心不全診療Controversy

出版社: 中外医学社
著者:
発行日: 2023-10-10
分野: 臨床医学:内科  >  循環器一般
ISBN: 9784498136809
電子書籍版: 2023-10-10 (1版1刷)
書籍・雑誌
≪全国送料無料でお届け≫
取寄せ目安:4~8営業日

7,920 円(税込)

電子書籍
章別単位で購入
ブラウザ、アプリ閲覧

7,920 円(税込)

商品紹介

心臓以外の併存症のある患者の対応や,ADLや症状の改善を一番に考える場合など,心不全の診療ガイドラインを当てはめるだけでは対応できないような臨床の実際に対応するために,臨床のさじ加減をエキスパートが伝授!最新のエビデンスに診療経験を融合させた「思考プロセス」が見える1冊.

目次

  • 薬物療法のControversy
     1 HFrEFに対するガイドライン推奨薬はどの順番でどのくらい期間をかけてtitrationを完了すべきか?
     2 HFrEFに対するガイドライン推奨薬は何をゴールにしてtitrationを完了すべきか?
     3 心不全に対するARNIは,1回投与ではなくやはり2回投与がよいのか?
     4 SGLT2阻害薬はどのような心不全に特に有効か? そもそもなぜ効くのか?
     5 低栄養・サルコペニア・フレイル合併例にSGLT2阻害薬を投与してよいのか?
     6 HFrEFにおいて収縮期血圧が90 mmHg未満の場合,ガイドライン推奨薬は継続すべきか?
     7 高度腎機能障害(CKDステージ4〜5)を有するHFrEFに有効な薬剤は存在するか?
     8 HFrEFに高カリウム血症を伴った場合にACE阻害薬/ARB,ARNI,MRAは減量すべきか?
     9 Cpc-PHに対するベルイシグアトは有効か?
     10 HFimpEFでGDMTは生涯継続すべきか?
     11 高齢者の心不全は非高齢者の心不全と同様の薬物治療を行ってよいのか?
     12 心臓サルコイドーシスでステロイドはどこまで減量するべきか,
        定期的な活動性評価でPET検査は必要か,バイオマーカーでもよいか?
     13 閉塞性肥大型心筋症に対してジソピラミド・シベンゾリンを使うのか,
        マバカムテンはどのような扱いになるのか?
     
    デバイスのControversy
     14 ICD一次予防の適応はガイドラインに従ってLVEFで判断してよいか?
     15 着用型自動除細動器(WCD)は一次予防でどう使う?
     16 徐脈性不整脈に対し刺激伝導系ペーシングの適応を検討すべきか?
     17 心不全でもASVを使用してもよい病態はあるのか?
     18 Destination therapyは積極的に進めるべきか?
     
    カテーテル・外科的治療のControversy
     19 心房細動を伴った心不全では,LVEFを問わずカテーテルアブレーションを積極的に実施すべきか?
     20 慢性冠症候群を伴ったHFrEFにおける適切な治療戦略は?
     21 負荷エコーでMitraClipの適応判断の根拠はどこまで証明されてきたか?
     22 大動脈弁狭窄症に対するカテーテル治療後の心不全予防のための薬物治療戦略は?
     23 低侵襲カテーテル時代の三尖弁閉鎖不全症に対する適切な介入時期・方法は?
     
    疾病管理・緩和のControversy
     24 塩分制限・水分制限は絶対に守らないといけないのか?
     25 包括的な疾病管理プログラムを一律に提供しているだけでよいのか?
     26 自宅で有効な心臓リハビリテーションは実施できないのか?
     27 Advance Care Planningの効果はどこまで証明されているのか?
     28 洞調律心不全患者での抗凝固療法は必要か?
     29 貧血合併心不全患者はどのようにマネージメントすればよいのか?
     
    急性心不全のControversy
     30 急性心不全患者に,door-to-furosemide timeは有効?
     31 急性期の血管拡張薬はどう使用するのが一番よいのか?
     32 心原性ショックに対する薬物治療は,何を選択するのか 
       (ノルアドレナリン,ドブタミン,はたまたドパミン)?
     33 心原性ショックに対する補助循環は,何を選択するのか(IABP vs Impella)?
     34 ループ利尿薬は,何を・どのくらい・どうやって投与するのが正しいのか?
     35 利尿薬抵抗性に対する治療戦略は?〈秋山英一〉
     36 利尿薬投与中にクレアチニンが上昇した場合,どこまで様子をみてよいのか?
     37 急性心不全の呼吸補助にnasal high flowは使えるか,コロナ禍を考えても使う意義は?
     38 入院中・早期から心拍コントロールのためイバブラジン投与をしてよいか?
     39 入院中・早期からのARNIはよいのか? 血行動態的に有利なのか?
     
    その他のControversy
     40 HFpEFの治療選択に対してフェノタイピングは必要か?その場合,実臨床で現実的な評価方法は?
     41 がん治療薬関連心筋障害の早期発見はどうすればできるのか?
     42 心不全患者のQOL・身体活動評価はまだNYHA分類で考えていてよいのか,
        PROやデジタルデバイスはどう考えるのか?
     43 心不全の治療(効果)には人種差があるのか?

この書籍の参考文献

参考文献のリンクは、リンク先の都合等により正しく表示されない場合がありますので、あらかじめご了承下さい。

本参考文献は電子書籍掲載内容を元にしております。

薬物療法のControversy

P.5 掲載の参考文献
2) Granger CB, et al ; CHARM Investigators and Committees. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors : the CHARM-Alternative trial. Lancet. 2003 ; 362 : 772-6.
3) Packer M, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med. 1996 ; 334 : 1349-55.
4) Pitt B, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999 ; 341 : 709-17.
5) Pitt B, et al ; Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Investigators. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003 ; 348 : 1309-21. Erratum in : N Engl J Med. 2003 ; 348 : 2271.
6) Zannad F, et al ; EMPHASIS-HF Study Group. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011 ; 364 : 11-21.
7) McMurray JJ, et al ; PARADIGM-HF Investigators and Committees. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014 ; 371 : 993-1004.
8) McMurray JJV, et al ; DAPA-HF Trial Committees and Investigators. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019 ; 381 : 1995-2008.
9) Packer M, et al ; EMPEROR-Reduced Trial Investigators. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020 ; 383 : 1413-24.
10) Packer M, et al. Rapid evidence-based sequencing of foundational drugs for heart failure and a reduced ejection fraction. Eur J Heart Fail. 2021 ; 23 : 882-94.
11) Okumura N, et al ; PARADIGM-HF Investigators and Committees. Effects of sacubitril/valsartan in the PARADIGM-HF Trial (prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure) according to background therapy. Circ Heart Fail. 2016 ; 9 : e003212.
12) Solomon SD, et al. Effect of dapagliflozin in patients with HFrEF treated with sacubitril/valsartan : the DAPA-HF Trial. JACC Heart Fail. 2020 ; 8 : 811-8.
13) Willenheimer R, et al ; CIBIS III Investigators. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence : results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation. 2005 ; 112 : 2426-35.
14) Packer M, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. ATLAS Study Group. Circulation. 1999 ; 100 : 2312-8.
15) Vardeny O, et al ; Prospective Comparison of ARNI with ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) Investigators. Efficacy of sacubitril/valsartan vs. enalapril at lower than target doses in heart failure with reduced ejection fraction : the PARADIGM-HF trial. Eur J Heart Fail. 2016 ; 18 : 1228-34.
16) Packer M, et al ; PARADIGM-HF Investigators and Coordinators. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015 ; 131 : 54-61.
17) Packer M, et al. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction : The EMPEROR-Reduced Trial. Circulation. 2021 ; 143 : 326-36.
18) Docherty KF, et al. Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur Heart J. 2020 ; 41 : 2379-92.
19) Packer M, et al. Rapid evidence-based sequencing of foundational drugs for heart failure and a reduced ejection fraction. Eur J Heart Fail. 2021 ; 23 : 882-94.
20) McAlister FA, et al. Meta-analysis : beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med. 2009 ; 150 : 784-94.
21) Hori M, et al ; MUCHA Investigators. Low-dose carvedilol improves left ventricular function and reduces cardiovascular hospitalization in Japanese patients with chronic heart failure : the Multicenter Carvedilol Heart Failure Dose Assessment (MUCHA) trial. Am Heart J. 2004 ; 147 : 324-30.
22) Mebazaa A, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF) : a multinational, open-label, randomised, trial. Lancet. 2022 ; 400 : 1938-52.
23) Aimo A, et al. Imaging, biomarker, and clinical predictors of cardiac remodeling in heart failure with reduced ejection fraction. JACC Heart Fail. 2019 ; 7 : 782-94.
24) Greene SJ, et al. Contextualizing risk among patients with heart failure. JAMA. 2021 ; 326 : 2261-2.
P.13 掲載の参考文献
1) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-e1032.
2) McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
3) Savage HO, et al. Sequencing of medical therapy in heart failure with a reduced ejection fraction. Heart. 2023 ; 109 : 511-8.
4) Bhatt AS, et al. Treatment of HF in an era of multiple therapies : statement from the HF collaboratory. JACC Heart Fail. 2021 ; 9 : 1-12.
5) Miller RJH, et al. A novel approach to medical management of heart failure with reduced ejection fraction. Can J Cardiol. 2021 ; 37 : 632-43.
6) Fiuzat M, et al. Assessment of limitations to optimization of guideline-directed medical therapy in heart failure from the GUIDE-IT trial : a secondary analysis of a randomized clinical trial. JAMA Cardiol. 2020 ; 5 : 757-64.
7) Komajda M, et al. Physicians' guideline adherence is associated with better prognosis in outpatients with heart failure with reduced ejection fraction : the QUALIFY international registry. Eur J Heart Fail. 2017 ; 19 : 1414-23.
8) Savarese G, et al. Heart failure drug treatment-inertia, titration, and discontinuation : a multinational observational Study (EVOLUTION HF). JACC Heart Fail. 2023 ; 11 : 1-14.
9) Greene SJ, et al. Clinical inertia and medical therapy for heart failure : the unintended harms of 'first, do no harm'. Eur J Heart Fail. 2021 ; 23 : 1343-5.
10) Bhandari S, et al. Renin-angiotensin system inhibition in advanced chronic kidney disease. N Engl J Med. 2022 ; 387 : 2021-32.
11) Packham DK, et al. Sodium zirconium cyclosilicate in hyperkalemia. N Engl J Med. 2015 ; 372 : 222-31.
12) Mebazaa A, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF) : a multinational, open-label, randomised, trial. Lancet. 2022 ; 400 : 1938-52.
13) Greene SJ, et al. Titration of medical therapy for heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019 ; 73 : 2365-83.
14) Peri-Okonny PA, et al. Target doses of heart failure medical therapy and blood pressure : insights from the CHAMP-HF registry. JACC Heart Fail. 2019 ; 7 : 350-8.
15) Grady KL, et al. Team management of patients with heart failure : a statement for healthcare professionals from The Cardiovascular Nursing Council of the American Heart Association. Circulation. 2000 ; 102 : 2443-56.
16) Savarese G, et al. Nurse-led heart failure clinics are associated with reduced mortality but not heart failure hospitalization. J Am Heart Assoc. 2019 ; 8 : e011737.
17) Riley JP, et al. Heart Failure Association of the European Society of Cardiology heart failure nurse curriculum. Eur J Heart Fail. 2016 ; 18 : 736-43.
18) McKie PM, et al. Computerized advisory decision support for cardiovascular diseases in primary care : a cluster randomized trial. Am J Med. 2020 ; 133 : 750-6.e2.
19) Bayes-Genis A, et al. Omics phenotyping in heart failure : the next frontier. Eur Heart J. 2020 ; 41 : 3477-84.
20) Bristow MR. Pharmacogenetic targeting of drugs for heart failure. Pharmacol Ther. 2012 ; 134 : 107-15.
P.19 掲載の参考文献
1) Dargad RR, et al. Sacubitril/valsartan : a novel angiotensin receptor-neprilysin inhibitor. Indian Heart J. 2018 ; 70 : S102-10.
2) Murphy SP, et al. Atrial natriuretic peptide and treatment with sacubitril/valsartan in heart failure with reduced ejection fraction. JACC Heart Fail. 2021 ; 9 : 127-36.
3) Kimura K, et al. ANP is cleared much faster than BNP in patients with congestive heart failure. Eur J Clin Pharmacol. 2007 ; 63 : 699-702.
4) Assessment report-European Medicines Agency. https://www.ema.europa.eu > assessment-report (2023年6月閲覧)
5) Gu J, et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J Clin Pharmacol. 2010 ; 50 : 401-14.
6) Packer M, et al. Comparison of omapatrilat and enalapril in patients with chronic heart failure : the Omapatrilat Versus Enalapril Randomized Trial of Utility in Reducing Events (OVERTURE). Circulation. 2002 ; 106 : 920-6.
7) 土綿慎一, ファイザー株式会社. PK-PDモデル解析の基礎. 計量生物学. 2011 ; 32 : S151-6.
8) 松本宜明, 他. PK/PDモデリングの実際. 薬物動態. 2000 ; 15 : 452-60.
9) 堀正二, 監修. 坂田泰史, 編集. 図解循環器用語ハンドブック. https://med.toaeiyo.co.jp/contents/cardioterms/pathophysiology/2-27.html (2023年6月閲覧)
P.23 掲載の参考文献
1) Zinman B, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015 ; 373 : 2117-28.
2) Neal B, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017 ; 377 : 644-57.
3) Wiviott SD, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019 ; 380 : 347-57.
4) Packer M, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020 ; 383 : 1413-24.
5) McMurray JJV, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019 ; 381 : 1995-2008.
6) Tsutsui H, et al. JCS/JHFS 2021 guideline focused update on diagnosis and treatment of acute and chronic heart failure. Circ J. 2021 ; 85 : 2252-91.
7) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 : 145 : e895-e1032.
8) McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
9) Anker SD, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021 ; 385 : 1451-61.
10) Solomon SD, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022 ; 387 : 1089-98.
11) Vaduganathan M, et al. SGLT-2 inhibitors in patients with heart failure : a comprehensive meta-analysis of five randomised controlled trials. Lancet. 2022 ; 400 : 757-67.
12) Mudaliar S, et al. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care. 2016 ; 39 : 1115-22.
13) Perkins BA, et al. No need to sugarcoat the message : Is cardiovascular risk reduction from SGLT2 inhibition related to natriuresis? Am J Kidney Dis. 2016 ; 68 : 349-52.
14) Sano M, et al. Possible mechanism of hematocrit elevation by sodium glucose cotransporter 2 inhibitors and associated beneficial renal and cardiovascular effects. Circulation. 2019 ; 139 : 1985-7.
15) Kidokoro K, et al. Evaluation of glomerular hemodynamic function by empagliflozin in diabetic mice using in vivo imaging. Circulation. 2019 ; 140 : 303-15.
16) Matsushita K, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts : a collaborative meta-analysis. Lancet. 2010 ; 375 : 2073-81.
17) Adamson C, et al. Initial decline (Dip) in estimated glomerular filtration rate after initiation of dapagliflozin in patients with heart failure and reduced ejection fraction : insights from DAPA-HF. Circulation. 2022 ; 146 : 438-49.
P.27 掲載の参考文献
1) 糖尿病治療におけるSGLT2阻害薬の適正使用に関する Recommendation (2014年6月13日策定, 2022年7月26日最新改訂, 2022年6月閲覧). http://www.jds.or.jp/uploads/files/recommendation/SGLT2.pdf
2) Anker SD, et al. Weight change and clinical outcomes in heart failure with reduced ejection fraction : insights from EMPEROR-Reduced. Eur J Heart Fail. 2023 ; 25 : 117-27.
3) Filippatos G, et al ; EMPEROR-Reduced Trial Committees and Investigators. Effects of empagliflozin on cardiovascular and renal outcomes in heart failure with reduced ejection fraction according to age : a secondary analysis of EMPEROR-Reduced. Eur J Heart Fail. 2022 ; 24 : 2297-304.
4) Bohm M, et al ; EMPEROR-Preserved Trial Committees and Investigators. Empagliflozin improves outcomes in patients with heart failure and preserved ejection fraction irrespective of age. J Am Coll Cardiol. 2022 ; 80 : 1-18.
5) Butt JH, et al. Efficacy and safety of dapagliflozin according to frailty in patients with heart failure : a prespecified analysis of the DELIVER trial. Circulation. 2022 ; 146 : 1210-24.
6) Butt JH, et al. Efficacy and safety of dapagliflozin according to frailty in heart failure with reduced ejection fraction : a post hoc analysis of the DAPA-HF trial. Ann Intern Med. 2022 ; 175 : 820-30.
7) Mone P, et al. Empagliflozin improves cognitive impairment in frail older adults with type 2 diabetes and heart failure with preserved ejection fraction. Diabetes Care. 2022 ; 45 : 1247-51.
8) Kishimoto H, et al. Midlife and late-life handgrip strength and risk of cause-specific death in a general Japanese population : the Hisayama Study. J Epidemiol Community Health. 2014 ; 68 : 663-8.
9) Sano M, et al. Increased grip strength with sodium-glucose cotransporter 2. J Diabetes. 2016 ; 8 : 736-7.
10) 金崎啓造, 古家大祐. SGLT2阻害薬の問題点. Prog Med. 2016 ; 36 : 229-33.
P.33 掲載の参考文献
1) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
2) 日本循環器学会/日本心不全学会合同ガイドライン. 2021年JCS/JHFSガイドラインフォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新)
3) Greene SJ, et al. Titration of medical therapy for heart failure with reduced ejection fraction. J Am Coll Cardiol. 2019 ; 73 ; 2365-83.
4) Izumi K, et al. Low blood pressure and guideline-directed medical therapy in patients with heart failure with reduced ejection fraction. Int J Cardiol. 2023 ; 370 ; 255-62.
5) Cautela J, et al. Management of low blood pressure in ambulatory heart failure with reduced ejection fraction patients. Eur J Heart Fail. 2020 ; 22 ; 1357-65.
6) Martin-Perez M, et al. Development of hypotension in patients newly diagnosed with heart failure in UK general practice : retrospective cohort and nested case-control analyses. BMJ Open. 2019 ; 9 ; e028750.
7) McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 ; 3599-726.
8) Yancy CW, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017 ; 136 ; e137-61.
9) Bohm M, et al. Systolic blood pressure, cardiovascular outcomes and efficacy and safety of sacubitril/valsartan (LCZ696) in patients with chronic heart failure and reduced ejection fraction : results from PARADIGM-HF. Eur Heart J. 2017 ; 38 ; 1132-43.
10) Rouleau JL, et al. Influence of pretreatment systolic blood pressure on the effect of carvedilol in patients with severe chronic heart failure : the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) study. J Am Coll Cardiol. 2004 ; 43 ; 1423-9.
11) 日本腎臓学会. エビデンスに基づくCKD診療ガイドライン 2018. 東京医学社 ; 2018.
12) Douglas P. et al. Braunwald's Heart Disease. Elsevier ; 2019.
13) Kawabata H, et al. Tolvaptan efficiently reduces intracellular fluid : working toward a potential treatment option for cellular edema. Intern Med. 2019 ; 58 ; 639-42.
14) Takagi K, et al. Differences in pharmacological property between combined therapy of the vasopressin V2-receptor antagonist tolvaptan plus furosemide and monotherapy of furosemide in patients with hospitalized heart failure. J Cardiol. 2020 ; 76 ; 499-505.
15) Jujo K, et al. Randomized pilot trial comparing tolvaptan with furosemide on renal and neurohumoral effects in acute heart failure. ESC Heart Failure. 2016 ; 3 ; 177-88.
16) Matsuzaki M, et al. Efficacy and safety of tolvaptan in heart failure patients with volume overload despite the standard treatment with conventional diuretics : a phase III, randomized, double-blind, placebo-controlled study (QUEST study). Cardiovasc Drugs Ther. 2011 ; 25 Suppl 1 ; S33-45.
17) Metra M, et al. Beta-blockade in heart failure : selective versus nonselective agents. Am J Cardiovasc Drugs. 2001 ; 1 ; 3-14.
18) Dungen HD, et al. Titration to target dose of bisoprolol vs. carvedilol in elderly patients with heart failure : the CIBIS-ELD trial. Eur J Heart Fail. 2011 ; 13 ; 670-80.
19) Taniguchi T, et al. Switching from carvedilol to bisoprolol ameliorates adverse effects in heart failure patients with dizziness or hypotension. J Cardiol. 2013 ; 61 ; 417-22.
20) Lepor H, et al. The mechanism of adverse events associated with terazosin : an analysis of the Veterans Affairs cooperative study. J Urol. 2000 ; 163 ; 1134-7.
21) Satoh M, et al. The velocity of antihypertensive effects of seven angiotensin II receptor blockers determined by home blood pressure measurements. J Hypertens. 2016 ; 34 ; 1218-23.
22) Wong M, et al. Valsartan benefits left ventricular structure and function in heart failure : Val-HeFT echocardiographic study. J Am Coll Cardiol. 2002 ; 40 ; 970-5.
23) Vardeny O, et al. Incidence, predictors, and outcomes associated with hypotensive episodes among heart failure patients receiving sacubitril/valsartan or enalapril : the PARADIGM-HF Trial (prospective comparison of angiotensin receptor neprilysin inhibitor with angiotensin-converting enzyme inhibitor to determine impact on global mortality and morbidity in heart failure). Circ Heart Fail. 2018 ; 11 ; e004745.
24) Vardeny O, et al. Efficacy of sacubitril/valsartan vs. enalapril at lower than target doses in heart failure with reduced ejection fraction : the PARADIGM-HF trial. Eur J Heart Fail. 2016 ; 18 ; 1228-34.
25) Okumura T, et al. Two cases of dilated cardiomyopathy with blood pressure-limited tolerability of cardioprotective agents improved by ivabradine. J Cardiol Cases. 2021 ; 23 ; 149-53.
26) Tartiere JM, et al. Interaction between pulse wave velocity, augmentation index, pulse pressure and left ventricular function in chronic heart failure. J Hum Hypertens. 2006 ; 20 ; 213-9.
27) Messerli FH, et al. When an increase in central systolic pressure overrides the benefits of heart rate lowering. J Am Coll Cardiol. 2016 ; 68 ; 754-62.
28) Bagriy AE, et al. Addition of ivabradine to β-blocker improves exercise capacity in systolic heart failure patients in a prospective, open-label study. Adv Ther. 2015 ; 32 ; 108-19.
29) Wu JR, et al. Medication adherence, depressive symptoms, and cardiac event-free survival in patients with heart failure. J Card Fail. 2013 ; 19 ; 317-24.
30) Parajuli DR, et al. Effectiveness of the pharmacist-involved multidisciplinary management of heart failure to improve hospitalizations and mortality rates in 4630 patients : a systematic review and meta-analysis of randomized controlled trials. J Card Fail. 2019 ; 25 ; 744-56.
31) Wu JR, et al. Medication adherence in patients who have heart failure : a review of the literature. Nurs Clin North Am. 2008 ; 43 ; 133-53 ; vii-viii.
P.39 掲載の参考文献
1) 日本循環器学会/日本心不全学会合同ガイドライン. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新)
2) Beldhuis IE, et al. Evidence-based medical therapy in patients with heart failure with reduced ejection fraction and chronic kidney disease. Circulation. 2022 ; 145 : 693-712.
3) Cherney DZ, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014 ; 129 : 587-97.
4) Adamson C, et al. Initial decline (Dip) in estimated glomerular filtration rate after initiation of dapagliflozin in patients with heart failure and reduced ejection fraction : insights from DAPA-HF. Circulation. 2022 ; 146 : 438-49.
5) Bhandari S, et al ; STOP ACEi Trial Investigators. Renin-angiotensin system inhibition in advanced chronic kidney disease. N Engl J Med. 2022 ; 387 : 2021-32.
P.45 掲載の参考文献
1) 日本循環器学会. 2021年JCS/JHFSガイドラインフォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新)
2) Bauersachs J. Heart failure drug treatment : the fantastic four. Eur Heart J. 2021 ; 42 : 681-3.
3) Sharma A, et al. Optimizing foundational therapies in patients with HFrEF : how do we translate these findings into clinical care? JACC Basic Transl Sci. 2022 ; 7 : 504-17.
4) Yaku H, et al. Demographics, management, and in-hospital outcome of hospitalized acute heart failure syndrome patients in contemporary real clinical practice in Japan -observations from the prospective, multicenter Kyoto Congestive Heart Failure (KCHF) registry. Circ J. 2018 ; 82 : 2811-19.
5) Savarese G, et al. Factors associated with underuse of mineralocorticoid receptor antagonists in heart failure with reduced ejection fraction : an analysis of 11 215 patients from the Swedish Heart Failure Registry. Eur J Heart Fail. 2018 ; 20 : 1326-34.
6) Beusekamp JC, et al. Hyperkalemia and treatment with RAAS inhibitors during acute heart failure hospitalizations and their association with mortality. JACC Heart Fail. 2019 ; 7 : 970-9.
7) Collins AJ, et al. Association of serum potassium with all-cause mortality in patients with and without heart failure, chronic kidney disease, and/or diabetes. Am J Nephrol. 2017 ; 46 : 213-21.
8) Desai AS, et al. Reduced risk of hyperkalemia during treatment of heart failure with mineralocorticoid receptor antagonists by use of sacubitril/valsartan compared with enalapril : a secondary analysis of the PARADIGM-HF trial. JAMA Cardiol. 2017 ; 2 : 79-85.
9) Ferreira JP, et al. Serum potassium in the PARADIGM-HF trial. Eur J Heart Fail. 2020 ; 22 : 2056-64.
10) Yoshioka K, et al. Safety and prognostic impact of early treatment with angiotensin-converting enzyme inhibitors or angiotensin receptor blockers in patients with acute heart failure. Am J Cardiovasc Drugs. 2019 ; 19 : 597-605.
11) Yamaguchi T, et al. Effect of optimizing guideline-directed medical therapy before discharge on mortality and heart failure readmission in patients hospitalized with heart failure with reduced ejection fraction. Am J Cardiol. 2018 ; 121 : 969-74.
12) Trevisan M, et al. Stopping mineralocorticoid receptor antagonists after hyperkalaemia : trial emulation in data from routine care. Eur J Heart Fail. 2021 ; 23 : 1698-707.
13) Ferreira JP, et al. Abnormalities of potassium in heart failure : JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 ; 75 : 2836-50.
14) Kashihara N, et al. Hyperkalemia in real-world patients under continuous medical care in Japan. Kidney Int Rep. 2019 30 ; 4 : 1248-60.
15) Savarese G, et al. Incidence, predictors, and outcome associations of dyskalemia in heart failure with preserved, mid-range, and reduced ejection fraction. JACC Heart Failure. 2019 ; 7 : 65-76.
16) McDonagh TA, et al ; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
17) ロケルマ(R) 懸濁用散分包 医薬品インタビューフォーム. 2020年5月作成 (第2版).
18) Imamura T, et al. Clinical implications of sodium zirconium cyclosilicate therapy in patients with systolic heart failure and hyperkalemia. J Clin Med. 2021 ; 10 : 5523.
19) Stavros F, et al. Characterization of structure and function of ZS-9, a K+selective ion trap. PLoS One. 2014 ; 9 : e114686.
P.52 掲載の参考文献
1) Vachiery JL, et al. Pulmonary hypertension due to left heart disease. Eur Respir J. 2019 ; 53 : 180197.
2) Humbert M, et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2022 ; 43 : 3618-731.
3) Riccardi M, et al. Combined pre- and post-capillary pulmonary hypertension in left heart disease. Heart Fail Rev. 2023 ; 28 : 137-48.
4) Califf RM, et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure : the Flolan International Randomized Survival Trial (FIRST). Am Heart. J 1997 ; 134 : 44-54.
5) Packer M, et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure : results of a pilot study. J Card Fail. 2005 ; 11 : 12-20.
6) Kalra PR, et al. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol. 2002 ; 85 : 195-7.
7) Anand I, et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH) : randomised, double-blind, placebo-controlled trial. Lancet. 2004 ; 364 : 347-54.
8) Vachiery JL, et al. Macitentan in pulmonary hypertension due to left ventricular dysfunction. Eur Respir J. 2018 ; 51 : 1701886.
9) Guazzi M, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure : results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011 ; 4 : 8-17.
10) Lewis GD, et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007 ; 116 : 1555-62.
11) Zhuang XD, et al. PDE5 inhibitor sildenafil in the treatment of heart failure : a meta-analysis of randomized controlled trials. Int J Cardiol. 2014 ; 172 : 581-7.
12) Guazzi M, et al. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure : a long-term cardiopulmonary exercise testing placebo-controlled study. Eur J Heart Fail. 2012 ; 14 : 82-90.
13) Cooper TJ, et al. Effects of sildenafil on symptoms and exercise capacity for heart failure with reduced ejection fraction and pulmonary hypertension (the SilHF study) : a randomized placebo-controlled multicentre trial. Eur J Heart Fail. 2022 ; 24 : 1239-48.
14) Bermejo J, et al. Sildenafil for improving outcomes in patients with corrected valvular heart disease and persistent pulmonary hypertension : a multicenter, double-blind, randomized clinical trial. Eur Heart J. 2018 ; 39 : 1255-64.
15) Xanthopoulos A, et al. Post-implant phosphodiesterase-5 inhibitors in patients with left ventricular assist device : a systematic review and meta-analysis. J Clin Med. 2022 ; 11 : 5988.
16) Bonderman D, et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction : a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013 ; 128 : 502-11.
17) Guazzi M, et al. Right heart phenotype in heart failure with preserved ejection fraction. Circ Heart Fail. 2021 ; 14 : e007840.
18) Redfield MM, et al. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction : a randomized clinical trial. JAMA. 2013 ; 309 : 1268-77.
19) Guazzi M, et al. Pulmonary hypertension in heart failure with preserved ejection fraction : a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011 ; 124 : 164-74.
20) Belyavskiy E, et al. Phosphodiesterase 5 inhibitor sildenafil in patients with heart failure with preserved ejection fraction and combined pre- and postcapillary pulmonary hypertension : a randomized open-label pilot study. BMC Cardiovasc Disord. 2020 ; 20 : 408.
21) Brittain EL, et al. Elucidating the clinical implications and pathophysiology of pulmonary hypertension in heart failure with preserved ejection fraction : a call to action : a science advisory from the American Heart Association. Circulation. 2022 ; 146 : e73-e88.
22) Dachs TM, et al. Riociguat in pulmonary hypertension and heart failure with preserved ejection fraction : the haemoDYNAMIC trial. Eur Heart J. 2022 ; 43 : 3402-13.
23) Armstrong PW, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020 ; 382 : 1883-93.
24) Ezekowitz JA, et al. N-terminal pro-b-type natriuretic peptide and clinical outcomes : vericiguat heart failure with reduced ejection fraction study. JACC Heart Fail. 2020 ; 8 : 931-9.
25) Pieske B, et al. Vericiguat in patients with worsening chronic heart failure and preserved ejection fraction : results of the SOluble guanylate Cyclase stimulatoR in heArT failurE patientS with PRESERVED EF (SOCRATES-PRESERVED) study. Eur Heart J. 2017 ; 38 : 1119-27.
26) Armstrong PW, et al. Effect of vericiguat vs placebo on quality of life in patients with heart failure and preserved ejection fraction : the VITALITY-HFpEF randomized clinical trial. JAMA. 2020 ; 324 : 1512-21.
27) Garcia-Lunar I, et al. Design of the beta3-adrenergic agonist treatment in chronic pulmonary hypertension secondary to heart failure trial. JACC Basic Transl Sci. 2020 ; 5 : 317-27.
28) Humbert M, et al. Sotatercept for the treatment of pulmonary arterial hypertension. N Engl J Med. 2021 ; 384 : 1204-15.
29) Zhang H, et al. Pulmonary artery denervation significantly increases 6-min walk distance for patients with combined pre- and post-capillary pulmonary hypertension associated with left heart failure : the PADN-5 Study. JACC Cardiovasc Interv. 2019 ; 12 : 274-84.
30) Shah SJ, et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II) : a randomised, multicentre, blinded, sham-controlled trial. Lancet. 2022 ; 399 : 1130-40.
31) Hoendermis ES, et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension : a randomized controlled trial. Eur Heart J. 2015 ; 36 : 2565-73.
P.58 掲載の参考文献
1) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : 895-1032.
2) McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
3) 日本循環器学会/日本心不全学会合同ガイドライン. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新). (2023年6月閲覧)
4) Bozkurt B, et al. Universal definition and classification of heart failure : a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure : Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail. 2021 ; 23 : 352-80.
5) Tsuji K, et al. Characterization of heart failure patients with mid-range left ventricular ejection fraction-a report from the CHART-2 study. Eur J Heart Fail. 2017 ; 19 : 1258-69.
6) Savarese G, et al. Prevalence and prognostic implications of longitudinal ejection fraction change in heart failure. JACC Heart Fail. 2019 ; 7 : 306-17.
7) Punnoose LR, et al. Heart failure with recovered ejection fraction : a distinct clinical entity. J Card Fail. 2011 ; 17 : 527-32.
8) Clarke CL, et al. Natural history of left ventricular ejection fraction in patients with heart failure. Circ Cardiovasc Qual Outcomes. 2013 ; 6 : 680-6.
9) Kalogeropoulos AP, et al. Characteristics and outcomes of adult outpatients with heart failure and improved or recovered ejection fraction. JAMA Cardiol. 2016 ; 1 : 510-8.
10) Moon J, et al. Recovery and recurrence of left ventricular systolic dysfunction in patients with idiopathic dilated cardiomyopathy. Can J Cardiol. 2009 ; 25 : e147-50.
11) Amos AM, et al. Improved outcomes in peripartum cardiomyopathy with contemporary. Am Heart J. 2006 ; 152 : 509-13.
12) Halliday BP, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF) : an open-label, pilot, randomised trial. Lancet. 2019 ; 393 : 61-73.
13) Jansweijer JA, et al. Truncating titin mutations are associated with a mild and treatable form of dilated cardiomyopathy. Eur J Heart Fail. 2017 ; 19 : 512-21.
14) Perera D, et al. Percutaneous revascularization for ischemic left ventricular dysfunction. N Engl J Med. 2022 ; 387 : 1351-60.
15) Krishnaswami A, et al. Deprescribing in older adults with cardiovascular disease. J Am Coll Cardiol. 2019 ; 73 : 2584-95.
16) Wilcox JE, et al. Heart failure with recovered left ventricular ejection fraction : JACC Scientific Expert Panel. J Am Coll Cardiol. 2020 ; 76 : 719-34.
P.64 掲載の参考文献
1) Tahhan AS, et al. Enrollment of older patients, women, and racial and ethnic minorities in contemporary heart failure clinical trials : a systematic review. JAMA Cardiol. 2018 ; 3 : 1011-9.
2) Yasuda S, et al. Current status of cardiovascular medicine in the aging society of Japan. Circulation. 2018 ; 138 : 965-7.
3) Rich MW, et al. Knowledge gaps in cardiovascular care of the older adult population : a scientific statement from the American Heart Association, American College of Cardiology, and American Geriatrics Society. Circulation. 2016 ; 133 : 2103-22.
4) Forman DE, et al. Multimorbidity in older adults with cardiovascular disease. J Am Coll Cardiol. 2018 ; 71 : 2149-61.
5) Sharma A, et al. Trends in noncardiovascular comorbidities among patients hospitalized for heart failure : insights from the get with the guidelines-heart failure registry. Circ Heart Fail. 2018 ; 11 : e004646.
6) Unlu O, et al. Polypharmacy in older adults hospitalized for heart failure. Circ Heart Fail. 2020 ; 13 : e006977.
7) Krishnaswami A, et al. Deprescribing in older adults with cardiovascular disease. J Am Coll Cardiol. 2019 ; 73 : 2584-95.
8) Halliday BP, et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF) : an open-label, pilot, randomised trial. Lancet. 2019 ; 393 : 61-73.
9) Forman DE, et al. Prioritizing functional capacity as a principal end point for therapies oriented to older adults with cardiovascular disease : a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2017 ; 135 : e894-e918.
10) Gorodeski EZ, et al. Domain management approach to heart failure in the geriatric patient : present and future. J Am Coll Cardiol. 2018 ; 71 : 1921-36.
11) Ferreira JP, et al. MRAs in elderly hf patients : individual patient-data meta-analysis of RALES, EMPHASIS-HF, and TOPCAT. JACC Heart Fail. 2019 ; 7 : 1012-21.
12) Jhund PS, et al. Efficacy and safety of LCZ696 (sacubitril-valsartan) according to age : insights from PARADIGM-HF. Eur Heart J. 2015 ; 36 : 2576-84.
13) Filippatos G, et al. Effects of empagliflozin on cardiovascular and renal outcomes in heart failure with reduced ejection fraction according to age : a secondary analysis of EMPEROR-Reduced. Eur J Heart Fail. 2022 ; 24 : 2297-304.
14) Martinez FA, et al. Efficacy and safety of dapagliflozin in heart failure with reduced ejection fraction according to age : insights from DAPA-HF. Circulation. 2020 ; 141 : 100-11.
15) Vaduganathan M, et al. Estimating lifetime benefits of comprehensive disease-modifying pharmacological therapies in patients with heart failure with reduced ejection fraction : a comparative analysis of three randomised controlled trials. Lancet. 2020 ; 396 : 121-8.
16) Rich MW, et al. Age and heart failure trials - lessons from DAPA-HF. J Card Fail. 2020 ; 26 : 191-2.
17) Hein AM, et al. Medical management of heart failure with reduced ejection fraction in patients with advanced renal disease. JACC Heart Fail. 2019 ; 7 : 371-82.
18) McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
19) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
20) Rangaswami J, et al. Cardiorenal syndrome : classification, pathophysiology, diagnosis, and treatment strategies : a scientific statement from the American Heart Association. Circulation. 2019 ; 139 : e840-78.
21) Writing C, et al. 2021 update to the 2017 ACC expert consensus decision pathway for optimization of heart failure treatment : answers to 10 pivotal issues about heart failure with reduced ejection fraction : a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2021 ; 77 : 772-810.
22) Lewis EF, et al. Health-related quality of life outcomes in PARADIGM-HF. Circ Heart Fail. 2017 ; 10 (8) : e003430.
23) Kosiborod MN, et al. Effects of dapagliflozin on symptoms, function, and quality of life in patients with heart failure and reduced ejection fraction : results from the DAPA-HF trial. Circulation. 2020 ; 141 : 90-9.
24) Akita K, et al. Current use of guideline-based medical therapy in elderly patients admitted with acute heart failure with reduced ejection fraction and its impact on event-free survival. Int J Cardiol. 2017 ; 235 : 162-8.
25) Yamaguchi T, et al. effect of optimizing guideline-directed medical therapy before discharge on mortality and heart failure readmission in patients hospitalized with heart failure with reduced ejection fraction. Am J Cardiol. 2018 ; 121 : 969-74.
26) Matsue Y, et al. Prevalence and prognostic impact of the coexistence of multiple frailty domains in elderly patients with heart failure : the FRAGILE-HF cohort study. Eur J Heart Fail. 2020 ; 22 : 2112-9.
27) Hollenberg SM, et al. 2019 ACC expert consensus decision pathway on risk assessment, management, and clinical trajectory of patients hospitalized with heart failure : a report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol. 2019 ; 74 : 1966-2011.
P.71 掲載の参考文献
1) 日本循環器学会. 循環器病ガイドラインシリーズ 2016年版 : 心臓サルコイドーシスの診療ガイドライン. https://www.j-circ.or.jp/cms/wp-content/uploads/2020/02/JCS2016_terasaki_h.pdf (2023年6月閲覧)
2) Kusano K, et al. Prognosis and outcomes of clinically diagnosed cardiac sarcoidosis without positive endomyocardial biopsy findings. JACC Asia. 2021 ; 1 : 385-95.
3) Chapelon-Abric C, et al. Cardiac sarcoidosis : a retrospective study of 41 cases. Medicine (Baltimore). 2004 ; 83 : 315-34.
4) Nagai T, et al. Effect of discontinuation of prednisolone therapy on risk of cardiac mortality associated with worsening left ventricular dysfunction in cardiac sarcoidosis. Am J Cardiol. 2016 ; 117 : 966-71.
5) Osborne MT, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol. 2014 ; 21 : 166-74.
6) Subramanian M, et al. Pre-treatment myocardial 18FDG uptake predicts response to immunosuppression in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging. 2021 ; 14 : 2008-16.
7) Kaneta K, et al. Clinical outcomes of radiologic relapse in patients with cardiac sarcoidosis under immunosuppressive therapies. Am J Cardiol. 2022 ; 188 : 24-9.
8) Kandolin R, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol. 2015 ; 116 : 960-4.
9) Youssef G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis : a systematic review and meta-analysis including the Ontario experience. J Nucl Med. 2012 ; 53 : 241-8.
10) Ishida Y, et al. Recommendations for 18F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis : Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014 ; 28 : 393-403.
P.76 掲載の参考文献
1) Maron BJ. Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med. 2018 ; 379 : 655-68.
3) Gilligan et al. A double-blind, placebo-controlled crossover trial of nadolol and verapamil in mild and moderately symptomatic hypertrophic cardiomyopathy. 1993 ; 21 : 1672-9.
4) Dybro et al. Randomized trial of metoprolol in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2021 ; 78 : 2505-17.
5) Ommen SR, et al. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020 ; 142 : e533-57.
6) Verlinden NJ, et al. Disopyramide for hypertrophic cardiomyopathy : a pragmatic reappraisal of an old drug. Pharmacother J Hum Pharmacol Drug Ther. 2015 ; 35 : 1164-72.
7) Sherrid MV, et al. Treatment of obstructive hypertrophic cardiomyopathy symptoms and gradient resistant to first-line therapy with β-blockade or verapamil. Circ Heart Fail. 2013 ; 6 : 694-702.
8) Hamada M, et al. Class ia antiarrhythmic drug cibenzoline. Circulation. 1997 ; 96 : 1520-4.
9) Hamada M, et al. Impact of cibenzoline treatment on left ventricular remodelling and prognosis in hypertrophic obstructive cardiomyopathy. ESC Heart Fail. 2021 ; 8 : 4832-42.
10) Lehman SJ, et al. Targeting the sarcomere in inherited cardiomyopathies. Nat Rev Cardiol. 2022 ; 19 : 353-63.
11) Kawana M, et al. Hypertrophic cardiomyopathy : mutations to mechanisms to therapies. Front Physiol. 2022 ; 13 : 975076.
12) Green EM, et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016 ; 351 : 617-21.
13) Heitner SB, et al. Mavacamten treatment for obstructive hypertrophic cardiomyopathy : a clinical trial. Ann Intern Med. 2019 ; 170 : 741.
14) Olivotto I, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM) : a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2020 ; 396 : 759-69.
15) Wheeler MT, et al. Effects of mavacamten on measures of cardiopulmonary exercise testing beyond peak oxygen consumption : a secondary analysis of the explorer-hcm randomized trial. JAMA Cardiol. 2023 ; 8 : 240-7.
16) Hegde SM, et al. Effect of mavacamten on echocardiographic features in symptomatic patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2021 ; 78 : 2518-32.
17) Spertus JA, et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM) : health status analysis of a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2021 ; 397 : 2467-75.
18) Desai MY, et al. Myosin inhibition in patients with obstructive hypertrophic cardiomyopathy referred for septal reduction therapy. J Am Coll Cardiol. 2022 ; 80 : 95-108.
19) Ho CY, et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2020 ; 75 : 2649-60.
20) Wheeler MT, et al. Effect of beta-blocker therapy on the response to mavacamten in patients with symptomatic obstructive hypertrophic cardiomyopathy. Eur J Heart Fail. 2023 ; 25 : 260-70.
21) Malik FI, et al. A phase 1 dose-escalation study of the cardiac myosin inhibitor aficamten in healthy participants. JACC Basic Transl Sci. 2022 ; 7 : 763-75.
22) Maron MS, et al. Phase 2 study of aficamten in patients with obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2023 ; 81 : 34-45.

デバイスのControversy

P.81 掲載の参考文献
1) 日本循環器学会/日本不整脈心電学会合同ガイドライン. 不整脈非薬物治療ガイドライン (2018年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2018/07/JCS2018_kurita_nogami.pdf 2019年3月発行 (2021年9月更新)
2) Moss AJ, et al ; Multicenter Automatic Defibrillator Implantation Trial Investigators. Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. N Engl J Med. 1996 ; 335 : 1933-40.
3) Moss AJ, et al ; Multicenter Automatic Defibrillator Implantation Trial II Investigators. Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. N Engl J Med. 2002 ; 346 : 877-83.
4) Goldenberg I, et al ; Executive committee of the multicenter automatic defibrillator implantation trial II. Long-term benefit of primary prevention with an implantable cardioverter-defibrillator : an extended 8-year follow-up study of the Multicenter Automatic Defibrillator Implantation Trial II. Circulation. 2010 ; 122 : 1265-71.
5) Buxton AE, et al ; Multicenter Unsustained Tachycardia Trial Investigators. Electrophysiologic testing to identify patients with coronary artery disease who are at risk for sudden death. N Engl J Med. 2000 ; 342 : 1937-45.
7) Pouleur AC, et al ; VALIANT Investigators. Pathogenesis of sudden unexpected death in a clinical trial of patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. Circulation. 2010 ; 122 : 597-602.
8) Bardy GH, et al ; Sudden Cardiac Death in Heart Failure Trial (SCD-HeFT) Investigators. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N Engl J Med. 2005 ; 352 : 225-37.
10) Golwala H, et al. Implantable cardioverter-defibrillator for nonischemic cardiomyopathy : an updated meta-analysis. Circulation. 2017 ; 135 : 201-3.
11) McDonagh TA, et al ; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 36 : 3599-726.
12) Wong CX, et al. Epidemiology of sudden cardiac death : global and regional perspectives. Heart Lung Circ. 2019 ; 28 : 6-14.
13) Satake H, et al. Current status of primary prevention of sudden cardiac death with implantable cardioverter defibrillator in patients with chronic heart failure : a report from the CHART-2 study. Circ J. 2015 ; 79 : 381-90.
14) Kitai T, et al. Mode of death among Japanese adults with heart failure with preserved, midrange, and reduced ejection fraction. JAMA Netw Open. 2020 ; 3 : e204296.
15) Manolis AS, et al. Sudden death in heart failure with preserved ejection fraction and beyond : an elusive target. Heart Fail Rev. 2019 ; 24 : 847-66.
16) Stecker EC, et al. Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction : two year fndings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol. 2006 ; 47 : 1161-6.
17) Pitt B, et al. TOPCAT Investigators. Spironolac tone for heart failure with preserved ejection fraction. N Engl J Med. 2014 ; 370 : 1383-92.
18) Zile MR, et al ; I-Preserve Investigators. Mode of death in patients with heart failure and a preserved ejection fraction : results from the Irbesartan in Heart Failure With Preserved Ejection Fraction Study (I-Preserve) trial. Circulation. 2010 ; 121 : 1393-405.
19) Solomon SD, et al. Efect of candesartan on cause-specifc mortality in heart failure patients : the Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity (CHARM) program. Circulation. 2004 ; 110 : 2180-3.
20) Aro AL, et al. Left-ventricular geometry and risk of sudden cardiac arrest in patients with preserved or moderately reduced leftventricular ejection fraction. Europace. 2017 ; 19 : 1146-52.
21) Fatkin D, et al. Contemporary and future approaches to precision medicine in inherited cardiomyopathies : JACC focus seminar 3/5. J Am Coll Cardiol. 2021 ; 77 : 2551-72.
22) Goldenberg I, et al. Risk stratification for primary implantation of a cardioverter? defibrillator in patients with ischemic left ventricular dysfunction. J Am Coll Cardiol. 2008 ; 51 : 288-96.
23) Watanabe J, et al. Accumulation of risk markers predicts the incidence of sudden death in patients with chronic heart failure. Eur J Heart Fail. 2006 ; 8 : 237-42.
25) Chan RH, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014 ; 130 : 484-95.
26) Assomull RG, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol. 2006 ; 48 : 1977-85.
27) Greulich S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. 2013 ; 6 : 501-11.
28) 日本循環器学会/日本不整脈心電学会合同ガイドライン. 2022年改訂版 不整脈の診断とリスク評価に関するガイドライン. https://www.j-circ.or.jp/cms/wp-content/uploads/2022/03/JCS2022_Takase.pdf (2022年3月発行, 2022年6月更新, 2023年6月閲覧)
P.88 掲載の参考文献
1) Klein HU, et al. Risk stratification for implantable cardioverter defibrillator therapy : the role of the wearable cardioverter-defibrillator. Eur Heart J. 2013 ; 34 : 2230-42.
2) 日本不整脈心電学会WCDワーキンググループ. 着用型自動除細動器 (WCD) の臨床使用に関するステートメント (2018年2月改訂). https://new.jhrs.or.jp/pdf/guideline/statement20180215.pdf
3) 日本循環器学会, 日本心不全学会. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新).
4) Olgin JE, et al. Wearable cardioverter-defibrillator after myocardial infarction. N Engl J Med. 2018 ; 379 : 1205-15.
5) Hohnloser SH, et al. Prophylactic use of an implantable cardioverter-defibrillator after acute myocardial infarction. N Engl J Med. 2004 ; 351 : 2481-8.
6) Packer M, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001 ; 344 : 1651-8.
7) CIBIS-II Investigators and Comittees. The cardiac insufficiency bisoprolol study II (CIBIS-II) : a randomized trial. Lancet. 1993 ; 353 : 9-13.
8) Minami Y, et al. Incidence and predictors of early and late sudden cardiac death in hospitalized Japanese patients with new-onset systolic heart failure. J Arrhythm. 2021 ; 37 : 1148-55.
9) Kutyifa V, et al. Use of the wearable cardioverter defibrillator in high-risk cardiac patients : data from the prospective registry of patients using the wearable cardioverter defibrillator (WEARIT-II Registry). Circulation. 2015 ; 132 : 1613-19.
10) WaBnig NK, et al. Experience with the wearable cardioverter-defibrillator in patients at high risk for sudden cardiac death. Circulation. 2016 ; 134 : 635-43.
P.92 掲載の参考文献
1) Wilkoff BL, et al. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator : the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA. 2002 ; 288 : 3115-23.
2) Sweeney MO, et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation. 2003 ; 107 : 2932-7.
3) Kaye GC, et al ; Protect-Pace trial investigators. Effect of right ventricular pacing lead site on left ventricular function in patients with high-grade atrioventricular block : results of the Protect-Pace study. Eur Heart J. 2015 ; 36 : 856-62.
4) Curtis AB, et al. Biventricular pacing for atrioventricular block and systolic dysfunction. N Engl J Med. 2013 ; 368 : 1585-93.
5) Kusumoto FM, et al. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay : a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation. 2019 ; 140 : e382-482.
6) 日本循環器学会, 日本不整脈心電学会. 2021年JCS/JHRSガイドライン フォーカスアップデート版 不整脈非薬物治療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Kurita_Nogami.pdf 2021年3月発行 (2021年12月更新)
7) Deshmukh P, et al. Permanent direct HB pacing : a novel approach to cardiac pacing in patients with normal His Purkinje activation. Circulation. 2000 ; 101 : 869-77.
8) Sharma PS, et al. Permanent His-bundle pacing is feasible, safe, and superior to right ventricular pacing in routine clinical practice. Heart Rhythm. 2015 ; 12 : 305-12.
9) Vijayaraman P, et al. Permanent His bundle pacing : long-term lead performance and clinical outcomes. Heart Rhythm. 2018 ; 15 : 696-702.
10) Abdelrahman M, et al. Clinical outcomes of His bundle pacing compared to right ventricular pacing. J Am Coll Cardiol. 2018 ; 71 : 2319-30.
11) Vijayaraman P, et al. Electrophysiologic Insights into site of atrioventricular block : lessons from permanent His bundle pacing. CACC Clin Electrophysiol. 2015 ; 1 : 571-81.
12) Sato T, et al. Deep negative deflection in unipolar His-bundle electrogram as a predictor of excellent His-bundle pacing threshold postimplant. Circ Arrhythm Electrophysiol. 2019 ; 12 : e007415.
13) Sato T, et al. Safety of distal His bundle pacing via the right ventricle backed up by adjacent ventricular capture. JACC Clin Electrophysiol. 2021 ; 7 : 513-21.
14) Huang W, et al. A novel pacing strategy with low and stable output : pacing the left bundle branch immediately beyond the conduction block. Can J Cardiol. 2017 ; 33 : 1736.e1-3.
15) Vijayaraman P, et al. Prospective evaluation of feasibility and electrophysiologic and echocardiographic characteristics of left bundle branch area pacing. Heart Rhythm. 2019 ; 16 : 1774-82
16) Jastrzebski M, et al. Left bundle branch area pacing outcomes : the multicentre European MELOS study. Eur Heart J. 2022 ; 21 : 43 : 4161-73.
17) Vijayaraman P, et al. His-Purkinje conduction system pacing in atrioventricular block : new insights into site of conduction block. JACC Clin Electrophysiol. 2022 ; 8 : 73-85.
18) Jastrzebski M, et al. Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT) : results from an international LBBAP collaborative study group. Heart Rhythm. 2022 ; 19 : 13-21.
19) Vijayaraman P, et al. His-optimized cardiac resynchronization therapy to maximize electrical resynchronization : a feasibility study. Circ Arrhythm Electrophysiol. 2019 ; 12 : e006934.
P.99 掲載の参考文献
1) Teschler H, et al. Adaptive pressure support servo-ventilation : a novel treatment for Cheyne-Stokes respiration in heart failure. Am J Respir Crit Care Med. 2001 ; 164 : 614-9.
2) Kasai T, et al. First experience of using new adaptive servo-ventilation device for Cheyne-Stokes respiration with central sleep apnea among Japanese patients with congestive heart failure : report of 4 clinical cases. Circ J. 2006 ; 70 : 1148-54.
3) Matsumoto H, et al. Central sleep apnea in heart failure : pathogenesis and management. Current Sleep Medicine Reports. 2018 ; 4 : 210-20.
4) Oldenburg O, et al. Trilevel adaptive servoventilation for the treatment of central and mixed sleep apnea in chronic heart failure patients. Sleep Med. 2013 ; 14 : 422-7.
5) Cowie MR, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015 ; 373 : 1095-105.
6) O'Connor CM, et al. Cardiovascular outcomes with minute ventilation-targeted adaptive servo-ventilation therapy in heart failure : the CAT-HF trial. J Am Coll Cardiol. 2017 ; 69 : 1577-87.
7) Lyons OD, et al. Design of the effect of adaptive servo-ventilation on survival and cardiovascular hospital admissions in patients with heart failure and sleep apnoea : the ADVENT-HF trial. Eur J Heart Fail. 2017 ; 19 : 579-87.
8) Momomura S, et al. Adaptive servo-ventilation therapy using an innovative ventilator for patients with chronic heart failure : a real-world, multicenter, retrospective, observational study (SAVIOR-R). Heart Vessels. 2015 ; 30 : 805-17.
9) Yoshida M, et al. Adaptive servo-ventilation therapy reduces hospitalization rate in patients with severe heart failure. Int J Cardiol. 2017 ; 238 : 173-6.
10) Takama N, et al. Effect of adaptive servo-ventilation on 1-year prognosis in heart failure patients. Circ J. 2012 ; 76 : 661-7.
11) Momomura S, et al. Adaptive servo-ventilation therapy for patients with chronic heart failure in a confirmatory, multicenter, randomized, controlled study. Circ J. 2015 ; 79 : 981-90.
12) Ponikowski P, et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure : the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016 ; 37 : 2129-200.
13) Yancy CW, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017 ; 136 : e137-61.
14) 日本循環器学会, 日本心不全学会. 心不全症例におけるASV適正使用に関するステートメント (第1報). 2015.
15) Woehrle H, et al. Adaptive servo ventilation for central sleep apnoea in heart failure : SERVE-HF on-treatment analysis. Eur Respir J. 2017 ; 50 : 1601692.
16) 日本循環器学会, 日本心不全学会. 心不全症例におけるASV適正使用に関するステートメント (第2報). 2016.
17) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新).
18) Naughton MT. Cheyne-Stokes respiration : friend or foe? Thorax. 2012 ; 67 : 357-60.
19) Arzt M, et al. Suppression of central sleep apnea by continuous positive airway pressure and transplant-free survival in heart failure : a post hoc analysis of the Canadian Continuous Positive Airway Pressure for Patients with Central Sleep Apnea and Heart Failure trial (CANPAP). Circulation. 2007 ; 115 : 3173-80.
P.104 掲載の参考文献
1) Rose EA, et al ; Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) study group. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001 ; 345 : 1435-43.
2) Mehra MR, et al ; MOMENTUM 3 Investigators. A fully magnetically levitated left ventricular assist device-final report. N Engl J Med. 2019 ; 380 : 1618-27.
3) Mehra MR, et al. five-year outcomes in patients with fully magnetically levitated vs axial-flow left ventricular assist devices in the MOMENTUM 3 randomized trial. JAMA. 2022 ; 328 : 1233-42.
4) Molina EJ, et al. The Society of Thoracic Surgeons Intermacs 2020 annual report. Ann Thorac Surg. 2021 ; 111 : 778-92.
5) Goff RR, et al. A change of heart : preliminary results of the US 2018 adult heart allocation revision. Am J Transplant. 2020 ; 20 : 2781-90.
6) Reich H, et al. Acceptable post-heart transplant outcomes support temporary MCS prioritization in the new OPT-N|UNOS heart allocation policy. transplant Proc. 2021 ; 53 : 353-7.
7) Stern LK, et al. Impact of the united network for organ sharing 2018 donor heart allocation system on transplant morbidity and mortality. Clin Transplant. 2021 ; 35 : e14181.
8) Goldstein DJ, et al. Third annual report from the ISHLT mechanically assisted circulatory support registry : a comparison of centrifugal and axial continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2019 ; 38 : 352-63.
9) Shah P, et al. Twelfth interagency registry for mechanically assisted circulatory support report : readmissions after left ventricular assist device. Ann Thorac Surg. 2022 ; 113 : 722-37.
10) Anzai T, et al. JCS/JHFS 2021 statement on palliative care in cardiovascular diseases. Circ J. 2021 ; 85 : 695-757.
11) Feldman D, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support : executive summary. J Heart Lung Transplant. 2013 ; 32 : 157-87.
12) Dunlay SM, et al. Dying with a left ventricular assist device as destination therapy. Circ Heart Fail. 2016 ; 9 : e003096.
13) Connors AF Jr, et al ; the SUPPORT Principal Investigators. A controlled trial to improve care for seriously ill hospitalized patients. The study to understand prognoses and preferences for outcomes and risks of treatments (SUPPORT). JAMA. 1995 ; 274 : 1591-8. Erratum in : JAMA 1996 ; 275 : 1232.
14) Emerson D, et al. Contemporary left ventricular assist device outcomes in an aging population : an STS INTERMACS analysis. J Am Coll Cardiol. 2021 ; 78 : 883-94.

カテーテル・外科的治療のControversy

P.111 掲載の参考文献
1) Reddy YNV, et al. Management of atrial fibrillation across the spectrum of heart failure with preserved and reduced ejection fraction. Circulation. 2022 ; 146 : 339-57.
2) Wyse DG, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002 ; 347 : 1825-33.
3) Van Gelder IC, et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med. 2002 ; 347 : 1834-40.
4) Carlsson J, et al. Randomized trial of rate-control versus rhythm-control in persistent atrial fibrillation : the Strategies of Treatment of Atrial Fibrillation (STAF) study. J Am Coll Cardiol. 2003 ; 41 : 1690-6.
5) Hindricks G, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS) : The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2021 ; 42 : 373-498.
6) January CT, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation : a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration With the Society of Thoracic Surgeons. Circulation. 2019 ; 140 : e125-51.
7) Nogami A, et al. JCS/JHRS 2019 guideline on non-pharmacotherapy of cardiac arrhythmias. Circ J. 2021 ; 85 : 1104-244.
8) Mark DB, et al. Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation : The CABANA randomized clinical trial. JAMA. 2019 ; 321 : 1275-85.
9) Blomstrom-Lundqvist C, et al. Effect of catheter ablation vs antiarrhythmic medication on quality of life in patients with atrial fibrillation : the CAPTAF randomized clinical trial. JAMA. 2019 ; 321 : 1059-68.
10) Noseworthy PA, et al. Generalizability of the CASTLE-AF trial : catheter ablation for patients with atrial fibrillation and heart failure in routine practice. Heart Rhythm. 2020 ; 17 : 1057-65.
11) Di Biase L, et al. Ablation versus amiodarone for treatment of persistent atrial fibrillation in patients with congestive heart failure and an implanted device : results from the AATAC multicenter randomized trial. Circulation. 2016 ; 133 : 1637-44.
12) Kuck KH, et al. Catheter ablation versus best medical therapy in patients with persistent atrial fibrillation and congestive heart failure : the randomized AMICA trial. Circ Arrhythm Electrophysiol. 2019 ; 12 : e007731.
13) Packer DL, et al. Ablation versus drug therapy for atrial fibrillation in heart failure : results from the CABANA trial. Circulation. 2021 ; 143 : 1377-90.
14) Parkash R, et al. Randomized ablation-based rhythm-control versus rate-control trial in patients with heart failure and atrial fibrillation : results from the RAFT-AF trial. Circulation. 2022 ; 145 : 1693-704.
15) Nogami A, et al. JCS/JHRS 2021 Guideline Focused Update on Non-Pharmacotherapy of Cardiac Arrhythmias. Circ J. 2022 ; 86 : 337-63.
16) 日本循環器学会, 日本不整脈心電学会. 不整脈非薬物治療ガイドライン (2018年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2018/07/JCS2018_kurita_nogami.pdf 2019年3月発行 (2021年9月更新)
17) Kirchhof P, et al. Early rhythm-control therapy in patients with atrial fibrillation. N Engl J Med. 2020 ; 383 : 1305-16.
18) Rillig A, et al. Early rhythm control therapy in patients with atrial fibrillation and heart failure. Circulation. 2021 ; 144 : 845-58.
19) Sugumar H, et al. A prospective STudy using invAsive haemodynamic measurements foLLowing catheter ablation for AF and early HFpEF : STALL AF-HFpEF. Eur J Heart Fail. 2021 ; 23 : 785-96.
20) Black-Maier E, et al. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction. Heart Rhythm. 2018 ; 15 : 651-7.
21) Rattka M, et al. Restoration of sinus rhythm by pulmonary vein isolation improves heart failure with preserved ejection fraction in atrial fibrillation patients. Europace. 2020 ; 22 : 1328-36.
22) Zylla MM, et al. Catheter ablation of atrial fibrillation in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2022 ; 15 : e009281.
23) von Olshausen G, et al. Catheter ablation for patients with atrial fibrillation and heart failure : insights from the Swedish Heart Failure Registry. Eur J Heart Fail. 2022 ; 24 : 1636-46.
24) Shiraishi Y, et al. Catheter ablation for patients with atrial fibrillation and heart failure with reduced and preserved ejection fraction : insights from the KiCS-AF multicentre cohort study. Europace. 2023 ; 25 : 83-91.
25) Soulat-Dufour L, et al. Restoring sinus rhythm reverses cardiac remodeling and reduces valvular regurgitation in patients with atrial fibrillation. J Am Coll Cardiol. 2022 ; 79 : 951-61.
P.118 掲載の参考文献
1) Velazquez EJ, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011 ; 364 : 1607-16.
2) Perera D, et al. Percutaneous revascularization for ischemic left ventricular dysfunction. N Engl J Med. 2022 ; 387 : 1351-60.
3) Petrie MC, et al. Ten-year outcomes after coronary artery bypass grafting according to age in patients with heart failure and left ventricular systolic dysfunction : an analysis of the extended follow-up of the STICH trial (surgical treatment for ischemic heart failure). Circulation. 2016 ; 134 : 1314-24.
5) Lawton JS, et al. 2021 ACC/AHA/SCAI guideline for coronary artery revascularization : executive summary : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e4-17.
6) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
7) 日本循環器学会/日本心臓血管外科学会合同ガイドライン. 安定冠動脈疾患の血行再建ガイドライン (2018年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2018/09/JCS2018_nakamura_yaku.pdf 2019年3月発行 (2019年5月更新)
8) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
9) Maron DJ, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med. 2020 ; 382 : 1395-407.
10) 2022年JCSガイドラインフォーカスアップデート版 安定冠動脈疾患の診断と治療. https://www.j-circ.or.jp/cms/wp-content/uploads/2022/03/JCS2022_Nakano.pdf 2022年3月発行.
11) Hachamovitch R, et al. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003 ; 107 : 2900-7.
12) Panza JA, et al. Myocardial viability and long-term outcomes in ischemic cardiomyopathy. N Engl J Med. 2019 ; 381 : 739-48.
P.124 掲載の参考文献
1) 日本循環器学会/日本胸部外科学会/日本血管外科学会/日本心臓血管外科学会合同ガイドライン. 2020年改訂版 弁膜症治療のガイドライン. https://www.j-circ.or.jp/cms/wp-content/uploads/2020/04/JCS2020_Izumi_Eishi.pdf 2020年3月発行 (2020年10月更新)
2) 日本循環器学会. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新)
3) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
4) Obadia JF, et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N Engl J Med. 2018 ; 379 : 2297-306.
5) Otto CM, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021 ; 77 : e25-197.
6) Vahanian A, et al. 2021 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2022 ; 43 : 561-632.
7) Lancellotti P, et al. The clinical use of stress echocardiography in non-ischaemic heart disease : recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr. 2017 ; 30 : 101-38.
8) Lancellotti P, et al. Long-term outcome of patients with heart failure and dynamic functional mitral regurgitation. Eur Heart J. 2005 ; 26 : 1528-32.
9) Lancellotti P, et al. The clinical use of stress echocardiography in non-ischaemic heart disease : recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging. 2016 ; 17 : 1191-29.
10) Lancellotti P, et al. Clinical significance of exercise pulmonary hypertension in secondary mitral regurgitation. Am J Cardiology. 2015 ; 115 : 1454-61.
11) Lancellotti P, et al. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation. 2003 ; 108 : 1713-7.
12) Izumo M, et al. Prognostic impact of transcatheter mitral valve repair in patients with exercise-induced secondary mitral regurgitation. Eur Heart J Cardiovasc Imaging. 2021 ; 22 : 530-8.
13) Velu JF, et al. Can stress echocardiography identify patients who will benefit from percutaneous mitral valve repair? Int J Cardiovasc Imaging. 2019 ; 35 : 645-51.
14) Kagiyama N, et al. Physiological and prognostic differences between types of exercise stress echocardiography for functional mitral regurgitation. Open Heart. 2021 ; 8 : e001583.
15) Feldman T, et al. Percutaneous mitral valve repair using the edge-to-edge technique : six-month results of the EVEREST Phase I Clinical Trial. J Am Coll Cardiol. 2005 ; 46 : 2134-40.
16) Zoghbi WA, et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 2003 ; 16 : 777-802.
17) Foster E, et al. Quantitative assessment of severity of mitral regurgitation by serial echocardiography in a multicenter clinical trial of percutaneous mitral valve repair. Am J Cardiol. 2007 ; 100 : 1577-83.
P.128 掲載の参考文献
1) 日本循環器学会. 循環器疾患診療実態調査. (The Japanese Registry Of All cardiac and vascular Diseases : JROAD) https://www.j-circ.or.jp/jittai_chosa/about/report/
2) Holmes DR Jr, et al. Clinical outcomes at 1 year following transcatheter aortic valve replacement. JAMA. 2015 ; 313 : 1019-28.
3) Solomon SD, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022 ; 387 : 1089-98.
4) Anker SD, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021 ; 385 : 1451-61.
5) Chau KH, et al. Regression of left ventricular mass after transcatheter aortic valve replacement : the PARTNER trials and registries. J Am Coll Cardiol. 2020 ; 75 : 2446-58.
6) Ochiai T, et al. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation. Heart. 2018 ; 104 : 644-51.
7) Inohara T, et al. Association of renin-angiotensin inhibitor treatment with mortality and heart failure readmission in patients with transcatheter aortic valve replacement. JAMA. 2018 ; 320 : 2231-41.
8) Rodriguez-Gabella T, et al. Renin-angiotensin system inhibition following transcatheter aortic valve replacement. J Am Coll Cardiol. 2019 ; 74 : 631-41.
9) Chen S, et al. Impact of renin-angiotensin system inhibitors on clinical outcomes in patients with severe aortic stenosis undergoing transcatheter aortic valve replacement : an analysis of from the PARTNER 2 trial and registries. Eur Heart J. 2020 ; 41 : 943-54.
10) Ledwoch J, et al. Dose-dependent effect of renin-angiotensin system blockade following transcatheter aortic valve replacement. Can J Cardiol. 2021 ; 37 : 443-9.
11) Otto CM, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021 ; 143 : e72-e227.
12) Amat-Santos IJ, et al. Impact of renin-angiotensin system inhibitors on clinical outcomes and ventricular remodelling after transcatheter aortic valve implantation : rationale and design of the RASTAVI randomised multicentre study. BMJ Open. 2018 ; 8 : e020255.
13) Amat-Santos IJ, et al ; Dapagliflozin after Transcatheter Aortic Valve Implantation (DapaTAVI) Investigators. Rationale and design of the Dapagliflozin after Transcatheter Aortic Valve Implantation (DapaTAVI) randomized trial. Eur J Heart Fail. 2022 ; 24 : 581-8.
14) Perlman GY, et al. Post-procedural hypertension following transcatheter aortic valve implantation : incidence and clinical significance. JACC Cardiovasc Interv. 2013 ; 6 : 472-8.
15) Wang Y, et al. Effects of the angiotensin-receptor neprilysin inhibitor on cardiac reverse remodeling : meta-analysis. J Am Heart Assoc. 2019 ; 8 : e012272.
P.134 掲載の参考文献
1) Taramasso M, et al. Percutaneous tricuspid valve therapies : the new frontier. Eur Heart J. 2017 ; 38 : 9 : 639-47.
2) Vassileva CM, et al. Tricuspid valve surgery : the past 10 years from the Nationwide Inpatient Sample (NIS) database. J Thorac Cardiovasc Surg. 2012 ; 143 : 5 : 1043-9.
3) Nath J, et al. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004 ; 43 ; 3 : 405-9.
4) Topilsky Y, et al. Clinical outcome of isolated tricuspid regurgitation. JACC Cardiovasc Imaging. 2014 ; 7 : 12 : 1185-94.
5) Otto CM, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021 ; 77 : 4 : e25-197.
6) Saji M, et al. Prevalence, characteristics, and impact of frailty in patients with functional tricuspid regurgitation. Int Heart J. 2021 ; 62 : 6 : 1280-6.
7) Reddy YNV, et al. Isolated severe tricuspid regurgitation : an unrecognised and undertreated problem of the forgotten valve. Heart. 2021 ; 107 : 5 : 350-2.
8) Kawsara A, et al. Determinants of morbidity and mortality associated with isolated tricuspid valve surgery. J Am Heart Assoc. 2021 ; 10 : 2 : e018417.
9) Rodes-Cabau J, et al. Diagnosis and treatment of tricuspid valve disease : current and future perspectives. Lancet. 2016 ; 388 : 2431-42.
10) Dreyfus J, et al. Isolated tricuspid valve surgery : impact of aetiology and clinical presentation on outcomes. Eur Heart J. 2020 ; 41 : 4304-17.
11) Lurz P, et al. Clinical characteristics, diagnosis, and risk stratification of pulmonary hypertension in severe tricuspid regurgitation and implications for transcatheter tricuspid valve repair. Eur Heart J. 2020 ; 41 : 29 : 2785-95.
12) Lurz P, et al. Transcatheter edge-to-edge repair for treatment of tricuspid regurgitation. J Am Coll Cardiol. 2021 ; 77 : 229-39.
13) Ton-Nu TT, et al. Geometric determinants of functional tricuspid regurgitation : insights from 3-dimensional echocardiography. Circulation. 2006 ; 114 : 143-9.
14) Boudjemline Y, et al. Steps toward the percutaneous replacement of atrioventricular valves an experimental study. J Am Coll Cardiol. 2005 ; 46 : 360-5.
15) Pahwa S, et al. Outcomes of tricuspid valve surgery in patients with functional tricuspid regurgitation. Eur J Cardiothorac Surg. 2021 ; 59 : 577-85.

疾病管理・緩和のControversy

P.141 掲載の参考文献
1) Jaarsma T, et al. Self-care of heart failure patients : practical management recommendations from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2021 ; 23 : 157-74.
2) Riegel B, et al. State of the science : promoting self-care in persons with heart failure : a scientific statement from the American Heart Association. Circulation. 2009 ; 120 : 1141-63.
3) McAlister FA, et al. Multidisciplinary strategies for the management of heart failure patients at high risk for admission : a systematic review of randomized trials. J Am Coll Cardiol. 2004 ; 44 : 810-9.
4) McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
5) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-e1032.
6) Travers B, et al. Fluid restriction in the management of decompensated heart failure : no impact on time to clinical stability. J Card Fail. 2007 ; 13 : 128-32.
7) Albert NM, et al. A randomized controlled pilot study of outcomes of strict allowance of fluid therapy in hyponatremic heart failure (SALT-HF). J Card Fail. 2013 ; 19 : 1-9.
8) Ivey-Miranda JB, et al. Sodium restriction in patients with chronic heart failure and reduced ejection fraction : a randomized controlled trial. Cardiol J. Sep 7 2021 ; doi : 10.5603/CJ.a2021.0098
9) Ezekowitz JA, et al. Reduction of dietary sodium to less than 100 mmol in heart failure (SODIUM-HF) : an international, open-label, randomised, controlled trial. Lancet. 2022 ; 399 : 1391-400.
10) Jaarsma T, et al. Development and testing of the European Heart Failure Self-Care Behaviour Scale. Eur J Heart Fail. 2003 ; 5 : 363-70.
11) Riegel B, et al. An update on the Self-care of Heart Failure Index. J Cardiovasc Nurs. 2009 ; 24 : 485-97.
12) Herrmann JJ, et al. Fluid REStriction in Heart Failure vs Liberal Fluid UPtake : rationale and design of the randomized FRESH-UP study. J Card Fail. 2022 ; 28 : 1522-30.
13) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : executive summary : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022 ; 79 : 1757-80.
14) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新).
15) 日本循環器学会/日本心不全学会合同ガイドライン. 2021年JCS/JHFSガイドラインフォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新)
16) Holst M, et al. Liberal versus restricted fluid prescription in stabilised patients with chronic heart failure : result of a randomised cross-over study of the effects on health-related quality of life, physical capacity, thirst and morbidity. Scand Cardiovasc J. 2008 ; 42 : 316-22.
17) Aliti GB, et al. Aggressive fluid and sodium restriction in acute decompensated heart failure : a randomized clinical trial. JAMA Intern Med. 2013 ; 173 : 1058-64.
18) Paterna S, et al. Medium term effects of different dosage of diuretic, sodium, and fluid administration on neurohormonal and clinical outcome in patients with recently compensated heart failure. Am J Cardiol. 2009 ; 103 : 93-102.
19) Philipson H, et al. Salt and fluid restriction is effective in patients with chronic heart failure. Eur J Heart Fail. 2013 ; 15 : 1304-10.
20) Colin-Ramirez E, et al. Sodium restriction in patients with heart failure : a systematic review and meta-analysis of randomized clinical trials. Circ Heart Fail. 2023 ; 16 : e009879.
21) 日本心不全学会ガイドライン委員会. 心不全患者における栄養評価・管理に関するステートメント. 2018. http://www.asas.or.jp/jhfs/pdf/statement20181012.pdf
22) Hashimoto S, et al. Confidence in self-care after heart failure hospitalization. J Cardiol. 2023 ; 81 : 42-8.
23) Ezekowitz JA, et al. 2017 Comprehensive update of the Canadian Cardiovascular Society guidelines for the management of heart failure. Can J Cardiol. 2017 ; 33 : 1342-433.
P.146 掲載の参考文献
1) Desai AS, Stevenson LW. Rehospitalization for heart failure : predict or prevent? Circulation. 2012 ; 126 : 501-6.
2) Shafie AA, et al. Systematic review of economic burden of heart failure. Heart Fail Rev. 2018 ; 23 : 131-45.
3) Phelan D, et al. Can we reduce preventable heart failure readmissions in patients enrolled in a Disease Management Programme? Ir J Med Sci. 2009 ; 178 : 167-71.
4) Naylor MD, et al. The care span : the importance of transitional care in achieving health reform. Health Aff (Millwood). 2011 ; 30 : 746-54.
5) Hernandez AF, et al. Relationship between early physician follow-up and 30-day readmission among Medicare beneficiaries hospitalized for heart failure. JAMA. 2010 ; 303 : 1716-22.
6) Van Spall HGC, et al. Comparative effectiveness of transitional care services in patients discharged from the hospital with heart failure : a systematic review and network meta-analysis. Eur J Heart Fail. 2017 ; 19 : 1427-43.
7) Feltner C, et al. Transitional care interventions to prevent readmissions for persons with heart failure : a systematic review and meta-analysis. Ann Intern Med. 2014 ; 160 : 774-84.
8) Van Spall HGC, et al. Effect of patient-centered transitional care services on clinical outcomes in patients hospitalized for heart failure : the PACT-HF randomized clinical trial. JAMA. 2019 ; 321 : 753-61.
9) Lee DS, et al. Trial of an intervention to improve acute heart failure outcomes. N Engl J Med. 2023 ; 388 : 22-32.
10) Lee DS, et al. Prediction of heart failure mortality in emergent care : a cohort study. Ann Intern Med. 2012 ; 156 : 767-75.
11) Greig D, et al. Ischemic electrocardiographic abnormalities and prognosis in decompensated heart failure. Circ Heart Fail. 2014 ; 7 : 986-93.
12) Lee DS, et al. Prospective validation of the emergency heart failure mortality risk grade for acute heart failure. Circulation. 2019 ; 139 : 1146-56.
P.150 掲載の参考文献
2) Sibilitz KL, et al. Cochrane corner : exercise-based cardiac rehabilitation for adults after heart valve surgery. Heart. 2021 ; 107 : 1935-7.
3) Taylor RS, et al. The role of cardiac rehabilitation in improving cardiovascular outcomes. Nat Rev Cardiol. 2022 ; 19 : 180-94.
4) Pandey A, et al. Temporal trends and factors associated with cardiac rehabilitation participation among medicare beneficiaries with heart failure. JACC Heart Fail. 2021 ; 9 : 471-81.
5) Kirwan R, et al. Impact of COVID-19 lockdown restrictions on cardiac rehabilitation participation and behaviours in the United Kingdom. BMC Sports Sci Med Rehabil. 2022 ; 14 : 67.
6) O'Connor CM, et al. Efficacy and safety of exercise training in patients with chronic heart failure : HF-ACTION randomized controlled trial. JAMA. 2009 ; 301 : 1439-50.
7) Maddison R, et al. Effects and costs of real-time cardiac telerehabilitation : randomised controlled non-inferiority trial. Heart. 2019 ; 105 : 122-9.
8) Kraal JJ, et al. Effects of home-based training with telemonitoring guidance in low to moderate risk patients entering cardiac rehabilitation : short-term results of the FIT@Home study. Eur J Prev Cardiol. 2014 ; 21 : 26-31.
9) Frederix I, et al. Cardiac telerehabilitation : a novel cost-efficient care delivery strategy that can induce long-term health benefits. Eur J Prev Cardiol. 2017 ; 24 : 1708-17.
10) Thomas RJ, et al. Home-based cardiac rehabilitation : a scientific statement from the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association, and the American College of Cardiology. J Am Coll Cardiol. 2019 ; 74 : 133-53.
11) Levin-Zamir D, et al. Media health literacy, eHealth literacy, and the role of the social environment in context. Int J Environ Res Public Health. 2018 ; 15 : 1643.
12) Liu S, et al. Current status and influencing factors of digital health literacy among community-dwelling older adults in Southwest China : a cross-sectional study. BMC Public Health. 2022 ; 22 : 996.
13) Wakefield B, et al. Feasibility and effectiveness of remote, telephone-based delivery of cardiac rehabilitation. Telemed J E Health. 2014 ; 20 : 32-8.
14) Horwich TB, et al. Prevention of heart failure. JAMA Cardiol. 2017 ; 2 : 116.
15) Heidenreich PA, et al. A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-e1032.
16) Ikeda N, et al. Adult mortality attributable to preventable risk factors for non-communicable diseases and injuries in Japan : a comparative risk assessment. PLoS Med. 2012 ; 9 : e1001160.
P.157 掲載の参考文献
1) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
2) Tsutsui H, et al. JCS 2017/JHFS 2017 guideline on diagnosis and treatment of acute and chronic heart failure-digest version-. Circ J. 2019 ; 83 : 2084-184.
3) Nishikawa Y, et al. Advance care planning for adults with heart failure. Cochrane Database Syst Rev. 2020 ; 2 : Cd013022.
4) Jimenez G, et al. Overview of systematic reviews of advance care planning : summary of evidence and global lessons. J Pain Symptom Manage. 2018 ; 56 : 436-59.e25.
5) Morrison RS, et al. What's wrong with advance care planning? JAMA. 2021 ; 326 : 1575-6.
6) Sudore RL, et al. Defining advance care planning for adults : a consensus definition from a multidisciplinary delphi panel. J Pain Symptom Manage. 2017 ; 53 : 821-32.e1.
7) Rietjens JAC, et al. Definition and recommendations for advance care planning : an international consensus supported by the European Association for Palliative Care. Lancet Oncol. 2017 ; 18 : e543-51.
8) Sudore RL, et al. Redefining the "planning" in advance care planning : preparing for end-of-life decision making. Ann Intern Med. 2010 ; 153 : 256-61.
9) Smith AK. Should we still believe in advance care planning? J Am Geriatr Soc. 2022 ; 70 : 1358-60.
10) Matsumura S, et al. Acculturation of attitudes toward end-of-life care : a cross-cultural survey of Japanese Americans and Japanese. J Gen Intern Med. 2002 ; 17 : 531-9.
11) McMahan RD, et al. Deconstructing the complexities of advance care planning outcomes : what do we know and where do we go? A scoping review. J Am Geriatr Soc. 2021 ; 69 : 234-44.
12) Miyashita J, et al. Culturally adapted consensus definition and action guideline : Japan's advance care planning. J Pain Symptom Manage. 2022 ; 64 : 602-13.
13) Allen LA, et al. Decision making in advanced heart failure. Circulation. 2012 ; 125 : 1928-52.
P.163 掲載の参考文献
1) Lin AY, et al. Thromboembolism in heart failure patients in sinus rhythm. J Am Coll Cardiol HF. 2021 ; 9 : 243-53.
2) Cleland JG, et al. The Warfarin/Aspirin Study in Heart failure (WASH) : a randomized trial comparing antithrombotic strategies for patients with heart failure. Am Heart J. 2004 ; 148 : 157-64.
3) Collinos DV, et al. Efficacy of antithrombotic therapy in chronic heart failure : the HELAS study. Eur J Heart Fail. 2006 ; 8 : 428-32.
4) Massie BM, et al. Randomized trial of warfarin, aspirin, and clopidogrel in patients with chronic heart failure : the Warfarin and Antiplatelet Therapy in Chronic Heart Failure (WATCH) trial. Circulation. 2009 ; 119 : 1616-24.
5) Homma S, et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N Engl J Med. 2012 ; 366 : 1859-69.
6) Zannad F, et al. Rivaroxaban in patients with heart failure, sinus rhythm, and coronary disease. N Engl J Med. 2018 ; 379 : 1332-42.
7) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
8) McDonagh TA, et al. 2021 ESC guideline for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
9) Mehra MR, et al. A comprehensive analysis of the effects rivaroxaban on stroke or transient ischaemic attack in patients with heart failure, coronary artery disease, and sinus rhythm : the COMMANDER HF trial. Eur Heart J. 2019 ; 40 : 3593-602.
10) Ferreira JP, et al. Plasma D-dimer concentrations predicting stroke risk and rivaroxaban benefit in patinets with heart failure and sinus rhythm : an analysis form the COMMANDER-HF trial. Eur J Heart Fail. 2021 : 23 ; 648-56.
11) Kondo T, et al. Predicting stroke in heart failure and reduced ejection fraction without atrial fibrillation. Eur Heart J. 2022 ; 43 : 4469-79.
12) Levine GN, et al. Management of patients at risk for and with left ventricular thrombus : a scientific statement from the American Heart Association. Circulation. 2022 ; 146 : e205-23.
13) Maniwa N, et al. Anticoagulation combined with antiplatelet therapy in patients with left ventricular thrombus after first acute myocardial infarction. Eur Heart J. 2018 ; 39 : 201-8.
14) Jones DA, et al. The use of novel oral anticoagulants compared to vitamin K antagonists (warfarin) in patients with left ventricular thrombus after acute myocardial infarction. Eur Heart J Cardiovasc Pharmacother. 2021 ; 7 : 398-404.
15) Hooks M, et al. Left ventricular thrombus on cardiovascular magnetic resonance imaging in non-ischaemic cardiomyopathy. Eur Heart J Cardiovasc Imaging. 2020 ; jeaa244.
16) Rowin E, et al. Hypertrophic cardiomyopathy with left ventricular apical aneurysm. J Am Coll Cardiol. 2017 ; 69 : 761-73.
17) Santoro F, et al. Left ventricular thrombi in Takotsubo syndrome ; incidence, predictors, and management ; results from the GEIST (German Italian Stress Cardiomyopathy) Registry. J Am Heart Assoc. 2017 ; 6 : e006990.
18) Naharro AM, et al. High prevalence of intracardiac thrombi in cardiac amyloidosis. J Am Coll Cardiol. 2019 ; 73 : 1733-4.
19) Feng DL, et al. Intracardiac thrombosis and anticoagulation therapy in cardiac amyloidosis. Circulation. 2009 ; 119 : 2490-7.
20) Hamudi J, et al. Severe biventricular thrombosis in eosinophilic granulomatosis with polyangiitis : a case report. Eur Heart J Case Rep. 2020 ; 4 : 1-5.
21) Itoh S, et al. Follow-up magnetic resonance imaging of Loffler endocarditis : a case report. Eur Heart J Case Rep 2020 ; 4 : 1-4.
22) Wright BL, et al. Eosinophil granule protein localization in eosinophilic endomyocardial disease. N Engl J Med. 2011 ; 365 : 187-8.
23) Yakabe D, et al. Left ventricular noncompaction with multiple thrombi in apical aneurysm. Inter Med. 2020 ; 59 : 377-81.
24) Misumi I, et al. Left ventricular apical thrombus mimicking hypertrabeculation. Intern Med. 2021 ; 60 : 2245-50.
25) Kido K, et al. Anticoagulation therapy I specific cardiomyopathies : Isolated left ventricular noncompaction and peripartum cardiomyopathy. J Cardiovasc Pharmacol Ther. 2019 ; 24 : 31-6.
26) Bauersachs J, et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy : a position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur J Heart Fail. 2019 ; 21 : 827-43.
27) Paranjpe I, et al. Treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020 ; 76 : 122-4.
28) 日本循環器学会, 他4学会. 新型コロナウイルス感染症 (COVID-19) における血栓症予防及び抗凝固療法の診療指針. 2023年2月25日版 (Ver.4.1) https://www.j-circ.or.jp/cms/wp-content/uploads/2023/02/JCS_notice_20230224_V4.1.pdf
29) Imaeda S, et al. Left ventricular thrombus with COVID-19 complication in a patient with dilated cardiomyopathy. CJC Open. 2021 ; 3 : 124-6.
P.169 掲載の参考文献
1) Shimokawa H, et al. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015 ; 17 : 884-92.
2) Screever EM, et al. Comorbidities complicating heart failure : changes over the last 15 years. Clin Res Cardiol. 2023 ; 112 : 123-33.
3) Anand IS, Gupta P. Anemia and iron deficiency in heart failure : current concepts and emerging therapies. Circulation. 2018 ; 138 : 80-98.
4) Yamauchi T, et al. Prognostic impact of anemia in patients with chronic heart failure- with special reference to clinical background : report from the CHART-2 study. Circ J. 2015 ; 79 : 1984-93.
5) Kajimoto K, et al ; Investigators of the Acute Decompensated Heart Failure Syndromes (ATTEND) registry. Association between anemia, clinical features and outcome in patients hospitalized for acute heart failure syndromes. Eur Heart J Acute Cardiovasc Care. 2015 ; 4 : 568-76.
6) ガイトン生理学 第11版. エルゼビア・ジャパン ; 2010.
7) Grote Beverborg N, et al. Anemia in heart failure. JACC Heart Fail. 2018 ; 6 : 201-8.
8) Tanimura M, et al. Effect of anemia on cardiovascular hemodynamics, therapeutic strategy and clinical outcomes in patients with heart failure and hemodynamic congestion. Circ J. 2017 ; 81 : 1670-77.
9) Anand IS. Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol. 2008 ; 52 : 501-11.
10) Groenveld HF, et al. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J Am Coll Cardiol. 2008 ; 52 : 818-27.
11) Anker SD, et al. Effects of ferric carboxymaltose on hospitalisations and mortality rates in iron-deficient heart failure patients : an individual patient data meta-analysis. Eur J Heart Fail. 2018 ; 20 : 125-33.
12) Ponikowski P, et al. Ferric carboxymaltose for iron deficiency at discharge after acute heart failure : a multicentre, double-blind, randomised, controlled trial. Lancet. 2020 ; 396 : 1895-904.
13) Lewis GD, et al. Effect of oral iron repletion on exercise capacity in patients with heart failure with reduced ejection fraction and iron deficiency. JAMA. 2017 ; 317 : 1958.
14) Savarese G, et al. Iron deficiency and cardiovascular disease. Eur Heart J. 2023 ; 44 : 14-27.
15) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-e1032.
16) McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
17) Swedberg K, et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N Engl J Med. 2013 ; 368 : 1210-9.
18) Anker SD, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009 ; 361 : 2436-48.
19) Yeo TJ, et al. Iron deficiency in a multi-ethnic Asian population with and without heart failure : prevalence, clinical correlates, functional significance and prognosis. Eur J Heart Fail. 2014 ; 16 : 1125-32.
20) Gupta N, Wish JB. Hypoxia-inducible factor prolyl hydroxylase inhibitors : a potential new treatment for anemia in patients with CKD. Am J Kidney Dis. 2017 ; 69 : 815-26.
21) Shutov E, et al. Roxadustat for the treatment of anemia in chronic kidney disease patients not on dialysis : a phase 3, randomized, double-blind, placebo-controlled study (ALPS). Nephrol Dial Transplant. 2021 ; 36 : 1629-39.
22) Singh AK, et al. Daprodustat for the treatment of anemia in patients not undergoing dialysis. N Engl J Med. 2021 ; 385 : 2313-24.
23) Chertow GM, et al. Vadadustat in patients with anemia and non-dialysis-dependent CKD. N Engl J Med. 2021 ; 384 : 1589-600.

急性心不全のControversy

P.175 掲載の参考文献
1) Okura Y, et al. Impending epidemic-future projection of heart failure in Japan to the year 2055. Circ J 2008 ; 72 : 489-91.
2) Conrad N, et al. Temporal trends and patterns in heart failure incidence : a population-based study of 4 million individuals. Lancet. 2018 ; 391 : 572-80.
4) Arrigo M, et al. Acute heart failure. Nat Rev Dis Primers. 2020 ; 6 : 16.
5) O'Connor CM, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011 ; 365 : 32-43.
6) Konstam MA, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure : The EVEREST outcome trial. J Am Med Assoc. 2007 ; 297 : 1319-31.
7) Massie BM, et al. Rolofylline, an adenosine A 1 -receptor antagonist, in acute heart failure. N Engl J Med. 2010 ; 363 : 1419-28.
8) Metra M, et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019 ; 381 : 716-26.
9) Packer M, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017 ; 376 : 1956-64.
10) Adams KF, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States : rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005 ; 149 : 209-16.
11) McDonagh TA, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 : 42 : 3599-726.
12) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2022 ; 79 : e263-e421.
13) Ibanez B, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018 ; 39 : 119-77.
14) Rathore SS, et al. Association of door-to-balloon time and mortality in patients admitted to hospital with ST elevation myocardial infarction : national cohort study. BMJ. 2009 ; 338 : b1807.
15) Powers WJ, et al. 2018 guidelines for the early management of patients with acute ischemic stroke : a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018 ; 49 : e46-110.
16) Rhodes A, et al. Surviving Sepsis Campaign : international guidelines for management of sepsis and septic shock : 2016. Intensive Care Med. 2017 ; 43 : 304-77.
17) 日本外傷学会. 外傷初期診療ガイドライン JATEC 改訂第6版. へるす出版 ; 2021.
18) Mebazaa A, et al. Recommendations on pre-hospital and early hospital management of acute heart failure : a consensus paper from the Heart Failure Association of the European Society of Cardiology, the European Society of Emergency Medicine and the Society of Academic Emerge. Eur Heart J. 2015 ; 36 : 1958-66.
20) Filippatos G, et al. Global differences in characteristics, precipitants, and initial management of patients presenting with acute heart failure. JAMA Cardiol. 2020 ; 5 : 401-10.
21) Shiraishi Y, et al. 9-year trend in the management of acute heart failure in Japan : a report from the national consortium of acute heart failure registries. J Am Heart Assoc. 2018 ; 7 : e008687.
22) Cannon JA, et al. What can we learn from RELAX-AHF compared to previous AHF trials and what does the future hold? Open Heart. 2015 ; 2 : e000283.
23) Mebazaa A, et al. The impact of early standard therapy on dyspnoea in patients with acute heart failure : The URGENT-dyspnoea study. Eur Heart J. 2010 ; 31 : 832-41.
24) Maisel AS, et al. Timing of immunoreactive B-type natriuretic peptide levels and treatment delay in acute decompensated heart failure. An ADHERE (Acute Decompensated Heart Failure National Registry) Analysis. J Am Coll Cardiol. 2008 ; 52 : 534-40.
25) Peacock WF, et al. Impact of early initiation of intravenous therapy for acute decompensated heart failure on outcomes in ADHERE. Cardiology. 2007 ; 107 : 44-51.
26) Peacock WF, et al. Early vasoactive drugs improve heart failure outcomes. Congest Hear Fail. 2009 ; 15 : 256-64.
27) Matsue Y, et al. Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017 ; 69 : 3042-51.
28) Ouwerkerk W, et al. Association of time-to-intravenous-furosemide with mortality in acute heart failure : data from REPORT-HF. Eur J Heart Fail. 2022 ; 25 : 43-51.
29) Park JJ, et al. The effect of door-to-diuretic time on clinical outcomes in patients with acute heart failure. JACC Heart Fail. 2018 ; 6 : 286-94.
30) Miro O, et al. The FAST-FURO study : effect of very early administration of intravenous furosemide in the prehospital setting to patients with acute heart failure attending the emergency department. Eur Heart J Acute Cardiovasc Care. 2021 ; 10 : 487-96.
31) Metra M, et al. Effect of serelaxin on cardiac, renal, and hepatic biomarkers in the relaxin in acute heart failure (RELAX-AHF) development program : correlation with outcomes. J Am Coll Cardiol. 2013 ; 61 : 196-206.
32) Teerlink JR, et al. Relaxin for the treatment of patients with acute heart failure (Pre-RELAX-AHF) : a multicentre, randomised, placebo-controlled, parallel-group, dose-finding phase IIb study. Lancet. 2009 ; 373 : 1429-39.
33) Packer M, et al. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction : the EMPEROR-Reduced trial. Circulation. 2021 ; 143 : 326-36.
34) Berg DD, et al. Time to clinical benefit of dapagliflozin and significance of prior heart failure hospitalization in patients with heart failure with reduced ejection fraction. JAMA Cardiol. 2021 ; 6 : 499-507.
35) Bhatt DL, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021 ; 384 : 117-28.
36) Voors AA, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure : a multinational randomized trial. Nat Med. 2022 ; 28 : 568-74.
37) Cox ZL, et al. Efficacy and safety of dapagliflozin in acute heart failure : rationale and design of the DICTATE-AHF trial. Am Heart J. 2021 ; 232 : 116-24.
38) Horiuchi Y, et al. Early treatment with a sodium-glucose co-transporter 2 inhibitor in high-risk patients with acute heart failure : rationale for and design of the EMPA-AHF trial. Am Heart J. 2023 ; 257 : 85-92.
39) Wong YW, et al. Early intravenous heart failure therapy and outcomes among older patients hospitalized for acute decompensated heart failure : findings from the Acute Decompensated Heart Failure Registry Emergency Module (ADHERE-EM). Am Heart J. 2013 ; 166 : 349-56.
40) Ward MJ, et al. Preventable delays to intravenous furosemide administration in the emergency department prolong hospitalization for patients with acute heart failure. Int J Cardiol. 2018 ; 269 : 207-12.
P.182 掲載の参考文献
1) Cotter G, et al. Randomised trial of high-dose isosorbide dinitrate plus low-dose furosemide versus high-dose furosemide plus low-dose isosorbide dinitrate in severe pulmonary oedema. Lancet. 1998 ; 351 : 389-93.
2) Publication Committee for the VMAC Investigators. Intravenous nesiritide vs nitroglycerin for treatment of decompensated congestive heart failure : a randomized controlled trial. JAMA. 2002 ; 287 : 1531-40.
3) O'Connor CM, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011 ; 365 : 32-43.
4) Chen HH, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction : the ROSE acute heart failure randomized trial. JAMA. 2013 ; 310 : 2533-43.
5) Teerlink JR, et al. Serelaxin, recombinant human relaxin-2, for treatment of acute heart failure (RELAX-AHF) : a randomised, placebo-controlled trial. Lancet. 2013 ; 381 : 29-39.
6) Packer M, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017 ; 376 : 1956-64.
7) Metra M, et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019 ; 38 : 716-26.
8) Kozhuharov N, et al. Effect of a strategy of comprehensive vasodilation vs usual care on mortality and heart failure rehospitalization among patients with acute heart failure : The GALACTIC Randomized Clinical Trial. JAMA. 2019 ; 322 : 2292-2302.
9) Freund Y, et al. Effect of an emergency department care bundle on 30-day hospital discharge and survival among elderly patients with acute heart failure : The ELISABETH Randomized Clinical Trial. JAMA. 2020 ; 324 ; 1948-56.
10) McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure : developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2021 ; 36 : 3599-26.
11) Heidenreich PA, et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
12) Filippatos G, et al. Global differences in characteristics, precipitants, and initial management of patients presenting with acute heart failure. JAMA Cardiol. 2020 ; 5 : 401-10.
13) Shiraishi Y, et al. 9-year trend in the management of acute heart failure in Japan : a report from the National Consortium of Acute Heart Failure Registries. J Am Heart Assoc. 2018 ; 7 : e008687.
14) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新).
15) Uil CA, et al. Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med. 2009 ; 35 : 1893-9.
16) Uil CA, et al. Low-dose nitroglycerin improves microcirculation in hospitalized patients with acute heart failure. Eur J Heart Fail. 2009 ; 11 : 386-90.
17) Patel PA, et al. Hypotension during hospitalization for acute heart failure is independently associated with 30-day mortality : findings from ASCEND-HF. Circ Heart Fail. 2014 ; 7 : 918-25.
18) Matsue Y, et al. Association of early blood pressure decrease and renal function with prognosis in acute heart failure. JACC Heart Fail. 2021 ; 9 : 890-903.
19) Shiraishi Y, et al. Benefit and harm of intravenous vasodilators across the clinical profile spectrum in acute cardiogenic pulmonary oedema patients. Eur Heart J Acute Cardiovasc Care. 2020 ; 9 : 448-58.
20) Mizuno A, et al. The impact of carperitide usage on the cost of hospitalization and outcome in patients with acute heart failure : high value care vs. low value care campaign in Japan. Int J Cardiol. 2017 ; 241 : 243-8.
21) Nagai T, et al. Effect of intravenous carperitide versus nitrates as first-line vasodilators on in-hospital outcomes in hospitalized patients with acute heart failure : insight from a nationwide claim-based database. Int J Cardiol. 2019 ; 280 : 104-9.
22) Matsue Y, et al. Carperitide is associated with increased in-hospital mortality in acute heart failure : a propensity score-matched analysis. J Card Fail. 2015 ; 21 : 859-64.
23) Velazquez EJ, et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019 ; 380 : 539-48.
24) Fallick C, et al. Sympathetically mediated changes in capacitance : redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011 ; 4 : 669-75.
25) Viau DM, et al. The pathophysiology of hypertensive acute heart failure. Heart. 2015 ; 101 : 1861-7.
26) Takei M, et al. Effect of estimated plasma volume reduction on renal function for acute heart failure differs between patients with preserved and reduced ejection fraction. Circ Heart Fail. 2015 ; 8 : 527-32.
P.187 掲載の参考文献
1) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
2) Naidu SS, et al. SCAI SHOCK stage classification expert consensus update : a review and incorporation of validation studies. J Am Coll Cardiol. 2022 ; 79 : 933-46.
3) Mathew R, et al. Milrinone as compared with dobutamine in the treatment of cardiogenic shock. N Engl J Med. 2021 ; 385 : 516-25.
4) Di Santo P, et al. Impact of baseline beta-blocker use on inotrope response and clinical outcomes in cardiogenic shock : a subgroup analysis of the DOREMI trial. Crit Care. 2021 ; 25 : 289.
5) De Backer D, et al. Comparison of dopamine and norepinephrine in the treatment of shock. N Engl J Med. 2010 ; 362 : 779-89.
6) Levy B, et al. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011 ; 39 : 450-5.
7) Chen HH, et al. Low-dose dopamine or low-dose nesiritide in acute heart failure with renal dysfunction : the ROSE acute heart failure randomized trial. JAMA. 2013 ; 310 : 2533-43.
8) Triposkiadis FK, et al. Efficacy and safety of high dose versus low dose furosemide with or without dopamine infusion : the Dopamine in Acute Decompensated Heart Failure II (DAD-HF II) trial. Int J Cardiol. 2014 ; 172 : 115-21.
9) Mebazaa A, et al. Short-term survival by treatment among patients hospitalized with acute heart failure : the global ALARM-HF registry using propensity scoring methods. Intensive Care Med. 2011 ; 37 : 290-301.
P.193 掲載の参考文献
1) Baran D, et al. Prospective validation of the SCAI shock classification : single center analysis. Catheter Cardiovasc Interv. 2020 ; 96 : 1339-47.
2) Perera D, et al ; BCIS-1 Investigators. Long-term mortality data from the balloon pump-assisted coronary intervention study (BCIS-1) : a randomized, controlled trial of elective balloon counterpulsation during high-risk percutaneous coronary intervention. Circulation. 2013 ; 127 : 207-12.
3) Patel MR, et al. Intra-aortic balloon counterpulsation and infarct size in patients with acute anterior myocardial infarction without shock : the CRISP AMI randomized trial. JAMA. 2011 ; 306 : 1329-37.
4) Thiele H, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012 ; 367 : 1287-96.
5) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新).
6) 急性冠症候群ガイドライン (2018年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2018/11/JCS2018_kimura.pdf 2019年3月発行 (2022年12月更新).
7) 補助人工心臓治療関連学会協議会インペラ部会. 適性使用指針. http://j-pvad.jp/ (2022年12月閲覧)
8) O'Neill WW, et al. The current use of Impella 2.5 in acute myocardial infarction complicated by cardiogenic shock : results from the USpella Registry. J Interv Cardiol. 2014 ; 27 : 1-11.
9) Engstrom AE, et al. Long-term safety and sustained left ventricular recovery : long-term results of percutaneous left ventricular support with Impella LP2.5 in ST-elevation myocardial infarction. Euro Intervention. 2011 ; 6 : 860-5.
10) Seyfarth M, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008 ; 52 : 1584-8.
11) Karami M, et al. Long-term-5-year outcome of the randomized IMPRESS in severe shock trial : percutaneous mechanical circulatory support vs. intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. Eur Heart J Acute Cardiovasc Care. 2021 ; 10 : 1009-15.
12) Panuccio G, et al. Use of Impella device in cardiogenic shock and its clinical outcomes : a systemic review and meta-analysis. Int J Cardiol Heart Vasc. 2022 ; 40 : 101007.
13) Russo G, et al. Can weh ave a rationalized selection of intra-aortic balloon pump, Impella, and extracorporeal membrane oxygenation in the catheterization laboratory? Cardiol J. 2022 ; 29 : 115-32.
P.198 掲載の参考文献
1) Chioncel O, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure : the ESC Heart Failure Long-Term Registry. Eur J Heart Fail. 2017 ; 19 : 1242-54.
2) Metra M, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012 ; 5 : 54-62.
3) Ellison DH, et al. Diuretic treatment in heart failure. N Engl J Med. 2017 ; 377 : 1964-75.
4) Mentz RJ, et al. Effect of torsemide vs furosemide after discharge on all-cause mortality in patients hospitalized with heart failure : the TRANSFORM-HF randomized clinical trial. JAMA. 2023 ; 329 : 214-23.
5) Masuyama T, et al. Superiority of long-acting to short-acting loop diuretics in the treatment of congestive heart failure. Circ J. 2012 ; 76 : 833-42.
6) Felker GM, et al. Diuretic therapy for patients with heart failure : JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 ; 75 : 1178-95.
7) Mullens W, et al. The use of diuretics in heart failure with congestion-a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019 ; 21 : 137-55.
8) Brater DC, et al. Absorption and disposition of furosemide in congestive heart failure. Kidney Int. 1982 ; 22 : 171-6.
9) Vasko MR, et al. Furosemide absorption altered in decompensated congestive heart failure. Ann Intern Med. 1985 ; 102 : 314-8.
11) Brisco MA, et al. Relevance of changes in serum creatinine during a heart failure trial of decongestive strategies : insights from the DOSE trial. J Card Fail. 2016 ; 22 : 753-60.
12) Hanberg JS, et al. An exploratory analysis of the competing effects of aggressive decongestion and high-dose loop diuretic therapy in the DOSE trial. Int J Cardiol. 2017 ; 241 : 277-82.
13) Shiraishi Y, et al. Time-sensitive approach in the management of acute heart failure. ESC Heart Fail. 2021 ; 8 : 204-21.
14) Grodin JL, et al. Direct comparison of ultrafiltration to pharmacological decongestion in heart failure : a per-protocol analysis of CARRESS-HF. Eur J Heart Fail. 2018 ; 20 : 1148-56.
15) Grodin JL, et al. Intensification of medication therapy for cardiorenal syndrome in acute decompensated heart failure. J Card Fail. 2016 ; 22 : 26-32.
P.206 掲載の参考文献
1) Matsue Y, et al. Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017 ; 69 : 3042-51.
2) Horiuchi Y, et al. Relation of decongestion and time to diuretics to biomarker changes and outcomes in acute heart failure. Am J Cardiol. 2021 ; 147 : 70-9.
3) Kuroda S, et al. Very early diuretic response after admission for acute heart failure. J Card Fail. 2019 ; 25 : 12-9.
4) Peacock WF, et al. Impact of intravenous loop diuretics on outcomes of patients hospitalized with acute decompensated heart failure : insights from the ADHERE registry. Cardiology. 2009 ; 113 : 12-9.
5) Mullens W, et al. The use of diuretics in heart failure with congestion-a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019 ; 21 : 137-55.
7) 日本循環器学会, 日本心不全学会. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新).
8) Trulls JC, et al. Combining loop with thiazide diuretics for decompensated heart failure : the CLOROTIC trial. Eur Heart J. 2023 ; 44 : 411-21.
9) Mullens W, et al. Acetazolamide in Decompensated Heart Failure with Volume Overload trial (ADVOR) : baseline characteristics. Eur J Heart Fail. 2022 ; 24 : 1601-10.
10) Damman K, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020 ; 22 : 713-22.
11) Voors AA, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure : a multinational randomized trial. Nat Med. 2022 ; 28 : 568-74.
13) Matsue Y, et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J Card Fail. 2016 ; 22 : 423-32.
14) Felker GM, et al. Efficacy and safety of tolvaptan in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017 ; 69 : 1399-406.
15) Konstam MA, et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J Am Coll Cardiol. 2017 ; 69 : 1409-19.
16) Cox ZL, et al. Diuretic strategies for loop diuretic resistance in acute heart failure : the 3T trial. JACC Heart Fail. 2020 ; 8 : 157-68.
17) Shiraishi Y, et al. Time-sensitive approach in the management of acute heart failure. ESC Heart Fail. 2021 ; 8 : 204-21.
18) Takagi K, et al. Differences in pharmacological property between combined therapy of the vasopressin V2-receptor antagonist tolvaptan plus furosemide and monotherapy of furosemide in patients with hospitalized heart failure. J Cardiol. 2020 ; 76 : 499-505.
P.213 掲載の参考文献
1) Mullens W, et al. Evaluation of kidney function throughout the heart failure trajectory - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2020 ; 22 : 584-603.
2) Mullens W, et al. The use of diuretics in heart failure with congestion-a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019 ; 21 : 137-55.
3) Rennke HG, et al. Renal pathophysiology : the essentials. 3rd ed. Philadelphia : Wolters Kluwer Heatlh/Lippincott Williams & Wilkins ; 2010.
4) Burke M, et al. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol. 2014 ; 12 : 845-58.
5) Felker GM, et al. Diuretic therapy for patients with heart failure : JACC State-of-the-Art Review. J Am Coll Cardiol. 2020 ; 75 : 1178-95.
6) Boorsma EM, et al. Renal compression in heart failure : the renal tamponade hypothesis. JACC Heart failure. 2022 ; 10 : 175-83.
7) Testani JM, et al. Potential effects of aggressive decongestion during the treatment of decompensated heart failure on renal function and survival. Circulation. 2010 ; 122 : 265-72.
8) Testani JM, et al. Timing of hemoconcentration during treatment of acute decompensated heart failure and subsequent survival : importance of sustained decongestion. J Am Coll Cardiol. 2013 ; 62 : 516-24.
9) Testani JM, et al. Loop diuretic efficiency : a metric of diuretic responsiveness with prognostic importance in acute decompensated heart failure. Circ Heart Fail. 2014 ; 7 : 261-70.
10) Takei M, et al. Effect of estimated plasma volume reduction on renal function for acute heart failure differs between patients with preserved and reduced ejection fraction. Circ Heart Fail. 2015 ; 8 : 527-32.
11) Rossignol P, et al. Determinants and consequences of renal function variations with aldosterone blocker therapy in heart failure patients after myocardial infarction : insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study. Circulation. 2012 ; 125 : 271-9.
12) KevinDamman MAEV, et al. Renal impairment, worsening renal function, and outcome in patients with heart failure : an updated meta-analysis. Eur Heart J. 2014 ; 35 : 455-69.
13) Voors AA, et al. Renal effects of empagliflozin in patients hospitalized for acute heart failure : from the EMPULSE trial. Eur J Heart Fail. 2022 ; 24 : 1844-52.
14) Adamson C, et al. Initial Decline (Dip) in estimated glomerular filtration rate after initiation of dapagliflozin in patients with heart failure and reduced ejection fraction : insights from DAPA-HF. Circulation. 2022 ; 146 : 438-49.
P.218 掲載の参考文献
1) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
2) Adams KF, Jr, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States : rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005 ; 149 : 209-16.
3) Bradley TD, et al. Cardiac output response to continuous positive airway pressure in congestive heart failure. Am Rev Respir Dis. 1992 ; 145 : 377-82.
4) Luo JC, et al. Positive end-expiratory pressure effect of 3 high-flow nasal cannula devices. Respir Care. 2017 ; 62 : 888-95.
P.224 掲載の参考文献
1) Bohm M, et al. Heart rate as a risk factor in chronic heart failure (SHIFT) : the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet. 2010 ; 376 : 886-94.
2) Takada T, et al. Impact of elevated heart rate on clinical outcomes in patients with heart failure with reduced and preserved ejection fraction : a report from the CHART-2 Study. Eur J Heart Fail. 2014 ; 16 : 309-16.
3) Kitai T, et al. Insufficient reduction in heart rate during hospitalization despite beta-blocker treatment in acute decompensated heart failure : insights from the ASCEND-HF trial. Eur J Heart Fail. 2017 ; 19 : 241-9.
4) McAlister FA, et al. Meta-analysis : beta-blocker dose, heart rate reduction, and death in patients with heart failure. Ann Intern Med. 2009 ; 150 : 784-94.
5) Thollon C, et al. Stereospecific in vitro and in vivo effects of the new sinus node inhibitor (+) -S 16257. Eur J Pharmacol. 1997 ; 339 : 43-51.
6) Swedberg K, et al. Ivabradine and outcomes in chronic heart failure (SHIFT) : a randomised placebo-controlled study. Lancet. 2010 ; 376 : 875-85.
7) Tsutsui H, et al. Efficacy and safety of ivabradine in Japanese patients with chronic heart failure - J-SHIFT study. Circ J. 2019 ; 83 : 2049-60.
8) Tsutsui H, et al. JCS/JHFS 2021 guideline focused update on diagnosis and treatment of acute and chronic heart failure. Circ J. 2021 ; 85 : 2252-91.
9) Colin P, et al. Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am J Physiol Heart Circ Physiol. 2003 ; 284 : H676-82.
10) Milliez P, et al. Beneficial effects of delayed ivabradine treatment on cardiac anatomical and electrical remodeling in rat severe chronic heart failure. Am J Physiol Heart Circ Physiol. 2009 ; 296 : H435-41.
11) Tardif JC, et al. Effects of selective heart rate reduction with ivabradine on left ventricular remodelling and function : results from the SHIFT echocardiography substudy. Eur Heart J. 2011 ; 32 : 2507-15.
12) Gallet R, et al. Hemodynamic effects of Ivabradine in addition to dobutamine in patients with severe systolic dysfunction. Int J Cardiol. 2014 ; 176 : 450-5.
13) Porcile. R, et al. Safety, tolerability and efficacy of ivabradine for control of sinus tachycardia in patients undergoing inotropic therapy. Curr Res Cardiol. 2016 ; 3 : 13-6.
14) Nguyen LS, et al. Intravenous ivabradine versus placebo in patients with low cardiac output syndrome treated by dobutamine after elective coronary artery bypass surgery : a phase 2 exploratory randomized controlled trial. Crit Care. 2018 ; 22 : 193.
15) Chiu MH, et al. Initiation of ivabradine in cardiogenic shock. ESC Heart Fail. 2019 ; 6 : 1088-91.
16) Colombo CNJ, et al. Heart rate control and hemodynamic improvement with ivabradine in cardiogenic shock patient on mechanical circulatory support. Eur Heart J Acute Cardiovasc Care. 2022 ; 11 : 916-21.
17) Bedet A, et al. Heart rate control during experimental sepsis in mice : comparison of ivabradine and β-blockers. Anesthesiology. 2020 ; 132 : 321-9.
18) Nuding S, et al. Reducing elevated heart rates in patients with multiple organ dysfunction syndrome with the if (funny channel current) inhibitor ivabradine. Shock. 2018 ; 49 : 402-11.
19) Swedberg K, et al. Effects on outcomes of heart rate reduction by ivabradine in patients with congestive heart failure : is there an influence of beta-blocker dose? : findings from the SHIFT (Systolic Heart failure treatment with the If inhibitor ivabradine Trial) study. J Am Coll Cardiol. 2012 ; 59 : 1938-45.
20) Hidalgo FJ, et al. Effect of early treatment with ivabradine combined with beta-blockers versus beta-blockers alone in patients hospitalised with heart failure and reduced left ventricular ejection fraction (ETHIC-AHF) : a randomised study. Int J Cardiol. 2016 ; 217 : 7-11.
21) Liu YX, et al. Initiating ivabradine during hospitalization in patients with acute heart failure : a real-world experience in China. Clin Cardiol. 2022 ; 45 : 928-35.
22) Lopatin YM, et al. Optimization of heart rate lowering therapy in hospitalized patients with heart failure : insights from the optimize heart failure care program. Int J Cardiol. 2018 ; 260 : 113-7.
23) Izumi K, et al. Low blood pressure and guideline-directed medical therapy in patients with heart failure with reduced ejection fraction. Int J Cardiol. 2023 ; 370 : 255-62.
24) Yumita Y, et al. Personalized target heart rate for patients with heart failure and reduced ejection fraction. J Pers Med. 2022 ; 12 : 50.
25) Fox K, et al. Bradycardia and atrial fibrillation in patients with stable coronary artery disease treated with ivabradine : an analysis from the SIGNIFY study. Eur Heart J. 2015 ; 36 : 3291-6.
26) Martin RI, et al. Atrial fibrillation associated with ivabradine treatment : meta-analysis of randomised controlled trials. Heart. 2014 ; 100 : 1506-10.
27) Kosmala W, et al. Effect of If-channel inhibition on hemodynamic status and exercise tolerance in heart failure with preserved ejection fraction : a randomized trial. J Am Coll Cardiol. 2013 ; 62 : 1330-8.
28) Pal N, et al. Effect of selective heart rate slowing in heart failure with preserved ejection fraction. Circulation. 2015 ; 132 : 1719-25.
29) Komajda M, et al. Effect of ivabradine in patients with heart failure with preserved ejection fraction : the EDIFY randomized placebo-controlled trial. Eur J Heart Fail. 2017 ; 19 : 1495-503.
30) Van Gelder IC, et al. Lenient versus strict rate control in patients with atrial fibrillation. N Engl J Med. 2010 ; 362 : 1363-73.
31) Kotecha D, et al. Heart rate and rhythm and the benefit of beta-blockers in patients with heart failure. J Am Coll Cardiol. 2017 ; 69 : 2885-96.
32) Nagatomo Y, et al. Differential response to heart rate reduction by carvedilol in heart failure and reduced ejection fraction between sinus rhythm and atrial fibrillation-insight from J-CHF study. Circ Rep. 2020 ; 2 : 143-51.
P.229 掲載の参考文献
1) McMurray JJ, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014 ; 371 : 993-1004.
2) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン (2017年改訂版). https://www.j-circ.or.jp/cms/wp-content/uploads/2017/06/JCS2017_tsutsui_h.pdf 2018年3月発行 (2022年4月更新)
3) Velazquez EJ, et al. Angiotensin-neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019 ; 380 : 539-48.
4) Wachter R, et al. Initiation of sacubitril/valsartan in haemodynamically stabilised heart failure patients in hospital or early after discharge : primary results of the randomised TRANSITION study. Eur J Heart Fail. 2019 ; 21 : 998-1007.
5) Pfeffer MA, et al. Angiotensin receptor-neprilysin inhibition in acute myocardial infarction. N Engl J Med. 2021 ; 385 : 1845-55.
6) Kitakaze M, et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND) : two randomised trials. Lancet. 2007 ; 370 : 1483-93.
7) Matsue Y, et al. Carperitide Is associated with increased in-hospital mortality in acute heart failure : a propensity score-matched analysis. J Card Fail. 2015 ; 21 : 859-64.
9) Nagai T, et al. Effect of intravenous carperitide versus nitrates as first-line vasodilators on in-hospital outcomes in hospitalized patients with acute heart failure : insight from a nationwide claim-based database. Int J Cardiol. 2019 ; 280 : 104-9.
10) Nogi K, et al. Effect of carperitide on the 1 year prognosis of patients with acute decompensated heart failure. ESC Heart Fail. 2022 ; 9 : 1061-70.
11) O'Connor CM, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011 ; 365 : 32-43.
12) Packer M, et al. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017 ; 376 : 1956-64.
13) McDonagh TA, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021 ; 42 : 3599-726.
14) 日本循環器学会. 2021年JCS/JHFSガイドライン フォーカスアップデート版 急性・慢性心不全診療. https://www.j-circ.or.jp/cms/wp-content/uploads/2021/03/JCS2021_Tsutsui.pdf 2021年3月発行 (2021年9月更新)
15) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
16) Mann DL, et al. Effect of treatment with sacubitril/valsartan in patients with advanced heart failure and reduced ejection fraction : a randomized clinical trial. JAMA Cardiol. 2022 ; 7 : 17-25.
17) Jin H, et al. Atrial natriuretic peptide attenuates the development of pulmonary hypertension in rats adapted to chronic hypoxia. J Clin Invest. 1990 ; 85 : 115-20.
18) Potter LR, et al. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006 ; 27 : 47-72.
19) Clements RT, et al. Treatment of pulmonary hypertension with angiotensin II receptor blocker and neprilysin inhibitor sacubitril/valsartan. Circ Heart Fail. 2019 ; 12 : e005819.
20) Andersen S, et al. Effects of combined angiotensin II receptor antagonism and neprilysin inhibition in experimental pulmonary hypertension and right ventricular failure. Int J Cardiol. 2019 ; 293 : 203-10.
21) Sharifi Kia D, et al. Angiotensin receptor-neprilysin inhibition attenuates right ventricular remodeling in pulmonary hypertension. J Am Heart Assoc. 2020 ; 9 : e015708.
22) Tran JS, et al. Acute pulmonary pressure change after transition to sacubitril/valsartan in patients with heart failure reduced ejection fraction. ESC Heart Fail. 2021 ; 8 : 1706-10.
23) Martyn T, et al. Acute hemodynamic effects of sacubitril-valsartan in heart failure patients receiving intravenous vasodilator and inotropic therapy. J Card Fail. 2021 ; 27 : 368-72.
24) Zern EK, et al. Angiotensin receptor-neprilysin inhibitor therapy reverses pulmonary hypertension in end-stage heart failure patients awaiting transplantation. Circ Heart Fail. 2020 ; 13 : e006696.
25) Vardeny O, et al. Reduced loop diuretic use in patients taking sacubitril/valsartan compared with enalapril : the PARADIGM-HF trial. Eur J Heart Fail. 2019 ; 21 : 337-41.
26) Wang TD, et al. Effects of sacubitril/valsartan (LCZ696) on natriuresis, diuresis, blood pressures, and NT-proBNP in salt-sensitive hypertension. Hypertension. 2017 ; 69 : 32-41.
27) Ter Maaten JM. Unravelling the effect of sacubitril/valsartan on loop diuretic dosing. Eur J Heart Fail. 2019 ; 21 : 342-4.
28) Ayalasomayajula S, et al. Effect of the angiotensin receptor-neprilysin inhibitor sacubitril/valsartan on the pharmacokinetics and pharmacodynamics of a single dose of furosemide. Br J Clin Pharmacol. 2018 ; 84 : 926-36.
29) Zhang J, et al. Effect of sacubitril/valsartan on the right ventricular function and pulmonary hypertension in patients with heart failure with reduced ejection fraction : a systematic review and meta-analysis of observational studies. J Am Heart Assoc. 2022 ; 11 : e024449.

その他のControversy

P.236 掲載の参考文献
1) Tsuji K, et al. Characterization of heart failure patients with mid-range left ventricular ejection fraction-a report from the CHART-2 Study. Eur J Heart Fail. 2017 ; 19 : 1258-69.
2) Obokata M, et al. Diastolic dysfunction and heart failure with preserved ejection fraction : understanding mechanisms by using noninvasive methods. JACC Cardiovasc Imaging. 2020 ; 13 : 245-57.
3) Kagami K, et al. Key phenotypes of heart failure with preserved ejection fraction : pathophysiologic mechanisms and potential treatment strategies. Cardiol Clin. 2022 ; 40 : 415-29.
4) Solomon SD, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019 ; 381 : 1609-20.
5) Yusuf S, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction : the CHARM-Preserved Trial. Lancet. 2003 ; 362 : 777-81.
6) Pfeffer MA, et al. Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial. Circulation. 2015 ; 131 : 34-42.
7) Kitzman DW, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction : a randomized clinical trial. JAMA. 2016 ; 315 : 36-46.
8) Shah SJ, et al. Atrial shunt device for heart failure with preserved and mildly reduced ejection fraction (REDUCE LAP-HF II) : a randomised, multicentre, blinded, sham-controlled trial. Lancet. 2022 ; 399 : 1130-40.
9) Borlaug BA, et al. Latent pulmonary vascular disease may alter the response to therapeutic atrial shunt device in heart failure. Circulation. 2022 ; 145 : 1592-604.
10) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
11) Anker SD, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021 ; 385 : 1451-61.
12) Solomon SD, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022 ; 387 : 1089-98.
13) Kosiborod MN, et al. effects of empagliflozin on symptoms, physical limitations, and quality of life in patients hospitalized for acute heart failure : results from the EMPULSE trial. Circulation. 2022 ; 146 : 279-88.
14) Pabon MA, et al. Natriuretic peptide-based inclusion criteria in heart failure with preserved ejection fraction clinical trials : insights from PARAGON-HF. Eur J Heart Fail. 2022 ; 24 : 672-7.
15) Jackson AM, et al. Sacubitril-valsartan as a treatment for apparent resistant hypertension in patients with heart failure and preserved ejection fraction. Eur Heart J. 2021 ; 42 : 3741-52.
P.242 掲載の参考文献
1) Zamorano JL, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines : The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016 ; 37 : 2768-801.
2) Lyon AR, et al. 2022 ESC guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J. 2022 ; ehac244.
3) Rubio-Infante N, et al. Cardiotoxicity associated with immune checkpoint inhibitor therapy : a meta-analysis. Eur J Heart Fail. 2021 ; 23 : 1739-47.
4) Kalam K, et al. Role of cardioprotective therapy for prevention of cardiotoxicity with chemotherapy : a systematic review and meta-analysis. Eur J Cancer. 2013 ; 49 : 2900-9.
5) Henriksen PA. Anthracycline crdiotoxicity : an update on mechanisms, monitoring and prevention. Heart. 2018 ; 104 : 971-7.
6) Oikonomou EK, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity : a systematic review and meta-analysis. JAMA Cardiol. 2019 ; 4 : 1007-18.
7) Thavendiranathan P, et al. Strain-guided management of potentially cardiotoxic cancer therapy. J Am Coll Cardiol. 2021 ; 77 : 392-401.
8) Laufer-Perl M, et al. The association of reduced global longitudinal strain with cancer therapy-related cardiac dysfunction among patients receiving cancer therapy. Clin Res Cardiol. 2020 ; 109 : 255-62.
9) Lyon AR, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies : a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society. Eur J Heart Fail. 2020 ; 22 : 1945-60.
10) Zamorano JL, et al. The cancer patient and cardiology. Eur J Heart Fail. 2020 ; 22 : 2290-309.
11) Pudil R, et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies : a position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur J Heart Fail. 2020 ; 22 : 1966-83.
12) Celutkiene J, et al. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies : a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of the European Society of Cardiology (ESC). Eur J Heart Fail. 2020 ; 22 : 1504-24.
13) Goel S, et al. Decline in left ventricular ejection fraction following anthracyclines predicts trastuzumab cardiotoxicity. JACC Heart Fail. 2019 ; 7 : 795-804.
14) Gyongyosi M, et al. Liposomal doxorubicin attenuates cardiotoxicity via induction of interferon-related DNA damage resistance. Cardiovasc Res. 2020 ; 116 : 970-82.
15) van Dalen EC, et al. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2011 ; 2011 : CD003917.
16) Ding Y, et al. Genetic susceptibility and mechanisms underlying the pathogenesis of anthracycline-associated cardiotoxicity. Oxid Med Cell Longev. 2022 ; 2022 : 5818612.
17) Garcia-Pavia P, et al. Genetic variants associated with cancer therapy-induced cardiomyopathy. Circulation. 2019 ; 140 : 31-41.
P.248 掲載の参考文献
1) The classification of cardiac diagnosis. Journal of the American Medical Association. 1921 ; 77 : 1414-5.
2) Raphael C, et al. Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart. 2007 ; 93 : 476-82.
3) Spertus JA, et al. Interpreting the Kansas City Cardiomyopathy Questionnaire in clinical trials and clinical care : JACC State-of-the-Art Review. J Am Coll of Cardiol. 2020 ; 76 : 2379-90.
4) Green CP, et al. Development and evaluation of the Kansas City Cardiomyopathy Questionnaire : a new health status measure for heart failure. J Am Coll Cardiol. 2000 ; 35 : 1245-55.
5) Chan PS, et al. Development and validation of a short version of the Seattle angina questionnaire. Circ Cardiovasc Qual Outcomes. 2014 ; 7 : 640-7.
6) Spertus JA, et al. Development and validation of a short version of the Kansas City Cardiomyopathy Questionnaire. Circ Cardiovasc Qual Outcomes. 2015 ; 8 : 469-76.
7) Joseph SM, et al. Comparable performance of the Kansas City Cardiomyopathy Questionnaire in patients with heart failure with preserved and reduced ejection fraction. Circ Heart Fail. 2013 ; 6 : 1139-46.
8) Dunlay SM, et al. Critical elements of clinical follow-up after hospital discharge for heart failure : insights from the EVEREST trial. Eur J Heart Fail. 2010 ; 12 : 367-74.
9) Soto GE, et al. Prognostic value of health status in patients with heart failure after acute myocardial infarction. Circulation. 2004 ; 110 : 546-51.
10) Heidenreich PA, et al. Health status identifies heart failure outpatients at risk for hospitalization or death. J Am Coll Cardiol. 2006 ; 47 : 752-6.
11) Arnold SV, et al. Association of Patient-Reported Health Status With Long-Term Mortality After Transcatheter Aortic Valve Replacement Report from the STS/ACC TVT registry. Circ Cardiovasc Interv. 2015 ; 8 : e002875.
12) Spertus J, et al. Monitoring clinical changes in patients with heart failure : a comparison of methods. Am Heart J. 2005 ; 150 : 707-15.
13) Kosiborod M, et al. Identifying heart failure patients at high risk for near-term cardiovascular events with serial health status assessments. Circulation. 2007 ; 115 : 1975-81.
14) Pokharel Y, et al. Association of Serial Kansas City Cardiomyopathy Questionnaire Assessments with death and hospitalization in patients with heart failure with preserved and reduced ejection fraction : a secondary analysis of 2 randomized clinical trials. JAMA Cardiol. 2017 ; 2 : 1315-21.
15) Flynn KE, et al. Relationships between changes in patient-reported health status and functional capacity in outpatients with heart failure. Am Heart J. 2012 ; 163 : 88-94.e3.
16) Luther SA, et al. The relationship between B-type natriuretic peptide and health status in patients with heart failure. J Card Fail. 2005 ; 11 : 414-21.
17) Greene SJ, et al. Comparison of New York Heart Association Class and patient-reported outcomes for heart failure with reduced ejection fraction. JAMA Cardiol. 2021 ; 6 : 522-31.
18) Sandhu AT, et al. Impact of patient-reported outcome measurement in heart failure clinic on clinician health status assessment and patient experience : a substudy of the PRO-HF trial. Circulation. 2023 ; 16 : e010280.
19) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
P.255 掲載の参考文献
1) Bragazzi NL, et al. Burden of heart failure and underlying causes in 195 countries and territories from 1990 to 2017. Eur J Prev Cardiol. 2021 ; 28 : 1682-90.
2) Bahrami H, et al. Differences in the incidence of congestive heart failure by ethnicity : the multi-ethnic study of atherosclerosis. Arch Intern Med. 2008 ; 168 : 2138-45.
3) Young BA. Health disparities in advanced heart failure treatment : the intersection of race and sex. JAMA Netw Open. 2020 ; 3 : e2011034.
4) Ziaeian B, et al. National differences in trends for heart failure hospitalizations by sex and race/ethnicity. Circ Cardiovasc Qual Outcomes. 2017 ; 10 : e003552.
5) Zheng J, et al. Disparities in hospital length of stay across race and ethnicity among patients with heart failure. Circ Heart Fail. 2022 ; 15 : e009362.
6) Tahhan AS, et al. Enrollment of older patients, women, and racial and ethnic minorities in contemporary heart failure clinical trials : a systematic review. JAMA Cardiol. 2018 ; 3 : 1011-9.
7) Muntner P, et al. Trends in blood pressure control among us adults with hypertension, 1999-2000 to 2017-2018. JAMA. 2020 ; 324 : 1190-200.
8) Lawson CA, et al. Risk factors for heart failure : 20-year population-based trends by sex, socioeconomic status, and ethnicity. Circ Heart Fail. 2020 ; 13 : e006472.
9) Havranek EP, et al. Social determinants of risk and outcomes for cardiovascular disease : a scientific statement from the American Heart Association. Circulation. 2015 ; 132 : 873-98.
10) Unger E, et al. Association of neighborhood characteristics with cardiovascular health in the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014 ; 7 : 524-31.
11) Shimokawa H, et al. Heart failure as a general pandemic in Asia. Eur J Heart Fail. 2015 ; 17 : 884-92.
12) Ezekowitz JA, et al. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol. 2009 ; 53 : 13-20.
13) Ushigome R, et al. Temporal trends in clinical characteristics, management and prognosis of patients with symptomatic heart failure in Japan -- report from the CHART Studies. Circ J. 2015 ; 79 : 2396-407.
14) Aung T, et al. Prevalence and prognostic significance of frailty in asian patients with heart failure : insights from ASIAN-HF. JACC Asia. 2021 ; 1 : 303-13.
15) Lam CS, et al. Regional and ethnic differences among patients with heart failure in Asia : the Asian sudden cardiac death in heart failure registry. Eur Heart J. 2016 ; 37 : 3141-53.
16) Yancy CW, et al. Race and the response to adrenergic blockade with carvedilol in patients with chronic heart failure. N Engl J Med. 2001 ; 344 : 1358-65.
17) Exner DV, et al. Lesser response to angiotensin-converting-enzyme inhibitor therapy in black as compared with white patients with left ventricular dysfunction. N Engl J Med. 2001 ; 344 : 1351-7.
18) El-Refai M, et al. Race and association of angiotensin converting enzyme/angiotensin receptor blocker exposure with outcome in heart failure. J Cardiovasc Med (Hagerstown). 2015 ; 16 : 591-6.
19) Heidenreich PA, et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure : a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022 ; 145 : e895-1032.
20) Pitt B, et al ; Randomized Aldactone Evaluation Study Investigators. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999 ; 341 : 709-17.
21) Vardeny O, et al. Race influences the safety and efficacy of spironolactone in severe heart failure. Circ Heart Fail. 2013 ; 6 : 970-6.
22) Cohn JN, et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a veterans administration cooperative study. N Engl J Med. 1986 ; 314 : 1547-52.
23) Taylor AL, et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N Engl J Med. 2004 ; 351 : 2049-57.
24) Morris AA, et al. Racial differences in arterial stiffness and microcirculatory function between black and white Americans. J Am Heart Assoc. 2013 ; 2 : e002154.
25) Ibrahim NE, et al. Racial and ethnic differences in biomarkers, health status, and cardiac remodeling in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan. Circ Heart Fail. 2020 ; 13 : e007829.
26) Chapman B, et al. Angiotensin receptor neprilysin inhibition and associated outcomes by race and ethnicity in patients with heart failure with reduced ejection fraction : data from CHAMP-HF. J Am Heart Assoc. 2022 ; 11 : e022889.
27) Lam CSP, et al. Regional and ethnic influences on the response to empagliflozin in patients with heart failure and a reduced ejection fraction : the EMPEROR-Reduced trial. Eur Heart J. 2021 ; 42 : 4442-51.
28) Docherty KF, et al. Effects of dapagliflozin in Asian patients with heart failure and reduced ejection fraction in DAPA-HF. JACC Asia. 2022 ; 2 : 139-53.
29) Mathews L, et al. Racial differences in trends and prognosis of guideline-directed medical therapy for heart failure with reduced ejection fraction : the Atherosclerosis Risk in Communities (ARIC) surveillance study. J Racial Ethn Health Disparities. 2023 ; 10 : 118-29.
30) Pahuja M, et al. Assessing race and ethnicity differences in outcomes based on GDMT and target NT-proBNP in patients with heart failure with reduced ejection fraction : an analysis of the GUIDE-IT study. Prog Cardiovasc Dis. 2022 ; 71 : 79-85.
31) Mebazaa A, et al. Safety, tolerability and efficacy of up-titration of guideline-directed medical therapies for acute heart failure (STRONG-HF) : a multinational, open-label, randomised, trial. Lancet. 2022 ; 400 : 1938-52.
32) Teng TK, et al. Association between body surface area and prescribed doses of guideline-directed medications among international patients with heart failure and reduced ejection fraction. Eur J Heart Fail. 2020 ; 22 : 754-8.
33) Teng TK, et al. Prescribing patterns of evidence-based heart failure pharmacotherapy and outcomes in the ASIAN-HF registry : a cohort study. Lancet Glob Health. 2018 ; 6 : e1008-e18.
34) Dokainish H. Medical therapy for heart failure : the evidence exists, but is it being followed? Lancet Glob Health. 2018 ; 6 : e942-3.
35) Van Spall HGC, et al. Comparative effectiveness of transitional care services in patients discharged from the hospital with heart failure : a systematic review and network meta-analysis. Eur J Heart Fail. 2017 ; 19 : 1427-43.
36) Herman DS, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012 ; 366 : 619-28.
37) Haggerty CM, et al. Genomics-first evaluation of heart disease associated with titin-truncating variants. Circulation. 2019 ; 140 : 42-54.

最近チェックした商品履歴

Loading...