腸内フローラと発がん・生活習慣病

出版社: 医薬出版
著者:
発行日: 2023-09-15
分野: 基礎医学  >  医動物(寄生虫)
ISBN: 9784991213021
電子書籍版: 2023-09-15 (初版第1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:約3営業日

5,280 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

4,224 円(税込)

目次

  • 特別講演1.腸内細菌叢と発がん:メカニズムとそのきっかけ

    特別講演2.高度肥満や糖尿病、がんに対する外科的および薬物による治療の効果と腸内細菌叢の関係

    講演1.腸内フローラと膵・胆道癌

    講演2.大腸がん発がん過程における腸内細菌群集構造のダイナミクス

    講演3.腸内細菌と循環器疾患

    講演4.腸内細菌叢からみた糖尿病の発症機構

    講演5.ケトン食と腸内細菌叢

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

はじめに

P.6 掲載の参考文献
1) 神谷茂 : 腸内フローラと内科疾患, Jpn J Antibiotics, 70 : 1-13, 2017
2) Durack J & Lynch SV : The gut microbiome : Relationships with disease and opportunities for therapy. J Exp Med 216 : 20-40, 2019
3) がんの統計 2022, 公益財団法人がん研究振興財団
4) Tabish SA : Lifestyle diseases : consequences, characteristics, causes and control. J Card Curr Res 9 : 1-4, 2017
5) Ahlawat S et al. : Gut-organ axis : a microbial outreach and networking. Lett Appl Micribiol 72 : 636-668, 2021
6) Ivleva EA & Grivennikov SI : Microbiota-driven mechanisms at different stages of cancer development. Neoplasia 32 : 100829, 2022
7) Zella D & Gallo RC : Viruses and bacteria associated with cancer : an overview. Viruses 13 : 6, 2021
8) Grivennikov SI et al. : Immunity, inflammation and cancer. Cell 140 : 883-899, 2010
9) Cheng WY et al. : The role of gut microbiota in cancer treatment : friend or foe? Gut 69 : 1867-1876, 2020
10) Sepich-Poore GD et al. : The microbiome and human cancer. Science 371 : 6536, eabc 4552, 2021
11) Cao Y et al. : Role of gut microbe-derived metabolites in cardiometabolic diseases : Systems based approach. Mol Metab 64 : 101557, 2022
12) Wang Z et al. : Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472 : 57-63, 2011
13) Tang WH et al. : Gut microflora in cardiovascular health and disease. Circulation Res 120 : 1183-1196, 2017

特別講演1. 腸内細菌叢と発がん : メカニズムとそのきっかけ

P.14 掲載の参考文献
1) Sartor RB, Wu GD. Roles for intestinal bacteria, viruses, and fungi in pathogenesis of inflammatory bowel diseases and therapeutic approaches. Gastroenterology 2017 ; 152 : 327-339 e4.
2) Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut microbiota modulation of efficacy and toxicity of cancer chemotherapy and immunotherapy. Gastroenterology 2023 ; 164 : 198-213.
3) Sepich-Poore GD, Zitvogel L, Straussman R, Hasty J, Wargo JA, Knight R. The microbiome and human cancer. Science 2021 ; 371.
4) Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med 2019 ; 25 : 377-388.
5) Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Cancer Cell 2018 ; 33 : 570-580.
6) Aron-Wisnewsky J, Warmbrunn MV, Nieuwdorp M, Clement K. Metabolism and metabolic disorders and the microbiome : the intestinal microbiota associated with obesity, lipid metabolism, and metabolic healthpathophysiology and therapeutic strategies. Gastroenterology 2021 ; 160 : 573-599.
7) Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021 ; 39 : 1317-1341.
8) Song X, Greiner-Tollersrud OK, Zhou H. Oral microbiota variation : A risk factor for development and poor prognosis of esophageal cancer. Dig Dis Sci 2022 ; 67 : 3543-3556.
9) Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 2012 ; 338 : 120-3.
10) Bhatt AP, Sartor RB. 'Bugs on drugs' : implications for gut health. Nat Rev Gastroenterol Hepatol 2021 ; 18 : 287-288.
11) Nayak RR, Alexander M, Deshpande I, Stapleton-Gray K, Rimal B, Patterson AD, Ubeda C, Scher JU, Turnbaugh PJ. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 2021 ; 29 : 362-377 e11.
12) Panebianco C, Andriulli A, Pazienza V. Pharmacomicrobiomics : exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 2018 ; 6 : 92.
13) Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017 ; 67 : 326-344.
14) Bhatt AP, Pellock SJ, Biernat KA, Walton WG, Wallace BD, Creekmore BC, Letertre MM, Swann JR, Wilson ID, Roques JR, Darr DB, Bailey ST, Montgomery SA, Roach JM, Azcarate-Peril MA, Sartor RB, Gharaibeh RZ, Bultman SJ, Redinbo MR. Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A 2020 ; 117 : 7374-7381.
15) Matson V, Chervin CS, Gajewski TF. Cancer and the microbiome-influence of the commensal microbiota on cancer, immune responses, and immunotherapy. Gastroenterology 2021 ; 160 : 600-613.
16) Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Berard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015 ; 350 : 1079-84.
17) Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018 ; 359 : 91-97.
18) Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, Rotin D, Anafi L, Avivi C, Melnichenko J, Steinberg-Silman Y, Mamtani R, Harati H, Asher N, Shapira-Frommer R, Brosh-Nissimov T, Eshet Y, Ben-Simon S, Ziv O, Khan MAW, Amit M, Ajami NJ, Barshack I, Schachter J, Wargo JA, Koren O, Markel G, Boursi B. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021 ; 371 : 602-609.
19) Geller LT, Barzily-Rokni M, Danino T, Jonas OH, Shental N, Nejman D, Gavert N, Zwang Y, Cooper ZA, Shee K, Thaiss CA, Reuben A, Livny J, Avraham R, Frederick DT, Ligorio M, Chatman K, Johnston SE, Mosher CM, Brandis A, Fuks G, Gurbatri C, Gopalakrishnan V, Kim M, Hurd MW, Katz M, Fleming J, Maitra A, Smith DA, Skalak M, Bu J, Michaud M, Trauger SA, Barshack I, Golan T, Sandbank J, Flaherty KT, Mandinova A, Garrett WS, Thayer SP, Ferrone CR, Huttenhower C, Bhatia SN, Gevers D, Wargo JA, Golub TR, Straussman R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017 ; 357 : 1156-1160.
20) Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, Qian Y, Kryczek I, Sun D, Nagarsheth N, Chen Y, Chen H, Hong J, Zou W, Fang JY. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 2017 ; 170 : 548-563 e16.
21) Nathanson T, Ahuja A, Rubinsteyn A, Aksoy BA, Hellmann MD, Miao D, Van Allen E, Merghoub T, Wolchok JD, Snyder A, Hammerbacher J. Somatic mutations and neoepitope homology in melanomas treated with CTLA-4 blockade. Cancer Immunol Res 2017 ; 5 : 84-91.
22) Doestzada M, Vila AV, Zhernakova A, Koonen DPY, Weersma RK, Touw DJ, Kuipers F, Wijmenga C, Fu J. Pharmacomicrobiomics : a novel route towards personalized medicine Protein. Cell 2018 ; 9 : 432-445.
23) Jobin C. Precision medicine using microbiota. Science 2018 ; 359 : 32-34.
24) Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015 ; 350 : 1084-9.
25) Tanoue T, Morita S, Plichta DR, Skelly AN, Suda W, Sugiura Y, Narushima S, Vlamakis H, Motoo I, Sugita K, Shiota A, Takeshita K, Yasuma-Mitobe K, Riethmacher D, Kaisho T, Norman JM, Mucida D, Suematsu M, Yaguchi T, Bucci V, Inoue T, Kawakami Y, Olle B, Roberts B, Hattori M, Xavier RJ, Atarashi K, Honda K. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 2019 ; 565 : 600-605.
26) Federici S, Kredo-Russo S, Valdes-Mas R, Kviatcovsky D, Weinstock E, Matiuhin Y, Silberberg Y, Atarashi K, Furuichi M, Oka A, Liu B, Fibelman M, Weiner IN, Khabra E, Cullin N, Ben-Yishai N, Inbar D, Ben-David H, Nicenboim J, Kowalsman N, Lieb W, Kario E, Cohen T, Geffen YF, Zelcbuch L, Cohen A, Rappo U, Gahali-Sass I, Golembo M, Lev V, Dori-Bachash M, Shapiro H, Moresi C, Cuevas-Sierra A, Mohapatra G, Kern L, Zheng D, Nobs SP, Suez J, Stettner N, Harmelin A, Zak N, Puttagunta S, Bassan M, Honda K, Sokol H, Bang C, Franke A, Schramm C, Maharshak N, Sartor RB, Sorek R, Elinav E. Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation. Cell 2022 ; 185 : 2879-2898 e24.

特別講演2. 高度肥満や糖尿病, がんに対する外科的および薬物による治療の効果と腸内細菌叢の関係

P.29 掲載の参考文献
1) World Health Organization. Noncommunicable diseases. Sep 8 2021. https://www.who.int/news-room/factsheets/detail/noncommunicable-diseases
2) van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021 ; 29 : 700-712.
3) Muto Y, Kurosawa A, Ukita C, Hanafusa N, Nagata S : Relationship between the fasting status during hospitalization, the length of hospital stay, and the outcome. Br J Nutr. 2022 ; 23 : 1-20.
4) 馬場重樹, 佐々木雅也, 安藤朗, 腸内細菌叢とdysbiosis. 日本静脈経腸栄養学会雑誌. 2018 ; 33 : 1099-1104.
5) 大野博司編集, 腸内細菌叢-健康と疾患を制御するエコシステム-. 実験医学. 2019 ; 37 : pp10-197.
6) Ikeda T, Aida M, Yoshida Y, Matsumoto S, Tanaka M, Nakayama J, Nagao Y, Nakata R, Oki E, Akahoshi T, Okano S, Nomura M, Hashizume M, Maehara Y. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg. 2020 ; 107 : 1673-1685.
7) Carlsson LMS, Sjoholm K, Jacobson P, Andersson-Assarsson JC, Svensson P-A, Taube M, Carlsson B, Peltonen M. Life expectancy after bariatric surgery in the Swedish Obese Subjects Study. N Engl J Med. 2022 ; 383 : 1535-1543.
8) Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006 ; 444 : 1022-1023.
9) 大谷直子. 肥満により増加する腸内細菌の代謝産物による肝がん促進機構. 腸内フローラシンポジウム 24. 2016 ; 37-45.
10) 馬場秀夫. 腸内細菌と消化器癌. 腸内フローラシンポジウム 28. 2020 ; 33-38.
11) Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragon L, Jacquelot N, Qu B, Ferrere G, Clemenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria J-C, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018 ; 359 : 91-97.
12) Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre M-L, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018 ; 359 : 104-108.
13) Nishijima S, Suda W, Oshima K, Kim S-W, Hirose Y, Morita H, Hattori M. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res. 2016 ; 23 : 125-133.
14) Shoji F, Yamaguchi M, Okamoto M, Takamori S, Yamazaki K, Okamoto T, Maehara Y. Gut microbiota diversity and specific composition during immunotherapy in responders with non-small cell lung cancer. Front Mol Biosci. 2022 ; 9 : 1040424.
15) Kaneuchi C, Benno Y, Mitsuoka T. Clostridium coccoides, a new species from the feces of mice. Int J Syst Bacteriol. 1976 ; 26 : 482-486.
16) Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021 ; 13 : 1-21.
17) Alatawi H, Mosli M, Saadah OI, Annese V, Al-Hindi R, Alatawy M, Al-Amrah H, Alshehri D, Bahieldin A, Edris S. Attributes of intestinal microbiota composition and their correlation with clinical primary nonresponse to anti-TNF-α agents in inflammatory bowel disease patients. Bosn J Basic Med Sci. 2022 ; 22 : 412-426.
18) Hieken TJ, Chen J, Chen B, Johnson S, Hoskin TL, Degnim AC, Walther-Antonio MR, Chia N. The breast tissue microbiome, stroma, immune cells and breast cancer. Neoplasia. 2022 ; 27 : 100786.
19) https://yakultsynbiotics-med.jp/evidence/
20) Takada T, Chinda D, Mikami T, Shimizu K, Oana K, Hayamizu S, Miyazawa K, Arai T, Katto M, Nagara Y, Makino H, Kushiro A, Oishi K, Fukuda S. Dynamic analysis of human small intestinal microbiota after an ingestion of fermented milk by small-intestinal fluid perfusion using an endoscopic retrograde bowel insertion technique. Gut Microbes. 2020 ; 11 : 1662-1676.
21) Higuchi S, Fukushi G, Baba T, Sasaki D, Yoshida Y. New method of testing for carbohydrate absorption in man. Xylose and sucrose absorption ; effects of sucrase inhibition. Dig Dis Sci. 1986 ; 31 : 369-375.
22) Shima T, Amamoto R, Kaga C, Kado Y, Sasai T, Watanabe O, Shiinoki J, Iwazaki K, Shigemura H, Tsuji H. Association of life habits and fermented milk intake with stool frequency, defecatory symptoms and intestinal microbiota in healthy Japanese adults. Benef Microbes. 2019 ; 10 : 841-854.

講演1. 腸内フローラと膵・胆道癌

P.36 掲載の参考文献
1) Ito Z, Koido S, Kato K, Odamaki T, Horiuchi S, Akasu T, Saruta M, Hata T, Kumagai Y, Fujioka S, Misawa T, Xiao JZ, Sato N, Ohkusa T. Dysbiosis of the fecal and biliary microbiota in biliary tract cancer. Cancers (Basel). 2022 14 : 5379.
2) Koido S, Horiuchi S, Kan S, Bito T, Ito Z, Uchiyama K, Saruta M, Sato N, Ohkusa T. The stimulatory effect of fusobacteria on dendritic cells under aerobic or anaerobic conditions. Sci Rep. 2022 12 : 10698.
3) Kiryu S, Ito Z, Suka M, Bito T, Kan S, Uchiyama K, Saruta M, Hata T, Takano Y, Fujioka S, Misawa T, Yamauchi T, Yanagisawa H, Sato N, Ohkusa T, Sugiyama H, Koido S. Prognostic value of immune factors in the tumor microenvironment of patients with pancreatic ductal adenocarcinoma. BMC Cancer. 2021 21 : 1197.
4) Riquelme E, Zhang Y, Zhang L, Montiel M, Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, Scheet P, Xu H, Hanash SM, Feng L, Burks JK, Do KA, Peterson CB, Nejman D, Tzeng CD, Kim MP, Sears CL, Ajami N, Petrosino J, Wood LD, Maitra A, Straussman R, Katz M, White JR, Jenq R, Wargo J, McAllister F. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019 178 : 795-806.
5) Yang Q, Zhang J, Zhu Y. Potential roles of the gut microbiota in pancreatic carcinogenesis and therapeutics. Front Cell Infect Microbiol. 2022 12 : 872019.
6) Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S, Tsukinaga S, Odahara S, Koyama S, Imazu H, Uchiyama K, Kajihara M, Arakawa H, Misawa T, Toyama Y, Yanagisawa S, Ikegami M, Kan S, Hayashi K, Komita H, Kamata Y, Ito M, Ishidao T, Yusa S, Shimodaira S, Gong J, Sugiyama H, Ohkusa T, Tajiri H. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms' tumor 1 (WT1) -specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin Cancer Res. 2014 20 : 4228-39.
7) Nagata N, Nishijima S, Kojima Y, Hisada Y, Imbe K, Miyoshi-Akiyama T, Suda W, Kimura M, Aoki R, Sekine K, Ohsugi M, Miki K, Osawa T, Ueki K, Oka S, Mizokami M, Kartal E, Schmidt TSB, Molina-Montes E, Estudillo L, Malats N, Trebicka J, Kersting S, Langheinrich M, Bork P, Uemura N, Itoi T, Kawai T. Metagenomic identification of microbial signatures predicting pancreatic cancer from a multinational study. Gastroenterology. 2022 163 : 222-238.

講演2. 大腸がん発がん過程における腸内細菌群集構造のダイナミクス

P.43 掲載の参考文献
1) 国立がん研究センター, がん情報サービス「がん登録・統計」https://ganjoho.jp/reg_stat/ (引用2019/11/21)
2) 国立研究開発法人 国立がん研究センター, 社会と健康研究センター 予防研究グループ「食事パターンと大腸がんリスクとの関連について」| 現在までの成果 | 多目的コホート研究 | https://epi.ncc.go.jp/jphc/outcome/7948.html (引用2019/11/21)
3) Kolonel, L. N., Altshuler, D. & Henderson, B. E. The multiethnic cohort study : exploring genes, lifestyle and cancer risk. Nat. Rev. Cancer 4, 519-527 (2004).
4) Kuriki, K. & Tajima, K. The increasing incidence of colorectal cancer and the preventive strategy in Japan. Asian Pac. J. Cancer Prev. 7, 495-501 (2006).
5) Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759-767 (1990).
6) Vogelstein, B. et al. Cancer genome landscapes. Science. 339, 1546-58 (2013).
7) Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).
8) Aggeletopoulou, I., Konstantakis, C., Assimakopoulos, S. F. & Triantos, C. The role of the gut microbiota in the treatment of inflammatory bowel diseases. Microb. Pathog. 137, 103774 (2019).
9) Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254-258 (2012).
10) Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292-298 (2012).
11) Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120-123 (2012).
12) Wilson, M. R. et al. The human gut bacterial genotoxin colibactin alkylates DNA. Science 363, eaar7785 (2019).
13) Yachida, S. et al. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 25, 968-976 (2019).
14) Rynazal R., Fujisawa K., Shiroma H., Salim F., Mizutani S., Shiba S., Yachida S., & Yamada T. Leveraging explainable AI for gut microbiome-based colorectal cancer classifcation. Genome Biol. 24, 21 (2023).

講演3. 腸内細菌と循環器疾患

P.53 掲載の参考文献
1) Emoto T, Yamashita T, Sasaki N, et al. : Analysis of gut microbiota in coronary artery disease patients-A possible link between gut microbiota and coronary artery disease-J Atheroscler Thromb. 2016, 23 : 908-921.
2) Yoshida N, Emoto T, Yamashita T, et al. : Bacteroides vulgatus and Bacteroides dorei reduce gut microbial lipopolysachharide production and inhibit atherosclerosis. Circulation. 2018, 138 : 2486-2498.
3) Hayashi T, Yamashita T, Watanabe H, et al. : Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circ J. 2018, 83 : 182-192.
4) Emoto T, Hayashi T, Tabata T, et al. : Metagenomic analysis of gut microbiota reveals its role in trimethylamine metabolism in heart failure. Int J Cardiol. 2021, 338 : 138-42.
5) Hayashi T, Yamashita T, Takahashi T, et al. : Uncovering the role of gut microbiota in amino acid metabolic disturbances in heart failure through metagenomic analysis. Front Cardiovasc Med. 2021, 8 : 789325.
6) Tabata T, Yamashita T, Hosomi K, et al. : Gut microbial composition in patients with atrial fibrillation : effects of diet and drugs. Heart Vessels. 2021, 36 : 105-14.
7) 平田健一, 山下智也 : 腸内細菌と循環器疾患. 日本内科学会雑誌 2018, 107巻 9号 : 1906-1911.
8) Yoshida N, Watanabe S, Yamasaki H, et al. : Average gut flora in healthy Japanese subjects stratified with age and body mass index. Biosci Microbiota Food Health. 2021, 41 : 45-53.
9) Wang Z, Klipfell E, Bennett BJ, et al. : Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011, 472 : 57-63.
10) Wang Z, Roberts AB, Buffa JA, et al. : Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015, 163 ; 1585-1595.
11) Tang WH, Wang Z, Fan Y, et al. : Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure : refining the gut hypothesis. J Am Coll Cardiol. 2014, 64 : 1908-1914.
12) Jie, Z, Xia H, Zhong SL, et al. : The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017, 8 : 845.
13) Yoshida N, Yamashita T, Kishino S, et al. : A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci Rep. 2020, 10 : 13009.
14) Yoshida N, Yamashita T, Osone T, et al. : Bacteroides spp. promotes branched-chain amino acid catabolism in brown fat and inhibits obesity. iScience. 2021, 24 : 103342.
15) Cui X, Ye L, Li J, et al. : Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018, 8 : 635.
16) Depommier C, Everard A, Druart C, et al. : Supplementation with Akkermansia muciniphila in overweight and obesehuman volunteers : a proof-of-concept exploratory study. Nat Med. 2019, 25 : 1096-1103.

講演4. 腸内細菌叢からみた糖尿病の発症機構

P.63 掲載の参考文献
1) Burkhart RA, Gerber SM, Tholey RM, Lamb KM, Somasundaram A, McIntyre CA, Fradkin EC, Ashok AP, Felte RF, Mehta JM, Rosato EL, Lavu H, Jabbour SA, Yeo CJ, and Winter JM. Incidence and severity of pancreatogenic diabetes after pancreatic resection. J. Gastrointest. Surg. 19 : 217-225, 2015.
2) Maxwell DW, Jajja MR, Galindo RJ, Zhang C, Nadeem SO, Sweeney JF, Blair CM, and Sarmiento JM. Postpancreatectomy diabetes index : A validated score predicting diabetes development after major pancreatectomy. J. Am. Coll. Surg. 230 : 393-402.e3, 2020.
3) Fukuda T, Bouchi R, Takeuchi T, Amo-Shiinoki K, Kudo A, Tanaka S, Tanabe M, Akashi T, Hirayama K, Odamaki T, Igarashi M, Kimura I, Tanabe K, Tanizawa Y, Yamada T, and Ogawa Y. Importance of intestinal environment and cellular plasticity of islets in the development of postpancreatectomy diabetes. Diabetes Care 44 : 1002-1011, 2021.
4) Ishida J, Toyama H, Matsumoto I, Shirakawa S, Terai S, Yamashita H, Yanagimoto H, Asari S, Kido M, and Fukumoto T. Glucose tolerance after pancreatectomy : A prospective observational follow-up study of pancreaticoduodenectomy and distal pancreatectomy. J. Am. Coll. Surg. 233 : 753-762, 2021.
5) Niwano F, Babaya N, Hiromine Y, Matsumoto I, Kamei K, Noso S, Taketomo Y, Takeyama Y, Kawabata Y, and Ikegami H. Glucose metabolism after pancreatectomy : Opposite extremes between pancreaticoduodenectomy and distal pancreatectomy. J. Clin. Endocrinol. Metab. 106 : e2203-e2214, 2021.
6) Portincasa P, Bonfrate L, Khalil M, Angelis D, Calabrese M, Amato M, Wang D, and Ciaula A. Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines 10 : 83, 2021.
7) Camilleri M. Leaky gut : mechanisms, measurement and clinical implications in humans, Gut 68 : 1516-1526, 2019.
8) Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, Komiya K, Kawaguchi M, Shimizu T, Ogihara T, Tamura Y, Sakurai Y, Yamamoto R, Mita T, Fujitani Y, Fukuda H, Nomoto K, Takahashi T, Asahara T, Hirose T, Nagata S, Yamashiro Y, and Watada H. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes, Diabetes Care 37 : 2343-2350, 2013.
9) Komori K, Ihara E, Minoda Y, Ogino H, Sasaki T, Fujiwara M, Oda Y, and Ogawa Y, The altered mucosal barrier function in the duodenum plays a role in the pathogenesis of functional dyspepsia. Dig. Dis. Sci. 64 : 3228-3239, 2019.
10) Tsukita K, Yano T, Tamura A, and Tsukita S, Reciprocal association between the apical junctional complex and AMPK : a promising therapeutic target for epithelial/endothelial barrier function? Int. J. Mol. Sci. 20 : 6012, 2019.
11) Aznar N, Patel A, Rohena C, Dunkel Y, Joosen L, Taupin V, Kufareva I, Farquhar M, and Ghosh P, AMP-activated protein kinase fortifies epithelial tight junctions during energetic stress via its effector GIV/Girdin. eLife 5 : e20795, 2016.
12) Peng L, Li R, Green R, Holzman I, and Lin J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 139 : 1619-1625, 2009.

講演5. ケトン食と腸内細菌叢

P.68 掲載の参考文献
1) Lynch SV, Pedersen O : The human intestinal microbiome in health and disease. N Engl J Med 2016, 375 (24) : 2369-2379.
2) David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA et al. : Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505 (7484) : 559-563.
3) Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT et al. : Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med 2019, 25 (7) : 1104-1109.
4) Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R et al. : Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014, 63 (12) : 1913-1920.
5) Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O'Sullivan O : The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67 (4) : 625-633.
6) Sonnenburg ED, Sonnenburg JL : Starving our microbial self : the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab 2014, 20 (5) : 779-786.
7) Paoli A, Bianco A, Grimaldi KA : The ketogenic diet and sport : a possible marriage? Exerc Sport Sci Rev 2015, 43 (3) : 153-162.
8) Cooder HR : Epilepsy in children : with particular reference to the ketogenic diet. Cal West Med 1933, 39 (3) : 169-173.
9) Perez-Guisado J : [Ketogenic diets : additional benefits to the weight loss and unfounded secondary effects]. Arch Latinoam Nutr 2008, 58 (4) : 323-329.
10) Singh RP, Halaka DA, Hayouka Z, Tirosh O : High-fat diet Induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production. Front Cell Infect Microbiol 2020, 10 : 376.
11) Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A et al. : High-fat diet alters gut microbiota physiology in mice. ISME J 2014, 8 (2) : 295-308.
12) Xiao L, Sonne SB, Feng Q, Chen N, Xia Z, Li X, Fang Z, Zhang D, Fjaere E, Midtbo LK et al. : High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice. Microbiome 2017, 5 (1) : 43.
13) Serino M, Luche E, Gres S, Baylac A, Berge M, Cenac C, Waget A, Klopp P, Iacovoni J, Klopp C et al. : Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 2012, 61 (4) : 543-553.
14) Morrison KE, Jasarevic E, Howard CD, Bale TL : It's the fiber, not the fat : significant effects of dietary challenge on the gut microbiome. Microbiome 2020, 8 (1) : 15.
15) Ang QY, Alexander M, Newman JC, Tian Y, Cai J, Upadhyay V, Turnbaugh JA, Verdin E, Hall KD, Leibel RL et al. : Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020, 181 (6) : 1263-1275 e1216.
16) Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F : Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 2015, 22 (4) : 658-668.
17) Huang EY, Leone VA, Devkota S, Wang Y, Brady MJ, Chang EB : Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. JPEN J Parenter Enteral Nutr 2013, 37 (6) : 746-754.
18) Paoli A, Mancin L, Bianco A, Thomas E, Mota JF, Piccini F : Ketogenic diet and microbiota : friends or enemies? Genes (Basel) 2019, 10 (7).
19) Wolters M, Ahrens J, Romani-Perez M, Watkins C, Sanz Y, Benitez-Paez A, Stanton C, Gunther K : Dietary fat, the gut microbiota, and metabolic health : A systematic review conducted within the MyNewGut project. Clin Nutr 2019, 38 (6) : 2504-2520.
20) Costantini L, Molinari R, Farinon B, Merendino N : Impact of omega-3 fatty acids on the gut microbiota. Int J Mol Sci 2017, 18 (12).
21) Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY : The gut microbiota mediates the antiseizure effects of the ketogenic diet. Cell 2018, 174 (2) : 497.
22) Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J : Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism 2016, 7 (1) : 37.
23) Xie G, Zhou Q, Qiu CZ, Dai WK, Wang HP, Li YH, Liao JX, Lu XG, Lin SF, Ye JH et al. : Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 2017, 23 (33) : 6164-6171.
24) Lindefeldt M, Eng A, Darban H, Bjerkner A, Zetterstrom CK, Allander T, Andersson B, Borenstein E, Dahlin M, Prast-Nielsen S : The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 2019, 5 : 5.
25) Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY : The gut microbiota mediates the antiseizure effects of the ketogenic diet. Cell 2018, 173 (7) : 1728-1741 e1713.
26) Zhang Y, Zhou S, Zhou Y, Yu L, Zhang L, Wang Y : Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res 2018, 145 : 163-168.

最近チェックした商品履歴

Loading...