 2020;77:139-47.
37) Saji N, Murotani K, Hisada T, et al. The relationship between the gut microbiome and mild cognitive impairment in patients without dementia:a cross-sectional study conducted in Japan. Sci Rep. 2019;9:19227.
38) Saji N, Niida S, Murotani K, et al. Analysis of the relationship between the gut microbiome and dementia:a cross-sectional study conducted in Japan. Sci Rep. 2019;9:1008.
39) Saji N, Murotani K, Hisada T, et al. Relationship between dementia and gut microbiome-associated metabolites:a cross-sectional study in Japan. Sci Rep. 2020;10:8088.
40) Saji N, Murotani K, Sato N, et al. Relationship between plasma neurofilament light chain, gut microbiota, and dementia:A cross-sectional study. J Alzheimers Dis. 2022;86:1323-35.
41) Saji N, Saito Y, Yamashita T, et al. Relationship between plasma lipopolysaccharides, gut microbiota, and dementia:A cross-sectional study. J Alzheimers Dis. 2022;86:1947-57.
42) Saji N, Tsuduki T, Murotani K, et al. Relationship between the Japanese-style diet, gut microbiota, and dementia:A cross-sectional study. Nutrition. 2022;94:111524.
43) Tomata Y, Sugiyama K, Kaiho Y, et al. Dietary patterns and incident dementia in elderly Japanese:The Ohsaki cohort 2006 study. J Gerontol A Biol Sci Med Sci. 2016;71:1322-8.

第4章 軽度認知障害 ( MCI ) の検査とバイオマーカー

P.42 掲載の参考文献
1) Tripathi M, Vibha D. Reversible dementias. Indian J Psychiatry. 2009;51:S52-5.
2) American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th Edition:DSM-5. Arlington, VA:American Psychiatric Association. 2013.
3) Butler CR, Graham KS, Hodges JR, et al. The syndrome of transient epileptic amnesia. Ann Neurol. 2007;61:587-98.
4) Scheltens P, Fox N, Barkhof F, et al. Structural magnetic resonance imaging in the practical assessment of dementia:beyond exclusion. Lancet Neurol. 2002;1:13-21.
5) Seo EH, Park WY, Choo IH. Structural MRI and amyloid PET imaging for prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment:A meta-analysis. Psychiatry Investig. 2017;14:205-15.
6) Jack CR Jr, Petersen RC, Xu Y, et al. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000;55:484-9.
7) Lombardi G, Crescioli G, Cavedo E, et al. Structural magnetic resonance imaging for the early diagnosis of dementia due to Alzheimer's disease in people with mild cognitive impairment. Cochrane Database Syst Rev. 2020;3:CD009628.
8) Kantarci K, Lesnick T, Ferman TJ, et al. Hippocampal volumes predict risk of dementia with Lewy bodies in mild cognitive impairment. Neurology. 2016;87:2317-23.
9) Blanc F, Colloby SJ, Cretin B, et al. Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer's disease. Alzheimers Res Ther. 2016;8:31.
10) Meyer JS, Xu G, Thornby J, et al. Is mild cognitive impairment prodromal for vascular dementia like Alzheimer's disease? Stroke. 2002;33:1981-5.
11) Yeo JM, Lim X, Khan Z, et al. Systematic review of the diagnostic utility of SPECT imaging in dementia. Eur Arch Psychiatry Clin Neurosci. 2013;263:539-52.
12) Waragai M, Yamada T, Matsuda H. Evaluation of brain perfusion SPECT using an easy Z-score imaging system (eZIS) as an adjunct to early-diagnosis of neurodegenerative diseases. J Neurol Sci. 2007;260:57-64.
13) Hirao K, Ohnishi T, Hirata Y, et al. The prediction of rapid conversion to Alzheimer's disease in mild cognitive impairment using regional cerebral blood flow SPECT. Neuroimage. 2005;28:1014-21.
14) Bajaj N, Hauser RA, Grachev ID. Clinical utility of dopamine transporter single photon emission CT (DaT-SPECT) with (123I) ioflupane in diagnosis of parkinsonian syndromes. J Neurol Neurosurg Psychiatry. 2013;84:1288-95.
15) Thomas AJ, Donaghy P, Roberts G, et al. Diagnostic accuracy of dopaminergic imaging in prodromal dementia with Lewy bodies. Psychol Med. 2019;49:396-402.
16) Orimo S, Amino T, Itoh Y, et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 2005;109:583-8.
17) McKeith IG, Ferman TJ, Thomas AJ, et al;prodromal DLB Diagnostic Study Group. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94:743-55.
18) Jack CR Jr, Bennett DA, Blennow K, et al. NIA-AA research framework:Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14:535-62.
19) Eckerstrom C, Svensson J, Kettunen P, et al. Evaluation of the ATN model in a longitudinal memory clinic sample with different underlying disorders. Alzheimers Dement (Amst). 2021;13:e12031.
20) McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer' s disease:Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7:263-9.
21) Dubois B, Feldman HH, Jacova C, et al. Advancing research diagnostic criteria for Alzheimer's disease:the IWG-2 criteria. Lancet Neurol. 2014;13:614-29.
22) Murray ME, Lowe VJ, Graff-Radford NR, et al. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain. 2015;138:1370-81.
23) Clark CM, Schneider JA, Bedell BJ, et al. Use of florbetapir-PET for imaging beta-amyloid pathology. JAMA. 2011;305:275-83.
24) Jansen WJ, Ossenkoppele R, Knol DL, et al. Prevalence of cerebral amyloid pathology in persons without dementia:a meta-analysis. JAMA. 2015;313:1924-38.
25) Koivunen J, Scheinin N, Virta JR, et al. Amyloid PET imaging in patients with mild cognitive impairment:a 2-year follow-up study. Neurology. 2011;76:1085-90.
26) Ma Y, Zhang S, Li J, et al. Predictive accuracy of amyloid imaging for progression from mild cognitive impairment to Alzheimer disease with different lengths of follow-up:a meta-analysis. Medicine (Baltimore). 2014;93:e150.
27) Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. Prevalence of amyloid PET positivity in dementia syndromes:a meta-analysis. JAMA. 2015;313:1939-49.
28) Johnson KA, Minoshima S, Bohnen NI, et al. Appropriate use criteria for amyloid PET:A report of the Amyloid Imaging Task Force, the Society of Nuclear Medicine and Molecular Imaging, and the Alzheimer's Association. Alzheimers Dement. 2013;9:e-1-16.
29) 日本核医学会. アミロイドPETイメージング剤の適正使用ガイドライン 改訂第2版. 2017年11月17日.
30) Zhang S, Han D, Tan X, et al. Diagnostic accuracy of 18F-FDG and 11C-PIB-PET for prediction of short-term conversion to Alzheimer's disease in subjects with mild cognitive impairment. Int J Clin Pract. 2012;66:185-98.
31) Mosconi L, Tsui WH, Herholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nucl Med. 2008;49:390-8.
32) Blennow K, Hampel H, Weiner M, et al. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol. 2010;6:131-44.
34) Strozyk D, Blennow K, White LR, et al. CSF Abeta 42 levels correlate with amyloidneuropathology in a population-based autopsy study. Neurology. 2003;60:652-6.
35) Palmqvist S, Zetterberg H, Blennow K, et al. Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid β-amyloid 42:a cross-validation study against amyloid positron emission tomography. JAMA Neurol. 2014;71:1282-9.
36) Mattsson N, Insel PS, Donohue M, et al. Independent information from cerebrospinal fluid amyloid-β and florbetapir imaging in Alzheimer's disease. Brain. 2015;138:772-83.
37) Buerger K, Ewers M, Pirttila T, et al. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain. 2006;129:3035-41.
38) Gordon BA, Friedrichsen K, Brier M, et al. The relationship between cerebrospinal fluid markers of Alzheimer pathology and positron emission tomography tau imaging. Brain. 2016;139:2249-60.
39) Arai H, Terajima M, Miura M, et al. Tau in cerebrospinal fluid:A potential diagnostic marker in Alzheimer's disease. Ann Neurol. 1995;38:649-52,
40) Blennow K, Hampel H. CSF markers for incipient Alzheimer's disease. Lancet Neurol. 2003;2:605-13.
41) Kang JH, Korecka M, Toledo JB, et al. Clinical utility and analytical challenges in measurement of cerebrospinal fluid amyloid-β(1-42) and τ proteins as Alzheimer disease biomarkers. Clin Chem. 2013;59:903-16.
42) Molinuevo JL, Blennow K, Dubois B, et al. The clinical use of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis:a consensus paper from the Alzheimer's Biomarkers Standardization Initiative. Alzheimers Dement. 2014;10:808-17.
43) 厚生労働省科学研究費 研究班. 認知症に関する脳脊髄液・血液バイオマーカーの適正使用指針. 2021年3月31日.
44) Zetterberg H, Burnham SC. Blood-based molecular biomarkers for Alzheimer's disease. Mol Brain. 2019;12:26.
45) Lopez OL, Kuller LH, Mehta PD, et al. Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology. 2008;70:1664-71.
46) Nakamura A, Kaneko N, Villemagne VL, et al. High performance plasma amyloid-beta biomarkers for Alzheimer's disease. Nature. 2018;554:249-54.
47) Kaneko N, Nakamura A, Washimi Y, et al. Novel plasma biomarker surrogating cerebral amyloid deposition. Proc Jpn Acad Ser B Phys Biol Sci. 2014;90:353-64.
48) Janelidze S, Mattsson N, Palmqvist S, et al. Plasma P-tau181 in Alzheimer's disease:relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med. 2020;26:379-86.
49) Cullen NC, Leuzy A, Palmqvist S, et al. Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. Nat Aging. 2021;1:114-23.
50) Palmqvist S, Janelidze S, Quiroz YT, et al. Discriminative accuracy of plasma phospho-tau217 for Alzheimer disease vs other neurodegenerative disorders. JAMA. 2020;324:772-81.

第5章 軽度認知障害 ( MCI ) の診断と評価尺度

P.57 掲載の参考文献
1) Petersen RC, Smith GE, Waring SC et al. Mild cognitive impairment clinical characterization and outcome. Arch Neurol. 1999:56:303-8.
2) Petreson RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004:256:183-94.
3) Peterson RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001:58:1985-92.
4) Peterson RC. Clinical practice. Mild cognitive impairment. N Eng J Med. 2011:364:2227-34.
5) 日本神経学会監修,「認知症疾患診療ガイドライン」作成委員会編集. 認知症疾患診療ガイドライン2017. 医学書院. 2017;p154-5.
6) American Psychiatry Association. Daignostic and Statistical Manual of Mental Disorders, Fifth Edition:DMS-5, Arlington VA:American Psychiatric Association:2013.
7) World Health Organization International Statistical Classification of Disease and Related Health Problems. 10th Revision. Geneva:World Health Organization:1993.
8) Morris JC. The Clinical Dementia Rating (CDR):current version and scoring rules. Neurology. 1993;43:2412-4.
9) Albert MS, Deckosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease:recommendations from the National Institute on Aginf-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease/Alzheimers Demnt. 2011:7:270-9.
10) 荒井啓行. アルツハイマー病を背景にした軽度認知障害の診断:米国国立老化研究所/アルツハイマー病協会合同作業グループからの提言. Cognition Dementia. 2012:1183:19-27
11) Smith T, Gildeh N, Holmes C. The Montreal Cognitive Assessment:validity and utility in a memory clinic setting. Can J Psyciatry 2007:52:329-32.
12) FujiwaraY, Suzuki H, Yasunaga M, et al. Brief screening tool for mild cognitive ompairment in older Japanese:validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr Gerontol Int. 2010:10:225-32.
13) Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, et al. The Montreal Cognitive Assessment (MoCA):A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005;53:695-9.
14) Fujiwara Y., Suzuki H., Yasunaga M., et al. Brief screening tool for mild cognitive impairment in older Japanese:Validation of the Japanese version of the Montreal Cognitive Assessment. Geriatrics & Gerontology International. 2010;10:225-32.
15) Hsieh S, Schubert S, Hoon C, et al. Validation of the Addenbrooke's Cognitive Examination III in frontotemporal dementia and Alzheimer's disease. Dement Geriatr Cogn Disord. 2013;36:242-50
16) Takenoshita S, Terada S, Yoshida H, et al. Validation of Addenbrooke's cognitive examination III for detecting mild cognitive impairment and dementia in Japan. BMC Geriatr. 2019;19:123.
17) Zoller AS, Gaal IM, Royer CA, et al. SIST-M-IR activities of daily living items that best discriminate clinically normal elderly from those with mild cognitive impairment. Curr Alzheimer Res. 2014:11:785-91.
18) Duara R, Loewenstein DA, Greig-Custo MT, et al. Dagnosis and staging of mild cognitive impairment, using a modification of the clinical dementia rating scale:the mCDR. Int J Geriatr Psychiatry. 2010:282-9.
19) 鈴木宏幸, 藤原佳典. Montreal Cognitive Assessment (MoCA) の日本語版作成とその有効性について老年精神医学雑誌. 2010;21:198-202.
20) 目黒謙一:認知症早期発見のためのCDR判定ハンドブック. 医学書院. 2008.

第6章 軽度認知障害 ( MCI ) から認知症への進行予防法

P.71 掲載の参考文献
1) Sofi F, Valecchi D, Bacci D, et al. Physical activity and risk of cognitive decline:A meta-analysis of prospective studies. J Intern Med. 2011;269:107-17.
2) Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease:A systematic review of prospective evidence. Psychol Med. 2009;39:3-11.
3) Lee J. The Relationship between physical activity and dementia:A systematic review and meta-analysis of prospective cohort studies. J Gerontol Nurs. 2018;44:22-9.
4) WHOガイドライン『認知機能低下および認知症リスク低減』邦訳検討委員会. 認知機能低下および認知症のリスク低減WHOガイドライン. 2020.
5) Northey JM, Cherbuin N, Pumpa KL, et al. Exercise interventions for cognitive function in adults older than 50:a systematic review with meta-analysis. Br J Sports Med. 2018;52:154-60.
7) Scarmeas N, Anastasiou CA, Yannakoulia M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018;17:1006-15.
8) Singh B, Parsaik AK, Mielke MM, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer's disease:A systematic review and meta-analysis. J Alzheimers Dis. 2014;39:271-82.
9) Ozawa M, Ninomiya T, Ohara T, et al. Dietary patterns and risk of dementia in an elderly Japanese population:The Hisayama Study. Am J Clin Nutr. 2013;97:1076-82.
10) Otsuka R, Nishita Y, Tange C, et al. Dietary diversity decreases the risk of cognitive decline among Japanese older adults. Geriatr Gerontol Int. 2017;17:937-44.
11) Ma F, Wu T, Zhao J, et al. Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI. Sci Rep. 2016;6:37486.
12) Lee LK, Shahar S, Chin AV, et al. Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI):A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology (Berl). 2013;225:605-12.
14) Rafnsson SB, Maharani A, Tampubolon G. Social contact mode and 15-year episodic memory trajectories in older adults with and without hearing loss:Findings from the English Longitudinal Study of Ageing. J Gerontol B Psychol Sci Soc Sci. 2022;77:10-7.
15) Dodge HH, Zhu J, Mattek N, et al. Web-enabled conversational interactions as a means to improve cognitive functions:Results of a 6-week randomized controlled trial. Alzheimers Dement. 2015;1:1-12.
16) Gomez-Soria I, Peralta-Marrupe P, Calatayud-Sanz E, et al. Efficacy of cognitive intervention programs in amnesic mild cognitive impairment:A systematic review. Arch Gerontol Geriatr. 2021;94:104332.
17) Sherman DS, Durbin KA, Ross DM. Meta-analysis of memory-focused training and multidomain interventions in mild cognitive impairment. J Alzheimers Dis. 2020;76:399-421.
18) Wang YY, Yang L, Zhang J, et al. The effect of cognitive intervention on cognitive function in older adults with Alzheimer's disease:A systematic review and meta-analysis. Neuropsychol Rev. 2022;32:247-73.
19) Krell-Roesch J, Vemuri P, Pink A, et al. Association between mentally stimulating activities in late life and the outcome of incident mild cognitive impairment, with an analysis of the APOE ε4 genotype. JAMA Neurol. 2017;74:332-8.
20) Doi T, Verghese J, Makizako H, et al. Effects of cognitive leisure activity on cognition in mild cognitive impairment:Results of a randomized controlled trial. J Am Med Dir Assoc. 2017;18:686-91.
21) Mahendran R, Gandhi M, Moorakonda RB, et al. Art therapy is associated with sustained improvement in cognitive function in the elderly with mild neurocognitive disorder:Findings from a pilot randomized controlled trial for art therapy and music reminiscence activity versus usual care. Trials. 2018;19:615.
22) Zhao J, Li H, Lin R, et al. Effects of creative expression therapy for older adults with mild cognitive impairment at risk of Alzheimer's disease:a randomized controlled clinical trial. Clin Interv Aging. 2018;13:1313-20.
23) Kloppenborg RP, van den Berg E, Kappelle LJ, et al. Diabetes and other vascular risk factors for dementia:which factor matters most? A systematic review. Eur J Pharmacol. 2008;585:97-108.
24) Chang-Quan H, Hui W, et al. The association of antihypertensive medication use with risk of cognitive decline and dementia:A meta-analysis of longitudinal studies. Int J Clin Pract. 2011;65:1295-305.
25) Peters R, Peters J, Booth A, et al. Trajectory of blood pressure, body mass index, cholesterol and incident dementia:Systematic review. Br J Psychiatr. 2020;216:16-28.
26) van Dalen JW, Brayne C, Crane PK, et al. Association of systolic blood pressure with dementia risk and the role of age, U-shaped associations, and mortality. JAMA Intern Med. 2022;182:142-52.
27) Matsumoto A, Satoh M, Kikuya M, et al. Day-to-day variability in home blood pressure is associated with cognitive decline:The Ohasama study. Hypertension. 2014;63:1333-8.
28) Oishi E, Ohara T, Sakata S, et al. Day-to-day blood pressure variability and risk of dementia in a general Japanese elderly population:The Hisayama study. Circulation. 2017;136:516-25.
29) Anstey KJ, Ashby-Mitchell K, Peters R. Updating the evidence on the association between serum cholesterol and risk of late-life dementia:Review and meta-analysis. J Alzheimers Dis. 2017;56:215-28.
30) Larsson SC, Markus HS. Does treating vascular risk factors prevent dementia and Alzheimer's disease? A systematic review and meta-analysis. J Alzheimers Dis. 2018;64:657-68.
31) Poly TN, Islam MM, Walther BA, et al. Association between use of statin and risk of dementia:A meta-analysis of observational studies. Neuroepidemiology. 2020;54:214-26.
32) Peters R, Xu Y, Antikainen R, et al. Evaluation of high cholesterol and risk of dementia and cognitive decline in older adults using individual patient meta-analysis. Dement Geriatr Cogn Disord. 2021;50:318-25.
33) Kivimaki M, Luukkonen R, Batty GD, et al. Body mass index and risk of dementia:Analysis of individual-level data from 1.3 million individuals. Alzheimers Dement. 2018:14:601-9.
34) Singh-Manoux A, Dugravot A, Shipley M, et al. Obesity trajectories and risk of dementia:28 years of follow-up in the Whitehall II study. Alzheimers Dement. 2018;14:178-86.
35) Park S, Jeon SM, Jung SY, et al. Effect of late-life weight change on dementia incidence:A 10-year cohort study using claim data in Korea. BMJ Open. 2019;9:e021739.
36) Power BD, Alfonso H, Flicker L, et al. Changes in body mass in later life and incident dementia. International Psychogeriatrics. 2013;25:467-78.
37) Cheng G, Huang C, Deng H, et al. Diabetes as a risk factor for dementia and mild cognitive impairment:a meta-analysis of longitudinal studies. Intern Med J. 2012;42:484-91.
38) Koekkoek PS, Kappelle LJ, van den Berg E, et al. Cognitive function in patients with diabetes mellitus:guidance for daily care. Lancet Neurol. 2015;14:329-40.
39) Tuligenga RH. Intensive glycaemic control and cognitive decline in patients with type 2 diabetes:a meta-analysis. Endocr Connect. 2015;4:R16-24.
40) Ilomaki J, Jokanovic N, Tan EC, et al. Alcohol consumption, dementia and cognitive decline:An overview of systematic reviews. Curr Clin Pharmacol. 2015;10:204-12.
41) Sabia S, Fayosse A, Dumurgier J, et al. Alcohol consumption and risk of dementia:23 year follow-up of Whitehall II cohort study. BMJ. 2018;362:k2927.
42) Xu W, Wang H, Wan Y, et al. Alcohol consumption and dementia risk:A dose-response meta-analysis of prospective studies. Eur J Epidemiol. 2017;32:31-42.
43) Topiwala A, Allan CL, Valkanova V, et al. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline:longitudinal cohort study. BMJ. 2017;357:j2353.
44) Koch M, Fitzpatrick AL, Rapp SR, et al. Alcohol consumption and risk of dementia and cognitive decline among older adults with or without mild cognitive impairment. JAMA Netw Open. 2019;2:e1910319.
45) Lao Y, Hou L, Li J, et al. Association between alcohol intake, mild cognitive impairment and progression to dementia:a dose-response meta-analysis. Aging Clin Exp Res. 2021;33:1175-85.
46) Zhong G, Wang Y, Zhang Y, et al. Smoking is associated with an increased risk of dementia:A meta-analysis of prospective cohort studies with investigation of potential effect modifiers. PLoS One. 2015;10:e0118333.
47) Ohara T, Ninomiya T, Hata J, et al. Midlife and late-life smoking and risk of dementia in the community:The Hisayama study. J Am Geriatr Soc. 2015;63:2332-9.
48) Livingston G, Sommerlad A, Orgeta V, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673-734.
49) Amieva H, Ouvrard C, Meillon C, et al. Death, depression, disability, and dementia associated with self-reported hearing problems:A 25-year study. J Gerontol A Biol Sci Med Sci. 2018;73:1383-9.
50) Ray J, Popli G, Fell G. Association of cognition and age-related hearing impairment in the english longitudinal study of ageing. JAMA Otolaryngol Head Neck Surg. 2018;144:876-82.
51) Lin FR, Albert M. Hearing loss and dementia - who is listening? Aging Ment Health. 2014;18:671-3.
52) Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER):A randomised controlled trial. Lancet. 2015;385:2255-63.
53) Rosenberg A, Ngandu T, Rusanen M, et al. Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics:The FINGER trial. Alzheimers Dement. 2018;14:263-270.
54) Solomon A, Turunen H, Ngandu T, et al. Effect of the apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention:A subgroup analysis of a randomized clinical trial. JAMA Neurol. 2018;75:462-70.
55) Ngandu T, Lehtisalo J, Korkki S, et al. The effect of adherence on cognition in a multidomain lifestyle intervention (FINGER). Alzheimers Dement. 2022;18:1325-34.
56) Moll van Charante EP, Richard E, Eurelings LS, et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA):A cluster-randomised controlled trial. Lancet. 2016;388:797-805.
57) Andrieu S, Guyonnet S, Coley N, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT):A randomised, placebo-controlled trial. Lancet Neurol. 2017;16:377-89.
58) Rosenberg A, Mangialasche F, Ngandu T, et al. Multidomain interventions to prevent cognitive impairment, Alzheimer's disease, and dementia:From FINGER to World-Wide FINGERS. J Prev Alzheimers Dis. 2020;7:29-36.
59) Kivipelto M, Mangialasche F, Snyder HM, et al. World-Wide FINGERS Network:A global approach to risk reduction and prevention of dementia. Alzheimers Dement. 2020;16:1078-94.

第7章 軽度認知障害 ( MCI ) への診断後支援

P.83 掲載の参考文献
1) Petersen RC. Clinical practice. mild cognitive impairment. N Engl J Med. 2011;364:2227-34.
2) Urakami K. Prevention of dementia. Psychogeriatrics. 2007:7:93-7.
3) Walker KA, Power MC, Gottesman RF. Defining the relationship between hypertension, cognitive decline, and dementia:A review. Curr Hypertens Rep. 2017;19:24.
4) Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus:mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14:591-604.
5) Durazzo TC, Mattsson N, Weiner MW;Alzheimer's Disease Neuroimaging Initiative. Smoking and increased Alzheimer's disease risk:A review of potential mechanisms. Alzheimers Dement. 2014;10(suppl):S12.
6) Cipriani G, Lucetti C, Danti S, et al. Sleep disturbances and dementia. Psychogeriatrics. 2015;15:65-74.
7) Boeve A, Ferman TJ, Aakre J, et al. Excessive daytime sleepiness in major dementia syndromes. Am J Alzheimers Dis Other Demen. 2019;34:261-4.
8) Petersson SD, Philippou E. Mediterranean diet, cognitive function, and dementia:A systematic review of the evidence1-3. Adv Nutr. 2016;7:889-904.
9) Alty J, Farrow M, Lawler K. Exercise and dementia prevention. Pract Neurol. 2020;20:234-40.
10) Huang T, Larsen KT, Ried-Larsen M, et al. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans:A review. Scand J Med Sci Sports. 2014;24:1-10.
11) Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care:2020 report of the Lancet commission. 2020:396:413-46.
12) Urakami K. Dementia prevention and aromatherapy in Japan. Yonago Acta medica. 2022;65:184-90.
13) Jimbo D, Kimura Y, Taniguchi M, et al. Effect of aromatherapy on patients with Alzheimer's disease. Psychogeriatrics. 2009;9:173-9.
14) Okuda M, Fujita Y, Takada-Takatori Y, et al. Aromatherapy improves cognitive dysfunction in senescence-accelerated mouse prone 8 by reducing the level of amyloid beta and tau phosphorylation. PLoS One. 2020;14:1-13.
15) Kouzuki M, Kato T, Wada-Isoe K, et al. A program of exercise, brain training, and lecture to prevent cognitive decline. Ann Clin Trans Neurol. 2020;7:318-28.
16) 浦上克哉. 認知症予防で運転脳を鍛える. 東京:JAFメディアワークス;2022.
17) Shimada H, Makizako H, Lee S, et al. Lifestyle activities and the risk of dementia in older Japanese adults. Geriatr Gerontol Int. 2018;18:1491-6.

第8章 軽度認知障害 ( MCI ) に対する地域での取り組み

P.93 掲載の参考文献
2) Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease:a randomized trial. JAMA. 2008;300:1027-37.
4) Baker LD, Frank LL, Foster-Schubert K, et al. Effects of aerobic exercise on mild cognitive impairment:a controlled trial. Archi Neurol. 2010;67:71-9.
5) van Uffelen JG, Chinapaw MJ, van Mechelen W, et al. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. Br J Sports Med. 2008;42:344-51.
6) Scherder EJ, Van Paasschen J, Deijen JB, et al. Physical activity and executive functions in the elderly with mild cognitive impairment. Aging Ment Health. 2005;9:272-80.
7) Lam LC, Chan WC, Leung T, et al. Would older adults with mild cognitive impairment adhere to and benefit from a structured lifestyle activity intervention to enhance cognition?:A cluster randomized controlled trial. PLoS One. 2015;10:e0118173.
8) Nagamatsu LS, Handy TC, Hsu CL, et al. Resistance training promotes cognitive and functional brain plasticity in seniors with probable mild cognitive impairment. Archi Int Med. 2012;172:666-8.
9) Fiatarone Singh MA, Gates N, Saigal N, et al. The Study of Mental and Resistance Training (SMART) study-resistance training and/or cognitive training in mild cognitive impairment:a randomized, double-blind, double-sham controlled trial. J Am Med Dir Assoc. 2014;15:873-80.
10) Roma MF, Busse AL, Betoni RA, et al. Effects of resistance training and aerobic exercise in elderly people concerning physical fitness and ability:a prospective clinical trial. Einstein (Sao Paulo, Brazil). 2013;11:153-7.
11) Shimada H, Makizako H, Doi T, et al. Effects of combined physical and cognitive exercises on cognition and mobility in patients with mild cognitive impairment:A randomized clinical trial. J Am Med Dir Assoc. 2018;19:584-91.
12) Landrigan JF, Bell T, Crowe M, et al. Lifting cognition:a meta-analysis of effects of resistance exercise on cognition. Psychol Res. 2020;84:1167-83.
13) Zhang L, Li B, Yang J, et al. Meta-analysis:Resistance training improves cognition in mild cognitive impairment. Int J Sports Med. 2020;41:815-23.
14) Song D, Yu DSF, Li PWC, et al. The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment:A systematic review and meta-analysis. Int J Nurs Stud. 2018;79:155-64.
15) Huang X, Zhao X, Li B, et al. Comparative efficacy of various exercise interventions on cognitive function in patients with mild cognitive impairment or dementia:A systematic review and network meta-analysis. J Sport Health Sci. 2022;11:212-23.
17) Shimada H, Doi T, Lee S, et al. Reversible predictors of reversion from mild cognitive impairment to normal cognition:a 4-year longitudinal study. Alzheimers Res Ther. 2019;11:24.
18) Ball K, Berch DB, Helmers KF, et al. Effects of cognitive training interventions with older adults:a randomized controlled trial. JAMA. 2002;288:2271-81.
19) Coyle H, Traynor V, Solowij N. Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline:systematic review of the literature. Am J Geriatr Psychiatry. 2015;23:335-59.
20) Ge S, Zhu Z, Wu B, et al. Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment:a systematic review. BMC Geriatr. 2018;18:213.
21) Hill NT, Mowszowski L, Naismith SL, et al. Computerized cognitive training in older adults with mild cognitive impairment or dementia:A systematic review and meta-analysis. Am J Psychiatry. 2017;174:329-40.
22) Li H, Li J, Li N, et al. Cognitive intervention for persons with mild cognitive impairment:A meta-analysis. Ageing Res Rev. 2011;10:285-96.
23) Martin M, Clare L, Altgassen AM, et al. Cognition-based interventions for healthy older people and people with mild cognitive impairment. Cochrane Database Syst Rev. 2011;(1):CD006220.
24) Sherman DS, Mauser J, Nuno M, et al. The efficacy of cognitive intervention in mild cognitive impairment (MCI):a meta-analysis of outcomes on neuropsychological measures. Neuropsychol Rev. 2017;27:440-84.
25) Simon SS, Yokomizo JE, Bottino CM. Cognitive intervention in amnestic mild cognitive impairment:a systematic review. Neurosci Biobehav Rev. 2012;36:1163-78.
26) Gates NJ, Vernooij RW, Di Nisio M, et al. Computerised cognitive training for preventing dementia in people with mild cognitive impairment. Cochrane Database Syst Rev. 2019;3:CD012279.
27) Zhang H, Huntley J, Bhome R, et al. Effect of computerised cognitive training on cognitive outcomes in mild cognitive impairment:a systematic review and meta-analysis. BMJ Open. 2019;9:e027062.
28) Zunzunegui MV, Alvarado BE, Del Ser T, et al. Social networks, social integration, and social engagement determine cognitive decline in community-dwelling Spanish older adults. J Gerontol B Psychol Sci Soc Sci. 2003;58:S93-100.
29) Tomioka K, Kurumatani N, Hosoi H. Social participation and cognitive decline among community-dwelling older adults:A community-based longitudinal study. J Gerontol B Psychol Sci Soc Sci. 2018;73:799-806.
30) Smith L, Shin JI, Lopez Sanchez GF, et al. Social participation and mild cognitive impairment in low- and middle-income countries. Prev Med. 2022;164:107230.
31) Ngandu T, Lehtisalo J, Solomon A, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER):a randomised controlled trial. Lancet. 2015;385:2255-63.
32) Rosenberg A, Ngandu T, Rusanen M, et al. Multidomain lifestyle intervention benefits a large elderly population at risk for cognitive decline and dementia regardless of baseline characteristics:The FINGER trial. Alzheimers Dement. 2018;14:263-70.
33) Solomon A, Turunen H, Ngandu T, et al. Effect of the apolipoprotein E genotype on cognitive change during a multidomain lifestyle intervention:A subgroup analysis of a randomized clinical trial. JAMA Neurol. 2018;75:462-70.
34) Andrieu S, Guyonnet S, Coley N, et al. Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT):a randomised, placebo-controlled trial. Lancet Neurol. 2017;16:377-89.
35) Moll van Charante EP, Richard E, Eurelings LS, et al. Effectiveness of a 6-year multidomain vascular care intervention to prevent dementia (preDIVA):A cluster-randomised controlled trial. Lancet. 2016;388:797-805.
36) Hafdi M, Hoevenaar-Blom MP, Richard E. Multi-domain interventions for the prevention of dementia and cognitive decline. Cochrane Database Syst Rev. 2021;11:CD013572.
37) Jung AR, Kim D, Park EA. Cognitive intervention using information and communication technology for older adults with mild cognitive impairment:A systematic review and meta-analysis. Int J Environ Res Public Health 2021;18:11535.
38) Chae HJ, Lee SH. Effectiveness of online-based cognitive intervention in community-dwelling older adults with cognitive dysfunction:A systematic review and meta-analysis. Int J Geriatr Psychiatry. 2023;38:e5853.

第9章 軽度認知障害 ( MCI ) に対する治療研究

P.102 掲載の参考文献
1) Deschaintre Y, Richard F, Leys D, et al. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology. 2009;73:674-80.
2) Li J, Wang YJ, Zhang M, et al. Vascular risk factors promote conversion from mild cognitive impairment to Alzheimer disease. Neurology. 2011;76:1485-91.
3) Scheltens P, Blennow K, Breteler MM, et al. Alzheimer's disease. Lancet. 2016;388:505-17.
4) Burckhardt M, Herke M, Wustmann T, et al. Omega-3 fatty acids for the treatment of dementia. Cochrane Database Syst Rev. 2016;4:CD009002.
5) Burckhardt M, Watzke S, Wienke A, et al. Souvenaid for Alzheimer's disease. Cochrane Database Syst Rev. 2020;12:CD011679.
6) Tadokoro K, Morihara R, Ohta Y, et al. Clinical benefits of antioxidative supplement twendee X for mild cognitive impairment:A multicenter, randomized, double-blind, and placebo-controlled prospective interventional study. J Alzheimers Dis. 2019;71:1063-9.
7) Abbott A. Could drugs prevent Alzheimer's? These trials aim to find out. Nature. 2022;603:216-9.
8) Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 2016;537:50-6.
9) van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early Alzheimer's disease. N Engl J Med. 2023;388:9-21.
10) Reish NJ, Jamshidi P, Stamm B, et al. Multiple Cerebral Hemorrhages in a Patient Receiving Lecanemab and Treated with t-PA for Stroke. N Engl J Med. 2023;388:478-9.
11) Ihara M, Nishino M, Taguchi A, et al. Cilostazol add-on therapy in patients with mild dementia receiving donepezil:a retrospective study. PLoS One. 2014;9:e89516.
12) Tai SY, Chien CY, Chang YH, et al. Cilostazol use is associated with reduced risk of dementia:A nationwide cohort study. Neurotherapeutics. 2017;14:784-91.

最近チェックした商品履歴

Loading...